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Preface: A Look Before the Leap
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Figure 1. Comparing Neurons and Network Nodes

The basic function of the neuron is this (figure 1a. Neuron):
1. Input signals arrive from the axons of other neurons through the dendrites
a. excitatory signals increase the likelihood of activation
b. inhibitory signals decrease the likelihood of activation

2. Rahmann, I{, and M. Rahmann. e Neurabiological Busis of Memory and Behavior. New York:
Springer-Verlag. 1992, 3.



2. Signals are summed and compared to the activation threshold
3. If the activation threshold is reached
then an output signal is sent through the axon to the dendrites of other
neurons
else the activation level of the neuron decreases
The basic computer neural network neuron simulation is this (figure 1b Network
Node):
1. Input signals arrive from other network nodes through the program
algorithm
a. excitatory signals increase the likelihood of activation
b. inhibitory signals decrease the likelihood of activation
2. Signals are summed and compared to the activation threshold
3. If the activation threshold is reached
then an output signal is sent through the program algorithm
else the activation level of the node decreases
Many factors affect the flow of activation through the nervous system:
1. Placement in the structure being activated
2. Chemical environment

Factors affecting the flow of activation through a computer neural network

are less complex, and include only the algorithm used for propagation, and the data set
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fed to the system. The basic operation of the individual nodes or neurons, however,
seems to be very simple: sum inputs, if the sum is greater than some threshold value,
propagate a signal.

This basic operation goes on continuously in the brain. Significant variations
occur in the structures active at any given moment. Much text has been dedicated to
"bramn states,” but this term is applicable in a very limited sense. Physically, the only
time a bramn can be said to be in an actual state is when it is dead. Otherwise, there is
a continuous flow. The brain does not maintain a static state while it waits for more
mput. Nothing is done in the brain by achieving some static arrangement, but only by
moving through structures which are themselves constantly subject to modification.
Heraclitus' dictum vis & vis the river of time applies equally to the brain: you can't
progress through the same brain twice. Many general structures remain relatively the
same over time, but all are constantly subject to minor modifications. The rate of
attrition from disuse of language demonstrates that, without rehearsal, knowledge
fades.”** The brain does not permanently encode its contents, but relies on occasional
refreshment or reinforcement. Long-term memory implies long-term reinforcement.

The reinforcement need not be from external sources. The unconscious seems to keep

busy reinforcing structures by traming the brain's neural network through dreams.®

3. Brown, Douglas H. Principles of Language Learning and Teaching, 2d ed, Englewood Cliffs, NT: Prentics
Hall Regents, 1987, 68-70.

. Rahmann. 7bid. 220.

- Klimesch, Wolfgang. The Structure of Long-Term Memary. Hillsdale: Lawrence Erlbaum Associates, 1994,
12.

6. Fuster, Joaquin M. Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the
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In a computer neural network, the nodes are trained on a given set of data,
then frozen while the system is in use doing what it is intended to do. The dynamism
which is constant in the bram is only present in the initial training phase of a neural
network. Further training may be done, but for the most part, the net is frozen for
testing. This paper will focus on the philosophical questions involved in comparing
brain function with neural networks, but first I must introduce the basic structures
imvolved in both brain activity and the related neural network paradigms. Both areas
are currently in a dynamic state of flux (to use "state" loosely). New brain studies are
revealing faults in recent theories of brain function as well as more detailed data
regarding how the structures in the brain interact. Computer neural networks are
constantly undergoing refinement and facing new chalienges, Does knowledge in one
of these systems imply similar knowledge in the other? We will first look at the
current view of brain function, then the current state of neural networks, before
plunging into the details of philosophical arguments about connectionist versus
symbolic paradigms, dynamism versus states, single unit versus functional structure,
imposed structure versus self-organization, local versus global representation, ete.

Cognitive science is truly a multi-disciplinary field: the philosophical problems
are not resolvable by reason alone: reference must be made to the physical truths made

manifest by on-going research. The computerized approach will be somewhat isolated

Human and Nonhuman Primate. Cambridgs: The MIT Press, 19935, 284--28%8.
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in its uses and implications for humanity without some correlation to the philosophical
questions relating to What is man? What is thought? What is consciousness?.
Psychelogy and linguistics are also deeply engaged in this exploration of what is?,
what happens?, and how do we value it? Especially psychology has a great stake in
the outcomes of research into the workings of the brain. Who is closer to the truth,
Pavlov or Freud, Freud or Jung, Jung or Piaget? The mvestigation of neural networks
is relevant to all these areas. If computer neural networks can be showntobeina
meaningful way equivalent to the neural network of the brain, these mvestigations
could lead to dramatic progress in many significant areas of human daily life, especially
in how we think about how we think.

The word "model" has a great many uses. Inlogic it is: "An interpretation I is
called a model of T iff it satisfies I". I 15 satisfiable iff it has a model."™ We use it in
everyday language to mean a paradigm, as in "a model citizen." It refers to small
planning versions of a building. "Model" has many common uses. Consider:

I'met a girl at a party. She told me she was a model.

I asked, "What scale?"

"Union," she sighed.*

There are scientific and literary models, economic and artist's models, models

of trains, planes and automobiles. I will use the word "model" many times in this

paper. I mean a particular sense when I use it. This defimtion s no substitute for the

7. Causey, Robent L. Logic, Sets, and Recursion. Boston. Jones and Barllet Publishers, 1994, 298, "I™iz a
set of Predicate Caleulus (£47) senlences, and L iz a () interpretation.
8. Tanney, Rick W. "Toward a Connectionist Lexicon and the Possibility of Disambiguation.® Unpublished.
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function of either an artificial neural network or of a natural neural network (the
nervous system), but I think it may help to link those concepts in both types of
network that we seek to elucidate and understand. When I use the word "model", I
mean a structure which includes three associated parts: 1) what is, 2) how it works,
and 3) what value it has. When I speak of what is, I include what physically or
psychically exists, to include both existential properties and actions associated with the
object or concept. This means our evaluation (conscious or not) of whether the thing
in question has physical existence and what its physical properties are, or whether it
has a conceptual existence. "Cat" has a physical existence; "addition" exists only as a
concept. What is, for "cat", will include "a physical presence which is a furry, quick,
short mammal with (usually) a long tail and whiskers"; for "addition", it will include "a
process by which things are serially joined together." For "cat," this incfludes such
things as jumping, purring, and eating birds; for "addition,” it includes combining two
elements to form a sum. When I speak of how it works, T include what causal relations
apply to whar is. When the cat is stroked, it purrs, that is, stroking causes purring;
when it wants to catch a bird to eat, it jumps -- this exemplifies two causal relations --
wanting causes jumping which results in carching. What value it has includes what
our mferest in it is, its survival value, pleasure value, its relative desirability or
acceptability. For "cat", this includes the pleasure I feel when I stroke it and it purrs.

For "addition", it includes the practical value in bemg able to join many things together



to be treated as a group rather than going through the tedium of treating each element
individually. These three elerents combined comprise all relevant factors I can think
of that are needed to form a working black box which can process incoming data
relating to the thing we have in mind and output a meaningful result. I call this the
"Model model."

Science is developing a model of brain function which has implications for our
philosophical models of thought, perception and knowledge. Neural network models
can be tools for mampulating and evaluating these models. If we can develop valid
working models which are essentially the same in both areas, we may be able to use
neural networks for many practical as well as philosophical investigations. Natural
neural networks are the basis not only of thought, but of memory -- short, medium,
and long-term -- which 1s necessary for our sense of identity. Through artificial neural
network simulation, we may discover more about who we are, and how we are aware

of who we are.
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Abstract

The concept of neural networks as serious analogs for human brain function is
very appealing, but controversy continues over how significant they are, and in what
contexts they may be applicable. They are of serious interest for philosophers for their
implications for theories of mind, for issues involving thought, perception and
knowledge. There is serious doubt about whether an electronic mechanismn, no matter
how elaborate, can meaningfully mimic the functions of a complex electro-
biochemically active organ. Proponents believe that neural networks can perform
cognitive tasks at a functional level, and that we may be able to learn much about our
own cerebral activities from their study. I conclude that neural networks are an
important and essential model for mental function, but that the neuronal circuitry alone

15 not sufficient to explain motivation or overall system guidance.
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Introduction

The brain is amazingly complex, yet scientists have been meaking great strides
in discovering its workings.' To a great extent, bram functions seem to be based on a
few simple principles and procedures involving neurons which are made powerful
through the structure of their synaptic connections. New techniques are constantly
being developed to allow an ever finer-grained examination of the brain at work. The
functions of smaller and smaller portions of the brain's rich structure are being defined
with increasing clarity. The black boxes are getting ever smaller, Effective models are
being developed a.t many functional levels, and the contribution of each level to over-
all fonction is being integrated into an overall picture. The picture is far from
complete, and we will have scant space in this paper for a detailed view of even what
is cutrently known. I will try to paint a broad enough picture not to get bogged down
in unnecessary detail, but clear enough to indicate the significance of each level and
how it applies to questions of neural network simulation and philosophical
implications for theories of mind,

Neural networks as brain simulators are of relatively recent origin, having
begun with the pioneering work of McCulloch and Pitts in 1943 2 There are many
forms of neural network, the primary ones being back-propagating networks and

self-organizing maps. I will try to paint a broad picture, and focus on the pertinent

1. The 199G's have been designated the "Decade of the Brain.”
2. Haykin, Simon. Neural Networks. New York. Macmillan College Publishing Company, 1994, 36.
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implications. As computers become faster and increase in capacity, simulations
will become more and more effective, and come closer to modeling the real neural
networks of the brain, Their range is currently very limited compared to the vast
capacity of the brain, megabytes compared with multi-gigabytes. But it is the
emulation of structure which is most important, and which is most controversial.
Can a mere electronic device act like a very complex electro-biochemical organ? I
hope to lay before you a lucid discussion of the issues as they currently stand.
What can we hope to explain using neural networks? Learning and
memory -- how do we learn? How do we forget what we've learned? Knowledge
representation -- knowledge is not stored within the neurons, but int the structure
which connects and activates them. Can we use this structural approach to good
advantage elsewhere? What is the relation of the real world to our perception of
it? Will our concept of the real world change once we discover how we
understand it internally? Humor. Puns. Irony and ambiguity. I believe that
humor is the result of the overlap of models stored in the neural network.
Volition, motivation. What are the mental mechanisms which drive us to do what
we do? Spoonerisms. Language -- it's not straightforward symbol processing, so
how do we coordinate printed words, their sounds, and our internal representation
of what they mean in the real world? Déjg vu, Presque vu, Jamais vu -- I've done

this before; T almost saw something; I feel like I've never seen this before {although



I see it every day). Intuition -- I know I'm right, but I can't express why. Symbol
manipulation -- if the brain does not actually directly manipulate symbols, how does it
learn to identify and usefully manipulate what we describe as a symbolic
representation? Consuiousnes;a -- 15 It an emergent property at a high level, or is it like
the concerted effort of a group of muscle fibers, each synapse or neuron having a little
bit of consciousness? The difference between "my arm goes up" and "I raise my arm”
15 consciousness. Psychological development -- how does our brain and its functions
develop from the overabundance of neurons that we start with to the set we grow up
using? What are the incremental changes involved? Can we effectively apply this
information to treatment of mental problems or to educational programs? Intelligence
-- 15 it 2 measure of how many models of a certain sophistication we can usefully
recognize and manipulate? Is there one basic type of intelligence or seven or more?
Phantom limbs -- they are no longer there -- how does an amputee continue to have
the sensations of the missing limb? Dreams -- are dreams the brain's way of retraining
the nervous system while we sleep?” * Systems effects, emergent properties. How is it
that unexpected abilities or functions become apparent when elements of the substrate
act in concert? What structural dynamics account for these properties? The combined
efforts of neural scientists and computer neural network experimenters can help

eliminate inappropriate theories of mental function using the Sherlock Holmes Rule of

3. Wolf, Fred Alan. The Dreaming Universe. New York: Touchsione/Simon & Schuster. 1994,
4, Rahmann, fbid.



Evidence: wh;:n all the impossibilities have been eliminated, whatever remains,
however improbable, must be the correct answer. Nenral networks can be trained to
translate neural signals to movement in a prosthesis. There is a possibility of
mapping visual activity in the brain to a neural network. We may be able to directly
read the visual content of the brain, perhaps even recollections of things seen or
merely imagined. To view the imagination at work is becoming at least a theoretical

possibility. We have reached the outer limits of speculation.
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Figure 02: "...the most complex object in the universe. It comprises a trillion cells,
100 billion of them neurons linked in networks that give rise to intelligence,
creativity, emotion, consciousness and memory." ?

. Fischbach, Gerald D. "Mind and Brain", Scientific American, September 1992, 51, This article provides the bulk
of the discussion and description of brain structurs in this exposition.
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L. A Natural Neural Network: The Brain
Composition

The brain is composed largely of neurons which are connected to each other in
multiple ways, neurons which operate as tiny individual computers, summing inputs
and sending out signals to other neurons, both locally and at a distance, neurons which
are integrated into highly complex functional systems in a hierarchy which begins with
the lowly synapse and culminates in human behavior. Analysis of these structures at a
fine level is made difficult by several obstacles: (1) the system is immensely complex,
composed of several hundred billion neurons; (2) the number of connections is
extremely large -- as many as 10,000 terminals per neuron; (3) there are diverse modes
of synaptic association between two neurons -- excitatory-inhibitory,
electrical-chemical; and (4) there is a great diversity of transmitter substances,
probably around 50.°7 This lack of more detailed information about brain structures
and their fun¢tions will make the comparison to artificial neural networks even more
difficult.

Structure

The number of identifiable levels of brain structure and their significance for
cognition are issues for debate. The human bram weighs three to four pounds and
contains about 100 billion neurons. This immense number alone does not account for

the bram's complexity:

6. Rahmann, Ibid. 99.
7. Fischbach, fbid. 48-57. As ol this wriling, there are (ai lsaul) berween 100 and 200.
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Although that extraordinary number is of the same order of magnitude

as the number of starts in the Milky Way, it cannot account for the

complexity of the brain. The liver probably contains 100 million cells,

but 1,000 livers do not add up to a rich inner Life ®

There is a great diversity of cells -- Purkinge, basket, motor neurons, etc. A
Purkmije cell alone is amazingl‘y complex. The challenge to define the function of one
such cell -- or even a small group taken together -- 1s daunting. The brain is not one
smooth net of similar cells performing identical functions,

There are some simplifications in brain structure which do facilitate analysis of
structure and function: 1) Groups with similar functions are grouped together in
columns (or "slabs") that extend through the thickness of the cortex. For example, a
module in the visual cortex which responds to a line of a particular orientation could
contam up to 100,000 cells, most of which participate in local circuits devoted to a
particular function; 2) All neurons conduct information in much the same way:
information travels along axons in the form of brief electrical impulses called action
potentials, which measure about 100 millivolts m amplitude and one millisecond in
duration. These result mainly from the exchange of potassium and sodium ions across
the surface membrane of the neuron from the extracellular fluid into the cell interior or
cytoplasm. At a critical potential called the threshold, an electrical charge is generated

and positive feedback produces a regenerative event that forces the membrane

potential to reverse sign. The sodium permeability mechanism remains refractory for a

8. Fischbach. [hid. 49.



few mulliseconds after each pulse which limits the rate at which action potentials can
be generated to 200 per second or less . The need for signal boosting limits the
maximum speed at which an impulse travels to about 100 meters per second, less than
one millionth the speed at which an electrical signal moves in a copper wire. Thoughts
must depend on the relative timing of impulses conducted over many axons in parallel
and on the thousands of connections made by each one.
Transmitters

Communications between neurons is mediated by chemical transmitters that
are released at specalized contacts called synapses, which, we will see later, are the
best candidates to be the basic computational unit of the network.® Each neuron must
continually integrate up to 10,000 synaptic inputs, which do not add up in a simple
linear manner, which means each neuron 1s a sophisticated computer in itself,

Transmutter receptors can be grouped into two large ( and growing)

superfamilies based on their amino acid sequence and on presumptions

about the shape that the molecules assume as part of the cell membrane

in which they are embedded . . . one receptor superfamily consists of

1on channels, [which] underlie . . . changes in permeability . . . The

other superfamily . . . does not form channels. Instead its members

interact with 2 neighboring membrane protein . . . This process

initiates a cascade of biochemical reactions. '

This chemcal mteraction must take place at an incredible pace in order to have

a timely effect on the electrical activity in the system. The pace of chemical change

must be at least that of the synaptic interactions with the neurons, faster than 100-200

9. See Appendix 4. Defining the Basic Computational Unit.
10. Fischbach. fbid. 54.



transformations per second.
Plasticity

The account of structural, functional and molecular variety given so far would
seem to be sufficiently cc:mple.te as a basis for mental function. We have yet to
consider plasticity, the tendency of synapses and neuronal circuits to change as a result
of activity. "Plasticity weaves the tapestry on which the community of mental life
depends.""' The metabolic after-effects of action potentials not only encode
information, they alter the circuits over which they are transmitted,

Synapse pl-asticity 15 the basis for connectionist neural models, It "multiplies
the complexity provided by any fixed cast of molecular characters or cellular
functions,” providing an even richer substrate for mental phenomena. These changes
may alter function of synapses as well as the number or location of synapses
themselves, Axons penerate new endings when nearby neurons cease transmission,
and the terminal branches of dendritic arbors are constantly remodeled.

Although the forces leading to plastic changes in the mature brain are

frequent and ineluctable, it is important to emphasize the precision and

overall stability of the wiring diagram. We could not sense the

environment or move in a coordinated manner, let alone think, if it

were otherwise. All studies of higher brain function must take into

account the precise way in which neurons are connected to one
another "

11. Fischbach. Tbid 54.
i2. Fisehbach. lbid 55.



Topographic Mapping

Pathways in the brain have been traced by means of a variety of
molecules that are transported along axons. Such reporter molecules
can be visvalized once the tissue is properly prepared. Connections
have also been traced by fine-tipped microelectrodes positioned close
enough to a nerve cell body or an axon to detect the small currents
generated as an action potential passes by. Each technique has
revealed ordered, topographic maps in the cerebral cortex. The body
surface is represented in the postcentral gyrus of the cerebral cortex
even though the cortical neurons are three synapses away from sensory
receptors m the skin. Likewise, a point-to-point map of the visual
world is evident in the primary visual cortex at the occipital pole at the
back of the brain. Order is evident at each of the early relays on route
to the cortex, and topographic order has also been found in projections
from the primary cortices to higher centers

Hubel and Wiesel discovered 30 years ago that neurons in the primary visual
cortex (V1) respond to line segments or edges of a particular orientation rather than to
the small spots of light that activate the input neurons in the retina and lateral
geniculate nucleus of the thalamus, implying that neurons in V1 are connected, via the
lateral geniculate nucleus, to retinal ganglion cells that lie along a line of the preferred
orientation. "There is a general topographical correspondence between a region of
simulation of the sensory organ and its representation in the central nervous
system . . . While maintaiming topographical coherency, the nature of the
information stored in the brain can change as it progresses from one way-station to the

fext "

13. Fischbach. bid, 55.
14. Cook, Norman D. The Brain Code. New Yark: Methuen, 1986, 33,
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Brain Code

We know the anatomy of the major sensory and motor systems mn some detail
However, the pattern of connections within the ntervening association cortices and
the large subcortical nuclei of the cerebral hemispheres is not clearly defined. Visval
information is mapped so that the retinal irage in the eye maintains its basic
configuration as the pattern of stimulation is transferred from the retina 1o the lateral
geniculate body in the thalamus to striate cortex. Somatosensory mformation is also
topologically intact, with the entire surface of the skin being represented contiguously
and specially detailed representation for the hand. Cook makes a distinction here
between study of the neuron and its synaptic activity, which he terms
neurophysiology, and the study of larger agpregates of neural activity which account
for specific cognitive functions or for functions which taken together account for
mental and physical behavior, which he terms the Brain Code or neuropsychology."

The pattern of information flow in the brain during the performance of mental
tasks cannot easily be determined by anatomic studies of the circuit diagram or by
studies of plasticity. Neural correlates of higher mental functions are being sought
directly in awake primates trained to perform tasks that require judgment, planning or

memory, or all three capacities.

15. Cook. Ibid. xiii,

10



Hierarchies
One of the most important principles 15 that sensory systems are
arranged m a hierarchical manner. That is, neurons respond to

increasingly abstract aspects of complex stimuli as the distance --

measured m numbers of synapses from the source -- grows. The fact

that neurons in V1 respond to lines rather than spots makes the case.

Another important principle . . . is that information does not travel

along a single pathway. Rather, different features of a single percept

are processed in parallel pathways . . . the movement, color and

shape of a tennis ball are processed in different cortical visual centers.

The auditory system has a similar topographical organization, with nearby
structures responding to similar frequencies. But, in the barn owl, phase and
amplitude signals which account respectively for location along the azimuth and
elevation are processed in different pathways through three synaptic relays in the
brain. It seems likely that this type of parallel processing characterizes other sensory
systems, association cortices and motor pathways as well. For years, psychologists
have seen the normal bramn as a black box whose inner workings were the speculations
of many different schools of thought. Occasionally some area of a brain would be
damaged, and the corresponding loss of function would give a clue as to the function
performed by that part of the brain. In this way Broca's Area and Wernicke's Area
were respectively found to process speech production and language comprehension.

