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Abstract
This paper improves the state of the art in activation function design
through three steps:
1. The benchmark datasets Act-Bench-CNN, Act-Bench-ResNet, and

Act-Bench-ViT were created by training convolutional, residual, and
vision transformer architectures from scratch with 2,913 activation
functions.

2. A surrogate model was created to predict activation function
performance based on the spectrum of the Fisher information matrix
associated with the model’s predictive distribution at initialization and
the activation function’s output distribution.

3. The surrogate was used to discover improved activation functions in
several real-world tasks.

The approach (called AQuaSurF) produced a surprising finding: a sig-
moidal design that outperformed all other activation functions. This
discovery challenges the status quo of always using rectifier nonlinearities
in deep learning.

Activation Function Benchmark Datasets

• Each dataset contains training results for 2,913 unique activation functions
when paired with different architectures and tasks: All-CNN-C on
CIFAR-10, ResNet-56 on CIFAR-10, and MobileViTv2-0.5 on Imagenette.
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Figure 1: Distribution of validation accuracies with 2,913 unique activation functions from the
three benchmark datasets. Many activation functions result in failed training (indicated by
the chance accuracy of 0.1), suggesting that searching for activation functions is a challenging
problem. However, most of these functions have invalid FIM eigenvalues, and can thus be
filtered out effectively.
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Figure 2: Distribution of validation accuracies across the benchmark datasets. Each point
represents a unique activation function’s performance on two of the three datasets. Some
functions perform well on all tasks, while others are specialized.

Features and Distance Metrics

• Experimental data analysis on the benchmark datasets revealed two
features that are highly predictive of activation function performance.

• Metrics are developed to allow for computing distances between activation
functions in feature space.

• The Fisher information matrix (FIM) is defined as
F = E

x∼Qx
y∼Ry|f(x;θ)

[
∇θL(y, f (x; θ))∇θL(y, f (x; θ))⊤

]
. (1)

• Distances between two eigenvalue distributions are computed as a weighted
layer-wise sum of 1-Wasserstein distances

d(fϕ, fψ) = ∑L
l=1W1(µl, νl)/wl. (2)

• The shape of an activation function ψ can be characterized by a vector of
sample values ψ(x), where x ∼ N (0, 1).

• Euclidean distance is used to compute the distance between two vectors of
activation function outputs.

d(fϕ, fψ) =
√∑n

i=1(ϕ(xi) − ψ(xi))2/n, x ∼ N (0, 1). (3)

Using the Features as a Surrogate

• The UMAP dimensionality reduction algorithm is used to map activation
functions to low-dimensional embedding spaces based on their FIM
eigenvalues and outputs.
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Figure 3: UMAP embedding of the 2,913 activation functions in the benchmark datasets.
Each point stands for a unique activation function, represented by an 80-dimensional output
feature vector. The embedding locations of four common activation functions are labeled.
The black x’s mark coordinates interpolating between these four functions, and the grid
of plots on the bottom shows reconstructed activation functions at each of these points.
UMAP interpolates smoothly between different kinds of functions, suggesting that it is a
good approach for learning low-dimensional representations of activation functions.

• Using both FIM eigenvalues and function outputs together provides a
better low-dimensional representation than using either feature alone.
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Figure 4: UMAP embeddings of activation functions for each dataset (column) and feature
type (row). Each point represents a unique activation function; the points are colored by
validation accuracy on the given dataset. The colored triangles identify the locations of six
well-known activation functions. The areas of similar performance are more continuous in the
bottom row; that is, using both FIM eigenvalues and activation function outputs provides a
better low-dimensional representation than either feature alone.

• FIM eigenvalues help to identify activation functions that have different
shapes but behave identically and result in the same performance, thus
accelerating the search process.
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Figure 5: FIM eigenvalue distributions for different architectures and activation functions. The
legends show the activation function and the corresponding validation accuracy in different
tasks. Although negating an activation function changes its shape, it does not substantially
change its behavior nor its performance. FIM eigenvalues capture this relationship between
activation functions. The eigenvalues are thus useful for finding activation functions that appear
different but in fact behave similarly, and these discoveries in turn improve the efficiency of
activation function search.

