
Generalization of Agent Behavior through
Explicit Representation of Context

Cem Tutum
The University of Texas at Austin

cem.celal@gmail.com

Suhaib AbdulQuddos
The University of Texas at Austin
suhaib.abdulquddos@gmail.com

Risto Miikkulainen
The University of Texas at Austin

and Cognizant AI Labs
risto@cs.utexas.edu

Abstract—In order to deploy autonomous agents in digital
interactive environments, they must be able to act robustly in
unseen situations. The standard machine learning approach is
to include as much variation as possible into training these
agents. The agents can then interpolate within their training, but
they cannot extrapolate much beyond it. This paper proposes a
principled approach where a context module is coevolved with
a skill module in the game. The context module recognizes
the temporal variation in the game and modulates the outputs
of the skill module so that the action decisions can be made
robustly even in previously unseen situations. The approach is
evaluated in the Flappy Bird and LunarLander video games,
as well as in the CARLA autonomous driving simulation. The
Context+Skill approach leads to significantly more robust behav-
ior in environments that require extrapolation beyond training.
Such a principled generalization ability is essential in deploying
autonomous agents in real-world tasks, and can serve as a
foundation for continual adaptation as well.

Index Terms—Neuroevolution, Evolution of Neural Networks,
Extrapolation, Generalization, context

I. INTRODUCTION

To be effective, autonomous agents need to be able to
perform robustly in previously unseen situations. Especially in
real-world decision making and control applications such as
games, simulations, robotics, health care, and finance, agents
routinely encounter situations beyond their training, and need
to adapt safely. A common practice is to train these models,
mostly deep neural networks, with data collected from a
number of hand-designed scenarios. However, the tasks are
often too complex to anticipate every possible scenario, and
this approach is not scalable.

One popular approach to address this problem is few-
shot learning, in particular metalearning, either by utilizing
gradients [1]–[3] or evolutionary procedures [4], [5]. In met-
alearning, systems are trained by exposing them to a large
number of tasks, and then tested for their ability to learn
relevant but previously unseen tasks. There are also a number
of approaches mostly for supervised learning setting where
new labels need to be predicted based on limited number of
training data. However, applications of few-shot learning to
control and decision making, including reinforcement learning
problems, are limited so far [6].

The approach in this paper is motivated by work on
opponent modeling in poker [7], [8]. In that domain, an

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

effective approach was to evolve one neural network to decide
what move to make, and another to modulate those decisions
by taking the opponents playing style into account. When
trained with only a small number of very simple but different
opponents, the approach was able to generalize and play well
against a wide array of opponents, include some that were
much better than anything seen during training.

In poker, the opponent can be seen as the context for
decision making. Each decision needs to take into account
how the opponent is likely to respond, and select the right
action accordingly. The player can thus adapt to many different
game playing situations immediately, even those that have
not been encountered before. In this paper, this approach is
generalized and applied to control and decision making more
broadly. The main idea is that the history of the system is
the context. A skill network reacts to the current situation,
and a context network integrates observations over a longer
time period. Together they learn to represent a wide variety of
situations in a standardized manner so that a third, controller,
network can make decisions robustly. Such a Context+Skill
system can thus generalize to more situations than any of its
components alone.

The Context+Skill approach is evaluated in this paper on
several game domains: (1) Flappy Bird game extended to
include more actions and physical effects (i.e. flap forward
and drag in addition to flap upward and gravity); (2) Lunar
Lander (from OpenAI Gym) extended with variations in main
and side engine power as well as mass of the lander; and (3)
CARLA autonomous driving environment where the steering
curve, torque curve, and map can vary. Such extensions allow
generating a range of unseen scenarios both by extending the
range of effects of those actions as well as their combinations.
The approach generalizes remarkably well to new situations,
and does so much better than its components alone. Con-
text+Skill approach is thus a promising approach for building
robust autonomous agents in real-world domains.

II. METHODOLOGY

This section introduces the experimental domains, the Con-
text+Skill approach, and the evolutionary training methodol-
ogy.