We are now reaching the point at which it is becoming possible to reach deeper into

the structure and to more clearly identify the functions of smaller and smaller local

16. Fischbach. 7bid, 56.
17, Cook. Ibid 19.
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structures in the brain.
Cerebral Hemispheres

Where 15 the information reassembled? When does the subject become
aware of the approaching ball? The receptive fields of neurons in
higher centers are larger than those found in earlier relay stations, so
they monitor a larger fraction of the external world. Zeki describes a
model that depends on feedback connections from cells with large
receptive fields to the cells in the primary visual cortex that have high
spatial resolution. Such feedback circuits might coordinate the activity
of cells m the primary cortex that have high spatial resolution and celis
that respond to more abstract features of the stimulus no matter where
it is located. Francis Crick and Christof Koch address the role in visual
awareness of a 40-cycle-per-second oscillation in firing rate that is
observed throughout the cortex . . . [which] may synchromize the
firing of neurons that respond to different components of a perceptual
scene and hence may be a direct neural correlate of awareness.'®

How do we close the big loop?” I mean the feedback loop that accounts for
hand-eye coordination, that doesn't just see the ball coming, but takes steps to
intercept it. Fischbach asks where it all comes together. Cook has a suggestion for
where to look: the corpus callosum. The brain is composed of a number of identifiable
parts, the most identifiable being the two lateral hemispheres. The cerebral cortex is
outer 2-3 mm of the entire surface of the cerebral hemispheres. Its surface forms a
series of elevated ridges, or gyry, separated by shallow depression, called sulei, or
deeper grooves, called fissures.” The total surface area is approximately 25 square
18. Fischbach. Ibid. 56.

19. Dreyfus. Hubert L. "Phenomenclogy of Embodiment.” The Electronic Journal of Analytic Fhilesophy. 4
(Spring 1996). Ploomington: Indiana University. 1996, 932

20. Maerilini, Frederick H. Fundamentals of Anatomy and Physiology, 3d ed Englewood Cliffs: Prentice Hall.
1995, 468.
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feet of flat surface -- it is significant that the topology of the cortex is actually two-
rather than three-dimensional.

The prefrontal cortex is involved with conscious intellectual functions. The
frontal lobe includes the primary motor cortex, and processes voluntary control of
skeletal muscles. The parietal lobe is associated with conscious perception of touch,
pressure, vibration, pain, temperature, and taste. The occipital lobe contains the
primary visual cortex, and the temporal lobe accounts for auditory and olfactory
cortices. The sensory and motor regions of the cortex are connected to nearby
association areas that interpret incoming data or coordinate motor response.
Integrative centers include the prefrontal cortex, which integrates information from
sensory association areas and performs abstract intellectual functions, such as
predicting the consequences of possible responses, the general interpretive area (for
language and mathematical calculation), which is usually confined to one (the left)
hermsphere, and the speech center

The corpu§ callosum contains over 200 million axons, carrying an estimated 4
billion impulses per second.® Its central location and function as the carrier of signals
between hemispheres are what made it the focus of Cook's Brain Code book, He lists
the accompanying table (Table 1.) of dichotomies artributed to the cerebral

hemispheres:™ Martini calls the left hemisphere the categorical hemisphere, the right

21. Martini. Ibid 470-2.
22 Martini. Tbid. 469.
23, Cook. Ibid. 18.
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hemisphere the representational hemisphere ™

Cook argues the necessity of one hemisphere to dominate in certain activities -
- for example, the coordination of movement and expression. You can't clap your
hands very well if each hand is controlled independently, so one side must coordinate
the effort. The communication for this coordination goes through the corpus
callosum.

There is still much to be found out about brain function in the various areas. A
recent study challgnged the traditional theory of cerebellar function, showing that the
cerebellum is not directly responsible for fine motor control, but is involved "in
sensory discrimination rather than in movement per se."” And we still wonder where
it all comes together. Our most persistent interest in this pursuit of knowledge is the
source of consciousness, which we frequently associate with cogmtion. But the brain
performs many unconscious functions at many levels. One wonders just how many of
those levels we are privileged to experience as consciousness, Are we limited to one?
Do we occasionally get a glimpse into others, as when we are between dream and
wakefulness?*

Firing Rate and Vectors

How many neurons must change their firing rate to signal a

24, Martini. Jhid 471-2,

25. Gao, Jia-Hong, Lawrcnce M. Parsons, James M. Bower, Jinhu Xiong. Jingi L1, peter T. Fox. "Cerebetlum
Implicated in Sensory Acquisition and Discrimination Rather than Motor Control." Science VOL N.d.
1656, 1-3.

26. Wolf. Jhid,
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Table 01. Dichotomies attributed to the

cerebral hemispheres

Left Hemisphere | Right Hemisphere
Experimentally Derived

sequential parallel/simultaneous

analytic synthetic

linguistic visuospatial

verbal nonverbal

focal global

linear spatial

mathematical geometric

Philosophically Motivated

expressive perceptive
propositional appositional
symbolic imaginative
intellection emotion
reason affect
discrete holistic
active passive

patterns, such as stereotypical escape behaviors |

coherent percept or
gestalt? The most
extreme view holds that
one cell may do the job.
Is there one face cell per
face? Such 2 supposition
seems unlikely on first
principles: we lose
thousands of neurons
every day, so
overcommitment (o one
would be unwise. A
more compelling
argument comes from
recent experiments that
have shown face cells to
be broadly tuned,
responding to faces with
simnilar features rather
than to one face alone.
The number of neurons
that must be activated
before recognition
emerges 15 not known,
but the data are
consistent with a sparse
coding rather than global
or diffuse activation.
Face cells have
their counterparts on the
motor side. "Command"
neurons have been
tdentified in certan
invertebrates that trigger
all-or-none, fixed-action
. . like face cells in

the temporal lobe, individual motor cortex neurons are broadly tuned.
The vector obtained by summing the firing frequencies of many
neurons 1s better correlated with the direction of movement than is the
activity of any individual cell. The vector becomes evident several
milbseconds before the appropriate muscles contract and the arm
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actually moves. It must be 2 sign of motor planning. The vector is

usually derived from less than 100 neurons, so sparse coding may be

the rule in the motor cortex as it is in the temporal sulcus.?’

Experimental Evidence

Studies are underway to produce mental phenomena by focal electrical
stimulation. This harkens back to the memory stimulation exercises by Wilder
Penfield, in which he evoked vivid memories from patients by stimulating their brains
directly electronically while they were undergoing brain surgery.® Strokes and other
unfortunate "experiments of nature" have also provided important insights regarding
neural correlates of mental phenomena.

The future of cognitive neuroscience depends on our ability to study the living
human brain. PET and MRI hold great promise in this regard ®. The brain is never
completely at rest. At present, neither technique provides the spatial resolution to
visualize single cortical columns.

Fischbach believes we can expect advances at an increasing rate on all
levels of investigation relevant to the mind: We will soon know exactly how many
transmitters and transmitter receptors there are in the brain and where each one is
concentrated . We will also have a more complete picture of neurotransmitter actions,

including multiple nteractions of jointly released modulators. And we will learn much

more about molecules that affect neuronal differentiation and degeneration. The great

27. Fischbach. fhid. 57.
28. Penfield, Wilder, The Mystery of the Mind. Princcton: Princston University Press, 1975.
29. Gao, ctal. Jhid 1-3.
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challenge is to determine how these molecules modulate the functional wiring diagram
of the brain and how this functional nerve network gives rise to mental phenomena.
Emergence

Ultimately, it will be essential to specify what exactly it means to say that
mental events are correlated with electrical signals. Is the mind an emergent property
of the brain's electrical and metabolic activity? An emergent property is one that
cannot be accounted for solely by considering the component parts one at a
time . . . biological explanations of mental events may become evident once the
component neural functions are more clearly defined. We will then have a more
appropriate vocabulary for describing the emergent mind.® Emergence is frequently
discussed when systems produce behavior which can not be expected from a minute
analysis of all of the subcomponents, in other words, when a system exhibits behavior
which can not be predicted by examining the properties of its constituent parts.
Consider sand. Consider dune. Even if you know all properties of each individual
grain, and the dynamic relations among the grains, and properties of the grains when
aggregated, you do not have enough information at that level to explain an individual
dune and its systemic properties.” An appropriate explanation can be made at a higher
level of organization, one that recognizes the applicable models for friction and fluid

flow of granular aggregations. Once all factors have been considered and weighed,

30. Fischbach. Jbid, 57. ’
31. Nagrel, Emest. The Structure af Seience. New York: Harcourt, Brace & World, Ine, 1961, 366-80.

17



both at the substrate level and at the local level, environmental factors may have a role
which is yet unexplained. When we understand all the factors affecting a system, we
hope we will have a set of laws which completely predict its behavior, but until such a
comprehensive system description is confirmed, we may profitably consider
unexplained system phenomena as emergent, Supposedly, equally mysterious
properties emerge from other types of aggregates, such as neuron bundles. Consider
muscle. Consider muscle fiber. Here, the properties of the muscle inhere to each
mdividual fiber, and the power of the muscle i1s merely an aggregation of smaller
powers.” Is the mind merely an aggregate of mindlets? Or is there something that
must be explained by appeal to a higher level model? We are ever closer to plausible
explanations for the physical basis of mental phenomena, but much more experimental
evidence must be processed before we can claim to know how these systems work. In
the meantime, the interplay between investigations of artificial and natural neural
networks provides insights for all neural networks.

There is a brilliant visualization of what one layer of a neural network might
look like and how it might function in "Pinscreen Excerpts,” featuring the animation
work of Alexander Alexeieff:” A pinscreen consists of thousands of dark pins closely

clustered and thrust through a white flat background. The height of the pins above the

32. Shepherd, Gordon M. "The Significance of Real Neuron Architecture for Meural Network Simulations.”
Chepter £ in Enc Schwartz, Computational Neuroscience, (g.v.)

33, Alexander, R. McNeill. Exploring Biomechanics: Animals in Motion. New Yark: Scientific American
Library. 19592
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surface and the angle of lighting determines how much white shows through, creating
a very finely-grained black-and-white picture, The pins are adjusted frame after frame
t0 create a moving picture in the same way that other animation techmques create an
impression of movement thrm;gh gradual change. The difference is that the subtleties
of the representation are made using small changes in individual elements which are
not simply on or off or in a certain color or contrast, but which are arbitrarily finely
adjustable, and which yet form a readily identifiable whole. To an outside observer, of
course, this representation is no more enlightening than a table of node weights, But
some mechanism monitors these weights, compares the results of applying the current
network, and retrains the network to respond with a different weighting on the next
mput. A picture emerges from a pinscreen, but this is due to conscious human
activity. We are not conscious of the activity which governs our own natural neural
network. We trust that, at some level there is an explanation for everything. As
advances are made, not just in neurological science, but in other sciences, both hard
and soft, for clues which will lead us to a clear understanding of what is really meant
when we say we think, or that we have thoughts, or that we perceive, or understand.
New ground 15 being broken in neural studies which show us that the brain, even now,
is not necessarily doing exactly what we think it is.** Studies in physics show us that

there is a natural tendency towards self-organization in dynamic systems.” Sand.

3, Gao, etal. Thid,
33. Umbanhowar, Paul B., Francisco Melo & Harry L. Swinney. "Localized cxcitations in a vertically vibrated
granular layer," Nature 382, 793-796. 1996. Isuspeol there may be similar ackivities in natural neural
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Dune. Two different models constituted of the same substance, the one the sole
substrate of the other. Pile up the sand -- which particle made the dune? How we see
it and understand it as a model differs as our model of sand and our model of dune
differ. Our model of dune has nothing directly to do with our model of sand particle.
A dune has topological implications completely missing in the sand model.

A recent issue of Scientific American® showed magnified images of sand
particles form many locations around the world. It showed the particles to be
extremely varied, and of many beautiful designs. Qur normal sight can barely
differentiate one l;wanic[e from another, This beauty of form is missing from our model
of sand.

Anything seen macroscopically presents a different model than that seen
microscopically, with the exception of fractal patterns (little fleas have lesser fleas . . )
The significance of a model at one level need not have any bearing on the significance
of a higher level model, even though it is the sole substrate of that model. On the
other hand, some models are so close together that operations on one readily translate
mto operations on the other. Many such models are mathematically expressible. ™
Tools are available to help us study actual natural neural networks in action: CAT

scan, PET, MRI, etc. The use of artificial neural networks as not simply beneficiaries

network ta those in the granular layers investigated here.

36. Mack, Walter N. and Elizabcth A Leistikaw. "Sands of the World." Seientific American. Veolume 275,
Number 2, August 1996, 62-67.

37, Bece Appendix 4. Defining the Basic Computational Unit.

38, See Appendix 2. Emergent Properties.
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of connectionist theory, but also as tools of experimentation can enhance our
knowledge of neural network behavior economically and safely.
IT - Artificial Neural Neiworks
Introduction

The introduction of the idea of neurons as structural constituents of the brain 1s
attributed to Ramon y Cajal (1911).* Eighty-five years later, many questions remain
concerning just how the system performs the work it performs. Against a background
of controversy over just what level of operation is appropnate for discussion of the
various levels of function of the natural neural network of the brain, computer
scientists are trymg to emulate the brain's functions by simulating its operation in
artificial neural networks either in a massively parallel computing machine or in a von
Neumann architecture which can simulate parallel processing. Neurons are much
slower than silicon logic gates, five to six orders of magnitude slower. Events ina
silicon chip cycle in the nanosecond (10° s) range, whereas neural events are in the
millisecond (10° s) range. The brain makes up for the individual neuron's slow rate of
operation by having on the order of 10 billion neurons in the human cortex, with 60
trillion synapses or connections among them.* The net result is that the brain is an

enormously efficient structure, with an energetic efficiency of approximately 10

39 Haykin. fbid 1. This source represents the bulk of substantive information on the structure and theory of
artificial neural networks in Part 11 of this report.

40. Churchland, Pal M. “A Deeper Unity: Some Feyerabendian Themes in Neurscomputational Form.”
Chapter 4 in Steven Davis (q.v.). Comnectionism: Theory and Practice. 41,
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Jjoules (J} per operation per second, whereas the corresponding value for the best
computers currently (late 1996) in use is about 10* joules per operation per second. It
is possible on current computers to simulate only a small portion of this complexity in
any given mstance. It is not y;et possible to copy the exact structure of natural
networks in artificial networks. The brain is a highly complex, nonlinear, and parallel
computer (information-processing system) which performs complex perceptual
recognition tasks in 100-200 ms, whereas tasks of much lesser complexity will take
days on a huge conventional computer. We are currently limited in the extent to
which we may attempt to emulate the brain by the availability of, both in terms of
computational structure and of raw memory.

At birth the brain has many more neurons, and great flexibility in how they are
to be connected. Experience -- perception and interaction with the real world -- leads
to restructuring of the brain's circuits, with many neurons disappearing while new
synapses continue to be formed. Although development continues well beyond that
stage, the most dramatic development (i.e., hard-wiring) of the human brain takes
place in the first two years. During this early stage of development, about 1 million
synapses are formed per second. The synapse is arguably the basic computational
unir of the brain. Rahmann states " ., . . a neuron, as the elemental unit of the
nervous system, constitutes both an ontogenetic (developmental) and a physical (1.e,,

trophic and functional) unit that is responsible for perception, processing,
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transmission, and, above all, storage of information in an organism.

Synapses are elementary structural and functional units that mediate the
interactions between neurons. The most common kind of synapse is a chentical
synapse, which operates as fol-lows. A presynaptic process liberates a transmitter
substance that diffuses across the synaptic junction between neurons and then acts on
a postsynaptic process. Thus a synapse converts a presynaptic electrical signal into a
chemical signal and then back into a postsynaptic electrical signal. In electrical
terminology, such an element is said to be a nonreciprocal wo-port device. In
traditional descriptions of neural organization, it 15 assumed that a synapse 15 2 simple
connection that can impose excitation or inhibition, but not both on the receptive
neuron.”

Haykin identifies a developing neuron with a plastic brain;

"Plasticity permits the developing nervous system to adapt to its
surrounding environment. In an adult brain, plasticity may be
accournted for by two mechanisms: the creation of new synaptic
connections between neurons, and the modification of existing
synapses. Axons, the transrmission lines, and dendrites, the receptive
zones, constitite two types of cell filaments that are distinguished on
morphological grounds; and axon has a smoother surface, fewer
branches, and greater length, whereas a dendrite (so called because of
its resemblance to a tree) has an irregular surface and more branches,
Neurons come in a variety of shapes and stzes in different parts of the
brain . . . In its most general form, a neural network is a machine that
is designed to model the way i which the brain performs a particular
task or function of mterest; the network is usually implemented using
electronic components or simulated in software on a digital

4]. Rehmann. 7bid 2.
42. Haykin. Ibid. 2.
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computer . . . aneural network viewed as an adaptive machine:

A neural network is a massively parallel distributed processor that has

a natural propensity for storing experiential knowledge and making it

available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weighis are

used to store the knowledge. (adapted from Aleksander and Morton

(1990))"

The procedure used to perform the leaming process is called a Jearning
algorithm, the function of which is to modify the synaptic weights of the network in an
orderly fashion so as to attain a desired design objective.

Neural networks are also referred to in the literature as neurocomputers,
comnectionist networks, or paralle! distributed processors. A number of benefits are
claimed for neural networks. Among them, Haykin cites the following nine:*

1. Nonlinearity -- In actually using a parallel processing mechanism or
simulating one on a sequential computer, it 15 possible to mimi¢ natural neural
networks. Just how valid this emulation may be 15 a erucial part of our later
discussion.

2. Input-Output Mapping -- By using supervised learning, the network learns
from examples, repeating fraining examples until a steady state is reached, and then
applying the network to zask examples, theoretically emulating natural neural network

functions.

3. Adaprivity -- Networks can be retramed to perform new tasks or modify

43. Havykin. Ibid. 2.
44, Havkin, Itid. 4-6.
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their performance of old tasks. This flexibility is desirable in many contexts, but
adaptivity is not always consistent with robustness. Too great a sensitivity to random
noise or other spurious interference can degrade performance unnecessarily. This is
the stability--plasticity dilemma,

4. Evidential Response -- In addition to which selection to make, the system
can determine the level of confidence n that particular choice,

5. Contexrual Information -- 1s dealt with naturally in neural networks, since
knowledge 1s represented in the very structure and activation state of the network,

6. Fault Tolerance -- Neural networks provide a graceful degradation in
performance when the network is damaged, and may continue to give reliable
responses long after a symbolic program will have failed altogether,

7. VLSI Implementability -- Implementation using Very Large Scale Integrated
technology makes possible real-time applications involving pattern recognition, signal
processing, and control

8. Uniformity of Analysis and design -- The universality of neural networks as
mformation processors facilitates the use of the neuron model as an ingredient
common to all neural networks, makes it possible to share theories and learning
algorithms, and allows construction of modular networks through a seamless
integration of modules.

9. Neurobiological Analogy -- Network design is "motivated by analogy with
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the brain, which is a living proof that fault-tolerant parallel processing is not only
physically possible but also fast and powerful, Neurobiologists look to (artificial)
neurzl networks as a research tool for the interpretation of neurobiclogical
phenomena. For example, neural networks have been used to provide insight on the
development of premotor circuits in the oculomotor system (responsible for eye
movements) and the manner in which they process signals. On the other hand,
engineers look to neurobiology for new ideas to solve problems more complex than
those based on conventional hard-wired design techniques . . ."

In Part I, T identified an eight-level structural organization for natural neural
networks. Haykin identifies two types of structural model which may be applied, a
three-level model, and an eight-level model, The three-level model is comprised of an
input level, the stimulus, a processing level which includes a neural network
sandwiched between receptors and effectors, and a response:

Stimulus — [ Receptors «> Neural net <> Effectors] — Response.

This model seems appropriate for psychological applications among others.
This model includes feedback between the recepfors and the network, and between
effectors and the network. The extent and type of feedback that is appropriate in

neural networks is a matter for debate, Haykin's eight-level analysis 1s very similar to

that of the natural network scientists:*

45. Haykin. fhid. 6-7.
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1. Central nervous system

o]

. Interregional circuits

L

. Local circuits

=Y

. Neurons
5. Dendritic trees

6. Neural microcircuits

7. Synapses

o0

. Molecules

A neural microcircuit refers to an assembly of synapses organized into patterns
of connectivity 50 as to produce a functional operation of interest. These are grouped
to form dendritic subunits within the dendritic trees of individual neurons, The whole
neuron contans several dendritic subunits. At the next level of complexity are local
circuits made up of neurons with similar or different properties which perform
operations characteristic of a localized region in the brain, Then come interregional
¢ircuits made up of pathways, columns, and topographic maps, which involve multiple
regions located in different parts of the brain. Topographic maps are organized to
respond to incoming sensory information. Whether this topography is an essential part
of cognition is also a matter for contention. These maps are often arranged in sheets,
as in the superior colliculus, where the visual, auditory, and somatosensory maps are

stacked in adjacent layers in such a way that stimuli from corresponding points in
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space lie above each other. Finally, the topographic maps, and other interregional
circuits mediate specific types of behavior in the central nervous system (CNS).

It 15 important to recognize that the structural levels of organization which I
described are a unigue characteristic of the brain. They are not found i a digital
computer, and we are far from realizing them with artificial neural networks.
However, we are gradually making our way toward a hierarchy of computational
levels similar to that just described. The artificial neurons we use to build our neural
networks are truly primitive in comparison to those found in the human brain. We are
not presently able to design a neural network with anywhere near the complexity of

the local circuits and the interregional circuits in the brain.

Neuron Models

For artificial neural networks, a neuron is a fundamental information-
processing unit with three basic elements:

1. A set of synapses or connecting links, each of which is characterized by a

O——20- O——0

weight or strength of its own. The weight is

positive 1f the associated synapse is excitatory;
> c C< it is negative if the synapse is inhibitory.
2. An adder for summing the input
Figure 03. Basic rules for

constructing signal-flow graphs.
{Based on Haykin, p.14)

signals, weighted by the respective synapses of

the neuron; the operations described here
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constitute a linear combiner.

