
Evolving Multimodal Behavior Through Subtask and Switch Neural Networks

Xun Li1 and Risto Miikkulainen1

1The University of Texas at Austin
xun.bhsfer@utexas.edu

Abstract
While neuroevolution has been used successfully to discover
effective control policies for intelligent agents, it has been
difficult to evolve behavior that is multimodal, i.e. consists of
distinctly different behaviors in different situations. This
article proposes a new method, Modular NeuroEvolution of
Augmenting Topologies (ModNEAT), to meet this challenge.
ModNEAT decomposes complex tasks into tractable subtasks
and utilizes neuroevolution to learn each subtask. Switch
networks are evolved with the subtask networks to arbitrate
among them and thus combine separate subtask networks into
a complete hierarchical policy. Further, the need for new
subtask modules is detected automatically by monitoring
fitness of the agent population. Experimental results in the
machine learning game of OpenNERO showed that
ModNEAT outperforms the non-modular rtNEAT in both
agent fitness and training efficiency.

Introduction
In complex real-world tasks, intelligent agents need to
exhibit multimodal behavior. For instance, in robotic soccer
keepaway, keeper agents try to complete as many passes to
each other as possible while a taker does its best to steal the
ball. When a keeper agent controls the ball, it needs to locate
its teammates and pass the ball safely. When a teammate
controls the ball, it needs to move to open position and
prepare to receive passes (Whiteson, Kohl, Miikkulainen and
Stone, 2005). Similarly, in an OpenNERO battle, two teams
of agents fight to eliminate the enemy team with their
weapons. Agents in each team must locate and navigate to
enemy agents when they hide behind obstacles, and attack
enemy agents when they fall into the weapon’s range
(Stanley, Bryant, Karpov and Miikkulainen, 2006).
 To produce effective multimodal policies, complex tasks
are often decomposed into tractable subtasks. Machine
learning techniques can then be utilized to learn subtask
behaviors. Subtask behaviors combined with an appropriate
arbitration mechanism form a complete multimodal policy.
The performance of such a policy depends on the division of
the original task, the performance of subtask behaviors, and
the mechanism for choosing among them. Therefore, an
important research goal is to develop methods that
decompose complex tasks automatically into tractable
subtasks, learn effective behaviors in each subtask, and
combine subtask behaviors to produce agents with effective
multimodal behaviors.

 A variety of methods exist for learning intelligent
behaviors based on policy search; one of the most promising
such methods is neuroevolution. Neuroevolution has been
shown effective in discovering single control behaviors and
has been widely applied to various control problems such as
multilegged walking (Valsalam, Hiller, MacCurdy, Lipson
and Miikkulainen, 2012; Clune, Beckmann, Ofria and
Pennock, 2009), automated driving (Kohl, Stanley,
Miikkulainen, Samples, and Sherony, 2006; Togelius, Lucas,
and Nardi, 2007) and finless rocket control (Gomez and
Miikkulainen, 2003). However, it is a challenging task to
learn multimodal behaviors through neuroevolution.

One approach is to implement module mutation as part of
the algorithm. This approach includes a structural mutation
operator that adds a new module to a neural-network-based
policy (Schrum and Miikkulainen, 2009). Several methods to
implement module mutation have been proposed including
Module Mutation Previous (MMP), Module Mutation
Random (MMR), and Module Mutation Duplicate (MMD)
(Schrum, 2014). Another approach is to use indirect
encoding such as HyperNEAT to create the modules.
Experimental results indicated that HyperNEAT is able to
produce modular solutions rapidly for simple tasks that
require multimodal behaviors (Clune, Beckmann, McKinley
and Ofria, 2010). Various indirect encoding approaches can
also be used to incorporate multimodality better in
HyperNEAT (Pugh and Stanley, 2013). On the other hand,
hierarchical learning approaches such as concurrent layered
learning and coevolution were shown to work well in robotic
keepaway soccer using neuroevolution with Enforced Sub-
Populations (ESP). However, in the full robocup soccer
simulator, homogeneous agents controlled by monolithic
networks performed the best (Subramoney, 2012).