A. Experimental Domains

Three different environments are used for experiments. The
first one, Flappy Ball (FB; Fig. 1(a)), is an extension of the
popular Flappy Bird computer game [9]. The agent, controlled
by a neural network, aims to navigate through the openings
between pipes without hitting them for a certain length of
time. The agent can flap forward and flap upward; gravity
will pull it down and drag will slow it down. The agent gets
a reward of +1 every time it passes a pipe successfully, and
a penalty of -1 at each time step it crashes into the pipes and
-5 when it crashes in the ceiling or ground. At every time
step, the agent receives six-dimensional sensory information:
vertical position, horizontal and vertical velocities, horizontal
distance to the right edge of the closest pipe, and the height
of the top and bottom pipes, normalized to [0,1]. The effects
of flap upward and forward as well as gravity and drag can
change between episodes; Therefore, the agent has to infer
such variations from its interactions with the environment over
time.

The second domain is LunarLander-v2 (LL; Fig. 1(b)) from
OpenAI Gym suite, modified to allow variations in mass of
the spacecraft and the effect of the main and two side engine
thrusters. As in the original LL-domain, the agent receives
eight-dimensional numerical sensory information as its input
(i.e., position and velocity of the lander in 2D, its angle and
angular velocity, and whether each leg touches the ground).
The purpose is to land on the lunar surface in a designated
region indicated with the flags safely and in minimal time.
The episode finishes if the lander crashes or comes to rest.

The third domain is the CARLA open-source autonomous
driving simulation environment (Fig. 1(c)). The agent has
both lateral (steering) and longitudinal (throttle) control of
the car while driving between two points in a given certain
amount of time. The steering and the torque curves are
modified to evaluate generalization. Furthermore the agent is
placed in completely unseen tracks as it tries to complete the
same task albeit under more difficult driving conditions (as
imposed by the modified steering and torque curves). As in
the other environments, the agent receives numerical sensory
information as five numerical values: Rangefinder coordinates
which describe the distance between the agent and the lane
boundaries along five axes. All control actions are given as
continuous values varying within [-1,1]. The objective is to
minimize distance from the lane center, wobbliness, and final
distance from a target zone.

These domains can be seen as proxy for control and decision
making problems where the changes in the environment re-
quire immediate adaptation, such as operating a vehicle under
different weather conditions, configuration changes, wear and
tear, or sensor malfunctions. The challenge is to adapt the
existing policies to the new conditions immediately without
further training, i.e. to generalize the known behavior to
unseen situations.

(a) Flappy Ball (b) Lunar Lander (c) CARLA

Fig. 1. Scenes from Flappy Ball (FB; (a)), Lunar Lander (LL; (b)), and
CARLA (c). The red circle in the FB domain represents the agent and the
white columns are pipes that move from right to left as the game progresses.
The purple object in the LL domain represents the spacecraft that controls
its main and side engines to land safely on the white surface designated with
flags. In CARLA, the agent controls the throttle and steering of a car to reach
destination staying as close as possible within the lane indicated by the red
curve. The effects of the actions are varied across episodes to evaluate how
well the controller adapts to previously unseen situations. For animated ex-
amples, see https://drive.google.com/drive/folders/1GBdJzD9tDHJkd59YbQU
OIQua6nCiLjXa.

B. Context+Skill Model

The core idea evaluated in this paper is to implement
the agent as a Context+Skill network that takes advantage
of an explicit representation of context. The Context+Skill
Network consists of three components: the Skill and the
Context modules and the Controller (Figure 2(a)). The first
two modules receive sensory information from the environ-
ment as numerical values, as described in previous subsection.
They send their output to the Controller, a fully connected
feedforward neural network that makes the decisions on which
actions to take.

The Skill module is also a fully connected feedforward
network. Together with the Controller they form the Skill-
only Network S (Fig. 2(c)). The Skill module used in this
study has 10 hidden and five output nodes and the Controller
has 20 hidden hidden nodes. S is used as the baseline model
throughout the study. In principle it has all the information for
navigating through the pipes, but does not have the benefit of
explicit representation of context.

The other main component in the Context+Skill framework
is the Context module. It is composed of a vanilla Long Short
Term Memory (LSTM) cell [10]. There are three gates in this
recurrent memory cell: input, forget, and output. The gates are
responsible for learning what to store, what to throw away, and
what to read out from the long-term memory of the cell. Thus,
the cell can learn to retain information from the past, update it,
and output it at an appropriate time, thereby making it possible
to learn sequential behavior [11], [12].