3. Anactivation function for limiting the amplitude of the output of a neuron.
The activation function is also referred to in the literature as a squashing function .
Activation functions vary from straightforward threshold functions which have a sharp
effective signal cut-off, to sigmoid functions which can have a gradual effect or 2
sharp effect depending on the slope parameter. The particular mathematical functions
used to calculate activation are of little philosophical import except at the sub-synapse
level. As we saw in the description of brain function, the synapse is the basic
computational unit, and the substrate of the basic computational unit may be safely
ignored for the purposes of this paper. For this reason we will eschew a study of
activation function mathematics and focus more on structural detail and activation
patterns.

Haykm® suggests simplifying the appearance of the model of an artificial
neuron by using the idea of signal -flow graphs with a well-defined set of rules (Fig.
03). A signal-flow graph is a network of directed links (branches) that are
interconnected at certain points called nodes. The flow of signals is dictated by three
basic rules:

RULE 1. Signal flows along a link only in one direction defined by the arrow

on the link. Two different types of links may be distnpuished: (a) Synaptic links,

46. Haykin. Jbid 13.
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governed by a /inear input-output relation,
. and (b) Activation links, governed in

general by a nonlinear input-output

relation.

RULE 2. A node signal equals the
algebraic sum of all signals entering the
Figure 04; Typical neuron pertinent node via the incommg links. This

rule (c) represents synaptic convergence or
Jan-in.

RULE 3. The signal at a node 1s transmitted to each outgoing link origmating
from that node, with the transrmssion being entirely independent of the transfer
functions of the outgoing links. This rule (d) represents synapric divergence or
Jan-out.

This signal-flow graph model (Fig. 04) resulis in the following mathematical

defimtion of & neural network;"

A neural network is a directed graph consisting af nodes with
interconnecting synapiic and activation links, and which is
characterized by four properties:

1. Each neuron is represented by a set of linear synaptic links, an
externally applied threshold, and a nonlinear activation link, The
threshold is represented by a synaptic link with an input signal fixed at
a value of -1.

2. The synaptic links of a neuron weight their respective input signals.

47, Haykin., Ihid. 14-15.
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3. The weighted sum of the
input signals defines the total
internal acuivity level of the

$ fieuran in question.
4, The activation link
. squashes the internal activity
© . level of the neuron to produce

an output that represents the
state variable of the neuron.
Such a directed graph is
defined as complete in that it
describes not only the signal
flow from neuron to neuron,
but also the signal flow mside
each neuron. Other
representations are also used,
such as an architectural graph (Fig. 05), which is the result of omitting
the details of signal flow inside the individual neurons. Such a directed
graph is said to be partially complete, and is characterized as follows:
1. Source nodes supply input signals to the graph.

2. Each neuron is represented by a single node called a compuration
node.

Figure 03. Architectural Graph of a
Neuron

3. The communication links mterconnecting

& & & the source and computation nodes of the graph
U catry no weight; they merely provided the
directions of signal flow in the graph.*
Figure 06. Single- Feedback
loop feedback Feedback exists in a dynamic system when the

output of an element m the system influences
the mput applied to that particular element, giving rise to one or more
closed paths for the transmission of signals around the system. It
oceurs in almost every part of the nervous system of every animal, and
it plays a major role in the study of the special class of neural networks
known as recurrent networks ® There are various mathematical models
both implementing and for analyzing feedback. The model selected
may result in a stable system in which the signal is convergent, or in an
unstable, divergent system, The former has the attribute of infinire
memory, n the sense that the output of the system depends on samples

48, Haykin. 7hid 13.
49. Haykin. [bid. 15.
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of the input extending into the infinite past. Moreover, the memory is
fading in that the influence of a past sample 1s reduced exponentially
with time 7.%

Network Architectures™

The structure of a neural network is intimately linked with the learning
algorithm used to train the network. We may therefore speak of learning algorithms
(rules) used in the design of neural networks as being structured.

We identify four different classes of network architectures:

1. Single-layer Feedforward Networks

A layered neural network 15 a

network of neurons organized in the form of

layers. In the simplest form of 2 layered

network, we just have an input layer of
source nodes that projects onto an oufput
Iayer of neurons (computational nodes), but
not vice versa. In other words, this network

is strictly of a feedforward type. Sucha

: d i ’ network is called a single-layer network
input Layer Qutput Layer

(Fig. 07), with the designation "single layer"

Figure 07. Single-layer Feedforward
Network referring to the output layer of

50. Havkin. fhid 17.
48. Haykin. Ihid 18.
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computational nodes (neurons). In other words, we do not count the input layer of
source nodes, because no computation is performed there.

A linear associative memory 15 an example of a single-layer neural network. In
such an application, the network associates an output pattern (vector) with an input
pattern (vector), and any information is stored in the network by virtue of
modifications made to the synaptic weights of the network.

2. Multilayered Feedforward Networks

The second class of a feedforward neural network distinguishes itsélf by the
presence of one or more hidden layers, whose computationzl nodes are
correspondingly called hidden
neurons or hidden units (Fig.
08). The function of the hidden

neurons 15 to intervene between

the external input and the

network output. Hidden layers

allow a system to create its own

internal representation, By

adding one or more hidden
Input Layer Hidden Layer Output Layer

layers, the network is enabled to
Figure 08. Feedforward Network with Hidden
Layer extract higher-order statistics,
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for (in a rather loose sense) the network acquires a global perspective despite its local
connectivity by virtue of the extra set of synaptic connections and the extra dimension

of neural interactions.” The

Ja ability of hidden neurons to
m

extract higher-order statistics is

particularly valuable when the

size of the input layer is large.

3. Recurrent Networks

A recurrent neural

nerwork has at least one

« =unit-delay operators Jeedback loop (Fig. 09). It may
Figure 09. Recurrent network sans self-feedback. consist of no more than a single
layer of neurons, with each
neuron feeding 1ts output signal back to the inputs of all the other neurons. This form
may contain no self-feedback loops, and may have no hidden layers. A recurrent
network with hidden neurons would combine the graphical features of figures 06 and
07, adding a self-feedback conneciion.

4, Lattice Structures

A lattice consists of a one-dimensional, two-dimensional, or higher-

52. Haykin, Thid. 19,
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dmensional array of neurons with 2 corresponding set of source nodes that supply the
input signals to the array; the dimension of the lattice refers to the number of the
dimensions of the space in which the graph lies. A graphical representation of this
structure would layer f'eature:;. found i figure 07.

Even the most elaborate

of these structures is merely a

sinplified instantiation of a
simplification of a subsection of

9— 3 - 3_' brain structure. If these networks

are viewed functionally and

Figure 10. A one-dimensional 3-neuron lattice
compared to natural networks,

the question remains whether we
have completely accounted for the functionality of the natural network to which we
make comparison. We are still severely limited in the number of neurons and
structures we are able to sunulate. We are not able to completely and accurately
model the activity of neurotransmitters. We are not able to accurately represent the
thousands of possible connections for each neuron in even a very small network.
What we lack in detail capability we hope to make up for in demonstration of
principle. The fact 1s that neural networks -- both natural and artificial -- are able to

process input m a meaningful way which is different from that of a symbol-driven
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mechanism, Qur chzllenge is to determine if the artificial network is a suitable model
for study of the natural network.
Knowledge Representation

Notions of intelligencé and knowledge are the meat of epistemology. Modern
theorists are defining intelligence in multiple ways. In addition to the traditional
standards of intellectual performance, such things as kinesthetic and social intelligence
have been identified.” Intelligence as it is normally considered by philosophy includes
an evaluation of one's ability to identify and process propositional truth* My own
definition of intelligence includes the ability to recognize and effectively manipulate
models. The intellectual abilities of a neural network are limited to its ability to
differentiate one input from another. An artificial neural networks intellect is purely
behavioral There are no internal symbolic rules beyond those implicit in the structure
of the network. The weights of the nodes are the basis for system behavior: the
traming algorithm governs the ability of the network to learn positive and negative
examples of whatever paradigm is being presented. The presentation of appropriate
paradigms and negative examples governs whether the network learns appropriate
models. Any discussion of intellect which involves consideration and application of
trug propositions implicitly includes the notion of doing so consciously. Artificial

neural networks have been considered by various theorists, but no completely

3. Bichl, Boni. "Muliipls Intelligences.” In Manuscript.
54. Ryle, Gilbert, The Concept of Mind, Chicago: The University of Chicage Press. 1949, 25.32.
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satisfactory demonstrable theory has developed yet.® * If there is a ghost in this
tnachine, it 15 not showing itself.” The assumption of consciousness in discussions of
knowledge is problematic: if we cannot say that an artificial neural network provides a
conscious context for its operé.tions, then how can we say that it "knows" anything in
the traditional sense of "knowing how" or "knowing that"?* In the sense that it has
been trained to respond appropriately, an artificial neural network may be said to
"know how"; in the sense that its inputs have been realistic in representing the real-
world environment, the same network may be said to "know that" something is the
case, or that some fact is correct as stated. The measure of these abilities is
behavioral: we train a network, then we test it. Its behavior tells us how well we have
done n prescribing the training algorithm, and how well we have chosen our training
paradigms. This is true of a neural network: iz behaves as if it believes its t'raining
inputs are true. It doesn't actually believe or know anything in the sense of being
conscious or making informed decisions: a neural network provides a structural
representation which exhibits certain behaviors which appear to a conscious being to
be intellective. Its knowledge is not only in its structure, it is its structure. My own
definition of knowledge is the retained and available collection of models one has

55. Crick, Francis. "Vieual pereeplion: rivalry and consciousness,” Naiure, Vol 379, 8 February 1996. 485.6.
Cnick, Francis and Cristof Koch. "The Problem of Consciousness.”™ Scientific American, Vol 267, NI. 3,
September 1992 152-155.

=== "Towerds a neurcbiological theory of consciousness." The Neurosciences, Vol 2, 1990; 263-275.

56. Revonsuo, Antti, Matti Kamppinen and Seppo Sajama. Consciousness in Philosophy and Cognitive
Nenrosclence. Hillsdale, NT: Lawrence Erlbaum Associates, Publishers. 1594,

57. Ryle. fbid. 32.

58. Ryle. Ihid 32.
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recognized. In my own definition intellect is knowledge 1n action, the successful
application of models. So we speak of knowledge and knowledge representation in
artificial neural networks in a sense not usual to philosophy. Haykin repeats Fischler
and Firschein's definition: knowledge refers to stored information or models used by a
person or machmne to interpret, predict, and appropriately respond to the outside
world.* The two primary characteristics of knowledge representation are: (1) what
mformation is made explicit; and (2) how the information 15 physically encoded for
subsequent use. Knowledge representation is goal directed. In real-world

applications, a good solution depends on a

good representation of knowledge.
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sufficient consistency with the real world so that it achieves the goals of the
application of interest. Haykin includes two types of information under the rubric
"knowledge of the world":

1. The known world state, represented by facts about what is and what
has been known; this form of knowledge is referred to as prior
information.

2. Observations {(measurements) of the world, obtained by means of
sensors designed to probe the environment m which the neural network
15 supposed to operate. Ordinarily, these observations are mherently
noisy, being subject to errors due to sensor noise and system
mperfections. In any event, the observations so obtained provide the
pool of information from which the examples used to train the neural
network are drawn,

Each example consists of an input-output pair; an input signal and the
corresponding desired response for the neural network. Thus, a set of
examples represents knowledge about the environment of mterest.
Given a set of examples [such as hand-written dignts], the design of a
neural network may proceed as follows:

First, an appropriate architecture is selected for the neural network,
wrth an input layer consisting of source nodes equal in number to the
pixels of an input image (Fig. 10), and an output layer consisting of 10
neurons (one for each digit). A subset of examples is then used to train
the network by means of a suitable algorithm, This phase of the
network design is called learning.

Second, the recognition performance of the trained network is tested
with data that has never been seen before. Specifically, an input imapge
is presented to the network, but this time it is not told the identity of
the digit to which that particular image belongs. The performance of
the network is then assessed by comparing the digit recognition
reported by the network with the actual identity of the digit in question.
This second phase of the network operation is called generalization, a
term borrowed from psychology.®

This is significantly and fundamentally different from the design of a classical

60. Haykin. Ikid. 23.
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mformation-processing pattern classifier which would perform a similar function: in
that design we usually proceed by first formulating a mathematical model of
environmental observations, vahdating the models with real data, and then building the
design on the basis of the n;odel. The design of a neural network is based directly on
real data, with the daia set being permitted to speak for itself, not only providing an
implicit model of the environment in which 1t 15 embedded, but also performing the
information-processing function of interest.

The examples used to train a neural network may mmclude both positive and
negative examples. In a neural network, knowledge representation of the surrounding
environment is defined by the values taken on by its synaptic weights and thresholds.
The form of this representation constitutes the very design of the neural network, and
holds the key to performance.

The subject of knowledge representation inside a neural network is very
complicated, and becomes even more compounded when we have multiple mteracting
sources of mformation activating the network. Qur present understanding of this
subject is the weakest link in our knowledge of artificial neural networks. There are
four common-sense rules for knowledge representation:

RULE 1. Similar inputs from similar ¢lasses should_ usually produce similar
representations inside the network, and should therefore be classified as belonging to

the same category. There are various mathematical methods for defining "similarity".
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RULE 2. Items to be categorized as separate classes should be given widely
different representations in the network. Rule 2 is the oppostte of Rule 1.

RULE 3. If a particular feature is important, then there should be a large
number of neurons involved in the representation of that tem m the network. Actual
needs depend on specific designs.

RULE 4. Prior information and invariances should be built into the design of a
neural network, thereby simplifying the network design by not having to learn them.
Rule 4 is particularly important because proper adherence to it results in a neural
network with a specialized (restricted) structure. This is highly desirable for several
reasons:

1. Biological networks are very specialized.

2. A neural network with specialized structure requires a smaller data set for
traming, learns faster, and often generalizes better.

3. Network throughput 1s accelerated.

4. The cost of building the network is reduced.®

Cost itself is not a philosophical issue, but its effects on neural networks may
be: an issue for later discussion is the acceptability of a smali artificial neural network
representation of a large natural neural network structure.

Prior information may be built into the design of a neural network by using a

61. Haykin. Thid 24-26,
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combination of two techniques: (1) restricting the network architecture through the
use of local connections and (2) constraining the choice of synaptic weights by the
use of weight sharing. The actual use of these two techniques in practice is strongly
influenced by the application of interest. In general, the development of well-defined
procedures for the use of prior information 15 an open problem.® Some built-in
stability is desirable in order to maintain the usability of a trained network: further
training on a different set of data may render a network less efficient at the task for
which 1t was mitially trained, H.aykin refers to these stability issues under the rubric of
“invariance to transformation "

There are three techniques for rendering classifier-type neural networks
invariant to transformations: Invariance by Structure, Invariance by Training,
Invariant Feature Space.® The use of an invariant-feature space may offer the most
suitable techmque for neural classifiers.

There 15 no well-developed theory for optimizing the architecture of a neural
network which 15 required to interact with an environment of interest, or for evaluating
the way m which changes in the neural network architecture affect the representation
of knowledge inside the network. 8o we begin with 2 working notion of the aim of
artificial intelligence:

the development of paradigms or algorithms that require machines to
perform tasks that apparently require cogrition when performed by

62. Haykin, Ihid. 27.
63, Haykin, fhid 28.
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humans . . . we have purposely used the term "cognition" rather than

"intelligenice," so as to broaden the task tackled by Al to include

perception and language as well as problem solving, conscious as well

as unconscious processes.™

The system must have three specific capabilities:

(1) store knowledge;

(2) apply the knowledge stored to solve problems; and

(3) acquire new knowledge through experience. Obviously the brain performs
these tasks, using a neural network.

Neural networks differ from classical Al in three specific categories:

(1) Level of Explanation. Classical Al models cognition as the sequential
processing of symbolic representations.

Assumptions made in neural networks as to what explains cognitive processes
are entirely different from those in classical AI. Neural networks emphasize the
development of parallel distributed processing (PDP) models, which assume that
information processing takes place through the interaction of a large number of
neurons, each of which sends excitatory and mhibitory signals to other neurons in the
nétwork. Neural networks emphasize neurobiological explanation of cognritive
phenomena,

(2) Processing Style. In classical Al, processing is sequential, as in typical

computer programming. Operations are performed in a step-by-step manner. Parallel

64. Havkin. fhid, 32-33.
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processing is a distinctive feature of neural networks: parallelism is not only
conceptually essential to the processmg of information in neural networks, it is the
source of therr flexibility. Parallelism may be massive, giving neural networks a
remarkable robustness. The automatic processing of contextual information is integral
to neural networks. Knowledge is represented by the very structure and activation
state of the neural network and not by declarative expressions. "The content
necessary for a given problem 1s then nothing less than the whole neural network .
Every neuron 1s potentially affected by the global activity of all other neurons in the
network, with the result that context is dealt with automatically. ™ Although
sequential operations may be simulated in parallel, and parallel operations may be
simulated sequentially (as are many neural network simulations), the conceptual
difference is both striking and important. it may well be that some cognitive activities
are founded on emergent properties of the network that rely on simultaneity or close
temporal connection of electrical or chemical activities. The levels of brain function
may be compared to the levels of programming code, in which the source code of one
level is data for the next level of processing, with the sodium ions taking the place of
ndividual signals which activate some programmed function in the neuron which then
combines signals with other neurons to send a signal to a local processing structure,

which joins its signal with other local structures to feed the next level of processing,

65. Haykin. Jhid 35.
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and so forth.

(3) Representavional Structure. Symbolic representations possess a
quasi-linguistic structure.

For classical AT:

(1) Mental representations characteristically exhibit a combinatorial
constituent structure and a combinatorial semantics.

(2) Mental processes are characteristically sensitive to the combinatorial
structure of the representations on which they operate *

In a neural network, representations are distnbuted, but it does not follow that
whatever is distributed must have constituents, and being distributed is very different
from having semantic or syntactic constituent structure. In a sense, the neural
network goes beyond mere representation and itself becomes the information. The
neural network responds systemically to the total environment. The network's ability
to self-organize demonstrates the capability of a network to respond meaningfully to
the environment without explicitly creating or manipulating symbols. Its
fepresentations are subsymbolic, Tt may be capable of computations beyond those of a
Turing machine, ¥

In summary, we may describe symbolic Al as the formal manipulation of a

language of algorithms and data representation in a fop-down fashion. And we may

66. Haykin, Jbid. 35.
67. Seigelman, Hava. n.d, Science, nd. 1994, per discussion with B. Miikkulainen.
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describe neural networks as parallel distributed processors with a natural learning
capability, and which usually operate in a bottom-up fashion. For the implementation
of cognitive tasks, it may be more potentially useful to build structured connectionist
models that incorporate both symbolic Al and neural networks. One may, in this way,
combine the desirable features of adaptivity, robustness, and uniformity offered by
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Figure 12. Haykin's Taxonomy of Learning Algorithms

neural networks with the representation, inference, and universality that are inherent
features of symbolic Al Such hybrid systems may be commercially useful, but a mix
of approaches 1s sure to raise additional questions about the propriety of a particular
simulation. The argument against getting semantics out of syntax resurfaces.
Philosophy has traditionally considered the possibility of machine intelligence from a
strictly symbolic viewpomt.” It is important to realize that a neural network operates

n a radically different way than symbolic programs, and not all arguments regarding

68. See Appendix 3. The Chinese Room.
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the logical limits of computation are valid in a neural network context.

Learning Processes™

Learning algorithms are sometimes based on biology, but are also sometimes

rooted m mathematics. Haykin stipulates:

Learning is a process by which the free parameters of a neural

network are adapted through a continuing process of stimulation by

the environment in which the network is embedded. The type of

learning is determined by the manner in which the parameter changes

take place.

The definition of the learning process implies the following sequence of events:

1. The neural network 1s stimulated by an environment.

2. The neural network undergoes changes as a result of this stimulation,

3. The neural network responds in @ new way to the environment, because of
the changes that have occurred in its internal structure . . .

A prescribed set of well-defined rules for the solution of a learning problem is
called a Jearning algorithm. Neural networks are designed to take advantage of a
diverse variety of learning algorithms, each of which offers advantages of ts own. A
learning paradigm refers to a model of the environment in which the neural network

operates. These algorithms are based on mathematical models which may or may not

represent similar activities in the nervous system.

69. See Appendix 5. Learning.
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Neurobiological Considerations: Hebbian Learming

Hebb's postulate of learning has been a subject of intense experimental interest
among neurophysiologists and neuropsychologists for many years.” Hebb's theory
may be summarized as follows:

When an axon 01;' cell A repeatedly and persistently takes part in ﬁrﬁg cellB, a
growth process or metabolic change occurs m one or both cells which results in an
ingrease in A’ s efficiency in exciting B.”

This model has been demonstrated to work in natural neural networks, and so

is an important feature when implemented in artificial neural networks.

Competitive Learning

In competitive learning, the output neurons of a neural network compete
among themselves for being the sole node fired. In a Hebbian neural network, several
output neurons may be active simultaneously, but in a competitive learning neural
network only a single output neuron is active at any one time. This feature makes
competitive learning well suited to discover those statistically salient features that may
be used to classify a set of mput patterns.

