
Copyright

by

Bryan Connor Silverthorn

2012

The Dissertation Committee for Bryan Connor Silverthorn

certifies that this is the approved version of the following dissertation:

A Probabilistic Architecture for Algorithm Portfolios

Committee:

Risto Miikkulainen, Supervisor

Bart Selman

Peter Stone

Adam Klivans

Pradeep Ravikumar

A Probabilistic Architecture for Algorithm Portfolios

by

Bryan Connor Silverthorn, B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2012

For Sarah, who sees the best in me.

Acknowledgments

This dissertation was reached—inevitably—on a meandering path, but that path was made

far smoother by the guidance of my advisor, Risto Miikkulainen. His consistently construc-

tive advice and his unshakeable optimism made this work possible.

Thanks, too, are due to my fellow conspirators in directional statistics, Joe Reisinger

and Austin Waters, who gave me something completely different to think about, and a great

excuse to cite Machiavelli. I am also immensely grateful for the understanding of Michael

Madole and Sydney Jones, two friends who put up with, on a daily basis, my occasionally

grudging awareness of the outside world. The equal patience and love shown by my family

has been a firm anchor when I have needed it.

Thanks most of all to The Flightpath, which I visited rarely; but often enough.

Finally, this entire research area owes much to the tireless efforts of past and present

SAT competition organizers, particularly Olivier Roussel, Daniel Le Berre, and Laurent

Simon, as well as the countless solver authors who have made automated logical reasoning

the impressive tool that it is, and who have willingly seen their work assimilated into the

portfolio collective.

BRYAN CONNOR SILVERTHORN

The University of Texas at Austin

May 2012

v

A Probabilistic Architecture for Algorithm Portfolios

Publication No.

Bryan Connor Silverthorn, Ph.D.

The University of Texas at Austin, 2012

Supervisor: Risto Miikkulainen

Heuristic algorithms for logical reasoning are increasingly successful on computationally

difficult problems such as satisfiability, and these solvers enable applications from circuit

verification to software synthesis. Whether a problem instance can be solved, however,

often depends in practice on whether the correct solver was selected and its parameters ap-

propriately set. Algorithm portfolios leverage past performance data to automatically select

solvers likely to perform well on a given instance. Existing portfolio methods typically se-

lect only a single solver for each instance. This dissertation develops and evaluates a more

general portfolio method, one that computes complete solver execution schedules, includ-

ing repeated runs of nondeterministic algorithms, by explicitly incorporating probabilistic

reasoning into its operation. This modular architecture for probabilistic portfolios (MAPP)

includes novel solutions to three issues central to portfolio operation: first, it estimates

solver performance distributions from limited data by constructing a generative model; sec-

ond, it integrates domain-specific information by predicting instances on which solvers

exhibit similar performance; and, third, it computes execution schedules using an efficient

and effective dynamic programming approximation. In a series of empirical comparisons

designed to replicate past solver competitions, MAPP outperforms the most prominent al-

vi

ternative portfolio methods. Its success validates a principled approach to portfolio oper-

ation, offers a tool for tackling difficult problems, and opens a path forward in algorithm

portfolio design.

vii

Contents

Acknowledgments v

Abstract vi

Contents viii

List of Tables xii

List of Figures xiii

Acronyms xv

Symbols xviii

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Why Algorithm Portfolios? . 3