The Context module used in this study consists of an LSTM
cell size of 10. The memory of the Context module (ht−1

and ct−1) is reset at the beginning of each new task, and
accumulated (transferred) across episodes within each task. It
can therefore form a representation of how actions affect the
environment. The output of the LSTM (ht) is sent to Controller
as the context. Together the Context module and the Controller
form the Context-only network C (Fig. 2(b)). It serves as
a second baseline, allowing integration of observations over

(a) Context+Skill Network, CS (b) Context-only Network, C (c) Skill-only Network, S
Fig. 2. The architecture of the Context+Skill network and its ablations. (a) The full network consists of three components: a Skill module that processes
the current situation, a Context module that integrates observations over the entire task, and a Controller that combines the outputs of both modules, thereby
using context to modulate actions. This architecture is compared to (b) context-only ablation, and (c) skill only ablation in the experiments. Each component
is found to play an important role, allowing the CS network to generalize better than its ablations.

time, but without a specific Skill network to map them directly
to action recommendations.

The complete Context+Skill Network, CS (Fig. 2(a)) con-
sists of both the Context and Skill modules as well as the
Controller network of the same size as in C and S. The
motivation behind the CS architecture, i.e. of integrating the
Context module with S, is to make it possible for the system
to learn to use an explicit context representation to modulate
its actions appropriately. The method for discovering these
behaviors is discussed next.

C. Evolutionary Learning Process

The goal in each domain is to find a safe solution that
optimizes the performance objective. Although it is possible
to formulate the optimization process based on that single
objective, it turns out the diversity resulting from the mul-
tiobjective search speeds up training and helps discover well-
performing solutions [13]. In the experiments in this paper,
the first solution that reaches a satisfactory level in the safety
objective is returned as the final result of evolution, and its
generalization ability evaluated.

In each domain, the first objective, f0, measures safety,
and the second, f1, measures performance, and is in conflict
with safety. Accordingly in the FB domain, the number of
any type of collisions (or hits) is minimized, whereas the
number of successfully passed pipes is maximized. In the LL-
domain, the total rewards (indicating a successful landing) is
maximized, whereas the landing time is minimized. In the
CARLA domain, safety f0 is optimized by minimizing a
cumulative weighted sum of a lane-distance penalty and a
wobbliness penalty:

f0 =

t=T∑
t=1

(d(t) + λabs(s(t)− s(t− 1))), (1)

where d(t) is the distance from the center of the lane at time
t (shown as a red line in Fig. 1(c)), s(t) is the steering output
at time t, and λ is a proportionality coefficient (= 5.5 in the
experiments below). Time is incremented in 1/30 sec intervals;
each episode lasts T = 20 seconds, or less if the agent reaches
a specified target zone (identifying the end of the track) before

TABLE I
PARAMETER RANGES DURING TRAINING

FB (±20%) LL (±10%) CARLA (±15%)
Flapbase = -12.0 Mainbase = 20.0 αbase = 1.0
Fwdbase = 5.0 Sidebase = 1.0 βbase = 1.0
Gravitybase = 1.0 Massbase = 8.0
Dragbase = 1.0

that. Performance f1 is optimized by minimizing the Euclidean
distance between the agent and the target zone at the end of
the episode.

In the evolutionary learning process, the weights of all
three neural networks described in Section II-B are evolved
while the network architecture remains fixed. The goal is to
maximize the average fitness across multiple tasks, where
each task is based on different physical parameters in the
FB, LL and CARLA domains. The FB-domain has four
parameters (Flap, Fwd, Gravity, Drag), the LL-domain has
three parameters (Main, Side, Mass) and the CARLA-domain
has two parameters (α and β, which control the steering angle
and torque curves of the car, respectively). In each task during
evolution, only one parameter is subject to change, while the
rest are fixed at their base values (given in Table I). Thus, the
number of tasks is equal to the number of parameters. The
parameters in each domain are varied during training within
±20%, ±10% and ±15% in the FB, LL and CARLA-domains,
respectively.

