
SHORTEST EDIT PATH CROSSOVER: A THEORY-DRIVEN SOLUTION TO THE
PERMUTATION PROBLEM IN EVOLUTIONARY NEURAL ARCHITECTURE SEARCH

XIN QIU† AND RISTO MIIKKULAINEN†‡
†COGNIZANT AI LABS, ‡ THE UNIVERSITY OF TEXAS AT AUSTIN

1. INTRODUCTION

Background: Population-based search is a popu-
lar method for black-box neural architecture search
(NAS). It is usually based on evolutionary algo-
rithms (EAs), which mimic natural evolution by
maintaining a population of solutions and evolv-
ing them through mutation and crossover. How-
ever, most recent evolutionary NAS methods only
employ mutation operation, due to the permutation
problem in applying crossover to NAS.
The Permutation Problem: This problem is due
to isomorphisms in graph space, i.e., functionally
identical architectures are mapped to different en-
codings/representations, making crossover opera-
tions disruptive.

Limitations of Existing Solutions:
• Only work on fixed or constrained topologies
• Limited to a particular algorithm or search space
• Only focused on empirical verification without a

theoretical analysis of potential solutions
Main Contributions of this Work:
• A new shortest edit path (SEP) crossover opera-

tor, which is a generalizable solution that can be
applied to arbitrary architectures or search space

• A theoretical analysis of mutation, standard
crossover, reinforcement learning (RL), and the
proposed SEP crossover in the NAS domain

• Empirical studies on NAS benchmarks, demon-
strating the effectiveness of the SEP crossover

2. METHOD

Main Idea: The proposed SEP crossover consists
of two main steps:
• First, given two parent architectures represented

by two attributed directed graphs, calculate the
shortest edit path that minimizes the graph edit
distance (GED) between them

• Second, randomly pick half of the graph edit op-
erations from the shortest edit path, then apply
them to one of the parents to obtain the offspring

Motivation: This operator is motivated by a com-
mon observation in the literature that the differ-
ences in predictive performance between two archi-
tectures are positively correlated with their GEDs.
This observation suggests that the edits in the SEP
encode fundamental differences between two ar-
chitectures that matter to predictive performance.
An offspring that lies in the middle of this SEP
can explore the search regions where the parents
have fundamental discrepancies. At the same time,
the offspring can automatically preserve those com-
mon substructures between parents, avoiding un-
necessary disruptive behaviors, and thus avoiding
the permutation problem. Figure 1 shows how the
SEP crossover resolves the permutation problem.
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Figure 1: The permutation problem and the SEP
crossover solution. The two parent architectures share
vertices A and B. Although these two vertices appear in
a different order, together they implement the same func-
tion, and this function should not be disrupted during
crossover. However, standard crossover cannot identify
the subgraph isomorphism, and it loses this substructure.
In contrast, the shortest edit path calculation recognizes
the isomorphism, and as a result, the SEP crossover pre-
serves this substructure. Thus, the SEP crossover only
explores the parts that are functionally inconsistent be-
tween the two parents.

3. THEORETICAL ANALYSIS
Brief Summary: In this work, the SEP crossover, standard crossover, mutation, and RL approaches to
NAS will be analyzed theoretically, showing that the SEP crossover has an advantage in improving the
expected quality of generated graphs. The main points are summarized as follows:
• New interpretations of graph edit distance, crossover and mutation based on attributed adjacency matrices

are defined. Based on the common assumption that the performance difference between two archi-
tectures is positively correlated with their GED, theorems regarding the expected improvement of SEP
crossover, standard crossover, and mutation in NAS setup are derived.

• An NAS RL method is interpreted using the newly developed concepts, and two extreme cases whose
combinations span the possible states of the RL process are defined, with theorems derived for expected
improvement for both.

• A numerical analysis brings these theorems together, showing that the SEP crossover results in more
improvement than the other methods in common NAS setups (highlighted results in Figure 2).

• Additional studies verify the robustness of the SEP crossover under inaccurate GED calculations.
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0.500.410.320.210.130.070.020.00-0.01-0.010.00

0.610.510.390.270.200.120.050.02-0.00-0.010.00

0.710.590.460.370.280.160.100.040.01-0.010.00

0.770.660.570.470.350.230.150.060.02-0.000.00

0.840.760.660.540.410.320.220.100.050.000.00

0.870.790.690.600.520.420.290.170.090.020.00

0.840.800.750.680.590.480.340.260.150.040.00

0.780.740.700.640.560.510.440.350.210.090.00

0.630.620.610.590.560.520.460.370.230.160.00

0.340.350.350.360.360.370.360.350.320.240.00

0.000.000.000.000.000.000.000.000.000.000.00

Difference between SEP crossover and mutation in Expected Improvement, n=7, n1
opt=9, n1
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0.450.380.290.180.120.060.020.00-0.01-0.00