1.3 General Portfolio Operation . 4

1.4 The Modular Architecture for Probabilistic Portfolios 6

1.5 Outline of the Dissertation . 9

Chapter 2 Background 11

2.1 Satisfiability . 11

viii

2.1.1 SAT and Its Solvers . 12

2.1.2 Solving SAT is Important . 15

2.1.3 Solving SAT is Difficult (But Not Too Difficult) 17

2.1.4 Solving SAT is Empirical . 19

2.2 Maximum Satisfiability . 21

2.3 Pseudo-Boolean Satisfiability . 22

2.4 Answer Set Programming . 22

2.5 Graphical Models and Generative Processes 24

2.6 Conjugacy and the Dirichlet-Multinomial Pair 26

2.7 Conclusions . 27

Chapter 3 Related Work 28

3.1 Economics and Naïve Parallel Portfolios 28

3.2 Algorithm Selection . 30

3.2.1 The Selection Problem . 30

3.2.2 Supervised Selection and SATzilla 31

3.2.3 Other Supervised Portfolios . 33

3.2.4 Non-Model-Based Portfolios . 35

3.3 Solver Execution Scheduling . 37

3.4 Bandit Portfolios . 38

3.5 Domain-Focused Probabilistic Models . 39

3.5.1 Models of Solver Performance . 40

3.5.2 Models of Natural Language Text 41

3.6 Conclusions . 42

Chapter 4 Modeling Solver Performance 43

4.1 Run Time Distributions and Las Vegas Algorithms 43

4.2 General Methodology . 45

ix

4.3 A Family of Run Time Distribution Models 46

4.3.1 Maximum-Likelihood Multinomials 46

4.3.2 Multinomials with Uniform Smoothing 47

4.3.3 Multinomials with Non-Uniform Smoothing 48

4.3.4 Multinomials with Independent Mixture Smoothing 50

4.3.5 Multinomials with Linked Mixture Smoothing 51

4.4 Model Inference and Application . 53

4.5 Comparing Models Empirically . 54

4.6 Visualizing Model Output . 56

4.7 Modeling for Exploratory Visualization 60

4.8 Conclusions . 64

Chapter 5 Integrating Instance Features 66

5.1 Motivation . 66

5.2 A Review of Instance Features . 67

5.3 Feature Integration as Classification . 70

5.4 Experiments . 73

5.5 Conclusions . 74

Chapter 6 Planning Solver Execution 78

6.1 Planning for a Known Run Time Distribution 79

6.2 Planning for an Uncertain Run Time Distribution 82

6.3 Experimental Evaluation . 84

6.4 Conclusions . 88

Chapter 7 Evaluation in SAT 89

7.1 Competition Benchmarks and Methodology 90

7.2 Evaluating Model Utility . 92

7.3 Comparison with ppfolio . 94

x

7.4 Comparison with SATzilla2009 . 97

7.5 Comparison with 3S . 102

7.6 Conclusions . 103

Chapter 8 Evaluations in PB, MAX-SAT, and ASP 110

8.1 Comparisons in Pseudo-Boolean Satisfiability 111

8.2 Comparisons in Maximum Satisfiability 115

8.3 Comparisons in Answer Set Programming 120

8.4 Conclusions . 125

Chapter 9 Discussion and Future Work 127

9.1 The Modeling Component . 127

9.2 The Feature Integration Component . 130

9.3 The Scheduling Component . 131

9.4 Parallelism and Beyond . 133

9.5 Conclusions . 135

Chapter 10 Conclusions 137

10.1 Summary of Contributions . 137

10.2 Closing Thoughts . 139

Bibliography 141

Vita 156

xi

List of Tables

2.1 An example SAT instance in CNF . 12

3.1 Features used in SATzilla . 32

5.1 Reduction in uncertainty for each category 73

7.1 Instance counts for SAT competitions . 90

7.2 Instance features in the SAT domain . 99

8.2 Instance features in the PB domain . 111

8.1 Constituent solvers in a PB portfolio . 115

8.3 Results of the 2011 PB solver competition 116

8.4 Constituent solvers in a MAX-SAT portfolio 118

8.5 Instance features in the MAX-SAT domain 118

8.6 Constituent clasp configurations in ASP 122

9.1 Example illustrating the suboptimality of planning 132

xii

List of Figures

1.1 Outline of MAPP operation . 7

2.1 Performance of SAT competition winners over time 18

2.2 Solvers’ best performances in the 2009 SAT competition 20

2.3 An example graphical model: a mixture of Gaussians 24

3.1 Architecture of algorithm-selection portfolios 34