Searching on the Benchmarks

• The benchmark datasets make it possible to experiment with different
search algorithms and conduct repeated trials to understand the statistical
significance of the results.
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Figure 6: Search results on the three benchmark datasets. Each curve represents a different
search algorithm (KNR, RFR, or SVR) utilizing a different UMAP feature (FIM eigenvalues,
function outputs, or both; these features are visualized in Figure 4). The curves represent
the validation accuracy of the best activation function discovered so far, averaged across
100 independent trials, and the shaded areas show the 95% confidence interval around the
mean. In all cases, regression with UMAP features outperforms random search, and searching
with both eigenvalues and outputs outperforms searching with either feature alone. Of the
three regression algorithms, KNR performs the best, rapidly surpassing ReLU and quickly
discovering near-optimal activation functions in all benchmark tasks. Thus, the features make
it possible to find good activation functions efficiently and reliably even with off-the-shelf
search methods.

Search Space Visualizations

• UMAP projections reveal the structure of the search space.

Figure 7: Low-dimensional UMAP representation of the 425,896 function search space. The
activation functions are embedded according to their outputs; each point represents a unique
function. The larger points represent activation functions that were evaluated during the
searches; they are colored according to their validation accuracy. Although the space is vast,
the searches require only tens of evaluations to discover good activation functions.

Figure 8: A photograph of a three-dimensional scatter plot laser-engraved into a physical
crystal cube. Each point represents one of the unique 425,896 unique activation functions
in the search space. Points are arranged according to a 3D UMAP projection according to
activation function outputs; the points are the same as those shown in Figure 7. The cube
shows the size and complexity of the search space, and the 1D and 2D manifolds reveal the
underlying structure.

Scaling Up the Datasets and Search Space

• In this real-world task, activation functions were discovered for All-CNN-C
on CIFAR-100, ResNet-56 on CIFAR-100, and MobileViTv2-0.5 on
ImageNet.

• A larger search space with 425,896 unique activation functions was searched.
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Figure 9: Progress of activation function searches. Each point represents the validation
accuracy with a unique activation function, and the solid line indicates the performance of
the best activation function found so far. AQuaSurF discovers new activation functions that
outperform all baseline functions in every case.

Table 1: Accuracy with different activation functions. The CIFAR-100 results show the median
test accuracy from three runs, and the ImageNet results show the validation accuracy from
a single run. AQuaSurF discovers novel activation functions that outperform all baselines
in every case. This result demonstrates both that good functions matter, and the power of
optimizing them to the task.

All-CNN-C on CIFAR-100
HardSigmoid(HardSigmoid(x)) · ELU(x) 0.6990
σ(Softsign(x)) · ELU(x) 0.6950
Swish(x)/SELU(1) 0.6931
ELU 0.6312
ReLU 0.6897
SELU 0.0100
sigmoid 0.0100
Softplus 0.6563
Softsign 0.2570
Swish 0.6913
tanh 0.3757

ResNet-56 on CIFAR-100
Swish(−2x) 0.7469
SELU(sinh(earctan(x) − 1)) 0.7458
x · erfc(ELU(x)) 0.7419
ELU 0.7411
ReLU 0.7348
SELU 0.6967
sigmoid 0.5766
Softplus 0.7397
Softsign 0.6624
Swish 0.7401
tanh 0.6754

MobileViTv2-0.5 on ImageNet
−x · σ(x) · HardSigmoid(x) 0.6396
ELU(Swish(−x)) 0.6394
Swish(x) · erfc(bessel_i0e(x)) 0.6336
ELU 0.6233
ReLU 0.6139
SELU 0.6096
sigmoid 0.5032
Softplus 0.5853
Softsign 0.5710
Swish 0.6383
tanh 0.6098

Transferring to a New Task

• The best activation functions from the previous experiment were
transferred to a new task: ResNet-50 on ImageNet.