0.570.480.370.250.190.110.050.020.00-0.00

0.670.560.430.350.260.150.090.040.01-0.00

0.720.630.540.450.330.220.150.070.030.00

0.800.720.630.520.390.310.220.100.060.01
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0.730.700.670.620.550.500.440.350.210.09

0.590.590.580.570.550.510.460.370.240.16

0.290.310.330.340.350.360.360.350.320.25

0.000.000.000.000.000.000.000.000.000.00

Difference between SEP crossover and RL_unbiased in Expected Improvement, n=7, n1
opt=9, n1
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0.600.500.390.260.170.100.03-0.00-0.02-0.02

0.720.600.460.330.240.140.060.01-0.02-0.02

0.810.680.530.430.310.190.110.04-0.01-0.02

0.870.750.640.520.390.250.170.060.01-0.02

0.940.840.730.600.450.350.230.100.04-0.01

0.970.880.760.660.560.440.300.170.080.00

0.950.890.810.730.630.500.350.260.140.02

0.880.830.760.690.600.540.450.350.190.07

0.730.710.680.640.600.550.470.370.220.14

0.440.430.420.420.410.390.370.350.300.22

0.000.000.000.000.000.000.000.000.000.00

Difference between SEP crossover and RL_oracle in Expected Improvement, n=7, n1
opt=9, n1
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Figure 2: Comparison of expected improvement between SEP crossover, mutation, and RL in NAS-bench-101. (a)
Differences between SEP crossover and mutation under different d∗

e,Ĝ1,Ĝ2
(y-axis) and d∗

e,Ĝopt,Ĝ1
(x-axis) combinations,

where d∗
e,Ĝ1,Ĝ2

measures the topological differences between the parents, and d∗
e,Ĝopt,Ĝ1

measures the quality of the
parent in terms of its topological difference to the global optimum. (b) Differences between SEP crossover and uniform
RL agent (one of the two extreme cases for RL). (c) Differences between SEP crossover and oracle RL agent. The
expected improvement of SEP crossover is larger (i.e. more red) than those of mutation and RL almost everywhere.
Thus, the SEP crossover has a theoretical advantage over mutation and RL.

4. EMPIRICAL STUDIES
Figure 3 highlights the main experimental results that demonstrate the effectiveness of SEP crossover.

0 500 1000 1500 2000
total number of architectures evaluated

0

2

4

6

8

10

G
ED

 t
o 

gl
ob

al
 o

pt
im

um
Convergence Plot on NAS-bench-101 (50 runs)

random search
RE mutation only
RE + standard crossover
RL
RE + SEP crossover

0 200 400 600 800 1000
total number of architectures evaluated

4

6

8

10

12

14

16

18

G
ED

 t
o 

G
RU

Convergence Plot on NAS-bench-NLP (50 runs)
random search
RE mutation only
RE + standard crossover
RE + SEP crossover

0 2000 4000 6000 8000 10000
total number of architectures evaluated

0.934

0.936

0.938

0.940

0.942

te
st

 a
cc

ur
ac

y

Convergence Plot on NAS-bench-101 (50 runs)

random search
RE mutation only
RE + standard crossover
RL
RE + SEP crossover

0 2000 4000 6000 8000 10000
timestep

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o 
to

 r
ea

ch
 g

lo
ba

l o
pt

im
um

percentage of runs that reaches optimal solution (NAS-bench-101)

random search
RE mutation only
RE + standard crossover
RL
RE + SEP crossover

a b c d
Figure 3: Convergence in noise-free (a,b) and noisy environments (c,d). (a) GED to global optimum in NAS-bench-
101. (b) GED to GRU (targeted solution) in NAS-bench-NLP. (c) Average testing accuracy in NAS-bench-101. (d)
Percentage of runs that reach the global optimal architecture in NAS-bench-101. In all experiments, the SEP crossover
performs consistently better than the other methods in both noise-free and noisy environments. The SEP crossover
also reaches the global optimum significantly more efficiently than the other methods in NAS-bench-101. Together the
experiments show that the SEP crossover consistently improves evolutionary NAS in practice.

5. CONCLUSION
The SEP crossover is proposed as a solution to the permutation problem in evolutionary NAS. Its advan-
tage over standard crossover, mutation and RL was first shown theoretically, with a focus on the expected
improvement of GED to global optimal. Empirical studies were then performed to verify the applicability
of the theoretical results, and demonstrate the superior performance of the SEP crossover in both noise-free
and noisy environments. The SEP crossover therefore allows taking full advantage of evolution in NAS,
and potentially other similar design problems as well.

6. SOURCE CODE & CONTACT
github.com/cognizant-ai-labs/sepx-paper Email: qiuxin.nju@gmail.com, risto@cs.utexas.edu