The prior studies concentrated on structural modification
of neural-network-based policies, i.e. the initial structure and
weights of new modules and how these modules could be
best combined with existing modules. Thus, they did not
address the problem of how such drastic modifications
should be timed. Moreover, they did not demonstrate how
proper arbitration between the subtasks could be discovered
while evolving the subtask networks. This article proposes
Modular NeuroEvolution of Augmenting Topologies
(ModNEAT) as a solution to these problems. ModNEAT
detects the need for module mutation by monitoring
population fitness. Experimental results in the machine
learning game of OpenNERO showed that ModNEAT is
effective in finding appropriate task division and learning
multimodal behaviors for complex tasks.

The remaining sections of this article are organized as
follows: the next section introduces the ModNEAT
algorithm, the third section presents and analyzes
experimental results based on OpenNERO, and the fourth
section reviews key ideas of this article and points out
directions for future work. Following that is a brief
conclusion.

Method
Modular NeuroEvolution with Augmenting Topologies
(ModNEAT) is an evolutionary computation algorithm for
learning multimodal policies with minimum human
guidance. In this section, task decomposition and policy
structure in ModNEAT are first introduced, followed by a
description of the NEAT algorithm used for evolving the
switch network and the subtask networks in a multimodal
policy. The mechanism for adjusting the probability of
module mutation based on population fitness is introduced
next, and evolution of subtask and switch networks is
discussed in the end.

Task Decomposition
To learn multimodal behaviors effectively, complex tasks are
often decomposed into multiple subtasks (Jain, Subramoney
and Miikkulainen, 2012). Machine learning techniques are
applied to each subtask, and subtask policies combined to
form a complete multimodal policy. In a neural-network-
based multimodal policy, subtask policies are represented by
different neural networks. Various mechanisms including
human-specified rules, decision trees, and switch networks
can be used to arbitrate among subtask policies (Whiteson,
Kohl, Miikkulainen and Stone, 2005).
 This approach is beneficial for two reasons. First, neural
networks that are competent in one subtask may need to be
adapted significantly to perform well in another subtask. By
training neural networks separately for each subtask,
selection in evolution becomes more focused, improving

training efficiency and resulting in better agent behaviors.
Second, task decomposition allows agents to learn
complicated behaviors by combining behaviors from
different subtasks. Consequently, agents can achieve high
fitness in a variety of complex situations.

Whereas subtasks are usually defined based on human
knowledge, ModNEAT performs task decomposition
automatically. The method to detect the need for initiating
new subtasks is introduced in the third subsection.

To allow greater flexibility for evolution, ModNEAT uses
switch networks to combine subtask solutions (Figure 1).
The complete policy of an agent contains: (1) n subtask
networks that receive identical inputs, and (2) a switch
network that receives the same inputs as the subtask
networks and arbitrates among subtask networks, i.e. to
decide which subtask network takes control of the agent
during the current time step.

Since both switch networks and subtask solutions are
neural networks, all components of a multimodal policy can
be evolved through neuroevolution. In ModNEAT, fitness is
defined based on the performance of the complete agent. The
genetic encoding of the switch network and one or more
subtask networks are concatenated into a single genome and
evolved using the NEAT neuroevolution method as will be
described next.

NeuroEvolution of Augmenting Topologies (NEAT)
Neuroevolution of Augmenting Topologies (NEAT) is a
genetic algorithm for evolving artificial neural networks
(Stanley and Miikkulainen, 2002). The algorithm for starts
with an initial population of random networks. A fitness
function based on domain knowledge is used to evaluate the
neural networks in all generations. Those with the highest
fitness are selected as parents of the next generation.
Through mutation and crossover among the parents, a new
generation of networks is created, and the next iteration of
evolution begins. This process repeats until a satisfactory
solution is found.

