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Abstract 
While neuroevolution has been used successfully to discover 
effective control policies for intelligent agents, it has been 
difficult to evolve behavior that is multimodal, i.e. consists of 
distinctly different behaviors in different situations. This 
article proposes a new method, Modular NeuroEvolution of 
Augmenting Topologies (ModNEAT), to meet this challenge. 
ModNEAT decomposes complex tasks into tractable subtasks 
and utilizes neuroevolution to learn each subtask. Switch 
networks are evolved with the subtask networks to arbitrate 
among them and thus combine separate subtask networks into 
a complete hierarchical policy. Further, the need for new 
subtask modules is detected automatically by monitoring 
fitness of the agent population. Experimental results in the 
machine learning game of OpenNERO showed that 
ModNEAT outperforms the non-modular rtNEAT in both 
agent fitness and training efficiency.  

Introduction 
In complex real-world tasks, intelligent agents need to 
exhibit multimodal behavior. For instance, in robotic soccer 
keepaway, keeper agents try to complete as many passes to 
each other as possible while a taker does its best to steal the 
ball. When a keeper agent controls the ball, it needs to locate 
its teammates and pass the ball safely. When a teammate 
controls the ball, it needs to move to open position and 
prepare to receive passes (Whiteson, Kohl, Miikkulainen and 
Stone, 2005). Similarly, in an OpenNERO battle, two teams 
of agents fight to eliminate the enemy team with their 
weapons. Agents in each team must locate and navigate to 
enemy agents when they hide behind obstacles, and attack 
enemy agents when they fall into the weapon’s range 
(Stanley, Bryant, Karpov and Miikkulainen, 2006). 
 To produce effective multimodal policies, complex tasks 
are often decomposed into tractable subtasks. Machine 
learning techniques can then be utilized to learn subtask 
behaviors. Subtask behaviors combined with an appropriate 
arbitration mechanism form a complete multimodal policy. 
The performance of such a policy depends on the division of 
the original task, the performance of subtask behaviors, and 
the mechanism for choosing among them. Therefore, an 
important research goal is to develop methods that 
decompose complex tasks automatically into tractable 
subtasks, learn effective behaviors in each subtask, and 
combine subtask behaviors to produce agents with effective 
multimodal behaviors. 

 A variety of methods exist for learning intelligent 
behaviors based on policy search; one of the most promising 
such methods is neuroevolution. Neuroevolution has been 
shown effective in discovering single control behaviors and 
has been widely applied to various control problems such as 
multilegged walking (Valsalam, Hiller, MacCurdy, Lipson 
and Miikkulainen, 2012; Clune, Beckmann, Ofria and 
Pennock, 2009), automated driving (Kohl, Stanley, 
Miikkulainen, Samples, and Sherony, 2006; Togelius, Lucas, 
and Nardi, 2007) and finless rocket control (Gomez and 
Miikkulainen, 2003). However, it is a challenging task to 
learn multimodal behaviors through neuroevolution.  

One approach is to implement module mutation as part of 
the algorithm. This approach  includes a structural mutation 
operator that adds a new module to a neural-network-based 
policy (Schrum and Miikkulainen, 2009). Several methods to 
implement module mutation have been proposed including 
Module Mutation Previous (MMP), Module Mutation 
Random (MMR), and Module Mutation Duplicate (MMD) 
(Schrum, 2014). Another approach is to use indirect 
encoding such as HyperNEAT to create the modules. 
Experimental results indicated that HyperNEAT is able to 
produce modular solutions rapidly for simple tasks that 
require multimodal behaviors (Clune, Beckmann, McKinley 
and Ofria, 2010). Various indirect encoding approaches can 
also be used to incorporate multimodality better in 
HyperNEAT (Pugh and Stanley, 2013). On the other hand, 
hierarchical learning approaches such as concurrent layered 
learning and coevolution were shown to work well in robotic 
keepaway soccer using neuroevolution with Enforced Sub-
Populations (ESP). However, in the full robocup soccer 
simulator, homogeneous agents controlled by monolithic 
networks performed the best (Subramoney, 2012). 