Each task, and therefore each parameter, is uniformly
sampled nepisodes=5 (except in the CARLA domain where
each parameter is sampled six times) times within the limits
specified above. Thus, there are 20 fitness evaluations per
individual in each generation in the FB domain, 15 evaluations
in the LL-domain and 12 evaluations in the CARLA-domain.
The fitness of every individual in the population, i.e., average
score of all episodes, is evaluated in parallel on the same task
distribution for a fair comparison. The memory of Context
module in CS and C is reset at the beginning of each task,
and transferred from episode to episode otherwise.

Non-dominated sorting genetic algorithm (NSGA-II) [14]
was implemented in the DEAP evolutionary computation

Algorithm 1 Evolutionary process for training networks
1: procedure EVOLVE
2: stop := False
3: parents := random init individuals(µ)
4: task params = prepare task params(nepisodes,ntasks)
5: fitness = distribute(eval fitness(), (parents, task params))
6: for gen from 1 to ngen do
7: offspring = tournament sel DCD(parents, µ)
8: for i from 1 to λ do
9: if random() ≤ pcrossover then

10: SBX(offspring[i], offspring[i+1])

11: Polynomial Mutation(offspring[i])
12: Polynomial Mutation(offspring[i+1])

13: params = prepare task params(nepisodes,ntasks)
14: fitness = distribute(eval fitness(), (parents, task params))
15: for j from 1 to λ do
16: if fitness[j][0] ≥ pipesmax then
17: if fitness[j][1] ≤ hitsmax then
18: stop := True

19: parents := tournament sel DCD(parents + offspring, µ)
20: if stop == True then
21: return parents
22: break

framework [15] as the optimization method. The overall pro-
cedure is shown in Algorithm 1. It receives ntasks, nepisodes=5,
perturb=0.2 in FB, 0.1 (in LL) or nepisodes=12, perturb=0.15
(in CARLA), base parameter values, µ = 96 (48 in CARLA),
pcrossover = 0.9, ngen = 2,500 as input. The population size (µ)
is chosen as a multiple of 24 since the fitness evaluations
are distributed among 24 threads on a cluster (i.e., Dell
PowerEdge M710, 2× Xeon X5675, six cores @ 3.06GHz).
Default NSGA-II settings, including SBX (Simulated Bi-
nary Crossover), Polynomial Mutation, tournament sel DCD
(Tournament Selection Based on Dominance), and (µ + λ)
elitist selection strategy were used [14]. The process is robust
to minor variations of these choices.

III. RESULTS

The evolutionary learning results are first described, fol-
lowed by evaluation of the generalization ability of the best
solutions. For animated examples of behaviors in each domain,
see https://drive.google.com/drive/folders/1GBdJzD9tDHJkd59YbQ
UOIQua6nCiLjXa.

A. Learning

CS, C, and S architectures were evolved with different
random seeds six times in FB, five times in LL, and once in
CARLA (due to the computational complexity of this domain).
To avoid overfitting, specific stopping criteria were selected for
each domain after some experimentation. In FB, training was
run until an individual in the population achieved a fitness
scores of at least f0=0.01 (hits) and f1=22.0 (pipes). In LL,
training was run until an individual reached f0=200 (total
rewards). In CARLA, evolution was run until an individual

TABLE II
PARAMETER RANGES DURING GENERALIZATION

FB (±75%) LL (±50%) CARLA (±35%)
Flapmin = -21.0 Mainmin = 10.0 αmin = 0.65
Flapmax = -3.0 Mainmax = 30.0 αmax = 1.35
Fwdmin = 1.25 Sidemin = 0.5 βmin = 0.65
Fwdmax = 8.75 Sidemax = 1.5 βmax = 1.35
Gravitymin = 0.25 Massmin = 4.0
Gravitymax = 1.75 Massmax = 12.0
Dragbase = 0.25
Dragbase = 1.75

reached f0=2043 (safety penalty) and f1=55 meters (distance
from the target). In FB and CARLA a minimum performance
criteria was included to make sure the agent would not simply
optimize safety by staying still. The final Pareto-optimal set
in each run contained multiple individuals, of which one
representative network was selected for the generalizationy
evaluation. In FB and LL it was a safe network (i.e. satisfying
the stopping criteria) with the highest performance, and in
CARLA, it was the network with the least Euclidean distance
to the origin in the Pareto front.