Figure 1: Subtask and Switch Network in the NERO Domain – The network on the left is one of the m subtask networks in the
complete solution, and the network on the right is the switch network. Nodes in the bottom represent inputs from the environment,
and S1 to Sm are the outputs of the switch network. Each output of the switch network specifies the preference, for each of the m
subtask networks, given current inputs. The output of the subtask network with the maximum weight is chosen as the output of the
whole system. In this manner, the switch network selects the appropriate subtask network for each input situation.

In NEAT, mutation and crossover are not limited to
modifying the weights of the neural networks. Topological
augmentation is allowed so that various topologies can
evolve, providing more flexibility for the genetic algorithm.
Neural networks in NEAT are adapted in four ways:

1. Weights of one or multiple links are modified.
2. Weights are crossed over.
3. A link is added between two existing nodes.
4. A node is inserted in the middle of an existing link.
Note that modifications 3 and 4 are both topological

augmentations. They allow the algorithm to start with
relatively simple initial networks and gradually increase their
topological complexity.
 To protect innovation, when a new link is added between
two existing nodes, the initial weight of the new link is close
to zero. Similarly, when a new node is added, the in-link to
the new node has a weight that is close to one, and the out-
link from the new node preserves the weight value of the
original link. Consequently, the initial impact of topological
augmentation is limited, and networks with new structures
are more likely survive in the evolution process.
 In addition, to guarantee reasonable crossover between
genotypes, an innovation number (global ID) is assigned for
each new structure. For instance, when a new node is
inserted to an existing link, the ID of the original link
becomes obsolete, and a new ID is assigned to the each of
the in-link, out-link, and the new node. Each genotype
maintains a list of IDs for its structures (nodes and links),
and crossover is limited to structures with identical IDs.
 In order to protect innovation, NEAT speciates the
population based on genotype similarity, which is a weighted
sum of similarity score of weighting parameter values and
network topological structures. Network fitness is compared
primarily within species so that networks with innovations
are offered enough time for optimization. Explicit fitness
sharing (Goldberg and Richardson, 1987) is used for fitness
evaluation so that species size is limited and no single
species can easily take over the entire population.

In game domains, generation changes could result in
noticeable discontinuations. Therefore, in the rtNEAT
version of NEAT (Stanley, Bryant, and Miikkulainen, 2005),
agents evolve while maintaining constant interaction with
task environment. Instead of updating generations of
populations, rtNEAT generates offspring continuously, one
at a time. Thus, evolution is gradual and less visible to the
human observers. Since ModNEAT experiments were run in
the OpenNERO games, they were based on the rtNEAT
method as well.

Automatic Subtask Initiation
One key issue in task decomposition is to detect the need for
subtask initiation, i.e. to figure out when it is necessary to
insert the appropriate structure (i.e. subtask networks and
switch networks) to the current policy so that a new subtask
can be initiated.

In ModNEAT, the need for subtask initiation is detected
automatically by monitoring population fitness in
consecutive generations. Intuitively, when the standard
deviation of agent fitness remains low in multiple
consecutive generations (i.e. evolution is not able to produce
significant variation any longer), additional subtask networks

may be needed. The probability of subtask initiation in
ModNEAT is defined as:

𝑝! =
 0, 𝑛! < 𝑁

 (!!!!)
!

, 𝑁 ≤ 𝑛! < 2𝑁
 1, 𝑛! ≥ 2𝑁,

 (1)

where ps is the probability of initiating subtask networks, ni
is the number of consecutive ineffective generations after the
ith iteration of evolution, and N is an impatience parameter.
When the evolution process is effective, ps remains zero;
when evolution falls into a performance plateau, the
probability of subtask initiation increases linearly to one.
Ineffective generation is defined as one where the standard
deviation of agent fitness is less than a threshold parameter
𝜇. Note that while multiple generations may be ineffective
during evolution process, only consecutive ineffective
generations may result in higher probability of subtask
initiation.