The prior studies concentrated on structural modification 
of neural-network-based policies, i.e. the initial structure and 
weights of new modules and how these modules could be 
best combined with existing modules. Thus, they did not 
address the problem of how such drastic modifications 
should be timed. Moreover, they did not demonstrate how 
proper arbitration between the subtasks could be discovered 
while evolving the subtask networks. This article proposes 
Modular NeuroEvolution of Augmenting Topologies 
(ModNEAT) as a solution to these problems. ModNEAT 
detects the need for module mutation by monitoring 
population fitness. Experimental results in the machine 
learning game of OpenNERO showed that ModNEAT is 
effective in finding appropriate task division and learning 
multimodal behaviors for complex tasks. 



The remaining sections of this article are organized as 
follows: the next section introduces the ModNEAT 
algorithm, the third section presents and analyzes 
experimental results based on OpenNERO, and the fourth 
section reviews key ideas of this article and points out 
directions for future work. Following that is a brief 
conclusion. 

Method 
Modular NeuroEvolution with Augmenting Topologies 
(ModNEAT) is an evolutionary computation algorithm for 
learning multimodal policies with minimum human 
guidance. In this section, task decomposition and policy 
structure in ModNEAT are first introduced, followed by a 
description of the NEAT algorithm used for evolving the 
switch network and the subtask networks in a multimodal 
policy. The mechanism for adjusting the probability of 
module mutation based on population fitness is introduced 
next, and evolution of subtask and switch networks is 
discussed in the end.  

Task Decomposition 
To learn multimodal behaviors effectively, complex tasks are 
often decomposed into multiple subtasks (Jain, Subramoney 
and Miikkulainen, 2012). Machine learning techniques are 
applied to each subtask, and subtask policies combined to 
form a complete multimodal policy. In a neural-network-
based multimodal policy, subtask policies are represented by 
different neural networks. Various mechanisms including 
human-specified rules, decision trees, and switch networks 
can be used to arbitrate among subtask policies (Whiteson, 
Kohl, Miikkulainen and Stone, 2005).  
 This approach is beneficial for two reasons. First, neural 
networks that are competent in one subtask may need to be 
adapted significantly to perform well in another subtask. By 
training neural networks separately for each subtask, 
selection in evolution becomes more focused, improving 

training efficiency and resulting in better agent behaviors. 
Second, task decomposition allows agents to learn 
complicated behaviors by combining behaviors from 
different subtasks. Consequently, agents can achieve high 
fitness in a variety of complex situations. 

Whereas subtasks are usually defined based on human 
knowledge, ModNEAT performs task decomposition 
automatically. The method to detect the need for initiating 
new subtasks is introduced in the third subsection.  

To allow greater flexibility for evolution, ModNEAT uses 
switch networks to combine subtask solutions (Figure 1). 
The complete policy of an agent contains: (1) n subtask 
networks that receive identical inputs, and (2) a switch 
network that receives the same inputs as the subtask 
networks and arbitrates among subtask networks, i.e. to 
decide which subtask network takes control of the agent 
during the current time step.  

Since both switch networks and subtask solutions are 
neural networks, all components of a multimodal policy can 
be evolved through neuroevolution. In ModNEAT, fitness is 
defined based on the performance of the complete agent. The 
genetic encoding of the switch network and one or more 
subtask networks are concatenated into a single genome and 
evolved using the NEAT neuroevolution method as will be 
described next. 

NeuroEvolution of Augmenting Topologies (NEAT) 
Neuroevolution of Augmenting Topologies (NEAT) is a 
genetic algorithm for evolving artificial neural networks 
(Stanley and Miikkulainen, 2002). The algorithm for starts 
with an initial population of random networks. A fitness 
function based on domain knowledge is used to evaluate the 
neural networks in all generations. Those with the highest 
fitness are selected as parents of the next generation. 
Through mutation and crossover among the parents, a new 
generation of networks is created, and the next iteration of 
evolution begins. This process repeats until a satisfactory 
solution is found. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 1: Subtask and Switch Network in the NERO Domain – The network on the left is one of the m subtask networks in the 
complete solution, and the network on the right is the switch network. Nodes in the bottom represent inputs from the environment, 
and S1 to Sm are the outputs of the switch network. Each output of the switch network specifies the preference, for each of the m 
subtask networks, given current inputs. The output of the subtask network with the maximum weight is chosen as the output of the 
whole system. In this manner, the switch network selects the appropriate subtask network for each input situation.  