The evolution of S in general took the shortest amount
of generations since it has the least number of parameters
(e.g. 287 compared with 982 in C and 1207 in CS in the
FB domain). The same architecture is used for all three
domains. To make sure the number of parameters was not
a factor, another S with a larger Skill module, with the same
number of parameters as CS, was also evolved with the same
stopping criterion. However, it performed poorly compared
to the smaller S in the generalization studies, apparently
because it was easier to overfit. Thus, it was excluded from
the comparisons.

B. Generalization

To evaluate the generalization performance of the best
performing networks, the task parameters in each domain were
changed in the following ways:

• The range of variation in the task parameters was in-
creased 35-75% beyond the training limits (Table II);

• All parameters were varied simultaneously instead of one
at a time; and

• In the CARLA domain, the agents were evaluated on
a new track that had never been encountered during
training. This track included curves with significantly
higher curvature than those encountered during training.

More specifically, the range of each game parameter was
discretized into 10, 20 and 35 values in FB, LL and CARLA,
respectively, and each network was tested with every possible
combination of these values, i.e. with 10,000, 8000, and 1225
different settings. In FB and LL, each parameter combination
was tested three times and the results averaged; in CARLA,
only one sample was used. Figures 3, 4, and 5 show the
difference in generalization between CS and S, CS and C
and C and S. They are histograms indicating how often each
difference was observed in the episodes. The first network in
the subtraction performs better wrt. a minimization objective

f0 (min hits) f1 (max pipes)

(a) CS - S

f0 (min hits) f1 (max pipes)

(b) CS - C

f0 (min hits) f1 (max pipes)

(c) C - S
Fig. 3. Comparing generalization of CS and its ablations C and S in the Flappy Ball domain. The x-axis shows the differences in generalization performance
across the 3× 104 test episodes for the three pairs of architectures. With minimization objectives, a distribution that is skewed to the left of the 0 line (black
dashed line) is better, and with maximization, a distribution that is skewed to the right is better. CS generalizes much better than S (a) and C (b), which are
about equal (c).

f0 (max rewards) f1 (min time)

(a) CS - S

f0 (max rewards) f1 (min time)

(b) CS - C

f0 (max rewards) f1 (min time)

(c) C - S
Fig. 4. Comparing generalization of CS and its ablations C and S in the Lunar Lander domain. As in Flappy Ball, CS generalizes much better than S (a)
and C (b), which are about equal in rewards with reactivity providing an advantage in time (c).

f0 (min safety) f1 (min distance)

(a) CS - S

f0 (min safety) f1 (min distance)

(b) CS - C

f0 (min safety) f1 (min distance)

(c) C - S
Fig. 5. Comparing generalization of CS and its ablations C and S in the CARLA domain. As in the other two domains, CS generalizes much better than S
(a) and is slightly better in performance and about equal in safety than C (b). C in this domain performs better than S (c), suggesting that context dynamics
are more important than reactivity in this domain.

if the histogram is skewed to the left, and wrt. a maximization
objective if the histogram is skewed to the right.

Thus, the plots show that in both FB and LL, CS generalizes
much better than S and C both in terms of safety and per-
formance. In CARLA, CS generalizes better than S and C in
terms of performance; in terms of safety, CS generalizes much
better than S in terms of lane distance and about the same in
wobbliness, and it generalizes much better than C in terms of
wobbliness and about the same or slightly less in terms of lane
distance. Thus, CS consistently achieves superior performance
and mostly superior safety across multiple domains.

IV. BEHAVIOR ANALYSIS

To understand how the CS architecture outperforms its
individual components C and S, an FB task with parameters
[Flap=-7.0, Gravity=0.58, Fwd=8.75, Drag=0.58] was evalu-
ated further. This setting has a previously unseen exaggerated
effect for forward flap, and a previously unseen diminished
effects for upward flap, gravity and drag. Thus, actions tend
to push up and speed up the agents more than expected, and
it is difficult for it to slow down and come down.