4.1 Run time distribution of lingeling . 44

4.2 Log probability of test data under varied α 49

4.3 Plate diagrams of performance models . 52

4.4 Log probability of test data, varying K . 53

4.5 Log probability of test data, varying the model and sampling scheme 55

4.6 MAP estimates under each performance model 57

4.7 Inferred latent classes of solver performance 58

4.8 Inferred latent classes of solver performance 59

4.9 Component responsibilities over SAT 2007 instances 61

4.10 Categories of seriated SAT 2007 instances 62

4.11 Screenshot of the borg-explorer visualization tool 63

5.1 Run-success densities across variables/clauses 69

xiii

5.2 Reduction in uncertainty with feature set size 72

5.3 Feature coefficient weights across classifiers 75

5.4 Robustness of feature integration to feature quality 76

6.1 An example run schedule on SAT 2007 competition instances 79

6.2 Planner success rate at increasing bin counts 85

6.3 Plans computed over SAT 2011 competition categories 86

6.4 Planners’ performance on SAT 2011 competition categories 87

7.1 Instances solved under various models . 92

7.2 Portfolio performance relative to ppfolio 95

7.3 Plans employed versus ppfolio . 96

7.4 Portfolio performance relative to SATzilla2009 98

7.5 Plans employed versus SATzilla2009 101

7.6 Portfolio performance relative to 3S . 104

7.7 Plans employed versus 3S . 106

7.8 Plans employed versus 3S, continued . 107

7.9 Plans employed versus 3S, continued . 108

7.10 Plans employed versus 3S, continued . 109

8.1 Performance on PB 2010 instances . 114

8.2 Performance on MAX-SAT 2011 instances 121

8.3 Performance on claspfolio training instances 124

xiv

Acronyms

k-NN k-nearest neighbor. 34, 36, 74, 76, 93

AI artificial intelligence. 15, 17

ASP answer set programming. xi, 2–4, 9, 10, 15–17, 22, 23, 33, 34, 68, 105, 110, 118,

120, 125

BMC bounded model checking. 4, 17

BOW bag-of-words. 41

CDCL conflict-directed clause learning. 13, 14, 16, 18, 44, 79, 97, 103, 109

cdf cumulative distribution function. 71, 81

CNF conjunctive normal form. 12, 15, 16, 21, 23, 29, 31, 68, 113, 115, 118, 134

CP constraint programming. 36, 37

CPU central processing unit. 90, 94, 103, 116, 122

CV coefficient of variation. 99, 100

DPLL Davis-Putnam-Logemann-Loveland. 13, 14, 18, 23, 56, 68

EDA electronic design automation. 13, 16

xv

EM expectation maximization. 6, 53, 56, 64

GMM Gaussian mixture model. 25

IDE integrated development environment. 17

IP integer programming. 37, 102, 116

KDE kernel density estimation. 69

KRR knowledge representation and reasoning. 17

MAP maximum a posteriori. xiii, 54, 57

MAPP modular architecture for probabilistic portfolios. 3, 6–11, 15, 22, 28, 36, 37, 43, 46,

60, 61, 64, 66–68, 70–74, 76–78, 82, 88–91, 93–110, 113, 114, 116, 117, 121–125,

127, 131, 133–138

MAX-SAT maximum satisfiability. xi, 3, 10, 16, 17, 21–23, 34, 105, 110, 115, 117, 118,

120, 121, 125, 130

MDP Markov decision process. 37, 38, 83

ML maximum likelihood. 24, 47, 53

MLN Markov logic network. 17

PB pseudo-Boolean satisfiability. xi, 3, 10, 16, 17, 22, 23, 105, 110, 111, 113–118, 120,

125, 130

PB-DEC pure pseudo-Boolean satisfiability. 22

PB-OPT linear pseudo-Boolean optimization. 22

PDE partial differential equation. 30

xvi

pdf probability density function. 24

QBF quantified Boolean formulae. 16, 35, 125

QCP quasigroup completion problem. 29, 40

RTD run time distribution. 6–9, 44–48, 50, 52–57, 63, 70, 71, 76, 78, 80, 82, 84, 88, 94,

111, 118, 129–131, 135, 138

SAT satisfiability. xiii, 2–4, 9–13, 15–23, 29–31, 34, 36, 37, 43–45, 54, 56, 57, 61, 67–69,

77, 84, 88, 91, 93, 105, 110, 111, 113–116, 118, 120, 125, 131, 133, 135

SLS stochastic local search. 13, 14, 18, 20, 36, 44, 56, 60, 68, 84, 85, 103, 105, 106