Table 2: ResNet-50 top-1 accuracy on ImageNet. Results are the median of three runs. The
best activation functions discovered in the searches (Table 1) successfully transfer to this new
task, with eight of the nine functions outperforming ReLU.

−x · σ(x) · HardSigmoid(x) 0.7776
Swish(x)/SELU(1) 0.7771
Swish(x) · erfc(bessel_i0e(x)) 0.7755
σ(Softsign(x)) · ELU(x) 0.7734
SELU(sinh(earctan(x) − 1)) 0.7719
HardSigmoid(HardSigmoid(x)) · ELU(x) 0.7718
ELU(Swish(−x)) 0.7679
Swish(−2x) 0.7664
x · erfc(ELU(x)) 0.7635
ReLU(x) 0.7660

New Architectures and Baseline Functions

• The hybrid convolution and attention architecture CoAtNet provides a
unique challenges for AQuaSurF.

• The activation functions ELiSH, GELU, HardSigmoid, Leaky ReLU, and
Mish were added to the set of baseline functions and to the set of unary
operators, forming a new search space to explore.

Table 3: CoAtNet validation accuracy on Imagenette. AQuaSurF finds novel functions that
outperform all baselines.

erfc(Softplus(x))2 0.8907
min{Softplus(x)2,−x} 0.8861
arcsinh(ELU(Swish(x))) 0.8828
ELiSH 0.1000
ELU 0.8629
GELU 0.8841
HardSigmoid 0.8487
Leaky ReLU 0.8815
Mish 0.8762
ReLU 0.8772
SELU 0.8194
sigmoid 0.8586
Softplus 0.8678
Softsign 0.8530
Swish 0.8736
tanh 0.8415

Understanding the Discoveries

• Visually, many the best functions are similar to existing functions like ELU
and Swish, with subtle changes in their saturation value, the slope of the
positive segment, and the width and depth of the negative bump.

• However, some of the best discovered activation functions, including the top
function for the CoAtNet experiment, employ properties uncommon among
the usual deep learning activation functions: Some of them have
discontinuous derivatives at x = 0; some do not saturate, but diverge as
x → ±∞; some of them contain positive bumps (in contrast to e.g. Swish,
which features a negative bump).
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Figure 10: Sample activation functions discovered with AQuaSurF in the four searches. “HS”
stands for HardSigmoid. (a) The top three functions (columns) discovered in each search
(rows). Many of these functions are refined versions of existing activation functions like ELU
and Swish. (b) Selected novel activation functions. All of these functions outperformed ReLU
and are distinct from existing activation functions. Such designs may serve as a foundation
for further improvement and specialization in new settings.

Discovering a Hybrid Rectifier-Sigmoidal
Activation Function

• Rectifier activation functions typically outperform sigmoidal ones in
modern tasks.

• Surprisingly, the best function discovered in the CoAtNet experiment,
erfc(Softplus(x))2, is sigmoidal in shape.

• Activation function input distributions reveal that the network uses the
activation function like a rectifier at initialization and like a sigmoidal
function after training.
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Figure 11: The best discovered function in the CoAtNet experiment, erfc(Softplus(x))2, and
its utilization by the network. The red curve shows the activation function itself, and the two
histograms show the distributions of inputs to the activation function at initialization and
after training, aggregated across all instances of the activation function in the entire network.
The network uses the function like a rectifier at initialization and like a sigmoidal activation
function after training. This result suggests that sigmoidal designs may be powerful after all,
thus challenging the conventional wisdom.

Code and Benchmark Datasets
AQuaSurF search algorithm:
https://github.com/cognizant-ai-labs/aquasurf

Activation function benchmark datasets:
https://github.com/cognizant-ai-labs/act-bench

Contact
My website has links to my email, LinkedIn, Google Scholar, and CV.

garrettbingham.com
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