In NEAT, mutation and crossover are not limited to 
modifying the weights of the neural networks. Topological 
augmentation is allowed so that various topologies can 
evolve, providing more flexibility for the genetic algorithm. 
Neural networks in NEAT are adapted in four ways: 

1. Weights of one or multiple links are modified. 
2. Weights are crossed over. 
3. A link is added between two existing nodes. 
4. A node is inserted in the middle of an existing link. 
Note that modifications 3 and 4 are both topological 

augmentations. They allow the algorithm to start with 
relatively simple initial networks and gradually increase their 
topological complexity. 
 To protect innovation, when a new link is added between 
two existing nodes, the initial weight of the new link is close 
to zero. Similarly, when a new node is added, the in-link to 
the new node has a weight that is close to one, and the out-
link from the new node preserves the weight value of the 
original link. Consequently, the initial impact of topological 
augmentation is limited, and networks with new structures 
are more likely survive in the evolution process. 
 In addition, to guarantee reasonable crossover between 
genotypes, an innovation number (global ID) is assigned for 
each new structure. For instance, when a new node is 
inserted to an existing link, the ID of the original link 
becomes obsolete, and a new ID is assigned to the each of 
the in-link, out-link, and the new node. Each genotype 
maintains a list of IDs for its structures (nodes and links), 
and crossover is limited to structures with identical IDs. 
 In order to protect innovation, NEAT speciates the 
population based on genotype similarity, which is a weighted 
sum of similarity score of weighting parameter values and 
network topological structures. Network fitness is compared 
primarily within species so that networks with innovations 
are offered enough time for optimization. Explicit fitness 
sharing (Goldberg and Richardson, 1987) is used for fitness 
evaluation so that species size is limited and no single 
species can easily take over the entire population. 

In game domains, generation changes could result in 
noticeable discontinuations. Therefore, in the rtNEAT 
version of NEAT (Stanley, Bryant, and Miikkulainen, 2005), 
agents evolve while maintaining constant interaction with 
task environment. Instead of updating generations of 
populations, rtNEAT generates offspring continuously, one 
at a time. Thus, evolution is gradual and less visible to the 
human observers. Since ModNEAT experiments were run in 
the OpenNERO games, they were based on the rtNEAT 
method as well. 

Automatic Subtask Initiation 
One key issue in task decomposition is to detect the need for 
subtask initiation, i.e. to figure out when it is necessary to 
insert the appropriate structure (i.e. subtask networks and 
switch networks) to the current policy so that a new subtask 
can be initiated. 

In ModNEAT, the need for subtask initiation is detected 
automatically by monitoring population fitness in 
consecutive generations. Intuitively, when the standard 
deviation of agent fitness remains low in multiple 
consecutive generations (i.e. evolution is not able to produce 
significant variation any longer), additional subtask networks 

may be needed. The probability of subtask initiation in 
ModNEAT is defined as: 

 

𝑝! =
          0,              𝑛! < 𝑁

            (!!!!)
!

,            𝑁 ≤ 𝑛! < 2𝑁
          1,            𝑛! ≥ 2𝑁,

    (1) 

 
where ps is the probability of initiating subtask networks, ni 
is the number of consecutive ineffective generations after the 
ith iteration of evolution, and N is an impatience parameter. 
When the evolution process is effective, ps remains zero; 
when evolution falls into a performance plateau, the 
probability of subtask initiation increases linearly to one. 
Ineffective generation is defined as one where the standard 
deviation of agent fitness is less than a threshold parameter 
𝜇. Note that while multiple generations may be ineffective 
during evolution process, only consecutive ineffective 
generations may result in higher probability of subtask 
initiation.  