Neither the C nor the S network performed well in this
task: The C network collided with six pipes and S with five.
Remarkably, CS managed to pass all 21 pipes. Both C and S
used all four actions (flap upward, forward, simultaneously
upward and forward, and glide, i.e. do nothing), but CS
interestingly never uses flap upward alone. That action simply
lifts the agent up, which is rarely optimal action in this
environment where it takes such a long time to come down. If
it is necessary to go up it is because the opening is high, and
in that case it is more efficient to move forward at the same
time.

As an illustration, second row in Fig. 6 shows a situation at
the fourth and fifth pipe. Both C and S make a similar mistake
by flapping up and forward. They end up too high too fast,
do not have enough time to come back down, and crash into
the fifth pipe. In contrast, even before the fifth pipe becomes
visible, CS refrains from both actions while there is enough
time for weaker gravity and drag to slow and pull down the
agent, and it reaches the opening in the fifth pipe just fine.

To understand how CS manages to implement this behavior
whereas C and S do not, the outputs of the Context and Skill

Fig. 6. Contrasting the generalization ability of (a) CS, (b) C, and (c) S networks. Bottom row: At the fourth pipe in the generalization task, S and C flap upward
and then forward, end up too high too fast without enough time to come back down, crashing into the fifth pipe. In contrast, the CS Network avoids the collision
by correctly estimating the effects of its actions, giving itself enough time to come down. Top row: Differences between the first two principal components
(PC1 and PC2) of the module outputs between the nominal and generalization tasks. They differ little in CS, making it easier for the controller to output the
correct actions in new contexts. For an animation of these episodes, see https://drive.google.com/drive/folders/1GBdJzD9tDHJkd59YbQUOIQua6nCiLjXa.

modules are compared between this generalization task (where
C and S hit the fifth pipe) and a task where all parameters
are at their base values (where C and S do not hit the fifth
pipe). Their 10 and 5-dimensional outputs are first reduced to
two dimensions through principal component analysis and then
subtracted. The top row of Fig. 6 shows these differences for
the Context and Skill modules of CS, for the Context module
of C, and for the Skill module of S, at the locations in the
image below.

One might intuitively expect that Context module in C and
Skill module in S would not change their behavior much in
the generalization task, but the Context module in CS would
vary significantly to modulate the output of the Skill module.
Surprisingly, the opposite is true: Both the Context and the
Skill module in CS vary very little compared to those in C
and S (see also the quantitative comparison in Table III). The
generalization task presents novel inputs that results in novel
outputs in C and S, and the controller does not know how to
map them to correct actions. In contrast, the Context and Skill
modules in CS have learned to standardize their output despite
the change in context; their outputs are what the controller
expects as its input, and is able to output the correct actions.
Interestingly, this effect is similar to standardizing context in
sentence processing, which makes it possible to generalize
to novel sentence structures [16]. Remarkably, whereas in
sentence processing the standardization was implemented by
a hand-designed architecture, in the Context+Skill approach it
is automatically discovered by evolution.

V. DISCUSSION AND FUTURE WORK

The Context+Skill approach represents context explicitly,
and has a remarkable ability to generalize to unseen situations.
In the experiments so far, the neural networks have a fixed
topology; it may be possible to customize their architecture
further through evolution [17], [18], and thereby delineate
and optimize their roles further. Besides the architecture, the
choice of training tasks plays an important role; methods that
automatically design a curriculum, i.e., a sequence of new
training tasks [19]–[23], could lead to further improvements.
Third, instead of using handcrafted features, convolutional
layers added in front of the Context and Skill modules could
be used to discover features while training, extending the
approach to more general visual tasks.

Lifelong machine learning tries to mimic how humans and
animals learn by accumulating the knowledge gained from
past experience and using it to adapt to new situations incre-
mentally [24]. The generalization ability of the Context+Skill
approach can serve as a foundation for continual learning. It
provides an initial rapid adaptation to new situations upon
which further learning can be based. How to convert general-
ization into a permanent ability in this manner is an interesting
direction of future research.

VI. CONCLUSION

A major challenge in deploying artificial agents in the
real world is that they are brittle—they can only perform
well in situations for which they were trained. This paper
demonstrates a potential solution based on separating contexts

TABLE III
CHANGE IN CONTEXT AND SKILL MODULES DURING GENERALIZATION.