SMT satisfiability modulo theories. 15–17, 125

SVM support vector machine. 68

SVR support vector regression. 34, 120

UKP unbounded knapsack problem. 9, 80, 84, 133

XOR exclusive-or. 14

xvii

Symbols

A the number of knapsack items or actions. 80

B the number of modeled histogram bins. 46, 48, 71, 79–81, 84, 128

C processor time cutoff. 79

I the number of problem instances. 46–51, 83

K the number of latent classes in a model. 50, 51, 53, 55

M the number of similar distributions labeled in classification. 71, 131

R the number of runs made by some solver on an instance. 46–51

S the number of solvers in a suite. 46–51, 71, 80, 81, 83

T the number of actions in a solver execution schedule. 79, 83

V the number of variables in a problem instance. 12

∆ the set of points on a simplex. 26

α an arbitrary vector of reals. 26, 27, 49–51

β an l1-normalized vector of reals. 24, 25, 50, 51, 54, 60, 71

ϕ a vector of reals representing instance features. 70

xviii

θ an l1-normalized vector of reals. 7, 26, 47–51, 71

δ the Kronecker delta. 47

Z the set of integers. 26

N the normal (Gaussian) distribution. 25

Dir the multinomial distribution. 26, 27, 48–51

Mul the multinomial distribution. 25, 26, 47–51

xix

Chapter 1

Introduction

When humans solve a problem for the first time, they learn from the experience of solving

it. They uncover patterns in the problem, they create new techniques to apply, and they

weigh the cognitive effort required by each technique. Humans also learn that a particular

solution strategy worked once, and that it may work again.

Such knowledge is valuable because a problem is rarely the only one of its kind. As

an airline chooses its flights, a school schedules its courses, or a hospital assigns employees

to shifts, many instances of the same type of problem must eventually be solved. As humans

solve these instances in sequence, the experience they gain allows them to improve their

solutions and increase their productivity over time. Even when humans solve problems

by leveraging computational tools, their presence in the problem-solving loop adds value

because of this ability to learn from experience. They learn to mitigate software quirks, to

make judgments about problem difficulty, to manipulate problem representations to better

suit their tools, and, crucially, to select the tools themselves, identifying those that perform

best on the problem at hand.

Can human guidance be removed from the problem-solving loop? Imagine a system

that adapts to the problems it sees, learning to solve them better over time, as humans

do. One important aspect of such adaptation is learning to use the tools that are best on

1

the problem at hand. The area of algorithm portfolios develops systems that attempt to

learn in this way. Portfolios automatically choose which computational tools to apply and

when to apply them, tailoring those decisions to each problem. This dissertation introduces

a new type of algorithm portfolio that, among other advantages, can better decide when

a constituent tool will benefit from multiple attempts to solve the same problem. This

chapter explains the motivation behind its development and behind the development of

algorithm portfolios in general, then outlines the ideas presented in this dissertation and the

new capabilities that they provide.

1.1 Motivation

Heuristic algorithms for logical reasoning have become indispensable tools in science and

industry. These solvers are increasingly successful on large instances of computationally

difficult problems such as satisfiability (SAT) and answer set programming (ASP), and lie at

the heart of applications from circuit verification (Clarke et al., 2001) to software synthesis

(Erkök et al., 2009), among many others (Naveh, 2010). The research progress in this

area has been remarkable and sustained. In SAT, for example, instances of more than

several hundred variables were considered out of reach less than twenty years ago (Selman

et al., 1993). Today, solvers routinely analyze hardware designs encoded as propositional

formulae involving millions of variables (Kautz and Selman, 2007).

Whether a problem instance can be solved, however, often depends in practice on

whether the correct solver was selected and its parameters appropriately set. The profusion

of successful new solvers has not been accompanied by successful new formal techniques

for understanding and predicting their behavior. Worse, each solver has strengths and weak-

nesses; none dominates empirical comparisons. The task of choosing a method to apply to

a given problem instance, what Rice (1976) termed the algorithm selection problem, is thus

both important and difficult. In practice, selection decisions are frequently subjective and

suboptimal.

2

Algorithm portfolios (Huberman et al., 1997) are a general class of methods for

automating such decisions. Based on solvers’ past performance and an instance’s superficial

appearance, they allocate computational resources and attempt to maximize the fraction of

those resources spent on an algorithm well-suited to that instance. Portfolios thus reduce

human effort. By analyzing problem instances more thoroughly, solver performance more

comprehensively, and allocation options more broadly than can a human user, they are also

able to improve overall performance in ways that humans cannot.