Solution Evolution 
ModNEAT starts with a population of simple initial policies. 
These policies can be either randomly generated or human-
specified. Each initial policy contains a single subtask 
network and an initial switch network. The switch network 
contains only one output and grows as more subtask 
networks are added to the policy. 

When a new subtask is initiated, a randomly initialized 
subtask network is added to the policy, and a new output 
node is added to the switch network. Three measures are 
taken to protect innovations: 
1. Solution Complexity Control 

When a new subtask network is added to a genotype, no 
other subtask networks can be added to the same genotype 
in the next N (the impatience parameter in equation 1) 
generations of evolution. Solution Complexity Control 
prevents unnecessary insertion of subtask networks and 
limits the complexity of the complete solution. 

2. Prior Feature Protection 
All existing subtask networks and switch network 
structures of a genotype are frozen in the next N iterations 
of evolution if a new subtask network is added to the 
genotype. In this manner, existing features that are 
advantageous in other subtasks are protected.  

3. Population Speciation 
As is mentioned in the previous subsection, population 
speciation is used to protect innovations. Since similarity 
scores between genotypes with different number of action 
subtask networks tend to be low, genotypes that contain 
additional subtask networks are usually regarded as a new 
species and are protected by speciation, which provides 
more time for new subtask networks to evolve. 

 Throughout the evolution process, fitness is evaluated for 
the policy as a whole. All modules, i.e. subtask networks and 
the switch network, are encoded in a single concatenated 
genome and therefore evolved together. Such evolution 
encourages subtask networks and switch networks that work 
well together to emerge. In addition, evolution combined 
with automatic subtask initiation encourages more 
complicated behaviors by combining existing subtask 



behaviors to emerge. It is less likely for new subtask 
networks to be needed as the number of existing subtask 
networks increases. Thus, the overall complexity, i.e. the 
number of subtask networks in the multimodal policy, 
remains limited. 

Experiments 
This section presents experimental results based on the open 
source machine learning game OpenNERO to evaluate the 
effectiveness of ModNEAT. The first subsection introduces 
the OpenNERO platform, the second describes experimental 
setup, and the third compares ModNEAT with rtNEAT in 
both training efficiency and agent performance. 

OpenNERO Platform 
To test the effectiveness of ModNEAT, the performance of 
game agents generated by rtNEAT and Mod NEAT were 
compared in the OpenNERO implementation of the NERO 
machine learning game (opennero.googlecode.com; Karpov, 
Sheblak, and Miikkulainen, 2008; Stanley, Bryant, and 
Miikkulainen, 2005). In NERO, players design training 
schemes for a team of game agents. To defeat the enemy 
team, game agents must be able to target enemy agents and 
shoot them with their weapons. Since the arena contains 
obstacles such as walls and trees, agents need to be able to 
locate the enemy agents and navigate to them. 
  In the training mode of NERO, players set up training 
sessions by adding enemy turrets, flags, and walls. Also, 
game agents can be spawned at different locations, and all 
objects (flags, turrets, walls) can be moved around the arena. 
To evaluate fitness of the agents, players can set reward 
value for various behaviors such as sticking together, hitting 
enemy turrets, and getting closer to flags or enemy turrets. 
The overall fitness of an agent is a weighted sum of the 
rewards it obtains in each fitness measurement. A team of 
agents can be trained through a sequence of training sessions 
with different environment layouts and reward settings. 

In the battle mode, two teams of agents are spawned on 
two sides of the middle wall in the arena. Each team consists 
of 50 game agents. Every agent has 20 hit points at the 
beginning. Whenever hit by enemy weapon, an agent loses 
one hit point. An agent is removed from the battlefield once 
it loses all hit points. The team that eliminates all enemy 
agents wins. 
 OpenNERO is an open-source version of NERO 
developed as a research and education platform. IT 
duplicates the original NERO game with a few minor 
differences on how the sensors and actions are implemented. 
In OpenNERO, every agent has 18 inputs excluding the bias: 

