neural networks research group
areas
people
projects
demos
publications
software/data
Optimizing a Manufacturing Process
Active from 1998 - 2002
In many real world optimization problems, such as resource management and manufacturing, the optimization has to be done under uncertainty. Uncertainty makes the task nonlinear, and standard methods such as Linear Programming do not perform very well. In this project, the aim is to evolve neural networks with ESP to optimize a manufacturing process (of aluminum recycling). The goal is to learn to compensate for the uncertainty, and utilize hidden regularities in the data. With a small number of variables and with accuracy limited to a small number of values, ESP outperforms Linear Programming, but its performance is not significantly better with several highly accurate variables. This result is both a promise and a challenge for future neuroevolution research.
Publications
Neuroevolution: Automating Creativity in AI Model Design
Sebastian Risi, David Ha, Yujin Tang, Risto Miikkulainen
To Appear In , Cambridge, MA, 2025. MIT Press.
2025
Numerical Optimization With Neuroevolution
Brian Greer, Henri Hakonen, Risto Lahdelma, and Risto Miikkulainen
In
Proceedings of the 2002 Congress on Evolutionary Computation
, 361-401, Piscataway, NJ, 20...
2002
Related Areas
Neuroevolution