This dissertation presents a novel and effective portfolio approach: the modular ar-

chitecture for probabilistic portfolios (MAPP). It is built around the estimation, prediction,

and exploitation of complete solver performance distributions. It includes new techniques

for core aspects of portfolio construction and operation, and exhibits state-of-the-art per-

formance as a whole, including first-place finishes in two consecutive years of the pseudo-

Boolean satisfiability (PB) solver competition (Manquinho and Roussel, 2010, 2011). Its

modular design is motivated by the decomposition of an algorithm portfolio into three fun-

damental components. First, run time distributions are estimated from limited data. Second,

similar distributions are identified according to instance appearance. Third, solver execu-

tion schedules are computed for weighted mixtures of such distributions. The development

of each of these components, along with the MAPP approach as a whole, are the key con-

tributions of this dissertation.

1.2 Why Algorithm Portfolios?

This dissertation focuses on four problem domains in its evaluations: SAT, ASP, PB, and

maximum satisfiability (MAX-SAT). These domains include valuable computational ques-

tions, such as finding errors in a circuit or bugs in a program. These problems and their

importance are discussed further in Chapter 2.

From a worst-case perspective, solving these problems is intractable; solving them

in practice thus relies on heuristics. While these heuristics often succeed, intuition and

3

experience must guide how and when they are applied. Writing about a widely-used ASP

solver, Gebser et al. (2011b) noted that they “are unaware of any true application on which

clasp is run in its default settings”. Continuing along these lines, Gebser et al. (2011a)

wrote that “choosing the right parameters often makes the difference between being able to

solve a problem [and] not”.

These statements can be applied to many other domains. For example, formal ver-

ification plays a vital role in processor development at Intel Corporation, where bounded

model checking (BMC) based on SAT has been particularly successful at “targeted bug

hunting” (Kaivola et al., 2009). The custom SAT solver developed by Intel, named Eureka,

has been invoked millions of times by hundreds of different projects. To maintain robustness

against this heterogeneous set of inputs, however, they implement a variety of interchange-

able heuristics, and draw on years of human experience to apply specific configurations

to particular domains (Nadel, 2011). Modern algorithm portfolio systems seek to acquire,

from data, some of the benefits of such experience. They may, therefore, benefit any user

needing to apply a tool for logical reasoning to many different inputs.

One motivation for the development of portfolio methods is therefore pragmatic:

they address a demonstrated practical need, one shared by users of heuristic solvers across

many different domains. Another motivation is idealistic. Although empirical evidence,

rather than analytical knowledge, is typically required to apply heuristics effectively in

problem solving, that evidence should nonetheless be applied in a principled way. An

algorithm portfolio system codifies a set of principles for leveraging empirical evidence in

solving computational problems with the aid of heuristics.

1.3 General Portfolio Operation

Any portfolio method is built around a solver suite: a small, finite set of arbitrary algorithms

that take any instance of some problem domain as input. These solvers may be different

algorithms, different parameterizations of the same algorithm, or some mixture of the two.

4

After executing for some run time, potentially infinite or nondeterministic, a solver may

return a solution to the instance; if a solution is returned, it is guaranteed to be correct. In

practice, computational resources are constrained, and the length of a solver’s run is limited

to some cutoff value.

A portfolio acts as a solver like any other. It takes an instance as input, is subject

to a run time cutoff, and may or may not return a solution under those constraints. Unlike

a typical solver, however, it does not attempt to solve the instance directly. Instead, it acts

through its suite of solvers, passing them the instance to be solved and allocating processor

time to different solvers according to the strategy it employs. Members of a portfolio’s

solver suite are often referred to as subsolvers.

Portfolio methods succeed when they are able to exploit patterns in solver perfor-

mance specific to a particular distribution of problem instances. To find such patterns, they

analyze performance on training instances assumed to be drawn from the same distribu-

tion they will encounter in testing. Data collection on those training instances may entail

running every solver on every instance. Portfolio training is, therefore, usually an offline

process.