Solution Evolution
ModNEAT starts with a population of simple initial policies.
These policies can be either randomly generated or human-
specified. Each initial policy contains a single subtask
network and an initial switch network. The switch network
contains only one output and grows as more subtask
networks are added to the policy.

When a new subtask is initiated, a randomly initialized
subtask network is added to the policy, and a new output
node is added to the switch network. Three measures are
taken to protect innovations:
1. Solution Complexity Control

When a new subtask network is added to a genotype, no
other subtask networks can be added to the same genotype
in the next N (the impatience parameter in equation 1)
generations of evolution. Solution Complexity Control
prevents unnecessary insertion of subtask networks and
limits the complexity of the complete solution.

2. Prior Feature Protection
All existing subtask networks and switch network
structures of a genotype are frozen in the next N iterations
of evolution if a new subtask network is added to the
genotype. In this manner, existing features that are
advantageous in other subtasks are protected.

3. Population Speciation
As is mentioned in the previous subsection, population
speciation is used to protect innovations. Since similarity
scores between genotypes with different number of action
subtask networks tend to be low, genotypes that contain
additional subtask networks are usually regarded as a new
species and are protected by speciation, which provides
more time for new subtask networks to evolve.

 Throughout the evolution process, fitness is evaluated for
the policy as a whole. All modules, i.e. subtask networks and
the switch network, are encoded in a single concatenated
genome and therefore evolved together. Such evolution
encourages subtask networks and switch networks that work
well together to emerge. In addition, evolution combined
with automatic subtask initiation encourages more
complicated behaviors by combining existing subtask

behaviors to emerge. It is less likely for new subtask
networks to be needed as the number of existing subtask
networks increases. Thus, the overall complexity, i.e. the
number of subtask networks in the multimodal policy,
remains limited.

Experiments
This section presents experimental results based on the open
source machine learning game OpenNERO to evaluate the
effectiveness of ModNEAT. The first subsection introduces
the OpenNERO platform, the second describes experimental
setup, and the third compares ModNEAT with rtNEAT in
both training efficiency and agent performance.

OpenNERO Platform
To test the effectiveness of ModNEAT, the performance of
game agents generated by rtNEAT and Mod NEAT were
compared in the OpenNERO implementation of the NERO
machine learning game (opennero.googlecode.com; Karpov,
Sheblak, and Miikkulainen, 2008; Stanley, Bryant, and
Miikkulainen, 2005). In NERO, players design training
schemes for a team of game agents. To defeat the enemy
team, game agents must be able to target enemy agents and
shoot them with their weapons. Since the arena contains
obstacles such as walls and trees, agents need to be able to
locate the enemy agents and navigate to them.
 In the training mode of NERO, players set up training
sessions by adding enemy turrets, flags, and walls. Also,
game agents can be spawned at different locations, and all
objects (flags, turrets, walls) can be moved around the arena.
To evaluate fitness of the agents, players can set reward
value for various behaviors such as sticking together, hitting
enemy turrets, and getting closer to flags or enemy turrets.
The overall fitness of an agent is a weighted sum of the
rewards it obtains in each fitness measurement. A team of
agents can be trained through a sequence of training sessions
with different environment layouts and reward settings.