The idea of competitive learning may be traced back to the self-organization of

orientation sensitive nerve cells in the striate cortex. There 15 substantial evidence for

70. Hebb, Danald Q. The Crganization of Behavior. New York: Wiley, Introduction and Chapler 4, "The first
slage of perception: growth and assembly," 1949, xi-xix, 60-78.
71. Bee Appendix 5. Learning.
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competitive learning playing an important role m the formation of topographic maps in
the brain.
Boltzmann Learning

The Boltzmann learning rule 15 a stochastic learning algorithm derived from
information-theoretic and thermodynamic considerations. Even in this non-organically
based example, the project of artificial neural networks does support our analysis at
least in part of how the natural neural network functions; that any artificial neural
network succeeds at all is at least a partial justification for continued investigation of
their potential as working mathematical models of knowledge representation, whether

bramlike or not,

Neurodynamical Models and Chaos

The brain is a non-linear dynamical system that lends itself to the study of
chaos at several levels of function, and these chaotic dynamics also play an important
role in the study of artificial neural networks, which can be used to model a chaotic
time series.” In brain dynamics, it has been proposed that 1) chaos may provide the
driving activity that 1s essential for Hebbian learning of novel inputs, 2) the long-term
unpredictability of chaos may permit the brain to create new possible responses,
suggesting 2 role for chaos in rapid adaptation to changing environmental conditions,

and 3) sensitive dependence of chaos on initial conditions may provide an efficient

72. Haykin, Ihid 550-351.
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mechanism for dissipating perturbation Neurodynamical systems of interest possess
four general characteristics: 1) a large number of degrees of freedom, 2) nonlinearity,
3) dissipation, and 4) noise. Appropriately designed artificizl neural networks and
natural neural networks have these characteristics in common. In fact, the presence or
absence of all these characteristics may be an important factor in determining the
utility of a given artificial neural network as a model of natural neural network
function.® ™
Supervized Leaming

Supervised learning requires an external teacher. The environment is unknown
to the neural network, but it is provided with a set of input-output examples. when
presented with a sample input from the environment, the teacher provides the neural
network with an example of the desired response. An error signal represents the
difference between the actual and the desired responses.™ $uch an artificial neural
network represents essentially a back-propagation network with examples. The level

of function is evidently high, and I currently know of no low-level functions it may

represent. At a behavioral level, this design seems appropriate,”

Reinforcement Learning

If an action taken by a learning system is followed by a satisfactory state of

73. Haykin. 7bid 551-552.

74. Gleick, James. Chaos: Making a New Science. New York: Penguin Baoks. 1988,
75, Haykin. lbid 57-59,

76. Dreyfus. Thid % 60.
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affairs, then the tendency of the system to produce that particular action is
strengthened or reinforced.” Otherwise, the tendency of the system to produce that
action is weakened.™ "Although it cannot be claimed that this principle provides a
complete model of biological behavior, its simplicity and common-sense approach
have made it an influential learning rule."™ This is behavioral emulation at a very high
level ®
Learning Theory Summary

In general, learning theories used in neural networks may or not be supported
by neurobiclogical evidence. In some cases, neural networks try very hard to mimic
the structure and activity of the synaptic structures they represent in some detail. In
 other cases, the networks are designed to emulate higher level behaviors exhibited by
biological cognitive systems, and in yet other cases, neural networks are designed to
demonstrate the power of certain theories of learning which are purely conceptual, and
which may or may not relate to actual brain functions. Issues discussed within the
neural network community in this area will include whether the network design
accurately models synaptic structures, but more often will focus on the relative
benefits of various mathematical methods or their appropriateness to the particular

model being examined. Neural networks have had some success in human-like tasks

77. Hilgard, Emest R, Theories of Learning. New Yurk: Appleton-Century-Crofts, Ine. 1956, 19-21.
(Thomndike's law of effect.)

78. Havkin. fhid. 59,

79. Haykin. 7bid.

R0. Dreyfus, [bid. 7 57.
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such as training on both visual and sonic representations of words in one language,
overlaid by training i a second language to produce a bilingual lexicon,” and in very
non-human tasks such as differentiating between biological and mechanical objects
discovered by SONAR signals. Self-organized mapping into a network applies to the
brain -- especially evident in visual mapping -- and to artificial neural networks as
evidenced in the DISCERN program.® In the example in Figure 12 (Miikkulainen's
Figure 6}, semantically related groups have been identified: the group including both
bar and chicken seems to represent non-human animals; the group including rock and
window are inanimate objects; note that bat may be either. This is an effective

example of the power of networks to meaningfully self-orpanize,®

£1. Soler, 0. & R. van Hoe. "BAR: A Connectionist Model of Bilingual Access Representations”, in JCANN
P4, Proceedings of the Inlernational Conference on Artificial Newral Networks, Vol 1, Parl 2. 263-267.

82. Miikkulainen, Risto. Subsymbolic Natural Language Provessing: An Integrated Model of. Seripts,
Lexicon, and Memory. Cambridge: MIT Press, 1953.

83. Dreyfus. Thid, 760,
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Figure 6: 2-D Kohonen-map of the representations, Labels indicate the
maximally responding unit in the 10 x 10 feature map network for each
representation vector. The map was formed in 15,000 epochs, where the
neighborhood radius was decreased from 4 to I and the learning rate from 0.5 1o
0.05 during the first 1,000 epochs, and to 0 during the remaining epochs.

Figure 13. A typical self-organized network representation.™

84. Miikkulzinen, Risto and Michael G. Dyer, "Natural Lenguage Processing With Medular PDP Networks
and Distributed Lexicon.” Cognitive Science, 15 (3): 343-399, 1991. 11. Used by permission of author.
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. Philosophical Issues

A Hierarchy of Black Boxes

Figure 14, Black Boxes within Black Boxes

The brain may be seen as a hierarchy of black boxes having, according to most
sources, eight levels (Table 2). The analysis of any function or brain activity focuses
on the comprehension of what exactly occurs at the level of interest. Whether the
system can be usefully analyzed as a whole or must be decomposed into its component
functions is an open question, as is whether any level may be understood in its own
right without reference to the activity of its substrate. I will focus first on a
comparison of natural and artificial neural networks, then on the current state of

understanding of each. Then I will discuss the philosophical issues of interest. At the
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Table 02, A sampling of possible neural network structures, three hierarchical and
one relaring reflex arcs at consecutive CNS levels

Haykin Shepherd Smolensky | Rahmann
Central Nervous | Behavior Conceptual | CNS
System (CNS)
Interregional Systems and paths | Sub- Telencephalon
Circuits ' conceptual | (cortex)
Local Centers Diencephalon
Circuits (thalamus)
Neurons Neurons Neural Mesencephalon
Dendritic Metencephalon
Trees (cerebellum, pons)
Neural Microcircuits Spinal cord
Microcircuits
Synapse Synapse Periphery
Mouolecule Membranes,

molecules, ions

neuronal level there is only a slight, but still remarkable, resemblance between the
elements of an artificial neural network and the natural neural network. The basic
principles of varying weights adjusted by training of synapses, muitiple connectivity of
nodes/neurons, plasticity of connection and activation level, are preserved. Despite
massive differences in scale and incomparability of media, both networks perform

certain activities in an apparently similar manner. The inputs to each system are quite
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different, even when an artificial network attempts direct acquisition of similar data.
The television camera is nothing like the eve. A microphone is both more sensitive
and less receptive than the ear. A robot arm can emulate touch through the use of
pressure sensors, but what does it make of texture? There are automated odor
sensors. Despite the fact that the operation of these electromechanical gizmos is
nothing like the sensory apparatus of the human body, is it not plausible that an
artificial neural network can make a representation of the data from these devices that
is, in principle, not only as useable as that of the brain, but also is similar in internal
representation? Can we not program such a system to have a sense of its own well-
bemg? Given that the electromechanical systems available for such emulations are
extremely limited, what are the issues of goncern to cognitive science?

Hebb's principles seem to be born out in studies of human learning, and seem
to operate as expected in an artificial network. Self-organization seems to work
similarly in both media, naturally categorizing experiences in a meanimgful way. Some
learning algorithms seem to be shared, while others, such as Boltzman learning, seem
to be exclusive to artificial networks. It is conceivable that both types of network
operate solely on the principle of categorization. Some purposeful modeling is done in
some artificial networks, and some structyre is mposed by biology on natural
networks. Otherwise, they seem to operate on similar principles, performing similar

functions in the same way. The differences in scale imply no necessary difference in
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kind of operation. There is nothing mysterious in the tendency of inanimate matter to
self-organize,” * and thus no contradiction when animate systems do so. Natural
network memory relies on changes in synaptic potential” which may be modeled in
artificial networks. The mapping of visual images in the brain™ is very similar to a
lexical distribution in a self-organizing artificial neural network ® Artificial neural
network system outputs are limited to sound or print for the most part: fully mobile,
self-directing operational neural-network-driven robots are not available. When
developed, neural networks would give such entities far more flexibility than a
symbolically-coded machine, withoﬁt necessarily endowing it with humanity. We are
very far from inducing 4 machine to share in the complexity of a natural neural

network,

Symbolic and Connectionist Paradigms

Arguments between connectionists and symbolists as to which is the more
appropriate and effective paradigm™ seem to me to fall into the same consideration as
arguments over whether one level of code is a program or simply grist for the program
which is running it. At one level, or from one perspective, an issue may $eem more

compliant with one interpretation or another. Although it is certainly true that the

85. Umbanhowar. Ihid 793-796,

86, Mukerjec, Madhusree. Scientific American, Vol 275, Nr. 5, November 1996, 28-36.

87. Rehmann, [hid. 206-9.

88. Cook. [bid. 32-39.

89. Miikkulainen and Dyer. Jbid, 11.

90. Dinsmore, John, The Symbolic and Connectionist Paradigms: Closing the Gap Hillsdale, New Jersey:
Lawrenes Erlbaum Assoeiales, Publishers. 1992,
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brain 15 capable of symbol creation, identification, and mampulation, this happens at a
much higher level of mental function than the neuronal. What we have been able to
show with artificial neural networks is that certain brain functions, such as
categorizing and memory, may in fact, be emulated using a connectionist approach.
The argument that these programs are themselves written in symbolic code is moot: if
we follow the trail far enough, we will run in to the bottom end of quantum physics
looking for the original program running the original data which forms the substrate
for all else. Inresponse to the argument that artificial neural networks perform tasks
that no human normally does (i.e., SONAR identification of amimate vs. inanimate
objects) may be responded to with the fact that experiments with artificial neural
networks may lead us to new routes of exploration in natural neural networks. As
artificial neural networks become more complex and structurally representative, we
should be able to investigate the operations of assemblies at the higher levels of mental
operation. We are learning that the principles of representation by network are
functional in both artificial and natural neural networks. Arguments that artificial
neural networks don't succeed excellently with tasks like grammar™ overlook the level
of success they do have. The principle has been proven to work; it 15 a matter of
refinement to get them to work more perfectly, to bring them to the same level of

imperfection as human grammatical ability.

91. Pinker, Stephen. The Language Instinet; How the Mind Creates Language. New York: Harper Perennial,
1995. 132. Ithink Pinker is overly critical with the example of the irregular verb smeej. The antificial
neural network-denived legfloag is only one letter short of the correct irrepular pasi-tenye,
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There is a mix of non-overlapping and overlappmg functions, capabilities, and
structures in the artificial and natural networks, Similar structures seem to apply in
representation. Palm et alia consider whether cell assemblies and neuron assemblies
work alike in associative memory.” According to Rahmann and Rahmann:

The neurons perform the specific, specialized activity of the nerve

tissue, i.e., reception, processing, and transmission of information from

cell to cell and, most importantly, the storage of information, thereby

serving as the repository of memory content . . . a neuron, as the

elemental unit of the nervous system, constitutes both an ontogenetic

(developmental) and a physical (1.e., trophic and functional) unit that is

responsible for perception, processing, transmission, and, above all,

storage of information in an organism.

Connectionists and symbolists argue over the workings of language: Searle's
argument regarding syntax and semantics applies only to computational models, not
neural network models. Searle comments that, "The reason that no computer program
can ever be a mind 1s simply that a computer program is only syntactical, and minds
are more than syntactical. Minds are semantical, in the sense that they have more than

a formal structure, they have a ¢content."* This assumes that the syntactic and

symbolic elements are at the same level. They are at the same level in the

92. Palm, Qunther and Ad Aertsen. Brain Theory, New York: Springer-Verlag. 1986,

93. Rahmann. Jhid 2.

94, Scarle, John, Minds, Brains and Scicnce. Cambridge: Harvard University Press. 1984, 31, Sec
Appendix 3: The Chinese Room. Ihave a vision of Searle and a large group of people in a connectionist
Chinesz room: instead of symbols coming in to a person/processor who uses a look-up 1o sec what symbol
to put out, a hand comes through the wall and taps one of those present on the shoulder. That person taps
another on the shoulder, and so it goes until the output side of the room is reached. By this time, onc or
morc of those near that wall will have been tapped on the shoulder, and they reach through the wall and
tap others in other rooms on the shoulder, The process is not undersiond by those ingide the room in this
seenerio any more than it is in the original Chinese room, bul the point to be made is that this is not the
appropriate level for conscious underatanding. Searle's Chinese gym is no better an example.
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computational model, but they are at different levels in a neural network. In a neural
network, the structure 7s the content. Fischbach implies the failure of the symbolist
paradigm to accoumnt for facial recognition, noting the mmplausibility of storing a
symbol for one face per cell.” Somewhere m the hierarchy of layers, recognition
happens. Somewhere in the hierarchy of abstraction, the network recogmizes and
manipulates symbols. Somewhere in the hierarchy of neuron connections, a person
reacts to the outside world. Somewhere in the hierarchy of cell assemblies the mind is
aware of at least some of its own content. Regardless of comparison to computer
architectures, the brain obviously performs these functions, whether they be analyzed
symbolically or as network. Pont of view, purpose, context, level of operation -- all
are factors in which approach is most appropriate.

Some network designs perform tasks not associated with brain neurons: the
brain has few feedback loops from a neuron to itself, neurons do not switch between
being excitatory and inhibitory. Some philosophical interest outside of the bram itself,
such as possible modes of knowledge representation, are valid fields of application for
artificial neural networks: that they work at all s of some significance for
epistemology: somewhere between Socrates' "wax blocks" and Aristotle's
"categories”, neural networks may hold the keys to the truths hinted at by ancient

speculation.

95, Fischbach. Ihid. 57.
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Figure 15. A representation of the behavioral level making a call on the sublevels
down through the hierarchy to the molecular level, the product of each level's
computation being the result of its call to its substrate.

Implications of the Hierarchy

The hierarchical structure of neural networks presents interesting problems.
We ask what it is at a substrate level that creates properties in the current level. Here
agam 18 a contrast between traditional Al and connectionist models: David Marr has
proposed a three-level analysis of computational systems. According to Marr:™ ¥

1. the computational level of abstract problem analysis,
wherein the task (e.g., determining structure from motion) is
decomposed into its main constituents;

2. the level of the algorithm, which specified a formal

procedure by which, for a given input, the correct output would be
given, and the task could thereby be performed,

96. Churchland, Patricia 5. and Terrence 1. Sejnowski. The Compurtational Brain. Cambridge: The MIT Press.
1992, 18-27.

97. 8ce Appendix 6. Computational Autonomy.
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3. the level of physical implementation of the computation.
Higher levels are largely independent of the levels below

it . . . hence, computational problems of the highest level could be

analyzed independently of understanding the algorithm that executes

the computation.

Can we apply Marr's three-level critique of algorithm implementation to the
eight functional levels of the natural neural network? Marr's division treats
computation as a single kind of level of analysis. Churchland and Sejnowski measure
this system against the levels of organization of the nervous system and find it
wanting, They list the nervous system levels as: molecules, synapses, neurons,
networks, layers, maps, and circuits. Rahmann's list is connective rather than strictly
hierarchical: Telencephalon (cortex), Diencephalon (thalamus), Mesencephalon,
Metencephalon (cerebellum, pons), Spinal cord, Periphery. Rahmann's focus is
memory, and he shows different circunt types for each level, some explicitly showing
feedback loops.” The ultimate complexity of these structures in the multiplicity of
functional levels is positively daunting.” $molensky's three levels are neural, sub-

I. 100

conceptual and conceptual, ' Computationally, we may see each of the levels as
supplymg data to feed the processor at the next higher level in the hierarchy. In some
cases, this mter-level leap may seems like that between nuclear physics and chemical
action -- or may simply seem like the leap between separate sentence fragments apd a

complete sentence. If we analyze this structure as a computational structure, should it

9%, Rahmann. fhid Fig 5.6.p. 106.

99, See Appendix 1: Memory.

100, Smolensky, Paul. "On the proper treatment of Conneetionism.” Behavioral and Brodn Sciences (1988) 11.
1-74.
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not be represented simply as IPO: input, process and output? In a symbolic program,
the output of a subroutine or function is the result of a combination of its own
processing and that of the substrate of functions and subroutines on which it calls. In
theory, this should also be true of a connectionist program.

Does this theory take into account the character of a systemic response? Ina
neural network, levels 2 and 3 are combined: the electrobiophysical structure of the
network is the embodiment of the algorithm -- formal or not, and it would appear that
abstract problem analysis is a very high level activity.

If we are to look at three levels, should they not simply model knowledge
representation: where is the "A" in my brain when | see "A & B — C"? IfI train the
net to read characters, the symbols "O" looks like 0.0] 0.85 0.76 : . . etc. What]
do with information at the next level is likely to be similar in both representations, but
where is a picture of the next level?

The usual concept is that a picture of "A & B — C" is decomposed into
separate parts, then reintegrated. This would represent Marr's Level 1, which certainly
apples to formal problem solving, This decomposition usually doesn't happen.
Usually "o" is seen as in "model," "hot" -- as one element of a total picture -- we may
examine letters in order from left to right {in English), but first we see a whole word

or phrase -- model is not read "m," "o," "d," "e," "1." It is read "model """ We only

101. Dennison, Paul E. & Gail E. Hargrove. Personalized Whale Brain Integration. (endals, CA: Edu-
Kinesthetics, Inc. 1985, 9.
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examine it letter by letter if there is sufficient ambiguity in the context so that it needs
to be differentiated from "motel,” "modal," "Godel," etc. To insist on a constructive
action in every act of reading is like insisting on the analysis of a picture pixel by pixel
beginning in the upper left corner. That would be like looking at the Mona Lisa and
seeing it not as one picture, but as a collection of related shapes which happen to
begin at the upper left corner of the picture frame. We see first a picture of a page,
then of a word, then, if necessary, of mdividual letters. (Smolensky would include a
syllabic mtermediate form.)'™ Its parts may be individually identified, but we had to
learn at one time to concatenate those previously learned parts and to construe their
adjacency in a certamn way -- according to certain model. The neural model which
identifies "A" interacts with other models (concatenation, for example}. One
interpretation of intelligence is: the ability to effectively identify and manipulate
appropriate models. I see the phrase "A & B — C". When I first take note of
something, I immediately try to contextualize it. (Much of humor relies on ambiguous
mntextufalization.) As I gather information about the thing-noticed, I focus on the
comtext. I may first see "A & B — C" as 'some words on a page' -- this context is
immediately apparent from the appearance and location of the statement. Then I may
take note of its structure and see it as a 'phrase or sentence.’ When I note the

character content, I see that it is a 'logical statement'. Once I have identified the

102, Smaolensky.
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contents in such a way as to accurately contextualize it, I may begin to apply "rules"
associated with the identified context as they apply to the particular content.’™

This decomposition is sometimes necessary, but in the course of daily events,
the context usnally gives me all I need to know to process the statement with a
cursory glance at a couple of its details. I may notice first the structure of the
sentence -- a conjunctive implication, then the order of the variables used. I can write
an algorthm for a symbolic program that will analyze such a statement one character
at a time and report on whether it is well-formed, or whether it is justified by
mplication from other logical statements. Whether a symbolic program can be written
that will tell me anything about the application of the statement depends on the
richness of the context in which the statement applies. In a simple model, a simple
symbolic program may do, but in the rich context of the multiply-modeled real world,
a comprehensive application is highly improbable. The neural network picks up on all
cues within 1ts input domain. Whether they are the cues we consciously think are
important does not play a role. So in similar circumstances, a neural network is
responding to not just narrowly defined mputs which conform to certain symbols
within a prescribed range, but also includes peripheral information, perhaps meta-
information which may or may not apply eﬂ'ectively-: n achieving a desired result.

Even when a conscious being makes a determined attempt to focus on what are

103. See Appendix 3. The Chinese Room.
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considered the pertinent factors in solving a problem, his neural network may bring
unsolicited (unconscious) factors to bear. The formal account of the bram's function
at any given level is incomplete. That being the case, it seems impossible to msist that
substrate definitions and activities are of no importance. The neural network 1s whole.
Its hierarchical structure is integral to its function. It is 2 vertical as well as a
horizontal program. It responds as a single organ.

When neural networks respond, we don't always know the rationale behind
ther behavior. Even we conscious creatures may not be aware of all the inputs to a
decision: intuition is an issue for neural network study: how does a neural network
process non-verbal models? What happens intuitively or reflexively? What is
represented and how, and how do we govern behavior which 15 not the result of
careful consideration? To what extent is consciousness of the mind's content
necessary for responsibility? If chaos theory does represent a model active in the
operation of the brain, at what level is it significant? Is there a level which 15
demonstrably non-deterministic? Is there a valid sense in which unpredictability
implies a caesura in causation? Are there truly emergent properties in the hierarchy of
structures, or will an adequately comprehensive scientific explanation imply all
possible behavior, both animate and inanimate. Peter Clark™ cites the demise of

arguments such as William Thompson, First Baron Kelvin's partition of laws for living

104. Knowles, Dudley, ed. Explanation and its Limits. Cambridge: Cambridgs University Press. 1990, 166«
168
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and dead matter, and supposes arguments regarding 'emergent properties’ may go the
same higtoric way to obsolescence. Until new explanations are developed to account
for currently unexpected phenomena, for example 'oscillons, " it may be beneficial to
speak of unexplained properties as 'emergent.’ This restricted use of the term -- to
refer to the observed, but unexplained outcomes of systems -- seerns to me to be both
concise and appropriate. I expect that we will develop more comprehensive theories
that render the notion of 'emergent’ as moot, but in the interim, it is a handy term.
The expression "Computational neuroscience” reflects the

possibility of generating theories of brain function in terms of the

information-processing properties of structures that make up nervous

systems. It implies that we ought to be able to exploit the conceptual

and technical resources of computational research to help find

explanations of how neural structures achieve their effects, what

functions are executed by neural structures, and the nature of

representation by states of the nervous system '™

I worry about the tendency of cognitive scientists to use phrases referring to
"states" of a neural network. Qur natural neural network is in flux from the time it
first begins to form to the time its operation comes to a halt. A living brain is a
dynamic brain, not static., The only real-life "state" of a brain is death, It is sometimes
helpful to use the fiction of a "state of the nervous system” in order to have a stable

platform from which to launch a discussion, but the temptation is great to take this

fiction as a possible fact of a natural neural network, and to overlook the dynamic

105. Umbanhowar. Thid.
106. Churchland, Patricia, Christoph Koch and Terrenee J, Sgjnowski. "What Is Carmputational Nevroscience?"
in S8chwariz, Erc, Computational Newroscience. Cambridge: the MIT Press. 1990,
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mplications for a truly effective artificial neural network simulation.