Simple portfolio strategies are often employed manually by practitioners, without

explicitly naming them as such. One example is the common practice of evaluating multiple

solvers on a set of instances in order to select the single solver with the best observed

performance, to be used thereafter. This strategy will be used as a baseline in many of the

experiments to follow.

More sophisticated portfolio strategies take advantage of instance features, i.e.,

efficiently-computable properties of an instance that may offer clues to solver performance.

The SATzilla and claspfolio systems, for example, use the features of an instance

to predict the expected computational cost for each solver of obtaining a solution, then ex-

ecute the one solver believed likely to incur the least cost (Xu et al., 2008a; Gebser et al.,

2011b). However, like most existing methods, they treat solvers as effectively deterministic,

5

and restrict themselves to the algorithm selection problem. The following section presents

a high-level picture of MAPP, the more general approach developed in this dissertation.

1.4 The Modular Architecture for Probabilistic Portfolios

The fundamental principle of MAPP is to represent portfolio belief in terms of a subjective

discrete probability distribution over solver performance distributions. An individual solver

exhibits a fixed distribution over possible run times on a given problem instance; a suite

of solvers exhibits multiple distributions on an instance, one for each solver it contains. A

solver suite and a distribution over possible problem instances thus define, together, a distri-

bution over such groups of run time distributions (RTDs). MAPP represents its knowledge

about this distribution over distributions, acquired in training, as a finite set of possible

groups of RTDs, weighted by their probabilities.

MAPP is a modular architecture. Each of its three high-level components is respon-

sible for an essential task in manipulating or leveraging its subjective belief representation.

First, in training, a solver performance model establishes the portfolio’s prior belief. The

parameters of this model are fit to observed training runs with expectation maximization

(EM), and form estimates of the RTD of each solver on each training instance. The uniform

distribution over per-instance groups of RTDs becomes the initial belief. Second, at test

time, information from domain-specific features is leveraged using a collection of super-

vised classifiers. These distribution similarity models predict training instances on which

solvers’ performance is likely similar to their performance on the test instance. These pre-

dictions are used to reweight the portfolio’s belief, and the result becomes its conditional

belief about solver performance on a specific instance. Third, a solver execution planner

computes a sequence of solver runs tailored to the portfolio’s conditional belief. The goal

of this sequence is to maximize the probability that one of its runs will succeed.

This architecture is designed to keep the concerns of its components separate while

enabling good performance. Portfolio belief, for example, is represented as a weighted,

6

Test

Instance
SAT?

Instance

Features

Execution

Schedule

Similarity

Models

d′1

d′2
...

Planner

θ1

θ2

...

EM

d11, . . .

d21, . . .
...,

. . .

Performance

Model

Training

Instance

Runs

Training

Instance

Features

Figure 1.1: The operation of MAPP, the modular architecture for probabilistic portfolios.

The elements of the architecture that are active only during the training phase are colored

blue; the elements that are active during the test phase are colored green. Dashed borders

indicate values that change for each test instance. The overall structure is centered around

a representation of uncertain belief as a set {θ1,θ2, . . . } of possible RTDs. This set is

established in training by a performance model. It is reweighted for each test instance

by a collection of supervised models that each predict its inter-RTD similarity d′i based

on appearance. An execution schedule is then computed and implemented based on this

conditional belief. Unlike existing portfolio methods, MAPP is thus able to make multiple

runs of multiple solvers on a single instance, when doing so makes success more likely.

finite set of possibilities because planning can be performed efficiently under that belief

representation. Feature integration is treated as classification so that this belief representa-

tion can be maintained while building on the mature techniques of supervised learning. The

explicit solver-performance modeling step is motivated by the expense of acquiring training

data; it can extract information even when not every solver is run on every training instance.

7

Before this dissertation expands on each component in the chapters to come, it is

helpful to review MAPP as a sequence of concrete steps carried out in two distinct phases.

During the training phase,

1. a suite of solvers is assembled;

2. each of those solvers is run zero or more times on each training instance;

3. observed run times are used, in combination with a probabilistic model of solver

performance, to estimate the complete distribution over run times for each solver on

each instance;

4. a matrix of pairwise distances between these RTDs is computed using an appropriate

measure of distance;

5. a vector of superficial features is computed for each training instance; and

6. discriminative models, one for each RTD, are trained to predict the similarity between

pairs of RTDs based on the features of their associated problem instances.