In the battle mode, two teams of agents are spawned on
two sides of the middle wall in the arena. Each team consists
of 50 game agents. Every agent has 20 hit points at the
beginning. Whenever hit by enemy weapon, an agent loses
one hit point. An agent is removed from the battlefield once
it loses all hit points. The team that eliminates all enemy
agents wins.
 OpenNERO is an open-source version of NERO
developed as a research and education platform. IT
duplicates the original NERO game with a few minor
differences on how the sensors and actions are implemented.
In OpenNERO, every agent has 18 inputs excluding the bias:

1. Laser range finders that sense distance to the nearest
obstacle (wall or a tree) in five directions: front, 45
degrees to each side, and 90 degrees to each side.
2. Radar sensors that return the distance to the flag in 5
overlapping sectors: -3 to 18, 12 to 90, -18 to 3, -12 to -90,
and -90 to 90 degrees (behind the agent).
3. Radar sensors that trigger when enemies are detected
within 5 sectors of the space (as defined above) around the
robot. The more enemies are detected or the closer they

are, the higher the value of the corresponding radar sensor
will be.
4. Two sensors that depend on the distance and direction
to the center of mass of the teammates.
5. A sensor that indicates whether the agent is facing an
enemy within sensor range within 2 degrees.

 The outputs of the control policy of an agent are:
1. Forward/backward speed: -1 to 1 of maximum. The
agents can move at a rate of up to one distance unit per
frame.
2. Turning speed: -1 to 1 of maximum. The agents can
turn at a rate of up to 0.2 radians per frame.

 Note that there is no output for taking shots. Instead, the
agents shoot probabilistically. To attack an enemy, an agent
must be oriented within 2 degrees of the target. Shooting
accuracy increases linearly so that at 2 degrees an agent has a
50% chance of hitting, and if it face the center of the target
exactly, it always hits. Also, the agent must be closer than
600 distance units from the target. Between 600 and 300,
shooting likelihood increases linearly, and within 300, it
always shoots.
 OpenNERO provides a suitable platform to evaluate the
performance of ModNEAT – the complex task of defeating
the enemy team can be accomplished by combining
behaviors in different subtasks such as navigating to enemy
agents, aiming and shooting, and these behaviors can be
learned sequentially through training sessions.

Experimental Setup
To compare the performance of ModNEAT with rtNEAT,
two teams were trained and evaluated based on training time
and tournament score. In order to ensure fair comparison,
both teams were trained through identical training sessions.
The objectives of each training session are listed in table 1.
The training proceeded from S1 to S5, and a training session
was terminated if average fitness of network population
reached a preset value, or training time exceeded an hour.
 In S1, a single enemy turret was placed in the arena, and
there was no obstacle between spawning point and the turret.
In S2, the enemy turret slowly moved around the spawning
point to simulate moving enemy agents. In S3, an enemy
turret was placed behind the wall (but far away from it), and
agents were expected to go around the wall and hit it. In S4,
enemy turrets were not only behind the wall but also moving
around. In S5, enemy turrets were placed behind and close to
the wall. Note that S5 is particularly difficult because agents
must be able to tell if the enemy is in front of or behind the
wall. If the enemy is behind the wall, agents should first go
around the wall and then stop to shoot at the enemy.

Session Objective
S1 Hitting still enemy in sight
S2 Hitting moving enemy in sight
S3 Hitting still enemy behind the wall
S4 Hitting moving enemy behind the wall
S5 Hitting enemy that hides closely behind the wall

Table 1: Training Sessions

 (a) rtNEAT (b) ModNEAT

Figure 2: Training Snapshots in S3 – Most rtNEAT agents (a) kept shooting at the wall. The green lines indicate that an obstacle
blocks the shot. In contrast, most ModNEAT agents (b) managed to go around the wall using the new subtask network, i.e. subtask
network 1. The white number on a ModNEAT agent is the ID of the subtask network that is currently active. They are using a
different subtask network to get around the wall and shoot at the enemy.

In all of the above sessions, fitness reward was set to 100
for hitting enemy turrets. In S1, S2 and S5, rewards were 0
for all other possible behaviors (i.e. sticking together,
approaching the flag or enemy turrets, etc), while in S3 and
S4 reward for getting closer to enemy turret was set to 10 (all
others were 0).