Network PC MSD STD
Context-PC1 0.004 ±0.058

CS Context-PC2 0.003 ±0.039
Skill-PC1 0.007 ±0.082
Skill-PC2 0.018 ±0.133

C Context-PC1 0.139 ±0.282
Context-PC2 0.061 ±0.147

S Skill-PC1 0.414 ±0.600
Skill-PC2 0.088 ±0.286

from the actual skills. Context can then be used to modulate
the actions in a systematic manner, significantly extending
the unseen situations that can be handled. This principle was
successfully evaluated in three domains: challenging versions
of the Flappy Bird and Lunar Lander games as well as the
CARLA autonomous driving simulation. The results suggest
that the Context+Skill approach should be useful in many
control and decision making tasks in the real world.

VII. ACKNOWLEDGMENTS

This research was supported in part by DARPA L2M Award
FA8750-18-C-0103.

REFERENCES

[1] J. Schmidhuber, “Evolutionary principles in self-referential learning, or
on learning how to learn: The meta-meta-... hook,” Ph.D. dissertation,
Institut für Informatik, Technische Universität München, 1987.

[2] S. Thrun and L. Pratt, Learning to Learn: Introduction and Overview.
USA: Kluwer Academic Publishers, 1998, pp. 3–17.

[3] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” 2017.

[4] C. Fernando, J. Sygnowski, S. Osindero, J. Wang, T. Schaul,
D. Teplyashin, P. Sprechmann, A. Pritzel, and A. Rusu, “Meta-learning
by the Baldwin effect,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion. ACM Press, 2018.

[5] D. Grbic and S. Risi, “Towards continual reinforcement learning
through evolutionary meta-learning,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, ser. GECCO ’19.
Association for Computing Machinery, 2019, pp. 119–120.

[6] K. Kansky, T. Silver, D. Mély, M. Eldawy, M. Lázaro-Gredilla, X. Lou,
N. Dorfman, S. Sidor, S. Phoenix, and D. George, “Schema networks:
Zero-shot transfer with a generative causal model of intuitive physics,”
2017.

[7] X. Li and R. Miikkulainen, “Evolving adaptive poker players for
effective opponent exploitation,” in AAAI-17 Workshop on Computer
Poker and Imperfect Information Games, 2017.

[8] ——, “Opponent modeling and exploitation in poker using evolved
recurrent neural networks,” in Proceedings of The Genetic and Evolu-
tionary Computation Conference (GECCO 2018). Kyoto, Japan: ACM,
July 2018.

[9] Wikipedia, “Flappy bird,” https://en.wikipedia.org/wiki/Flappy Bird,
2020, accessed 3-February-2020).

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[11] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[12] A. Géron, Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems,
1st ed. O’Reilly Media, Inc., 2017.

[13] J. D. Knowles, R. A. Watson, and D. W. Corne, “Reducing local optima
in single-objective problems by multi-objectivization,” in Evolutionary
Multi-Criterion Optimization, E. Zitzler, L. Thiele, K. Deb, C. A.
Coello Coello, and D. Corne, Eds. Springer Berlin Heidelberg, 2001,
pp. 269–283.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[15] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171–2175, jul 2012.

[16] R. Miikkulainen, “Subsymbolic case-role analysis of sentences with
embedded clauses,” Cognitive Science, vol. 20, pp. 47–73, 1996.

[17] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

[18] J. Schrum and R. Miikkulainen, “Evolving multimodal behavior with
modular neural networks in ms. pac-man,” in Proceedings of the Genetic
and Evolutionary Computation Conference Companion, ser. GECCO
’14. Association for Computing Machinery, 2014, pp. 325–332.

[19] S. Narvekar and P. Stone, “Learning curriculum policies for reinforce-
ment learning,” 2018.

[20] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Paired open-ended
trailblazer (poet): Endlessly generating increasingly complex and diverse
learning environments and their solutions,” 2019.

[21] J. Schmidhuber, “Powerplay: Training an increasingly general problem
solver by continually searching for the simplest still unsolvable prob-
lem,” 2011.

[22] N. Justesen and S. Risi, “Automated curriculum learning by rewarding
temporally rare events,” 2018.

[23] S. Risi and J. Togelius, “Procedural content generation: From auto-
matically generating game levels to increasing generality in machine
learning,” 2019.

[24] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” 2018.