[Computational neuroscience] also connotes the potential for
theoretical progress in cooperative projects undertaken by
neurobiologists and computer scientists. This collaborative possibility
15 crucial, for it appears that neither a purely bottom-up strategy nor a
purely top-down strategy for explaining how the brain works is likely
to be successful With only marginal caricature, one can take the
purely bottom-up strategy as recommending that higher-level functions
can be neither addressed nor understood until all the fine-grained
properties of each neuron and each synapse are understood. But if, as
it is evident, some properties are network effects or system effects, and
in that sense are emergent properties, they will need to be addressed by
techniques appropriate for higher levels and described by theoretical
categories suitable to that level, Assuming there are system properties
or network properties that are not accessible at the single-unit level,
then knowing all the fine-gramed detail would still not suffice to
explain how the brain works '"

An example: suppose one argued that it is necessary to know the exact
properties and function of each muscle cell in the arm before being able to determme
anything about the function or action of the whole arm or of the whole muscle of
which a particular cell is a part -- this would be considered quite foolish. If one
considers the brain and its constituent cells to have the same type of aggrepate abilities
in performing its overall function that a muscle and its constituent cells has in
performing its overall function,'® one may see that there are multiple levels of
description of bramn function, each of which may bear some fruit in leading to an
understanding of the whole. Organs are organic in therr activity. Each of therr

constituents works with the total system to perform the functions of the whole organ,

107. Churchland, et al. Thid. 46,
108. Shepherd. fbid. 83.
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itself a constituent of the whole body. (note: cutting off a leg does not immediately
affect the structures of the brain, hence phantom pain and continued sensation after an
amputation.)

A purely top-down strategy is typified, again with minimal caricature,

by its dismissal of the organization and structure of the nervous system

as essentially irrelevant to determining the nature of cogmtion.

Advocates of this strategy prefer nstead to find computational models

that honor only (or at least primarily) psychological and computational

constraints. One major reason for eyeing skeptically the purely top-

down strategy is that computational space 18 consummately vast, and

on their own, psychological and engineering constraints do not begin to

narrow the search space down to manageable proportions. Unless we

go mto the black box, we are unlikely to get very far in understanding

the actual nature of fundamental cognitive capacities, such as learning,

perceiving, orienting and moving in space-time, and planning.'®

In spite of great advances and continuing refinement in our understanding of
natural neural networks, there are a great many things we still don't know about the
facts of their operation. What controls their formation, structuring and restructuring?
How does one level become the source of unexpected properties in the next
hierarchical level? Can we develop a transitional caleulus which can predict all of the
next level's properties? Is this knowledge essential to meaningful discussion? Is
knowledge reducible to a few basic tactics of categorization ( or of categorical
organization)?

Eric Schwartz'" asks a series of questions, offering alternative responses:

¢63E]l. What 15 the relevance of simple model neural systems?

109, Churchland, et al. Tbid. 5.
110, Schwartz, Eric L., ed. Computational Neuroseience, Cambridge: MIT Press. 1990, xi.
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Position I. Mammalian nervous systems are far too complex to
study the properties of neural networks. We must begin with the
simplest model system available, either in vertebrate organisms or
simple localized synaptic modules in vertebrates.

Position 2: Two decades have gone by, and the early rhetoric
of model-systems proponents has not been fulfilled. Brute-force
analysis of simple systems will not iead anywhere. Invertebrate
behavioral capabilities and neural properties are remote from those of
vertebrates. Simple vertebrate systems are of interest only in
themselves, not as general brain models. Synaptic-level studies have
not provided much imsight inte computational function.

I have to agree that simple models are the place to start, but if we want to

understand the complex operations of the brain, we must strive to reflect the bram's

connective complexity. The many types of circuitry typical of the various levels of the

nervous system's hierarchy are indicators that a simple model will at best emulate no

more levels of function than the number of layers in the design.'"

2. Is physical locality an essential part of neural
manipulation?"

Position 1 (homage to the Turing machine). The anatomical
structure of the brain has no more to do with its function than the shape
of the cabinet of a VAX, or the location of its circuit boards. Brain
function is determined by the logical and dynamic connection
properties of its ngurons. The actual physical structure, location,
architecture, and geometry is irrelevant compared to its logical,
connectionist aspects. One could take a brain and grossly deform the
position of its neurons, keeping only the topology of connections
mtact, and there would be neghgible difference in performance.

Position 2 (computarional anatomy): Significant recent work
in brain research has been related to the discovery and elucidation of
detailed forms of somatotopic mapping, laminar specialization in
cortex, and columnar architectures representing sensory submodalities.
These forms of functional architecture may represent a major mode of
brain function: the formatting of sensory data in a manner that

111, Rahmann. /&/d. 106.
112. Schwartz. Jhid. ¥i).
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simplifies its further processing. One of the major differences in
computational style of brain versus VAX may well be the indifference
of the VAX to its geometry and the exquisite attention paid by the
brain to its geometry.

I am not yet ready to give up on the ability of the artificial neural network to
adequately represent the complete structure and activity of the brain, but the physical
proximity and spatial structure of connecting neurons must surely be a vital
consideration for realistic emulation. So too must be considerations of the medium
and motivaiing force behind the operations of the network: the brain has
neurotransmitters which act as a mass biochemical input which has systernic effects.
Whatever governs the density of the neurotransmitter at each synapse rnust be of
systemic significance, and this factor 15 not adequately represented in artificial neural
networks, The artificial neural network system of weights and corrections is itself a
step m this direction, and 1t may be malleable enough to form a basis for emulating the
neurotransmitter background for neural function.

3. What is the appropnate balance of theory and

experiment in neuroscience?

Position I: Theoreticians have constructed models which have

little connection to experimental data, and which provide little

opportunity for experimental test. Experimentalists will learn whatever

is necessary to perform their work. So far, they have not had to bother

with learming theory (mathematics, computer science, . . . ).

Theoreticians will have to do therr homework, 1.¢. learn something

about experimental disciplines which they are modeling.

Position 2: Experimentalists have too little background to
appreciate or understand the relevance of theoretical work. A science

with no theoretical component is just a mass of phenomenological

details, a form of "butterfly collecting.” Experimentalists will have to
do their homework, i.e. learn something about the theoretical tools
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which are essential to their disciplines.

Obviously, everyone needs to o their homework. There are considerations
pertinent to the ongoing search for meaningful results in cognitive science, not just
from the traditionally interested fields of psychology, philosophy, neurobiology,
linguistics and computer science, but also from education, physics, music'” and
religion. The greater the correlation of all these fields in a neural network context, the
more likely a neural network modeler is to developing appropriate widely-applicable
models. Focus on a very narrow field must be balanced occasionally by global
considerations and searches for related models in other systems. For example, I'm sure
the development of Teflon® was fascinating, but until someone related it to frying an
egg, it was of limited significance to humanity at large.

4. What is the correct choice of spatial scale for modeling
the computational abilities of brains?

Position 1 (synaptic-neuronal level): Since the brain is
composed of neurons, whose properties are accessible to study and
farrly well understood, the neural scale is the correct one at which to
approach brain computation. Brains are networks of neurons, and the
mathematical properties of such networks determine braimn function,

Position 2 (column-map level): The mathematical tools
available for studying large networks are woefully madequate. The
two-body problem in mechanics is easy; the three-body problem is
very hard. The neural N-body problem presents difficulties vastly
greater than those of classical statistical mechanics, a field which is
largely computationally intractable. Neural firing densities need to be
averaged into "densities," and the large-scale (i.e. columnar, map)
properties of these densities made the basis for study. Just as fluid
mechanics began with a simplified continuum hypothesis, neural
modeling must find a simplified continuum level in order to “get off the

113. Scarborough, Don L., Ben O. Miller, and Jacqueline A. Jones. "Conncctionist Models for Tonal Analysis."
in Tadd el al (q.v.) Music and Connectionism, 1989,
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ground."

Since the brain is composed of neurons in neurotransmitter bath, it may be that
the neural scale is only an approximation which can be refined. A systems model will
be woefully inadequate if we haven't modeled the constituents correctly. We should
be looking beyond the neural level in both directions. There are significant outcomes
to be found both in look‘ing more closely at the neurotransmitter input to the neural
substrate and at the system effects of the network as a whole.

5. What is the correct choice of temporal scale for modeling
neural computation?

Position I The brain may be viewed as a dynamical system.
Stable states of neural networks may be reached, since the time
constant of neurons is in the range of 1 - 10 milliseconds, and
differential equation systemns have been shown which reach their stable
states in only a few iterations.

Position 2. Pre-attentive perception refers to the period about
200 milliseconds after an event. Most perceptual and many cognitive
functions can occur in roughly this time period. But 200 milliseconds 15
also roughly the time of transit for a signal through the brain. It
appears that the brain is a one-cycle machine, something hike a lookup
table! There is no time for any settling into stable states. Moreover,
there is no experimental evidence that the brain ever "settles" into
anything like an equilibrium condition.

Of course not! It would be like saying that a pulse can go through the brain,
leaving no activity i 1ts wake, and that no other pulse follows it mnmediately -- the
patient must be dead! The necessity to freeze an artificial neural network at some

14 -

point, or to limit its possibilities for further traming'" in order for it to retain its

usability is an obvious departure from accurate emulation of brain function.

114. Haykin. 1bid. 27.
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6. Is the contemporary Pavlovian position correct?'

Position I Perception cannot be studied in 1solation from
concornitant motor or other goal-directed activity.

Posirion 2: One can show, for example, a Julesz random-dot
stereogram to someone who has never seen one before, and this person
will se a stereo percept, without even knowing what he is looking at.
Perception can be isolated, both functionally and computationally, from
goal-directed activity,

For me, the question of perception always entails questions of consciousness.
a neural net may be trained to 'see,' but is that the same as 'percerving'? This paper
does not have scope enough to consider consciousness in detail, and so 1 will forgo
details discussions of consciousness and perception. It seems reasonable to say that
without some form of feedback, we can't tell if a system, natural or artificial, has
appropriately perceived something.
7. Are conventional computer metaphors valid for the brain?
Position I: It 1s crucial to distinguish algorithm from
implementation in Al and neural modeling (David Marr). The
algorithm need have nothing to do with the under-lying physical
structure of the neuronal "hardware."
Position 2: The implementation (brain structure) depends
crucially on the nature of the computation (brain function). In the
brain, the medium is the message.
I fwmly believe that Marr's analysis is of considerable importance in a symboiic
programrmng milieu. In a neural network context, however, it lacks comprehension.

The systemic nature of the work of the network 15 not capturable in a purely symbolic

program context. Marr's analysis applies to systems with a clear-cut syntax where the

115, Schwartz, Thid. xii.
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syntactic level is in fact where the work of the system is done. The syntactic level of a
neural network 15 at a much higher level of abstraction than the level where the work
of the system is done. As we saw earlier, the comprehension of "TA & B — C" is
holistic in a neural nerwork: the picture is decomposed into symbolic elements only
when contextualization is inadequate. The picture is analyzed whole, not taken apart
and then reassembled.'* '’
Real Neuron Architectures

Shepherd's considerations of "The Significance of Real Neuron Architectures

for Neural Network Simulations” include this quote from John von Neumanmn:

"One may have to face situations in which there are, say, hundreds of
synapses on a single nerve cell, and the combinations of stimulations on
these that are effective are characterized not only by their number but
also by their coverage of certain special regions on that neuron (on its
body or on its dendritic system) by the spatial relations of such regions
to each other, and by even more complicated quantitative and
geometrical relationships that might be relevant.”

Shepherd concludes that

"all complications of this type mean, in terms of the counting of basic
active organs as we have practiced it so far, that a nerve cell 1s more
than a smgle basic active organ, and that any significant effort at
counting has to recognize this, If the nerve cell is activated by the
stimulation of certain combinations of synapses on its body and not by
others, then the significant count of basic active organs must
presumably be a count of synapses rather than of nerve cells."

116. Hopfield, J. J. "Weural networks and physical systems with emergent collective computational abilities.”
FProceedings of the National Academy of Sciences 79,2554-2558, 1982, "A study of emergent collective
cffects and spontanecus computation must necessanly focus on the non-linesrity of the input-cutput
telationship. The essence of eompulation s nonlinear logical operations . . . Thése neurons whose
operation 15 deminantly lincar merely provide a pathway of communication between nonlinear nsurons,”

117. Shepherd. Ibid 83,
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For Shepherd, this establishes the synapse as the basic computational unit of
the nervous system '* The question of what drives the system remains outside most
mmplementations of artificial neural networks. Kosslyn and Koenig focus on the
relation of emotion and cognition: "We have seen that there is no reason to consider
emotion and cognition as disparate events, and many reasons to view the two as
mextricably bound. Emotion not only plays a role in prioritizing goals, but also is
realized as a profile of which goals and processes are facilitated and which are
mnhibited."'"* Neural networks provide a means of processing sensory inputs and of
retaining memory.'" They may form in their connections the structure of the very
thoughts we are aware of thinking. The relation between the network itself and its
systemic controller is still an area needing extensive investigation. The question of
motivation has always been a puzzle for psychologists; now it 15 an open question for
all of cognitive science. '

Conclusions

Which black box can be safely ignored for philosophical purposes? At which
level can one find philosophically significant implications? Much depends on what
research, especially m natural neural networks, produces. 1 think each level may be

profitably considered both in isolation and in its relation to the other levels, There is

118. See Appendix 4. Defining the Basic computational Unit,

119. Kasslyn, Stephen M, and Olivier Koenig. Wer Mind: The New Cagnitive Neuroscience. New York: The
Free Press. 1995, 471.

120. See Appendiy 1. Memory.
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always interest in trying to get to the bottom causal level, so substrates will continue
to be worth discussing. The rules consistent within a level are evidence of what is and
what happens. Maybe there are clues to ontological questions in the structure and
activity of the network. The behavior of the total system may be an indicator of what
is of value to the system. This valuation is of interest to Ethics.

Philosophy of mind is probably the most pertinent philosophical department to
these 1ssues. Thought, consciousness, perception, cognition, motivation, all are
related to the neural network paradigm.

Philosuph-y of language certainly may benefit from experimental findings on the
way people really create discourse.

Epistemology'” will be enriched by the neural network paradigm for
knowledge representation and perceptual processes.

The results achieved so far in artificial neural networks show that our
mterpretation of natural neural networks is at least one valid approach. Therefore,
continued research in artificial neural networks is likely to produce meaningful results
applicable to natural neural networks.

As one possible real-world example of how cognition occurs, neural networks
cannot be overlooked when discussing any epistemological topic. Therefore, any

serious discussion of what may be known by whom and how they may know it, must

122, 'Connor, . 1. and Brian Carr. Introduction to the Theory of Knowledge. Brighton, Sussex: The
Harvester Press. 1982,
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address the neural network interpretation.

Neural networks have proved themselves as models for knowledge
representation. Therefore, any discussion of computational knowledge processing
which reaches beyond simple symbolic representations of data type, field, record, etc.,
must acknowledge the efficacy of self-organizing systems, trainable perception
devices, and black-box memories whose internal structure is itself the knowledge
representation,

Experiments on artificial neural networks may lead to a better understanding of
natural networks, by showing experimentally which structures are viable and which
not. They may even indicate possible teaching techniques, psychological evaluations
and psychiatric therapies.

Development of understanding neural network system dynamics may lead to a
transitional calculus which may allow us to predict what now appear to be emergent
properties.

We may discover that the neural network is only biology's hand-maiden -- that
the essential us is in the biochemical reactions which drive natural neural networks.

"Spinoza . . . has said, 'we examine the universe through the lens of
philosophy."'® Neural networks may help us to raise the power of the lens and bring

it to a finer focus.

123. Darden, Scvern, "Mctaphysics Lecture.” The Sound of My Own Voice, and Other Noises. Mercury LP
OCS 6202, 1961.
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Appendix L. Memory
Rahmann describes the workings of memory:

The functions of the neuroglia, in contrast to those of the neurons,
cannot be defined 5o readily. Indeed, the glial cells insulate, protect,
and support the nerve cells from external, mechanical influences, but
the neurogha also perform metabolic tasks of support and assistance m
the sense of metabolic symbiosis with the nerve cells. Certam mpulse-
conducting properties of the neurogha as well as tasks of support and
assistance m neuron differentiation must be considered also.'*

. & neuron, as the elemental unit of the nervous system, constitutes
both an ontogenetic (developmental) and a physical (1.e., trophic and
functional) unit that is responsible for perception, processing,
transmussion, and, above all, storage of information in an organism. '*
Synaptic plastieity, n the sense of an expernience-based change in
neuronal funetion, can be established utilizing methods borrowed from
the area of electrophysiology insofar as neurons are able to change
their bioelectrical response behavior relative to stimulation. A
presynaptic action potential effects changes in postsynaptic potential
through the event of stimulation. Two categories of presynaptic
mechanisms can account for this. In the first instance, it 15 the activity
of the presynaptic terminal itseif that causes a more or less short-term,
stimulation-dependent change in the post-synaptic cell. In the second
case, long-term changes in synaptic function are determined by the
effect of modulator substances in the area of the synaptic contact
zones.'"™ . . . synaptic plasticity in neuronal networks has been
documented in the form of substantially prolonged adapiations in
bioelectric responses in the nervous system as well as in long-term
adaptive changes in higher associative performance in the process of
learning and memory that parallel those prolonged adaptations.' The
ability of higher vertebrates to form abstractions and generalizations
might well be the basis for all learning processes. The formation of
conceptual complexes (i.e., abstract, nonverbal concepts) is one result
of this ability. These are not characterized by symbols such as
words . . . the ability to form a concept of similarity has been

124, Rehmann. Ihid. 1.
125. Rahmann. Jhid 1-2.
126. Rahmann. Ihid. 2.
127. Rahmann. Fhid. 206.
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corroborated'™ . . . Inall of these learning processes, particular
significance 15 placed on the predisposition of the individual (i.e., on
the genetic foundation, on early perinatal experience) and on
motrvational conditions {positive or negative feeling relative to
learning). ¥

Accordmg to Fuster:

"Long-term potentiation (LTP) in the mammalian brain is the
outstanding electrophysiological phenomenon of persistent change in
synaptic strength as a result of impulse transmission across synapses.
Viewed by many as the biophysical basis of Hebb's postulate, that
phenomenon has been extensively investigated in the hippocampus, an
ancient cortical structure with simple and well-understood
connectivity.""*" Nevertheless, as of 1995, Fuster still confesses that
"the cellular mechanisms by which the repeated impulse conduction
from cell A to cell B may lead to permanent change are not yet
precisely known."™

Dreyfus takes a different approach:

[48] Neural networks provide a model of how the past can affect
present perception and action without needing to store specific
memornies at all. It is precisely the advantage of simulated neural
networks that past experience, rather than being stored as a memory,
modifies the connection strengths between the simulated neurons. New
mput can then produce output based on past experience without the net
having to, or even being able to, retrieve any specific memones. The
point is not that neural networks provide an explanation of association.
Rather they allow us to give up seeking an associationist explanation of
the way past experience affects present perception and action. '™

128, Rahmann. [Ihid. 205.
129 Rahmann, Jbid. 241.
130. Fuster. Ibid 25.
131. Fuster. Jhid 25.
132. Dreyfus. Tbid 748
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Appendix 2. Emergent Properties.™

In physical systems made from a large number of simple elements,
mnteractions among large numbers of elementary components yield
collective phenomena such as the stable magnetic orientations and
domams in a magnetic system or the vortex patterns in fluid flow. Do
analogous collective phenomena in a system of simple interactmg
neurons have useful "computational” correlates? For example, are the
stability of memories, the construction of categories of generalization,
or timne-sequential memory also emergent properties and collective in
origin? [Hopfield) shows that important comnputational properties
spontaneously arise,

.. . Perceptrons were modeled chiefly with neural connections
in g "forward"direction . . . made random net of neurons deal directly
with a real physical world and did not ask the questions essential to
finding the more abstract emergent computational properties . . .
Perceptron modeling required synchronous neurons like a conventional
digital computer. There 1s no evidence for such global synchrony and,
given the delays of nerve signal propagation, there would be no way to
use global synchrony effectively. Chiefly computational properties
which can exist in spite of asynchrony have interesting implications in
hiology.

[Hopfield's]) model . . . will use its strong nonlinearity to make
choices, produce categories, and regenerate information and, with high
probability, will generate the output . . . from such a confusing mixed
stimulus.

Most neurons are capable of generating a train of action
potentials--propagating pulses of electrochemical activity--when the
average potential across their membrane is held well above its normal
resting value. The mean rate at which action potentials are generated is
a smooth function of the mean membrane potential . .

A study of emergent collective effects and spontaneous
computation must necessarily focus on the non-linearity of the input-
output relationship. The essence of computation is nonlinear logical
operations . . . Those neurons whose operation is dominantly linear
merely provide a pathway of communication between nonlinear
neurons.