Results and Analysis
Table 2 shows the training time for each of the two teams. S3
is marked red because ModNEAT initiated most subtasks in
this session, which significantly reduced the training time.
The reason is that S3 requires significantly different network
structures from S1 and S2, and it is difficult for rtNEAT to
adapt networks that are trained for aiming and shooting at in-
sight enemies to accomplish the task of reaching enemies
behind the wall. As a matter of fact, in the first 25 minutes of
S3 using rtNEAT, most of the agents simply kept shooting at
the wall or running into it. In comparison, game agents

trained with ModNEAT managed to bypass the wall soon
with the help of a new subtask network (Figure 2).

Session rtNEAT ModNEAT
S1 5 5
S2 5.5 6
S3 48.5 28.5
S4 7 8
S5 60+ 12
Total 126+ 59.5

Table 2: Training Time (minute)

Another important observation is that in session 5, the
rtNEAT team never managed to reach satisfactory average
fitness score while the ModNEAT team reached fitness goal
within 12 minutes, even without introducing additional
subtask networks. The reason can be found in the structure
and function of the subtask networks.

 (a) rtNEAT (b) ModNEAT

Figure 3: Training Snapshots in S5 – Most rtNEAT agents (a) kept moving around the wall over and over again, i.e., they did not
stay on the enemy’s side to engage it. In contrast, ModNEAT agents (b) first navigated to the enemy turret using subtask network 1.
When getting close, ModNEAT agents started attacking the enemy turret using subtask network 0. ModNEAT agents also learned
to stay close to the enemy because they were more likely to hit the enemy turret when the distance is shorter.

Figure 4: Snapshots of a Battle between rtNEAT (red) and ModNEAT (blue) – This series of two snapshots shows how the
ModNEAT agents exploit weakness of the rtNEAT agents. In the left picture, the two teams ran into each other from opposite
directions. The rtNEAT agents continued marching around the wall after the encounter, but the ModNEAT agents start turning
around to attack the enemies. The right snapshot is taken a few seconds later. After turning around, the ModNEAT team deals
considerable damage to the rtNEAT team.

Team ModNEAT rtNEAT me-rambo synth.pop synth-flag.pop coward1
Max Score 649 542 512 409 398 359
Min Score 216 -649 -359 -542 -512 -471
Avg Score 424.1 253.5 187.5 82.09 68.45 13.18
Wins/Losses 11/0 10/1 8/3 8/3 7/4 6/5

Table 3: Agent Performance – Table 3 shows the performance of the ModNEAT team, the rtNEAT team, and the top four teams
from the 2011 OpenNERO Tournament. The score of a team in a battle was the remaining hit points in the entire team minus that of
the opponent team. Team A defeats team B in a match if the sum of A’s two battle scores with B is positive. Wins/Losses indicates
the number of matches a team won/lost.

For all ModNEAT agents whose final fitness was above
the threshold, the complete solution consisted of two subtask
networks. In session S1 to S4, subtask network 1 was used to
get close to the enemy if it was far away. Subtask network 0
was then used to aim at the enemy and approach the enemy
slowly while shooting. In session S5, when enemy turrets
were placed right behind the wall, ModNEAT agents
activated subtask network 1 to get around the wall. After
getting close to the enemy, they switched to subtask network
0 to shoot the enemy. Thus, complex behaviors of reaching
and eliminating well-hidden enemies were acquired by
combining simple behaviors in different action modes.

In contrast, rtNEAT agents have only a single solution
network which attempts to integrate both of the above
functionalities. To reach enemy turrets right behind the wall,
solution networks must learn to move around the wall. To
deal enough damage to enemy turrets, solution networks
must learn to aim at the enemy and focus on shooting.
Consequently, rtNEAT evolved a compromise policy where
agents keep moving around the wall and shoot enemy turrets
on the way. Even though they eventually evolved to reach
the enemy turrets, rtNEAT agents wasted too much time
moving around the wall and therefore never managed to
reach the fitness threshold for S5 (Figure 3).