1. Laser range finders that sense distance to the nearest 
obstacle (wall or a tree) in five directions: front, 45 
degrees to each side, and 90 degrees to each side.  
2. Radar sensors that return the distance to the flag in 5 
overlapping sectors: -3 to 18, 12 to 90, -18 to 3, -12 to -90, 
and -90 to 90 degrees (behind the agent).  
3. Radar sensors that trigger when enemies are detected 
within 5 sectors of the space (as defined above) around the 
robot. The more enemies are detected or the closer they 

are, the higher the value of the corresponding radar sensor 
will be. 
4. Two sensors that depend on the distance and direction 
to the center of mass of the teammates. 
5. A sensor that indicates whether the agent is facing an 
enemy within sensor range within 2 degrees.  

  The outputs of the control policy of an agent are: 
1. Forward/backward speed: -1 to 1 of maximum. The 
agents can move at a rate of up to one distance unit per 
frame. 
2. Turning speed: -1 to 1 of maximum. The agents can 
turn at a rate of up to 0.2 radians per frame. 

 Note that there is no output for taking shots. Instead, the 
agents shoot probabilistically. To attack an enemy, an agent 
must be oriented within 2 degrees of the target. Shooting 
accuracy increases linearly so that at 2 degrees an agent has a 
50% chance of hitting, and if it face the center of the target 
exactly, it always hits. Also, the agent must be closer than 
600 distance units from the target. Between 600 and 300, 
shooting likelihood increases linearly, and within 300, it 
always shoots. 
 OpenNERO provides a suitable platform to evaluate the 
performance of ModNEAT – the complex task of defeating 
the enemy team can be accomplished by combining 
behaviors in different subtasks such as navigating to enemy 
agents, aiming and shooting, and these behaviors can be 
learned sequentially through training sessions. 

Experimental Setup 
To compare the performance of ModNEAT with rtNEAT, 
two teams were trained and evaluated based on training time 
and tournament score. In order to ensure fair comparison, 
both teams were trained through identical training sessions. 
The objectives of each training session are listed in table 1. 
The training proceeded from S1 to S5, and a training session 
was terminated if average fitness of network population 
reached a preset value, or training time exceeded an hour. 
 In S1, a single enemy turret was placed in the arena, and 
there was no obstacle between spawning point and the turret. 
In S2, the enemy turret slowly moved around the spawning 
point to simulate moving enemy agents. In S3, an enemy 
turret was placed behind the wall (but far away from it), and 
agents were expected to go around the wall and hit it. In S4, 
enemy turrets were not only behind the wall but also moving 
around. In S5, enemy turrets were placed behind and close to 
the wall. Note that S5 is particularly difficult because agents 
must be able to tell if the enemy is in front of or behind the 
wall. If the enemy is behind the wall, agents should first go 
around the wall and then stop to shoot at the enemy.  
 
Session Objective 
S1 Hitting still enemy in sight 
S2 Hitting moving enemy in sight 
S3 Hitting still enemy behind the wall 
S4 Hitting moving enemy behind the wall 
S5 Hitting enemy that hides closely behind the wall 

Table 1: Training Sessions 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   (a) rtNEAT                                              (b) ModNEAT 

Figure 2: Training Snapshots in S3 – Most rtNEAT agents (a) kept shooting at the wall. The green lines indicate that an obstacle 
blocks the shot. In contrast, most ModNEAT agents (b) managed to go around the wall using the new subtask network, i.e. subtask 
network 1. The white number on a ModNEAT agent is the ID of the subtask network that is currently active. They are using a 
different subtask network to get around the wall and shoot at the enemy. 

In all of the above sessions, fitness reward was set to 100 
for hitting enemy turrets. In S1, S2 and S5, rewards were 0 
for all other possible behaviors (i.e. sticking together, 
approaching the flag or enemy turrets, etc), while in S3 and 
S4 reward for getting closer to enemy turret was set to 10 (all 
others were 0). 