. .. The neural architecture of typical cortical regions and also of
simple ganglia of invertebrates suggests the importance of 100-10,000

133. Hopficld, J. J. "Neural networks and physical systems with emergent collective computational abilities,"
Froceedings of the National Academy of Sciences 19 2554-2558. 1982,
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cells with intense mutual interconnections in elementary processing . . .
In the model network each "neuron” has elementary properties, and the
network has little structure. Nonetheless, collective computational
properties spontaneously arose. Memories are retained as stable
entitics or Gestalts (sic) and can be correctly recalled from any
reasonably sized subpart. Ambiguities are resolved on a statistical
basis. Some capacity for generalization is present, and time ordering of
mernories can also be encoded. These properties follow from the
nature of the flow mn phase space produced by the processing
algorrthm, which does not appear to be strongly dependent on precise
details of the modeling. This robustness suggests that similar effects
will obtamn even when more neurobiological details are added.

Much of the architecture of regions of the brains of higher animals
must be made from a proliferation of simple local circuits with well-
defined functions. The bridge between simple circuits and the complex
properties of higher nervous systems may be the spontaneous
emergence of new computational capabilities from the collective
behavior of large numbers of simple processing elements.
Implementation of a similar model by using integrated circuit chips
would lead to chips which are much less sensitive to element failure
and soft-failure then are normal circuits. Such chips would be wasteful
of gates but could be made many times larger than standard designs at
a given yield. Their asynchronous parallel processing capability would
provide rapid solutions to some special classes of computational
problems,

Peter Angeles' Dictionary of Philosophy offers:
emergent, an. Sometimes gestalt property of organized structures.
The new qualitative synthesis produced by structures organized in

certain patterns that cannot be predicted from the examination of the
constituent parts of the whole.™

134, Angeles, Peter A. Dictionary of Philosophy. New York: Bames and Noble Books. 1981. 73,
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Appendix 3. The Chinese Room.

"The Chinese room shows what we knew all along: syntax by itself is not
sufficient for semantics,"'*

Searle 15 not wrong in drawing this conclusion from what we know about
syntactic models. He seems to persist in assuming, though, that all computation 1s
based on symbolic processing, including neural network computation. He assumes
that at the heart of a neural network there is "a set of rules, the program,” which
manipulates symbols, whether programmed as such, or as in the particular
symbolic/neural hybrid proposed by Harnad, "took in stimuli, [and] converted these
into symbols . . ." His argument against the System Reply specifies *In order to
Justify the System Reply one would have to show: How the system gets from the
syntax to the semantics . . ." There 15 no syntax in a neural network; it's operation is
semantic to begin with. The rules a neural network learns are not built up from
elemental individual rules, like a formal grammar, but are molded out of a total picture
in which individual elements are weighted by their apparent affect on the whole. He
continues: "Behavior plus syntax is not constitutive of cognition. To repeat, where the
ontology --- as opposed to the epistemology of the mind is concerned, behavior is
irrelevant . . . If we define the nets in terms of their computational properties, they
are subject to the usual obyection. Computation is defined syntactically and syntax by
itself is not sufficient for mental contents. If we define the nets in terms of physical
features of their architecture then we have left the realm of computation and are now
doing speculative neurobiology. Existmg nets are nowhere near to having the causally
relevant neurobiological properties.”" I agree that no artificial current network is
anywhere near ample for a full-blown emulation of a complete natural neural network.
His argument that syntax s inadequate for semantics misses the point of neural
networks -- they are not symbolic programs at the level of operation, even though they
must of necessity be programmed in a syntactic-model programming language. His
focus is on the objection to a set of rules. somewhere, at the bottom of things, if
nowhere else, is a set of rules which govern all that is. These rules may be quantum-
mechanical or deterrinist-causal rules, but whatever they are, they are consistent and
universally applicable. some application of these rules results in cognition, whether
this be considered as conscious thought or as behavior or as input-process-output
computation. I don't know that these rules conform to a notion of symbolic
manipulation; they are rules which constitute being and eventuality -- they are, if
anything here may apply, semantic. They apply as a single force, not as a composition
of symbols. The rules rule!

People speak in complete semantic units before they learn to analyze those

135 Scarle, John B. "The Failures of Computationalism." (Responss to Stevan Harnad {q.v.), "Grounding
Symbols . . ") Think Quarterly, Vol 2, No. 1, 1993, Instituut voor Taal- ¢n Kennistechnologic
(http:/Akiwww kub.nl: 2080/tki/Docs/Think)
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units mto the component parts of a syntactic model. given that a neural network does
not need syntax in order to perform semantically, how can we usefully differentiate
whether any system is a cognitive system? What are the criteria for cognition? The
Chinese room does show that passing the Turing test is no guarantee: a symbol
processing system could conceivably pass the test. Is we substitute a properly trained
neural network for the symbolic program, then it depends on whether our definition of
cognition will be satisfied by observable behavior or be satisfied only by evidence of
conscipusness. If the latter, then ask how we determine consciousness. Is any system
which modifies its behavior in response to feedback from its environment conscious?
Do we require a system to exhibit 2 particular observable behavior, that of a self-
report of consciousness. Is it enough that it exhibits behavior we attribute to
consciousness, or will we hold out for a verbal declaration of self-awareness? we
know that a proper application of the fundamental rules yields consciousness. would
we exhibit this interested behavior if we were not ourselves conscious? perhaps my
claim to consciousness is merely 2 behavioral outcome of my neural network's
traming. :

Is there consciousness without cognition? Is there cognition without
consciousness? A behavioral approach would confirm this second possibility. A
sprritualist approach would confirm the first. Most commonly people speak of
cognition and consciousness as one, and think a clear consensus on whether they may
be considered separately would greatly reduce the scope of contention when
discussing the validity of artificial emulation of natural neural networks.

My objection to this msistence on a syntactic substrate for semantics 1s this:
just because a model works doesn't mean it is correct or necessary. 1 may see a certam
person as conforming to a certain stereotype, and behave as if this 1s true. That model
may do well enough in most ¢ircumstances, even though the individuals concerned are
nothing like the stereotype. I can characterize a number series as being the result of
certan computations -- when in the particular case, they are due to some other
calculation mvolving quite different criteria. If this number series happens to model
some physical regularity, I may characterize it as a physical law, even though the
actual factors are quite different. The model which includes syntax as a necessary
substrate of semantics is such a construction, Syntax is an easy and convenient way to
analyze semantic utterance, but it is only a model, not a constitvent.

In a neural network, knowledge is not represented symbolically; nothing is
acted on symbolically. The system response is holistic and, as Hopfield said, "Those
neurons whose operation 15 domunantly linear merely provide a pathway of
communication between nonlinear neurons, "™

136. Haopfield. Jhid.
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Appendixz 4. Defining the Basic Computational Unit.

Shepherd's discussion of neuron versus synapse as the BCU:'™

A common goal of experimental and theoretical neuroscience 1s to
understand the neural basis of cognitive function. In pursuing this goal,
experimentalists accumulating a wealth of information about the
molecular and cellular properties of neurons, and about neural circuits
and pathways in the brain, This information emphasizes the complexity
of neurons, but grves only limited insight by itself into the way neurons
form functional aggregates at the systems level to carry out cognitive
functions. Network modelers, on the other hand, traditionally ignore
most of the information gathered by experimentalists, replacing the
elaborate structure of the neuron by a simple summing node, and the
specific axonal and dendritic connections by a widely distributed
network of wires. This provides a convenient approach to analyzing
systems level behavior, but raises series doubts about its relevance to
the real nervous system.

Shepherd's organizational levels:

Eehavior

Systerns and Pathways
Centers and local circuits
. Neuron

Microgircuits

Synapse
Membranes, Molecules, Tons

LR

The "functional unit" is the "morphological substrate for a specific function."

"The functional properties at each level are produced by the collective
actions of the functional units derived from the next lower level "

Shepherd cites the collective action of muscle fibers as an example of emergent
properties. i.e., properties not from individual units, but from collective action. (I
don't think this is a good example of emergent properties -- see Appendix 2.'™)

"The relevance of a model for a real biological system depends
on the extent to which its subcomponents are not arbitrary, but

137, Shepherd. [hid.
138. Magel, Emest. Ihid.
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represent properties that can be tested in the biological system."'”

"If the organization at one level of the nervous system is thus
constrained by its subcomponents at a lower level, it means that the
properties at that level are not entirely emergent. For example, the
force-generating properties of a whole muscle are implicit in the force-
generating properties of its constituent muscle fibers, It becomes
mportant . . . Therefore one cannot accurately simulate a given
behavior . . . with a model system that does not incorporate the crucial
levels of orpanization . . "'

1) What are the basic computational units of nerve circuits

2) What operations are mediated by the different levels of organization
3) Which ones are critically relevant for modeling cognitive functions by the
real nervous system

The basic computational unit of the nervous system is the synapse.

The Neuron Doctrine:

Traditionally the neuron is the basic anatomical, functional, metabolic, and
developmental unit of the nervous system.

1) The cell body is all that matters as a representation of the integrative
substrate of the neuron.

2) Axonal projections are arbitrary, depending on logic operations performed
by the network,

3) Specific branching patterns of dendrites and axons of real neurons are
simply gnored.

A lack of real neuron architecture implies little obvious relevance of

these networks to real nervous systems. Rall (1959) claims the

mtegrative properties of the neuron are dominated by the dendritic tree.
Dendritic branches and dendritic spmes are not simply passive . . . but

are sites of dynamic biochemical changes of great relevance to memory
and lugher cognitive functions.

Neurons give off only one axon which has a definite pattern of
collaterization within its local region and in its distant target regions. In
many neurons the dendrites are the sites of synaptic outputs as well as
inputs. . . Subcomponents of the dendrites can function as semi-
independent 1/O units. Functional units within neighboring dendrites
can be linked to form local cirguits involving only parts of each of the
contributing neurons. These circuits may operate in the analog or
digital or mixed modes. Therefore the Basic Computational Unit
cannot be the neuron, The synapse is. This is the Synaptic Doctrine.

139, Shepherd. 75:id. 83.
140. Shepherd. 7bid 84.
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He concludes:
Computational circuits are built of synaptic circuits at successive levels of
complexity, neurons thus represent one of the intermediate, multisynaptic levels.
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Appendix 5. Learning,

Hebb cites James Mill with a theory of association a century prior 1o his own
writing. The first object of Hebb's book was to present a theory of behavior for the
consideration of psychologists; but equally important was his desire "to seek a
common ground with the anatomist, physiologist, and neurologist, to show them how
psychological theory relates to their problems and at the same time to make it more
possible for them to contribute to the theory "'

"Modern psychology takes completely for granted that behavior and
neural function are perfectly correlated, that one is completely caused
by the other. There is no separate soul or Ife-force to stick a finger
mnto the brain now and then and make neural cells do what they would
not otherwise. Actually, of course, this is 2 working assumption only --
as long as there are unexplained aspects of behavior,” '

Hebb seems to have in mind the problem of emergent properties;

"The problem of understanding behavior is the problem of
understanding the total action of the nervous system, and vice

versa . . . One must sympathize with those who want nothing of the
psychologist's hair-splitting or the indefiniteness of psychological
theory. There is much more certainty in the study of the electrical
activity of a well-defined tract in the brain. The only question is
whether a physiology of the brain as a whole can be achieved by such
studies alone. One can discover the properties of its various parts more
or less m 1s0lation; but it is a truism by now that the part may have
properties that are not evident in 1solation, and these are to be
discovered only by study of the whole intact brain."'*

Hebb's theory is in part a reaction to two opposing formulations of
brain function:

"Two kinds of formula have been used, leading at two extremes to (1)
switchboard theory, and sensori-motor connections; and (2) field
theory . . . (1) In the first type of theory . . . the function of the
cortex 1s that of a telephone exchange, Connections rigidly

determine . . . what [a] human being does . . . (2) Theory at the
opposite extreme denies that learning depends on connections at

all . . | The cortex is regarded as made up of so many cells that it can

141. Hebb. Ihid xi-xix.
142. Hebb. Ibid. xi-xix
143. Hebb. Ibid. xi-xix.
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be treated as a statistically homogeneous medium . . . both
theoretical approaches seem to 1mply a prompt transmission of sensory
excitation to the motor side . . . No one, at any rate, has made any
serious attempt to elaborate 1deas of a central neural mechanism to
account for the delay, between stimulation and response, that seems so
characteristic of thought "'

The principles of learmning that Hebb expounded are as follows:

"Let us assume then that the persistence or repetition of a
reverberatory activity (or "trace") tends to induce lasting cellular
changes that add to its stability, The assumption can be precisely
stated as follows: When an axion (sic) of cell A is near enough to
excite a cell B and repeatedly or persistently takes part in firing i1,
some growth process or metabolic change takes place in one or bath
cells such that A's efficiency, as one of the cells firing B, is
increased."'

Accordmg to Kelso et al, a time-dependent, highly local, and strongly
interactive mechanism is responsible for one form of long-term
potentiation [LTP] in the hippocampus; there is strong
neuropsychological evidence indicating that the hippocampus plays a
key role in certain aspects of learning or memory.'* $ome studies
support the theory that LTP 1n certain hippocampal synapses is
Hebbian. Other studies show that the induction of synaptic LTP at
some sites can be at variance with predictions based on Hebb's
postulate of learning. Studies also show that the simple Hebbian
learning rule emerges from a non-Hebbian LTP induction rule. Using
computer simulations, Hetherington and Shapire have demonstrated
that

(1) an anti-Hebbian rule is needed to decrease the saturation of cell
assembly activity,

(2) a synaptic modification rule that decreases synaptic weights when
post-synaptic activity occurs in the absence of presynaptic activity is
necessary, but not sufficient, for stable assemblies, and

(3) dendritic trees must be partitioned into independent regions of
activation.

144, Hobb. Ibid. xi-xix.
145. Hebb. Ibid 60-T8.
146. Haykin, Jbid. 52-53.
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Appendix 6. Computational Autonomy
Accordmg to Marr: '

Almost never ¢an a complex system of any kind be understood as a
smmple extrapolation from the properties of its elementary components.
Consider, for example, some gas in a bottle. A description of
thermodynamic effects — temperature, pressure, density, and the
relationships among these factors -- is not formulated by using a large
set of equations, one for each of the particles involved. Such effects
are described at their own level, that of an enormous collection of
particles; the effort is to show that in principle the microscopic and
macroscopic descriptions are consistent with one another. If one hopes
to achieve a full understanding of a system as complicated as a nervous
system, a developing embryo, a set of metabolic pathways, a bottle of
gas, or even a large computer program, then one must be prepared to
contemplate different kinds of explanation at different levels of
description that are linked, at least in principle, into a cohesive whole,
even if Imking the levels in complete detail is impractical For the
specific case of a system that solves an mformation-processing
problem, there are in addition the twin strands of process and
representation, and both of these ideas need some discussion.

A representation is a formal system of making explicit certam entities
or types of mformation, together with a specification of how the system
does this. And I shall call the result of using a representation to
describe a given entity a description of the entity in that

representation . . . the notion that one can capture some aspect of
reality by making a description of it using a symbol and that to do so
can be useful seems to me a fascinating and powerful idea . . . there
is a trade-off, any particular representation makes certain mformation
explicit at the expense of mformation that is pushed into the
background any (sic) may be quite hard to recover.

Two different issues were confused in Marr's scheme:
1) As a marter of discovery can one figure out the algorithm and the problem

analysis mdependently of facts about implementation? In fact, even if the formal
algonthm 15 the same on two different architectures, the architectures themselves will
affect factors of speed, size, efficiency, etc.

2) As a matter of formal theory, can a given algorithm that is already known to

147, Marr, Devid. Fision. San Francisco: W_H. Freeman, 1982, 19-38, 54-61.
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perform a task in 2 given machine (e.g., the brain) be implemented in some other
machine that has a distmet architecture?

Yes. By definition, a formal algorithm may be implemented on any sufficiently
powerful computational architecture. It is quite possible 1o emulate symbolic
programs using neural networks, and vice versa. Parallel and sequential programs are
demonstrably interchangeable.

21



absiract, 11, 12, 13, 60
abstraction, 59, 74, 78
action potentials, 6-8, 80
adaptivity, 24, 25, 45, 78
aggregate(s)(ed), 10, 17,
18, 67, 84
Aleksander and Morton,
24
Alexeieff, Alexander, 13
amino acid sequence, 7
amnputes, 3
Angeles, Peter, 81
Aristotle, 59
artificial
intelligence, 42
neural network(s), 5, 18,
20-22, 28, 35-37, 40, 41,
47-51, 53-59, 66, 70, 72,
75-77, 82, 83
neuron, 29
association, 5, 79, 87
areas, 13
cortices, 10, 11
associationist, 70
axons, 6-9, 13, 23, 47, 85
axonal, 84, 85
back-propagating
networks, 1
back-propagation
networks, 50
basic computational unit,
7,22, 29, 74, 84-86
basket, 6
bioelectrical response, 78
black box, 1, 11, 53, 68,
75
body surface, 9
Boltzmann, 48
brain, 1-6, 8-14, 16, 17,
19, 21-24, 26-29, 35, 42,
44, 48, 49, 51, 53, 55-62,

Index

65-73, 79, 81, 84, 87, 90
Cajal, 21
capacity(ies), 2, 10, 68, 81
CAT scan, 20 .
cellular, 8, 79, 84, 88
central nervous system, 9,
27, 28
cerebral cortex, 9, 12
cerebral hemispheres, 10,
12,13
chaos, 49, 65
chemical
action, 61
activities, 44
change, 7
input, 70
interaction, 7
reaction, 7, 77
signal, 23
synapse, 23
transmitters, 7
Chinese room, 58, §2
Chinese gym, 58
Churchland and
Sejnowski, 60
Clark, Peter, 65
cognitive
activities, 44
capacities, 68
functions, 10, 72, 84, 85
neuroscience, 16
phenomena, 43
processes, 43
science, 55, 71, 75
scientists, 66
systems, 51, 83
tasks, 45
color, 11, 19
columns, 6, 16, 27
commplex stimuli, 11
computer(s), 2, 3, 5, 7, 21,

92

22,24, 28, 80
architecture, 59
metaphors, 73
program, 58, 89
programming, 43
science, 70,71
scientists, 67
simulations, 88

connectionist
approach, 57
aspects, 69
models, 45, 60
networks, 24
neural models, 8
paradigms, 56
program, 62
theory, 20

connectionists, 56, 58

conscious, 13, 19, 37, 42,

58, 64, 65, 82, 83

consciousness, 3, 4, 14,

63, 73, 76, 83

consciously, 36, 64

context(ual)(ization), 25,

37, 43, 44, 46, 59, 62-64,

71,73, 74

copper wire, 7

cortex, 6, 9, 12, 13, 60,

69, 87
cerebral, 9, 12
human, 21
motor, 13, 15
prefrontal, 13
primary, 12
striate, 10, 48
visual, 9, 12, 13

cartical neurons, 9

creativity, 4

critical potential, 6

cytoplasm, 6

déja vu, 2



dendrite(s), 23, 85
dendritic

arbors, 8

branches, 85

connections, 84

trees, 27, 85, 88

spines, 85

subunits, 27

systemn, 74
DISCERN, 51
dreams, 3
Dreyfus, Hubert, 79
electrical

activity, 7, 17

charge, 0

impulses, 6

signal, 7,17

stimulation, 16

terminology, 23
electrical-chemical, 5
electrobiochemical, 2
electrobiophysical
structure, 62
glectronic, 2, 23
electrophysiology, 78-79
electromechanical, 55
electrochemical, 80
emergence, 17, 81
emergent, 3, 18, 66, 74,
80, 81, 85

mmd, 17

property, 3, 17, 44, 65,
67, 77, 80, 84, 87
emerge(s), 19, 88
emotion, 4, 75
epistemology, 35, 59, 76,
82
ethics, 76
evidence, 4, 16, 18, 48,
50, 51, 72, 76, 80, 83, 83
evident, 9, 15, 17, 51, &7,

Index

87
evidential response, 25
excitation(s), 19, 23, 88
excrtatory, 28, 43, 59
excitatory-inhibitory, 5
excite, 88
excrting, 47
extracellular, 6
fauk-tolerant, 26
feature(s), 11, 12, 125, 34,
35, 40, 42, 43, 45, 47, 48,
82
feedback, 6, 12, 26, 31,
34, 59, 60, 73, 83
feedforward, 32, 33
Fischbach, Gerald, 12, 16,
59
Fischler and Firschein, 37
function, 1, 3, 5, 6, 10, 11,
13, 18, 21, 33, 39, 44, 49,
50, 53, 55, 59, 61, 62, 65-
67, 69, 80, B1, 84, 85, 87
activation, 29
brain, 1, 8, 14, 21, 29,
44, 51, 57, 65-67, 69, 71-
73, 87
cellular, 8
cerebellar, 14
cognitive, 10, 72, 84, 85
computational, 69
mtellectual, 13
of mterest, 23, 40
leamning algorithm, 24
mathematical, 29
mental, 3. 8, 10, 57
network, 24, 48, 49
neural, 17, 70, 87
neuroglia, 78
neuronal, 78
sigmoid, 29
squashing, 29

93

of synapse, 8
threshold, 29
transfer, 30
unconscious, 14
functional
architecture, 69
levels, 1, 60, 61, 69
nerve network, 16
operation of interest, 27
systems, 5
units, 23, 84, 85
varety, 8
wirmg diagram, 16
Fuster, Joaquin, 79
gestait, 14, 81
ghost, 36
Hamad, Stevan, 82
Haykin, 23, 24, 26, 29, 37
38,42, 46
Hebb, 47-49, 55, 79, 87,
88
hemisphere, 14
between. 13
categorical, 13
cerebral, 10, 12, 13
lateral 12
left, 13
representational, 14
right, 13-14
Hetherington and Shapiro,
88
hidden layer,
hierarchical
level, 68
marnmer, 11
structure, 59, 65
hierarch(y)(ies), 5, 11, 28,
53, 59, 61, 63, 69
holistic, 74, 83
Hopfield, 80, 83
Hubel and Wiesel 9