In the complete solution of the ModNEAT agents, each
subtask network contained 18 inputs and two outputs (as
specified in the OpenNERO Platform subsection). Subtask
network 0 of the champion agent in the last generation

contained six hidden nodes and 64 links, subtask network 1
contained eight hidden nodes and 72 links, and the switch
network had four hidden nodes and 52 links. Note that most
hidden nodes are not fully connected to the inputs and
outputs, and all networks were non-recurrent. On the other
hand, the solution network of the rtNEAT champion is a
single network with 10 hidden nodes, 78 links, and the same
number of inputs and outputs. Such network structures are
typical for agents evolved by rtNEAT.

In order to evaluate the performance of the two teams,
both teams were tested in a tournament against the top 10
teams in the 2011 OpenNERO Tournament (code.google.
com/p/opennero/wiki/TournamentResults2011). Every team
participated in 11 matches to compete with all 11 opponents.
Each tournament match is consisted of two battles (with the
spawning location switched). The results of the tournament
are shown in Table 3.

While both of the two teams defeated all ten tournament
teams, the ModNEAT team defeated the rtNEAT team by a
large margin, i.e. by 649 hit points. The agents trained with
rtNEAT (as well as the agents in many top-ranked teams in
the 2011 OpenNERO Tournament) tended to keep moving
around the wall over and over again after encountering the
enemy. The ModNEAT agents exploited this weakness by
switching to shooting mode while the enemy agents were
busy moving ahead (Figure 4). Thus, the subtask and switch
network architecture allowed evolving distinctively better
behaviors than before.

Discussion and Future Work
Modular NeuroEvolution of Augmenting Topologies (Mod-
NEAT) is an evolutionary computation method aimed at
tackling complex tasks with minimum human guidance. The
algorithm detects the need for adding additional subtask
networks automatically by monitoring variation in
population fitness. Switch networks are employed to arbitrate
between subtask networks based on inputs from the
environment. The subtask networks and switch networks are
evolved through NEAT-based evolution together in a single
genome. Experimental results showed that compared to
rtNEAT, ModNEAT generates agents with significantly
higher performance in shorter training time.

ModNEAT has higher training efficiency because it does
not attempt to adapt networks trained for certain objectives
to accomplish new objectives if they require substantially
different network features (i.e. topological structure and link
weights). Instead, new subtask networks are initiated and
evolved to reach such objectives.

ModNEAT manages to learn more intelligent behaviors
because task decomposition allows natural selection to be
more focused on each subtask, and thereby makes subtask
behaviors more robust and effective. In addition, ModNEAT
has higher potential to learn intelligent behavior that is
difficult to learn with a single network because switch
networks allow relatively simple subtask behaviors to be
combined flexibly to exhibit more complex behaviors.

An interesting direction of future work is to combine
ModNEAT with various module-mutation techniques
(Schrum, 2014) to develop more effective methods for
initiating, evolving, and combining subtask networks.
Another interesting idea is to explore other fitness-based
mechanisms to adjust subtask initiation probability so that
better task division can be found with fewer attempts. Third,
ModNEAT can be applied to many challenging problem
domains such as robot soccer and Non-player Character
(NPC) design for video games to produce intelligent agents
with effective multimodal behavior.

Conclusion
Complex real-world tasks often require intelligent agents to
exhibit multimodal behavior. Although neuroevolution has
been successfully used in learning single control behavior, it
has been difficult to develop multimodal behavior in this
approach. This article shows how such behavior can
be constructed by discovering and evolving subtask networks
with a switch network, i.e. using the ModNEAT approach.
The results in the interactive game of OpenNERO show that
ModNEAT is effective, i.e. it results in better policies and
evolves faster than standard neuroevolution. Thus,
ModNEAT can be useful in constructing intelligent agent
behaviors for games and robotics in the future.

Acknowledgements
This research was supported in part by NSF grants DBI-
0939454 and IIS-0915038, and in part by NIH grant R01-
GM105042.