Results and Analysis 
Table 2 shows the training time for each of the two teams. S3 
is marked red because ModNEAT initiated most subtasks in 
this session, which significantly reduced the training time. 
The reason is that S3 requires significantly different network 
structures from S1 and S2, and it is difficult for rtNEAT to 
adapt networks that are trained for aiming and shooting at in-
sight enemies to accomplish the task of reaching enemies 
behind the wall. As a matter of fact, in the first 25 minutes of 
S3 using rtNEAT, most of the agents simply kept shooting at 
the wall or running into it. In comparison, game agents 

trained with ModNEAT managed to bypass the wall soon 
with the help of a new subtask network (Figure 2).  
 
Session rtNEAT ModNEAT 
S1 5 5 
S2 5.5 6 
S3 48.5 28.5 
S4 7 8 
S5 60+ 12 
Total 126+ 59.5 

Table 2: Training Time (minute) 

Another important observation is that in session 5, the 
rtNEAT team never managed to reach satisfactory average 
fitness score while the ModNEAT team reached fitness goal 
within 12 minutes, even without introducing additional 
subtask networks. The reason can be found in the structure 
and function of the subtask networks.

 

 

 

 
 
 
 
 
 
 
 
 
 
 
                 (a) rtNEAT                                               (b) ModNEAT 

Figure 3: Training Snapshots in S5 – Most rtNEAT agents (a) kept moving around the wall over and over again, i.e., they did not 
stay on the enemy’s side to engage it. In contrast, ModNEAT agents (b) first navigated to the enemy turret using subtask network 1. 
When getting close, ModNEAT agents started attacking the enemy turret using subtask network 0. ModNEAT agents also learned 
to stay close to the enemy because they were more likely to hit the enemy turret when the distance is shorter.  



 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4: Snapshots of a Battle between rtNEAT (red) and ModNEAT (blue) – This series of two snapshots shows how the 
ModNEAT agents exploit weakness of the rtNEAT agents. In the left picture, the two teams ran into each other from opposite 
directions. The rtNEAT agents continued marching around the wall after the encounter, but the ModNEAT agents start turning 
around to attack the enemies. The right snapshot is taken a few seconds later. After turning around, the ModNEAT team deals 
considerable damage to the rtNEAT team. 

Team ModNEAT rtNEAT me-rambo synth.pop synth-flag.pop coward1 
Max Score 649 542 512 409 398 359 
Min Score 216 -649 -359 -542 -512 -471 
Avg Score 424.1 253.5 187.5 82.09 68.45 13.18 
Wins/Losses 11/0 10/1 8/3 8/3 7/4 6/5 

Table 3: Agent Performance – Table 3 shows the performance of the ModNEAT team, the rtNEAT team, and the top four teams 
from the 2011 OpenNERO Tournament. The score of a team in a battle was the remaining hit points in the entire team minus that of 
the opponent team. Team A defeats team B in a match if the sum of A’s two battle scores with B is positive. Wins/Losses indicates 
the number of matches a team won/lost.

For all ModNEAT agents whose final fitness was above 
the threshold, the complete solution consisted of two subtask 
networks. In session S1 to S4, subtask network 1 was used to 
get close to the enemy if it was far away. Subtask network 0 
was then used to aim at the enemy and approach the enemy 
slowly while shooting. In session S5, when enemy turrets 
were placed right behind the wall, ModNEAT agents 
activated subtask network 1 to get around the wall. After 
getting close to the enemy, they switched to subtask network 
0 to shoot the enemy. Thus, complex behaviors of reaching 
and eliminating well-hidden enemies were acquired by 
combining simple behaviors in different action modes. 

In contrast, rtNEAT agents have only a single solution 
network which attempts to integrate both of the above 
functionalities. To reach enemy turrets right behind the wall, 
solution networks must learn to move around the wall. To 
deal enough damage to enemy turrets, solution networks 
must learn to aim at the enemy and focus on shooting. 
Consequently, rtNEAT evolved a compromise policy where 
agents keep moving around the wall and shoot enemy turrets 
on the way. Even though they eventually evolved to reach 
the enemy turrets, rtNEAT agents wasted too much time 
moving around the wall and therefore never managed to 
reach the fitness threshold for S5 (Figure 3). 