7



Imagmation, 4

mmpulse(s), 6, 7,13, 78, 79
information,

mtelligence, 3, 4, 35, 36,
42, 45, 63

internal representation, 2
interneuron connections,
24

intuition, 3, 65
mvertebrate, 15, 69, 80
mvariant feature space, 42
1on channels, 7

jamais vu, 2

judgment, 10

Kelvin, Lord, 65
knowledge, 2, 14, 21, 24,
25,35-37, 40, 42, 43, 48,
59, 62, 68, 76, 77 .83
knowledge representation,
2, 25,35,37, 38, 40, 42,
43, 48, 59, 62, 76, 77, 83
Kosslyn and Koenig, 75
language, 2, 11, 42, 45,
51, 58, 76, 82

lateral geniculate nucleus,
9,10

lattice, 34, 35
learn(s)(ed)(ing), 2, 3, 16,
24, 25,32, 36, 38-41, 45-
51, 55, 57, 63, 68, 70, 78,
79, 82, 87, B3

learning algorithm, 24, 25,

32, 46, 47, 48, 55
Jevel, 1, 5, 14, 16, 17, 19-
21, 26, 27, 44, 53_ 56, 58,
60-62, 63, 67-69, 74-76,
84-86, 89

1 (Marr), 62

activation, 59

activity, 31

algorithm, 60

Index

of analysis, 60
behavioral, 50
of bramn function, 44
of brain structure, 5
causal, 75
column-map, 71
of complexity, 86
computational, 28, 60
of confidence, 25
current, 60
of explanation, 43
fine, 5
high(er), 3, 17, 18, 20,
50, 51, 57, 60-62, 67, 74
input, 26
of interest, 53
local, 17
low-, 50, 84, 85
nervous system, 60
neural, 72
neuronal, 54
physical implementation
60
of operation, 59, 82
of organization, 17, 84,
85
processing, 26, 44
simplified continuum, 71
of structural
organization, 26, 28
substrate, 17, 60
sub-synapse, 29
synaptic, 69, 73
synaptic-neuronal, 71
systems, 34
line segments, 9
local circuits, 6, 27, 28,
81, 84 85
mapping, 4, 9, 24, 51, 56,
69
Marr, 60, 62, 73, 89

2

94

MeCulloch and Pitts, 1
membrane, 6, 7, 80, 84
memory, 2, 4, 10, 16, 22,
31-33, 56-58, 60, 75, 78-
80, 85, 88
mental

behavigr, 10

contents, §2

events, 17

function(s), 3, 8, 10, 57

life, B

mechanisms, 2

operations, 57

phenomena, 8, 16, 18

problems, 3

processes, 44

representations, 44

tasks, 10
microcircuit(s), 27, 84
microelectrodes, 9
microphone, 55
Miikkuizinen, Risto, 51
Mil], James, 37
model, 1-3, 8, 12, 17-20,
23, 25, 26, 28-31, 35-39,
47, 49-51, 53, 56, 63-, 635,
68-73, 77, 79-81, 83-85

Al 43

brain, 69

computational, 58, 68

connectionist, 60

cight-level 26

Hopfield's, 80

tmplicit, 39

mathematical, 31, 39,
47, 48

network, 58

neural, 8, 73

neuron, 25, 28

non-verbal, 65

FDP, 43



signal-flow graph, 30

structural, 26

structured connectiomnist,
45

syntactic, 82, 83

systems, 72

three-level, 26
modes, 5, 59, &6
molecules, 7, 9, 16, 27,
60, 84
motivation(al), 2, 75, 76,
79
motor, 15, 73, 88

control, 14

cortex, 13, 15

neurons, 6

pathways, 11

planning, 15

regions, 13

response, 13

systems, 10
movement(s), 4, 6, 11, 14,
15,19, 26
MRI, 16, 20
multi-synaptic levels, 86
muscle, 3, 13, 15, 18, 67,
84, 85
nerve

cell(s), 9, 48, 74, 78

cireurts, 85

signal, 80

tissue, 58
nervous system, 3, 22, 23,
27, 28, 31, 47, 58, 60, 66,
638, 69, 75, 78, B1, 84, 85,
37, 89
neural network, 1, 2, 4,
18, 24-26, 28, 31, 32, 35,
38, 41-43, 45, 47, 50, 51,
56, 59, 65, 68, 72, 75, 77,
79, 82, 90

Index

artificial, 5, 20, 21, 26,
28, 36, 37, 40, 47-51, 53-
57, 59, 66, 70, 72, 75-77

natural, 5, 18-21, 24, 26,
41, 47-49, 54, 56, 57, 60,
66, 68, 75-77, 82, 83

simulation, 1
neurobiological,

analogy, 25

considerations, 47

evidence, 50

explanation, 43

phenomena, 26

properties, 82
neurobiologists, 26, 67
neurobiology, 26, 71, 81,
82
neurocomputer(s), 24
neurodynamical

models, 49

systems, 49
neuron(s), 1-12, 14, 15,
18, 21-23, 25, 27-35, 39,
40, 43, 44, 48, 54, 58-60,
67, 69-72, 74, 78-81, 83-
86

architecture, 85

doctrine, 85

models, 28
neuroglia, 78
neurological, 19
neurologist, 87
neuronal, 57, 73

circults, B

function, 78

differentiation, 16

level, 54

networks, 78
neurophysiologists, 47
neurophysiology, 10
neuropsychological

95

evidence, 33
neuropsychologists, 47
neurapsychology, 10
neuroscience, 16, 66, 67,
70, 84
neurotransrmutter(s), 16,
35,70, 72
nonlinearity, 24
accipital
lobe, 13
pole, 9
oculomotor system, 20
ontological, 76
ontology, 82
Palm et aha, 58
parallel, 7, 90
computer(s), 22
computing machine, 21
distributed processors,
24, 43, 45
operations, 44
pathway(s), 11
processing, 11 21, 24,
26,43 Bl
Penfield, Wilder, 16
percept, 11, 14, 73
perception, 2, 13, 22, 42,
58,72,73,76,78, 79
device(s), 77
perceptron(s), 80
perceptual
functions, 72
processes, 76
recognition, 22
scene, 12
permeability, 6-7
PET, 16, 20
phantom
limbs, 3
pain, 68
philosophical



department, 76

implications, 1

import, 29

interest, 59

issues, 41, 53

purposes, 73

(-ly) significant
implications, 75
philosophy, 36, 37, 45, 71,
77

of language, 76

of mind, 76
pinscreen, 18, 19
planning, 10, 15, 68
plastic

bramn, 23

changes, 8
plasticity, 8, 10, 23, 25,
54,78
positive feedback, 6
postcentral gyrus, 9
postsynaptic

activity, 88

cell, 78

potential, 78

process, 23
premotor circuits, 26
presque vu, 2
presynaptic

action, potential 78

activity, 88

electrical signal 23

mechanisms, 78

process, 23

terminal, 78
primary cortices, 9, 12
primary motor cortex, 13
primary visual cortex, 9,
12,13
primates, 10
property(ies), 3, 18, 27,

Index

30, 60, 67, 68, 71, 81, 84,
85, 87, 89
cellular, 84
complex, 81
computational, 30-82
dynamte connection, 69
elementary, 81
emergent, 3, 17, 44, &5-
67, 77, BO, 84, 87
fine-gramed, 67
force-generating, 85
functional, 84
gestalt, 81
impulse-conducting, 78
information-processing,
66
mtegrative, 85
mathematical, 71
mysterious, 18
network, 67
neural, 69
neurobiological 82
system(ic), 17, 67
unexpected, 68
psychological
applications, 26
constraints, 68
development,
evaluations, 77
theory, 87
psychologists, 11, 75, 87
psychology, 39, 71, 87
Purkinje, 6
Rahmann, 22, 58, 60, 78
Rall, 85
real world, 2, 22, 38, 64
recurrent, 31, 34
reporter molecules, 9
representation(s), 9, 10,
19, 31, 40, 41, 44, 45, 47,
52, 55, 57, 58, 62, 66, 69,

26

85, 89
data, 45
graphical, 35
internal, 2, 55
knowledge, 2, 25, 35,
37, 38, 40, 42, 43, 48, 59,
62, 76, 77, 83
mental, 44
some, 51
structural, 37, 44, 57
symbolic, 3, 43, 44, 77
representational
hemsphere, 14
reting, 9, 10
retinal
ganglion, 9
mage, 10]
Schwartz, Eric, 68
Searle, John, 58, 82
self~organizing maps, 1,
51
self~orgamzation, 19, 48,
55
self-organiz(ed)(ing), 45,
52, 56, 77
Sensory
apparatus, 35
association areas, 13
data, 69
discrimination, 14
excitation, 88
information, 27
inputs, 75
organ, 9
receptors, 9
submodalities, 69
systems, 10, 11
SENSOr-MOLor
connections, 87
shape, 7, 11, 23, 63, 69
Shepherd, 74, 84



Sherlock Holmes Rule of
Evidence, 3
signal boosting, 7
simulate(d), 21-23, 35, 44,
79, 85
simulatmg, 21, 24
simulations, 1-2, 9, 44, 45,
66, 74, 88
simulators, 1
Smolensky, 61, 63
Socrates, 59
sodum ions, 6, 44
somatosensory
mforrnation, 10
maps, 27
SONAR, 51
Spinoza, 77
striate cortex, 10, 48
structural
approach, 2
constituents, 21
detail, 29
dynamics, 3
levels, 28
model, 26
organization, 26
units, 23
variety, 8
structure, 1, 2, 4-6, 11,
12, 21, 22, 25, 32, 24-37,
41, 42, 44, 45, 47, 51, 55,
58-63, 70, 73, 75-77, 79,
81, 84
structured connectionist
models, 45
subcortical nuclei, 10
substrate, 3, 8, 17, 20, 29,
53, 60, 62, 65, 72, 75, 83-
85
symbol(s), 3, 45, 58, 59,
62,64, 78, , 82 39

Index

(-ic)Al, 45

(-ic)code, 57

(-ically)coded machine,
56

creation, 56

-driven mechanistn, 35

(-ic)elements, 58, 74

(-ic)hybrid, 82

manipulation, 3, 82

(-ic)paradigm, 56

processing, 2, 82, 83

(-ic)program(rming), 25,
46, 61, 64, 73, 82, 83, 90

(-ic)representation, 3
symbolists, 56, 58, 59
synapse(s), 3, 5, 7-9, 11,
21-23, 27-30, 54, 60, 67,
70, 74, 79, 84-86, 88
synaptic

activity, 10

association, 5

circuits, B6

connections, 1, 34

contact zones, 78

convergence, 30

divergence, 30

doctrine, 86

function, 73

inputs, 7

interactions, 7

Junction, 23

-level studies, 69

links, 29, 30

LTP, 88

modification, 88

modules, 69

-neurenal level, 71

outputs, 85

(-tic)plasticity, 8, 78

potential, 56

relays, 11

97

strength, 79

structures, 51

weights, 24, 33, 40, 41,
38
synaptic-neuronal level, 71
system(s), 5,7, 9,10, 11,
17,19, 21, 22, 25, 26, 31,
32, 42, 45, 49, 50, 53-56,
60, 66-77, 80, 32-85, 89

auditory, 11

behavior, 36

controller, 75

description, 18

dynamics, 77

effects, 3, 67, 70, 72

imperfections, 39

level, 84

response, 83

significance, 70
System Reply, 82
systematically respond, 45
systemic

nature, 73

outputs, 56

phenomena, 18

properties, 17

response, 62
tennts ball, 11
thalamus, 9, 10, 60
theory(ies), 21, 36, 42, 51,
66, 70, 87-89

of association, 87

of brain function, 66

of behavior, 87

of cerebellar function,

14

(chaos), 65

(connectionist), 20

(Hebb's), 47, 87

(field), 87

(learning), 50, 70



Index

of mental function, 3
of mind, 1
{psychological), 87
(switchboard), 87
Thorndike, 50
threshold, 6, 30, 40
function, 29
topographic
(-cal)coherency, 9
(-ical)correspondence, 9
mapping, 9
maps, 2, 27, 28, 48
order, 9
organization, 11
topography, 27
topological(ly)
implications, 20
intact, 10
topology
of the cortex, 13
of connections, 69
transformations, 7-8, 42
transmitter, 5, 7, 16, 23,
transrtted, 8, 30
Turing, 69, 83
unconscious, 14, 42, 65
VAX, 69
veriebrate, 69, 78
visual cortex, 6,9, 12, 13
VLS1, 25
volition, 2
Zeki, 12

28



Bibliography

Alexander, R. McNeill Exploring Biomechanics! Animals in Motion. New York:
Scientific American Library. 1992

Alexeieff, Alexander and Claire Parker. "Pinscreen Excerpts.” (1973). Canadian
Animation  Volume 2. National Film Board of Canada: Pioneer LDCA, 1992

Anderson, James A. and Edward Rosenfeld. Neurocomputing: Foundations of
Research. Cambridge: The MIT Press. 1989.

Anderson, James A., Andras Pellionisz and Edward Rosenfeld. Neurocomputing 2:
Directions for Research. Cambridge: The MIT Press. 1990

Anderson, John R. Cognirive Psychology and Its Implications. New York: W. H.
Freeman and Company. 1990,

Ang, Siew-Lan. "The brain organization." Narure, Vol 380, 7 March 1996, 25-27.

Angeles, Peter A, Dictionary of Philosophy. New York: Barnes and Noble Books.
1981.

Babel, Jean, Albert Bischoff and Heinrich Spoendlin.  Ultrastructure of the Peripheral
Nervous System and Sense Organs. Saint Louis, MO: The C. V. Mosby
Company. 1970,

Bailey, Ronald H. The Role of the Brain. New York: Time-Life Books. 1975,

Baugh, Albert C. A Literary History of England New York: Appleton-Century-
Crofts, 1967,

Biehl, Soni. "Multiple Intelligences." TS. University of Texas at San Antonio.

Block, Ned. "On a confusion about a function of consciousness." Behavioral and
Brain Sciences (1925) 18, 227-287.

Bourland, Hervé A. "How Connectionist Models Could Improve Markov Models for
Speech Recognition”, 1990 (in Eckmiller, Advanced Neural Computers, North-
Holland, 1990.)

Brown, Douglas H Principles of Language Learning and Teaching, 2d ed.
Englewood Chffs, NJ: Prentice Hall Regents, 1987, 68-70,

Caramazza, Alfonso. "The brain's dictionary.”" Nature, Vol 380, 11 Apnit 1996, 485-
486.

Causey, Robert L. Logic, Sets, and Recursion. Boston: Jones and Bartlett
Publishers, 1994,

Churchland, Patricia, Christoph Koch and Terrence J. Sejnowski. "What Is
Computational Neuroscience?" in Schwartz, Eric. Compurational Neuroscience.
Cambridge: the MIT Press. 1990

Churchland, Patricia S. and Terrence J. Sejnowski. The Computational Brain,
Cambridge: The MIT Press. 1992

Clarke, Stephanie, Anne Bellmann, Frangois de Ribaupierre and Gil Assal. "Non-
verbal auditory recognition in normal subjects and brain-damaged patients:
Evidence for parallel processing." Neuropsychologia, Vol 34, No. 6, 587-603,

99



1996.

Cook, Norman D. The Brain Code. New York: Methuen, 1986,

Coulter, Jeff. Rethinking Cognitive Theory. New York: St. Martin's Press. 1983,

Crick, Francis. "Visual perception: rivalry and consciousness." Nature, Vol 379, 8
February 1996. 485-6.

Crick, Francis and Cristof Koch. "Some Reflections on Visual Awareness." Cold
Spring Harbor Symposia on Quantitative Biology, Volume LV, 1990. 953-962.

---. "The Problem of Consciousness." Scientific American, Vol 267, Nr, 3,

September 1992, 152-159,

---. "Towards a neurobiological theory of consciousness." The Newrosciences, Vol 2,
1990: 263-275,

Crosson, Frederick J. and Kenneth M. Sayre, eds. Philosophy and Cybernetics. New
York: Simon and Schuster. 1967.

Damasio, Antonio R. and Hanna Damasio. "Brain and Language.” Scientific

American, Vol 267, Nr, 3, September 1992, B8-95,
Darden, Severn. The Sound of My Own Voice and Other Noises. Mercury LP OCS
6202, 1961.

Davidson, Richard J., Gary E. Schwartz and David Shapiro, eds. Consciousness and
Self-Regulation: Advances in Research and Theory, Vol. 4 New York: Plenum
Press. 1986,

Davisg, Steven, ed. Conrectionism: Theory and Practice, New York: Oxford
University Press. 1992

de Duve, Christian. The Living Cell, Vol One. New York: Scientific American
Library. 1984.

De Mori, Renato. "Report on the paper 'Signals to Symbols to Meaning: Machine
Understanding of Spoken Language' ", Proceedings of the Congress of Phonetic
Sciences, Aix-en-Provence, France, AUG 19-24, 1991, Vol. 1, 84-86

Dennison, Paul E, & Gail E. Hargrove. Personalized Whole Brain Integration.
Glendale, CA: Edu-Kinesthetics, Inc. 1985. 9.

Der, R. and M. Herrmann. "&-Learning Chaos Controller." IEEE, 1994, 2472-2475.

Diamond, M. C., A. B. Scheibel, and L. M. Elson. The Human Brain Coloring Book,
New York: Harper Perennial. 1985,

Dinsmore, John. The Symbolic and Connectionist Paradigms: Closing the Gap.
Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers 1992,

Dreyfus, Hubert L. "Phenomenology of Embodiment." The Electronic Journal of
Analytic Philosophy, 4 (Spring 1996). Bloomington: Indiana University. 1996.

Drouin, Jacques. "Mindscape." (1976). Canadian Animation Volume 2. National Film
Board of Canada: Pioneer LDCA, 1992.

Ellis, Andrew W. and Andrew W. Young. Human Cognitive Neuropsychology.
Hillsdale: Lawrence Erlbaum Associates, Publishers, 1988.

Fallside, F. and W. A. Woods, eds., Computer Speech Processing, N.d.: Prentice Hall,

100



1985.

Fallside, Frank. "Progress in Large Vocabulary Speech Recognition", Speech
Technology, APR/MAY 1985,

Fidone, Eyzaguirre. Physiology of the Nervous System. Chicago: Year Book
Medical Publishers, Inc. 1969,

Fischbach, Gerald D. "Mind znd Brain". Scientific American, September, 1992, 48-
57.

Flanagan, Owen. Consciousness Reconsidered. Cambridge: MIT Press. 1992,

Franklin, Jon. Molecules of the Mind. New York: Athenaeum. 1987

Fukushima, Kunihiko. "A Neural Network Model for Selective Attention." Tokyo:
NEK Science and Technical Research Laboratories 1-10-11, Kinuta, Setagaya,
Tokyo 157, Japan

Fuster, Joaquin M. Memory in the Cerebral Cortex: An Empirical Approach to
Neural Networks in the Human and Nonhuman Primate. Cambridge: The MIT
Press. 1995,

Garfield, Jay L., ed. Foundations of Cognitive Science: The Essential Readings.
New York: Paragon House. 1990.

Gao, Jia-Hong, Lawrence M. Parsons, James M. Bower, Jinhu Xiong, Jingi Li, Peter
T, Fox. "Cerebellum Implicated in Sensory Acquisition and Discrimination Rather
than Motor Control." Science VOL N.d. 1996, 1-3.

Gardner, Howard. Frames of Mind: The Theory of Multiple Intelligences. New
York: Basic Books., 1983,

—. The Mind's New Science: A History of the Cognitive Revolution. New York:
Basic Books. 1985.

---. The Shattered Mind: The Person Ajfter Brain Damage. New York: Vintage
Books. 1976,

Gerefa. in Baugh, Albert C. A Literary History of England. New York: Appleton-
Century-Crofts, 1967, 36.

Gershon, Elliot 8. and Ronald O. Rieder. "Major Disorders of Mind and Brain."
Sclentific American, Vol 267, Nr. 3, September 1992 126-133.

Gleick, James. Chaos: Making a New Science. New York: Penguin Books. 1988.

Goldman-Rakic, Patricia §. "Working Memory and the Mind." Sefentific American,
Vol 267, Nr. 3, September 1992, 110-117,

Gray, Henry. Anatomy. New York: Bounty Books. 1977.

Guthrie, Louise, James Pustejovsky, Yorick Wilks, and Brian M, Slator. "The Role
of Lexicons in Natural Language Processing." Communications of the ACM. JAN
1996, 63-72.

Harnad, Stevan. "Grounding Symbols in the Analog World with Neural Nets: a
Hybrid Model" Think Quarterly, Vol 2, No. 1, 1993. Instituut voor Taal- en
Kennistechnologie (http.//tkiwww_kub.nl:2080/tki/Docs/Thnk)

Haugeland, John, ed. Mind Design: Philosophy, Psychology, Artificial Intelligence.

101



Cambridge: The MIT Press. 1988.

Haykin, Simon. Neural Neiworks - A Comprehensive Foundation. New York:
Macmillan College Publishing Company, 1994,

Hebb, Donald O. The Organization of Behavior. New York: Wiley, Introduction
and Chapter 4, "The first stage of perception: growth and assembly,” 1949. xi-
xix, 60-78.

Hilgard, Ernest R. Theories of Learning. New York: Appleton-Century-Crofts, Inc.
1956.