References
Whiteson, S., Kohl, N., Miikkulainen, R., Stone, P. (2005). Evolving

Keepaway Soccer Players through Task Decomposition. Machine
Learning, 59(1):5–30.

Stanley, K. O., Bryant, B. D., Karpov I., Miikkulainen, R. (2006). Real-

Time Evolution of Neural Networks in the NERO Video Game. In
Proceedings of the Twenty-First National Conference on Artificial
Intelligence (AAAI-2006),1671–1674, Boston, MA.

Valsalam. V. K., Hiller, J., MacCurdy, R., Lipson, H., Miikkulainen, R.

(2012). Constructing Controllers for Physical Multilegged Robots
using the ENSO Neuroevolution Approach. Evolutionary
Intelligence, 5(1):1–12.

Clune, J., Beckmann, B.E., Ofria, C., Pennock, R. T. (2009). Evolving

Coordinated Quadruped Gaits with the HyperNEAT Generative
Encoding. In Proceedings of the 2009 IEEE Congress on
Evolutionary Computation (CEC), Trondheim, Norway.

Kolh, N., Stanley, K. O., Karpov I., Miikkulainen, R., Samples, M.,

Sherony, R. (2006). Evolving Real-world Vehicle Warning
System. In Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, 1681-1688, ACM, New York,
NY, USA.

Togelius, J., Lucas, S., and Nardi, R. (2007). Computational Intelligence

in racing games. In: Advanced Intelligent Paradigms in Computer
Games, pp. 39-69. Springer.

Gomez, F. J., Miikkulainen, R. (2003). Active Guidance for a Finless
Rocket Using Neuroevolution. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2084-2095, San Francisco.
MorganKaufmann.

Schrum, J., Miikkulainen, R. (2009). Evolving Multimodal Behavior in

NPCs. In IEEE Symposium on Computational Intelligence and
Games (CIG 2009), 325-332, Milan, Italy.

Clune, J., Beckmann, B. E., McKinley, P. K., Ofria, C. (2010).

Investigating Whether HyperNEAT Produces Modular Neural
Networks. In Proceedings of the Genetic and Evolutionary
Computation Conference, 635-642.

Pugh, J. K., Stanley, K. O. (2013). Evolving Multimodal Controllers

with HyperNEAT. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2013), 735-742, New York,
NY: ACM.

Subramoney, A. (2012). Evaluating Modular Neuroevolution in Robotic

Keepaway Soccer. Master Thesis, Department of Computer
Science, the University of Texas at Austin, Austin, TX.

Jain, A., Subramoney, A., Miikkulainen, R. (2012). Task Decomposition

with Neuroevolution in Extended Predator-Prey Domain. In
Proceedings of Thirteenth International Conference on the
Synthesis and Simulation of Living Systems, East Lansing, MI.

Stanley K. O., Miikkulainen, R (2002). Evolving Neural Networks

Through Augmenting Topologies. Evolution Computation, 10(2):
99-127.

Goldberg, D. E., Richardson, J. (1987). Genetic Algorithms with

Sharing for Multimodal Function Optimization. In Proceedings of
the Second International Conference on Genetic Algorithms, page
148-154, Morgan Kaufmann, San Francisco, CA.

Stanley, K. O., Bryant, B. D., Miikkulainen, R. (2005). Evolving Neural

Network Agents in the NERO Video Game. In Proceedings of the
IEEE 2005 Symposium on Computational Intelligence and Games
(CIG’05). Piscataway, NJ: IEEE.

Karpov, I. V., Sheblak, J., Miikkulainen, R. (2008). OpenNERO: a

Game Platform for AI Research and Education. In Proceedings of
the Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE).

Schrum, J. (2014). Evolving Multimodal Behavior Through Modular

Multiobjective Neuroevolution. PhD Thesis, Department of
Computer Science, the University of Texas at Austin, Austin, TX.

