next up previous
Next: About this document Up: Self-Organization of Orientation Maps Previous: Acknowledgements

References

1
S.-I. Amari. Topographic organization of nerve fields. Bulletin of Mathematical Biology, 42:339--364, 1980.

2
H. B. Barlow. Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1:371--394, 1972.

3
H. B. Barlow. The twelfth Bartlett memorial lecture: The role of single neuron in the psychology of perception. Quarterly Journal of Experimental Psychology, 37A:121--145, 1985.

4
C. Blakemore and G. F. Cooper. Development of the brain depends on the visual environment. Nature, 228:477--478, 1970.

5
C. Blakemore and R. C. Van Sluyters. Innate and environmental factors in the development of the kitten's visual cortex. Journal of Physiology, 248:663--716, 1975.

6
G. G. Blasdel. Orientation selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience, 12:3139--3161, August 1992.

7
G. G. Blasdel and G. Salama. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature, 321:579--585, 1986.

8
A. Burkhalter, K. L. Bernardo, and V. Charles. Development of local circuits in human visual cortex. Journal of Neuroscience, 13:1916--1931, May 1993.

9
M. B. Dalva and L. C. Katz. Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. Science, 265:255--258, July 1994.

10
E. Erwin, K. Obermayer, and K. J. Schulten. Models of orientation and ocular dominance columns in the visual cortex: A critical comparison. Neural Computation, 7:425--468, 1995.

11
D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, 4:2379--2394, 1987.

12
D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559--601, 1994.

13
D. Fitzpatrick, B. R. Schofield, and J. Strote. Spatial organization and connections of iso-orientation domains in the tree shrew striate cortex. In Society for Neuroscience Abstracts, 20:837, 1994.

14
C. D. Gilbert. Horizontal integration and cortical dynamics. Neuron, 9:1--13, July 1992.

15
C. D. Gilbert, J. A. Hirsch, and T. N. Wiesel. Lateral interactions in visual cortex. In Cold Spring Harbor Symposia on Quantitative Biology, Volume LV, 663--677. Cold Spring Harbor Laboratory Press, 1990.

16
C. D. Gilbert and T. N. Wiesel. Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience, 3:1116--1133, 1983.

17
G. Goodhill. Topography and ocular dominance: a model exploring positive correlations. Biological Cybernetics, 69:109--118, 1993.

18
S. Grossberg. On the development of feature detectors in the visual cortex with applications to learning and reaction-diffusion systems. Biological Cybernetics, 21:145--159, 1976.

19
B. Gustafsson and H. Wigström. Physiological mechanisms underlying long-term potentiation. Trends in Neurosciences, 11:156--162, 1988.

20
Y. Hata, T. Tsumoto, H. Sato, K. Hagihara, and H. Tamura. Development of local horizontal interactions in cat visual cortex studied by cross-correlation analysis. Journal of Neurophysiology, 69:40--56, January 1993.

21
D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, New York, 1949.

22
D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160:106--154, 1962.

23
D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195:215--243, 1968.

24
M. K. Kapadia, C. D. Gilbert, and G. Westheimer. A quantitative measure for short-term cortical plasticity in human vision. Journal of Neuroscience, 14:451--457, January 1994.

25
L. C. Katz and E. M. Callaway. Development of local circuits in mammalian visual cortex. Annual Review of Neuroscience, 15:31--56, 1992.

26
T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59--69, 1982.

27
T. Kohonen. Self-Organization and Associative Memory. Springer, Berlin; Heidelberg; New York, third edition, 1989.

28
T. Kohonen. Physiological interpretation of the self-organizing map algorithm. Neural Networks, 6:895--905, 1993.

29
S. Löwel and W. Singer. Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science, 255:209--212, 1992.

30
K. D. Miller. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on- and off-center inputs. Journal of Neuroscience, 14:409--441, 1994.

31
K. D. Miller, J. B. Keller, and M. P. Stryker. Ocular dominance column development: Analysis and simulation. Science, 245:605--615, 1989.

32
J. A. Movshon and R. C. Van Sluyters. Visual neural development. Annual Review of Psychology, 32:477--522, 1981.

33
K. Obermayer, G. G. Blasdel, and K. J. Schulten. Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. Physical Review A, 45:7568--7589, 1992.

34
K. Obermayer, H. J. Ritter, and K. J. Schulten. A principle for the formation of the spatial structure of cortical feature maps. Proceedings of the National Academy of Sciences, USA, 87:8345--8349, 1990.

35
M. W. Pettet and C. D. Gilbert. Dynamic changes in receptive-field size in cat primary visual cortex. Proceedings of the National Academy of Sciences, USA, 89:8366--8370, 1992.

36
G. Sclar and R. D. Freeman. Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast. Experimental Brain Research, 46:457--461, 1982.

37
J. Sirosh. A Self-Organizing Neural Network Model of the Primary Visual Cortex. PhD thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX, 1995.

38
J. Sirosh and R. Miikkulainen.. Cooperative self-organization of afferent and lateral connections in cortical maps. Biological Cybernetics, 71:66--78, 1994.

39
J. Sirosh and R. Miikkulainen.. Modeling cortical plasticity based on adapting lateral interaction. In The Neurobiology of Computation: Proceedings of the Annual Computation and Neural Systems Meeting, Kluwer, Dordrecht, Boston, 1994.

40
J. Sirosh and R. Miikkulainen.. Ocular dominance and patterned lateral connections in a self-organizing model of the primary visual cortex. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, MIT Press, Cambridge, MA, 1995.

41
J. Sirosh and R. Miikkulainen.. Self-organization and functional role of lateral connections and multisize receptive fields in the primary visual cortex. Neural Processing Letters, 3:39--48, 1996.

42
J. Sirosh and R. Miikkulainen.. Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 1996. In press.

43
D. Somers, S. B. Nelson, and M. Sur. An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15:5448--5465, 1995.

44
C. von der Malsburg. Self-organization of orientation-sensitive cells in the striate cortex. Kybernetik, 15:85--100, 1973.

45
J. Xing and G. L. Gerstein. Simulation of dynamic receptive fields in primary visual cortex. Vision Research, 34:1901--1911, 1994.


next up previous
Next: About this document Up: Self-Organization of Orientation Maps Previous: Acknowledgements