Hinton, Geoffrey E. "How Neural Networks Learn from Experience.” Scientific
American, Vol 267, Nr. 3, September 1992, 144-151.

Hofstadter, Douglas. Fluid Concepts and Creative Analogies: Computer Models of
the Fundamental Mechanisms of Thought, New York: Basic Books. 1995

---. Gédel Escher, Bach: an Eternal Golden Braid. New York: Vintage Books.
1980.

---. What is the Meaning aof the Word T'? The Grace A. Tanner Lecture in Human
Values. Cedar City, Utah: Southern Utah State College. 1982 111

---. Metamagical Themas: Questing for the Essence of Mind and Pattern. New
York: Basic Books, Inc., Publishers. 1985.

---. The Mind's I: Famasies and Reflections on Self and Soul. New York: Bantam
Books. 1982.

Honavar, Vasant and Leonard Uhr, "Brain-structured connectionist networks that
perceive and learn.” Computer Sciences Technical Report # 843. Madison:
University of Wisconsin. April 1989,

-. "Experimental Results Indicate that Generation, Local Recepiive Fields and
Global convergence Improve Perceptual Learning in Connectionist Networks."
Computer Sciences Technical Report # 805. Madison: University of Wisconsin,
November 1988,

---. "A Note on the Symbol Grounding Problem and its Solution." Think Quarterly,
Vol. 2, No. 1, 1993 Instituut voor Taal- en Kennistechnologie
(http://tkiwww kub.nl:2080/tki/Docs/Think)

---. "A Network of Neuron-Like Units that Learns to Perceive by Generation as Well
as Reweighing of its Links." Computer Sciences Technical Report # 793. Madison:
University of Wisconsin. September 1988,

Hopfield, J. J. "Neural networks and physical systems with emergent collective
computational abilities." Proceedings of the National Academy of Sciences 79;
2554-2558. 1982

Huang, X. D, Y. Ariki, and M. A. Jack, Hidden Markov Models for Speech
Recognition, Edinburgh University Press, 1990,

Huang, Zezhen and Anthony Kuh, "A Combined Self-Organizing Feature Map and
Multilayer Perceptron for Isolated Word Recognition", IEEE Transactions On
Signal Processing, VOL. 40, NO. 11, November, 1992

102



Hubel, David H. "A big step along the visuval pathway.” MNature. Vol 380, 21 March
1996, 197-198.

---. Eye, Brain, and Vision. New York: Scientific American Library. 1988,

Jacquette, Dale. Philosophy of Mind, Englewood Cliffs, NJ:. Prentice Hall, 1994,

Johnstone, Rufus A. "Female preference for symmetrical males as a by-product of
selection for mate recognition." Nature, VOL 372, 10 NOV 1994, 172-175.

Kandel, Eric R. and Robert D. Hawkms. "The Biological Basis of Learning and
Individuality." Scientific American, Vol 267, Nr. 3, September 1992, 78-86.

Kangas, Jari. On the Analysis of Pattern Sequences by Self-Organizing Maps
(Doctoral Thesis), Helsinki University of Technology, 1994

Kangas, Jari; Kan Torkkola and Mikkoe Kokkonen, "Using SOMS as Feature
Extractors for Speech Recognmition”. N.d.

Kasabov, N. and E. Peev. "Phoneme Recogmtion with Hierarchical Self Organsed
Neural Networks and Fuzzy Systems - A Case Study”, in JCANN '94,
FProceedings of the International Conference on Artificial Neural Networks, Vol
1, Part 2., pp. 201 - 204

Kimura, Doreen. "Sex Differences in the Brain." Scientific American, Vol 267, Nr. 3,
September 1992, 118-125,

King, P. J. and E. H. Mamdani. "The Application of Fuzzy Control Systems to
Industrial Processes.” NT, SEP 1976, 235-242,

Klatt, D. H. "Review of Text-To-Speech Conversion for English", J454
82(3).737-793, Sept 1987, :

Klimesch, Wolifgang, The Structure of Long-Term Memory. Hillsdale: Lawrence
Erlbaum Associates, 1994, 12.

Knecht, 8., E. Kunesch and A. Schnitzler. "Parallel and serial processing of haptic
information in man: Effects of parietal lesions on sensorimotor hand function."
Neuropsychologia, Vol. 34, No, 7, 669-687, 1996,

Knowles, Dudley, ed. Fxplanation and its Limits, Cambridge: Cambridge University
Press. 1990,

Kohonen, Teuvo. "The Adaptive-Subspace SOM (ASSOM) and its Use for the
Implementation of Invariant Feature Detection." Paris: FProc. ICANN '95. 1995,

Kong, Seong-Gon and Bart Kosko. "Comparison of Fuzzy and Neural Truck Backer-
Upper Control Systems." Ch. 9. n.d. 339-361.

Kosslyn, Stephen M. and Olivier Koenig. Wet Mind: The New Cognitive
Neuroscience, New York: The Free Press. 1995,

Lesahey, Thomas H. and Richard Jackson Harris. Learning and Cognition.
Englewood Chffs, NI: Prentice Hall 1993,

Lee, K-F. Automatic Speech Recognition: The Development of the SPHINX System,
Kluwer, 1989,

Lippman, Richard P. "Review of Neural Networks for Speech Recognition”, Neural
Computation 1(1): 1-38, 1989, MIT.

103



Lynch, Gary. Synapses, Circuits, and the Beginnings of Memory. Cambridge: The
MIT Press. 1986.

Mack, Walter N. and Elizabeth A Leistikow. "Sands of the World." Scientific
American. Volume 275, Number 2, August 1996

Mammone, Richard J., Ed. Artificial Neural Networks of Speech and Vision,
Chapman & Hall, London. 1994,

Marr, David. ¥ision. San Francisco: W. H. Freeman, 1982. 19-38, 54-61.

Martini, Frederick H. Fundamentals of Anatomy and Physiology, 3d ed. Englewood
Cliffs: Prentice Hall. 1995, 468,

McCarthy, Rosaleen A. and Elizabeth K. Warrington. Cognitive Neuropsychology: A
Clinical Introduction. San Diego: Academic Press. 1990,

McClelland, James L. and Jeffrey L. Elman. "The TRACE Model of Speech
Perception”, Cognitive Psychology 18, 1-86, 1986,

Merleau-Ponty, Maurice. The Primacy of Perception. Northwestern University
Press. 1964.

Minsky, Marvin, The Society of the Mind. New York: Simon and Schuster, 1986,

Miikkulainen, Risto. DISCERN: A Distributed Artificial Neural Network Model of
Script Processing and Memory. PhD Dissertation, Technical Report UCLA-AI-
90-05. Los Angeles: Computer Science Department, University of Califormia.
September 1990.

---. "A Distnibuted Feature Map Model of the Lexicon." Proceedings af the 12th
Annual Conference of the Cognitive Science Society, 1990.

---. "Subsymbolic Case-Role Analysis of Sentences with Embedded Clauses."
Cogmnitive Science, in press.

---. Subsymbalic Natural Language Processing: An Integrated Model of Scripts,
Lexicon, and Memory, Cambridge: MIT Press, 1993,

Mitkkulainen, Risto and Michael G. Dyer. "Encoding Input/Output Representations in
Connectiorust Cognitive Systems.” Techmeal Report UCLA-AI-88-16. Los
Angeles: Artificial Intelligence Laboratory, Computer Science Department,
University of California. 1988,

---. "Natural Language Processing With Modular PDP Networks and Distributed
Lexicon." Cognitive Science, 15 (3): 343-399, 1991.

Miikkulainen, Risto and Gert Westermann. "Verb Inflections in German Child
Language: A Connectionist Account." Proceedings of the 16th Annual
Conference of the Cognitive Science Society, 1994,

Millikan, Clark H., Chairman and Frederic L. Darley, ed. Brain Mechanisms
Underlying Speech and Language. New York: Grune and Stratton. 1967,

Moriarty, David E. and Risto Mikkkulamen. "Efficient Reinforcement Learning
through Symbiotic Evolution." Machine Learning 22, 1996, Boston: Kluwer
Academic Publishers. 1996.

Mukerjee, Madhusree. Scientific American, Vol 275, Nr. 5, November 1996, 28-36.

104



Nagel, Ernest. The Structure of Science. New York: Harcourt, Brace & World, Inc.
1961.

Nix, David A. and Andreas 8. Weigand. "Estimating the Mean and Vanance of the
Target Probability Distribution." IEEE. 1994,

O'Connor, D. J. and Brian Carr. Introduction to the Theory of Knowledge, Brighton,
Sussex: The Harvester Press. 1982

Ornstem, Robert and Richard F. Thompson. The Amazing Brain. Boston: Houghton
Mifflin. 1984.

O'Shaughnessy, D. Speech Communication: Human and Machine, Addison-Wesley,
MA, 1987,

Palm, Gunther and Ad Aertsen. Brain Theory. New York: Springer-Verlag. 1986,

Penficld, Wilder. The Mystery of the Mind. Princeton: Princeton University Press,
1975,

Penfield, Wilder and Lamar Roberts. Speech and Brain-Mechanisms. Princeton:
Princeton Unrversity Press. 1959,

Phillips, John L., Jr. The Origins of Intellect: Piaget's Theory. San Francisco: W.
H. freeman and Company. 1975.

—-. Piaget's Theory: A Primer. San Francisco: W. H. Freeman and Company, 1981.

Pinker, Stephen. The Language Instinct: How the Mind Creates Language New
York: Harper Peremmal, 1995,

Pinker, Stephen and Jacques Mehler, eds. Connections and Symbols, Cambridge: MIT
Press, 1988,

Pons, Tim. "Novel sensations in the congenitally blind." Narure, Vol 380, 11 April
1996, 479-480,

Posner, M. 1. & M. E. Raichle. "Précis of Images of Mind." Behavioral and Brain
Sciences (1995) 18, 327-383.

Qumlan, Philip T. Connectionism and Psychology: A Psychological Perspective an
New Connectionist Research. Chicago: University of Chicago Press. 1991,

Rabiner, L. R, and R. W, Schafer. Digital Processing of Speech Signals, Prentice
Hall, 1993,

Rabiner, L. R. and B-H Juang. Fundamenials of Speech Recognition, Prentice Hall,
1993,

Rahmann, H. and M. Rahmann. The Neurobiological Basis of Memory and Behavior.
New York: Springer-Verlag. 1992, 220,

Rapaport, David. Emotions and Memory. New York: International Umversities
Press. 1971

Renals, Steve and Nelson Morgan. "Connectionist Probability Estimation in HMM
Speech Recognition”, JCST, TR-92-081, December 1992,

Restak, Richard M. The Brain: The Last Frontier. Garden City, New York:
Doubleday & Company, Inc. 1979,

---. Brainscapes. New York: Hyperion. 1995.

105



—-. The Mind. New York: Bantam Books. 1988,

---. The Modular Brain. New York: Touchstone. 1994.

Revonsuo, Antti, Matti Kamppinen and Seppo Sajama. Consciousness in Philosophy
and Cognitive Neuroscience, Hillsdale, NJ: Lawrence Erlbaum Associates,
Publishers, 1994,

Rich, Elaine and Kevin Knight. Artificial Intelligence. New York: Mecgraw-Hill, Inc.
1991,

Rock, Irvin. Perception. New York: Scientific American Library. 1984

Rumelhart, David E. Towards a Microsiructural Accounr of Human Reasoning. Ch. 3
in Davis, Steven. Connectionism: Theory and Practice. Oxford University Press,
New York, 1992,

Ryle, Gilbert. The Concept of Mind. Chicago: The University of Chicago Press.
1949,

Scarborough, Don L., Ben O. Miller, and Jacqueline A. Jones. "Connectionist Models
for Tonal Analysis." in Todd et al (q.v.) Music and Connecrionism. 1989,

Schafer, . David, Darrell Whitely, and Larry J. Eshelman. Combinations of Genetic
Algorithms and Neural Networks: A Survey of the State of the Art. Los Alamitos,
CA: IEEE Computer Society Press. 1992,

Schafer, R. W, & J. D. Markel, eds., Speech Analysis, IEEE Press, 1979.

Schwartz, Eric L., ed. Compurational Neuroscience. Cambridge: MIT Press. 1990.

Searle, John. Minds, Brains and Science. Cambridge: Harvard University Press.
1984,

- "The Failures of Computationalism." (Response to Stevan Harnad (q.v.),
"Grounding Symbols . . ") Think Quarterly, Vol 2, No._ 1, 1993, Instituut voor
Taal- en Kennistechnologie (http://tkiwww kub.nl:2080/tki/Docs/Think)

Seidenberg, Mark 8. Connectionism without Tears. Ch. 4 m Davis, Steven.
Connectionism: Theory and Practice. Oxford University Press, New York, 1992,

Siegelman, Hava. "The Super-Turing Result.” Science, n.d. 1994,

Selkoe, Denms J. "Aging Brain, Aging Mind." Scientific American, Vol 267, Nr. 3,
September 1992, 134-142.

Serebnakoff, Victor. Brain. London: Davis-Poynter. 1975,

Shatz, Carla . "The Developing Brain." Scientific American, Vol 267, Nr. 3,
September 1992, 60-67

Shepherd, Gordon M, Neurobiology. New York: Oxford University Press. 1988

---. "The Significance of Real Neuron Architecture for Neuwral Network Simulations "
in Enic Schwartz (q.v.) Computational Neuroscience, 82-96

Shinbrot, Troy, Celso Grebogi, Edward Ott and James A Yorke. "Using small
perturbations to control chaos " Narure, Vol 363, 3 JUNE 1993, 411-417.

Shrobe, Howard E. Exploring Artificial Intelligence. San Mateo, CA: Morgan
Kaufiman Publishers, Inc. 1988.

Smolensky, Paul. "On the proper treatment of Connectionism." Behavioral and

106



Brain Sciences (1988) 11, 1-74,

Soler, O. & R van Hoe. "BAR: A Connectionist Model of Bilingual Access
Representations”, in JCANN '94, Proceedings of the International Conference on
Artificial Neural Networks, Vol 1, Part 2. 263-267

Springer, Sally P. and Georg Deutsch. Lefi Brain, Right Brain, New York: W. H.
Freeman and Company. 1989,

Swerdlow, Joel L. "Quiet Miracles of the Brain." Narional Geographic Vol 187, No.
6. June 1995 2-41.

Tanney, Rick W., "On the Relation of Ego Boundary and Neurosis.” Master's Thesis.
Ashland Theological Seminary, 1974,

---. "Quirks and Momentos: a Discontinuous Universe." In manuscript.

---. "Toward a Connectionist Lexicon and the Possibility of Disambiguation." In
Manuscript.

Todd, Peter M. and D. Gareth Loy. Music and Connectionism. Cambnidge: The
MIT Press. 1991,

Totora, Gerard J. Principles of Human Anatomy, 6th ed. New York: Harper Collins
Publishers Inc. 1992,

Umbanhowar, P. B., F. Melo & H. L. Swinney. "Localized excitations in a vertically
vibrated granular layer." Nature 382, 793-796. 1996.

Vander, Arthur J., James H. Sherman and Dorothy 8. Luciano. Human Physiology:
The Mechanisms of Body Function. New York. McGraw-Hill Book Company.
1980

von der Malsburg, Christoph. "Sensory segmentation with coupled neural oscillators.”
Biological Cybernetics 67, 233-242 (1992) Springer-Verlag 1992,

Walter, W. Grey. The Living Brain. New York: W. W. Norton & Company Inc.
1963.

Waibel, A. Prosedy and Speech Recognition, Morgan Kaufman, 1988,

Waibel, Alex. "Modular Construction of Time-Delay Neural Networks for Speech
Recognition", Neural Computation 1, 39-46, 1989 MIT.

Waibel, Alexander, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and
Kevin J. Lang , "Phoneme Recognition Using Time-Delay Neural Networks",
IEEE Transactions on Acoustics, Speech, and Signal Processing, VOL. 37, NO.
3, 1989,

Waibel, A. and K-F. Lee, eds., Readings in speech Recognition, Morgan Kaufman,
1990.

Waibel, Alex; Louise Osterholtz, Hiroaki Saito, Otto Schmidbauer, Tilo Sloboda, and
Monika Woszczyna. "JANUS: Speech-to-Speech Translation Using Connectionist
and Non-Connectionist Techniques"

Wasserman, nn. Neural Computing: Theory and Practice. n.p. van Nostrand
Remhold. 1989, 127-149,

Wermter, Stefan. "Integration of Semantic and Constraints for Structural Noun

107



Phrase Disambiguation.” Speech and Neural Language 1486-1491, nd.

West, Thomas G. In the Mind's Eye. Buffalo, New York: Prometheus Books. 1991.

Wolf, Fred Alan. The Dreaming Universe, New York: Touchstone/Simon &
Schuster. 1994

Wright, J. J, and D. T. I. Liley. "Dynamics of the brain at global and microscopic
scales: Neural networks and the EEG." Behavioral and Brain Sciences (1996)
19, 285-320.

Zeki, Semir. "The Visual Image in Mind and Bran." Scienrific American, Vol 267,

Nr. 3, Septernber 1992. 68-76.

Zue, Victor W. "From Signals to Symbols to Meaning: On Machine Understanding of
Spoken Lanpuage”, Proceedings of the XIIth Congress of Phonetic Sciences, Abc-
en-Provence, France, AUG 19-24, 1991, Vol. 1 pp. 74-86

na. "A Concurrent Hybrid Genetic/Neural Network Learming algorithm for MIMD
Shared Memory Machines." Machine Learning. 127-143. nd.

WWW: web sites with pertinent information or links:

fip://ftp.ira uka.de/pub/neuron/

http://neuro.med.cornell eduw/VL/

http://tkiwww.kub.nl: 2080/tki/Docs/Think

http://www.comlab.ox.ac. uk/archive/

http://waw.cs.utexas. edu/usrs/ailab

http://www.cs.reading. ac.uk/people/dwc/ai html

http://www.cs.utexas edu/users/nn

http://www._cs.utoronto, ca/~zoubin/

http://www.sei.cmu.edu/

http://www. yahoo.com/Science/Engineering/Electrical_Engineering/Neural Networks/

108



VITA

Rack Willard Tanney was borm m New Castle, Pennsylvama on May 28, 1948, the son
of Lillian Rose Fullwood and Alan Ellsworth Porter. He changed his name from Alan
Ellsworth Porter, Junior, to include his step-father's (Willard Robert Tanney) first and
last names. After completing his work at Lexington High School, Lexington, Ohio, in
1966, he entered the Mansfield Branch of The Ohio State University in Mansfield,
Ohio, continuing after two years at the main campus in Columbus, QOhio, where he
received a Bachelor of Arts in English in June, 1970, While working as a
Psychological Nurse Technician at the Mansfield General Hospital, he entered the
graduate school of Ashland College, Ashland Theological Seminary, in Ashland, Ohio
where he received a Master of Divinity in Pastoral Counseling and Psychology in June,
1974. His thesis was entitled "On the Relation of Ego Boundary and Neurosis." He
enlisted in the United States Army in September, 1974, and was stationed at the US
Army Research Institute of Environmental Medicine in Natick, Massachusetts. While
there, he participated in many studies of environmental injury and stress relating to
cold weather, high altitude, work stress, and jet lag. By invitation of the local Ans
Workshop, he held poetry workshops, and self-published a collection of his own work
entitled "Re-Verse #1" in 1977. In April, 1981, he transferred to the 2d General
Hospital, Landstuhl Regional Army Medical Center in Landstuhl, West Germany,
where he was the Non-Commissioned Officer in Charge of the Mental Health Clinic.
While there, he entered the graduate program of Boston University, Metropolitan
College, and received a Master of Science in Computer Information Systems in 1984,
In April, 1984, he transferred to Ireland Army Hospital at Fort Knox, Kentucky,
where he was the Non-Commissioned Officer in Charge of the Social Work Service.
In March, 1985, he transferred to the US Army Military Community Activity in
Niurnburg, West Germany, where he successively held the jobs of Non-Commissioned
Officer in Charge of the Alcohol and Drug Abuse Prevention Control Program,
Education Coordinator, and Assistant Education Coordinator. He began teachmg
Computer Science for the University of Maryland, European Division. In September,
1987, he transferred to the US Army Research Unit-Europe in Heidelberg, West
Germany, where he was Detachment Sergeant. He supervised research assistants in
studies imvolving grief recovery after training accidents and various statistical analyses.
He entered the undergraduate program of the University of Maryland, and received a
Bachelor of Science degree in Computer Science in 1990, while continuing to teach
for the University in Heidelberg and at remote locations m Germany. In November,
1990, he transferred to Brooke Army Medical Center at Fort Sam Hounston, Texas,
where he was successively Administrative Non-Commissioned Officer for Social Work
Service, Non-Commussioned Officer in Charge of the Mental Health Clinic, Special
Projects Non-Commissioned Officer and Non-commuissioned Officer in Charge for the
Department of Psychiatry, and Assistant Administrative Non-Commissioned Officer

109



for Headquarters, Brooke Army Medical Center. In Fall 1992, he enrolled in The
Graduate School at the University of Texas in Austin. In September , 1993, he
transferred to the 85th Combat Stress Control Detachment at Fort Hood, Texas,
where he served as Detachment First Sergeant for the activation of the unit, In
November, 1993, he was appointed Information Management Officer for the 61st
Area Support Medical Battalion at Fort Hood. He retired from the US Army with
twenty years of active duty service with the rank of Sergeant First Class on the First of
October, 1994, He teaches Computer Science for Palo Alto Community College in
San Antonio, Texas and freelances as a computer consultant and instructor in the San
Antonio area.

Permanent Address: 8111 Zigler Road
Sterling, Ohio 44276-0073
rtanne01 @interserv.com

This report was word-processed by the author using a 90-MHz Pentium platform
running Wordstar for Windows, and was printed on an Qkimate QL400.

110