In the complete solution of the ModNEAT agents, each 
subtask network contained 18 inputs and two outputs (as 
specified in the OpenNERO Platform subsection). Subtask 
network 0 of the champion agent in the last generation 

contained six hidden nodes and 64 links, subtask network 1 
contained eight hidden nodes and 72 links, and the switch 
network had four hidden nodes and 52 links. Note that most 
hidden nodes are not fully connected to the inputs and 
outputs, and all networks were non-recurrent. On the other 
hand, the solution network of the rtNEAT champion is a 
single network with 10 hidden nodes, 78 links, and the same 
number of inputs and outputs. Such network structures are 
typical for agents evolved by rtNEAT. 

In order to evaluate the performance of the two teams, 
both teams were tested in a tournament against the top 10 
teams in the 2011 OpenNERO Tournament (code.google. 
com/p/opennero/wiki/TournamentResults2011). Every team 
participated in 11 matches to compete with all 11 opponents. 
Each tournament match is consisted of two battles (with the 
spawning location switched). The results of the tournament 
are shown in Table 3.  

While both of the two teams defeated all ten tournament 
teams, the ModNEAT team defeated the rtNEAT team by a 
large margin, i.e. by 649 hit points. The agents trained with 
rtNEAT (as well as the agents in many top-ranked teams in 
the 2011 OpenNERO Tournament) tended to keep moving 
around the wall over and over again after encountering the 
enemy. The ModNEAT agents exploited this weakness by 
switching to shooting mode while the enemy agents were 
busy moving ahead (Figure 4). Thus, the subtask and switch 
network architecture allowed evolving distinctively better 
behaviors than before. 



Discussion and Future Work 
Modular NeuroEvolution of Augmenting Topologies (Mod-
NEAT) is an evolutionary computation method aimed at 
tackling complex tasks with minimum human guidance. The 
algorithm detects the need for adding additional subtask 
networks automatically by monitoring variation in 
population fitness. Switch networks are employed to arbitrate 
between subtask networks based on inputs from the 
environment. The subtask networks and switch networks are 
evolved through NEAT-based evolution together in a single 
genome. Experimental results showed that compared to 
rtNEAT, ModNEAT generates agents with significantly 
higher performance in shorter training time. 

ModNEAT has higher training efficiency because it does 
not attempt to adapt networks trained for certain objectives 
to accomplish new objectives if they require substantially 
different network features (i.e. topological structure and link 
weights). Instead, new subtask networks are initiated and 
evolved to reach such objectives. 

ModNEAT manages to learn more intelligent behaviors 
because task decomposition allows natural selection to be 
more focused on each subtask, and thereby makes subtask 
behaviors more robust and effective. In addition, ModNEAT 
has higher potential to learn intelligent behavior that is 
difficult to learn with a single network because switch 
networks allow relatively simple subtask behaviors to be 
combined flexibly to exhibit more complex behaviors. 

An interesting direction of future work is to combine 
ModNEAT with various module-mutation techniques 
(Schrum, 2014) to develop more effective methods for 
initiating, evolving, and combining subtask networks. 
Another interesting idea is to explore other fitness-based 
mechanisms to adjust subtask initiation probability so that 
better task division can be found with fewer attempts. Third, 
ModNEAT can be applied to many challenging problem 
domains such as robot soccer and Non-player Character 
(NPC) design for video games to produce intelligent agents 
with effective multimodal behavior. 

Conclusion 
Complex real-world tasks often require intelligent agents to 
exhibit multimodal behavior. Although neuroevolution has 
been successfully used in learning single control behavior, it 
has been difficult to develop multimodal behavior in this 
approach. This article shows how such behavior can 
be constructed by discovering and evolving subtask networks 
with a switch network, i.e. using the ModNEAT approach. 
The results in the interactive game of OpenNERO show that 
ModNEAT is effective, i.e. it results in better policies and 
evolves faster than standard neuroevolution. Thus, 
ModNEAT can be useful in constructing intelligent agent 
behaviors for games and robotics in the future. 
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