After training, the portfolio is ready to solve new instances. During the test phase that

follows,

1. a previously-unobserved problem instance is received, and is assumed to be drawn

from the same distribution as were instances during training;

2. its superficial features are computed;

3. the discriminative models constructed during training are used to predict the similar-

ity between solvers’ unknown RTDs on the new instance and their estimated RTDs

on each training instance;

4. the mixture over training-instance RTDs is reweighted to favor more similar in-

stances, and this mixture represents the portfolio’s subjective belief about solvers’

possible RTD on the new instance;

8

5. a dynamic-programming planner, based on a reduction to the unbounded knapsack

problem (UKP), computes a schedule of solver runs to maximize the probability of

success based on that subjective belief; and

6. the portfolio carries out that plan.

The entire process is illustrated in Fig. 1.1. This dissertation proceeds according to the

organizational lines suggested by the architecture itself, as the next section outlines.

1.5 Outline of the Dissertation

Chapter 2 describes the computationally difficult problem domains targeted in this work,

including SAT and ASP. It discusses the history and direction of solver development in

these areas, and motivates their position as the focus of algorithm portfolio research. It

also reviews the foundations of probabilistic graphical models and the discrete distributions

employed by this dissertation.

Chapter 3 surveys the wide array of existing research on portfolio methods, includ-

ing prominent, successful systems such as SATzilla (Xu et al., 2008a). It describes the

strengths and weaknesses of these architectures, and places MAPP in the context of the

field as a whole. Connections to other relevant work, such as the emergence of complex

hierarchical models of natural language text, are also described.

Chapter 4 focuses on the first module of MAPP. It develops a family of unsuper-

vised mixture models of solver performance. It uses these models to estimate, based on a

varying number of runs, complete distributions over run time for standard solver suites on

competition benchmarks. The models are then compared according to the accuracy of their

predictions.

Chapter 5 constructs the second module of MAPP. It applies supervised learning

to leverage instance features in this setting, using a standard classifier but maintaining the

mixture-of-RTDs belief representation central to this architecture. It quantifies the value of

9

such features in terms of modeling accuracy, and analyzes the predictive role of individual

features belonging to a standard set.

Chapter 6 introduces the third module of MAPP. It examines the problem of plan-

ning solver execution under a weighted set of possible solver performance scenarios. It

expands on the transformation of solver scheduling into a knapsack problem, and uses this

connection to apply dynamic programming. The resulting algorithm schedules solvers op-

timally in the case of certainty and approximately in the case of uncertainty.

Chapter 7 then combines the techniques of the preceding three chapters into the

full MAPP framework. Replicating the SAT solver competition environment to simulate

head-to-head-comparisons, it contrasts MAPP empirically with three of the most successful

existing portfolio methods. Chapter 8 extends these comparisons to PB, MAX-SAT, and

ASP.

Chapter 9 and Chapter 10 consider the dissertation in hindsight. The former sug-

gests directions for future work, and the latter summarizes the primary contributions of

the MAPP framework: a new direction in algorithm portfolio research, and an effective

problem-solving tool.

10

Chapter 2

Background

This chapter covers background material relevant to the development of the MAPP and the

techniques it employs. This review spans both the areas such as SAT to which it is applied,

and the conceptual tools such as probabilistic graphical models and maximum-likelihood

estimation from which it is fashioned. Furthermore, the chapter motivates some of the

choices made: Section 2.1, in particular, justifies the selection of SAT and its family of

related problems as the focus of portfolio development.

2.1 Satisfiability

This dissertation focuses primarily on the computationally difficult problem of SAT, which

asks whether any assignment of truth values to the variables of a given Boolean formula

can make that formula true. SAT is the classic NP-complete problem (Cook, 1971), often

serves as a target encoding for problems of interest in application-specific areas (Gomes

et al., 2008), and has long played an important role in algorithm portfolio research (Gomes

and Selman, 1997a). This section first reviews SAT and its solution methods, then makes

and supports three specific claims: first, that solving SAT is useful, both to industry and to

other research communities; second, that solving SAT is difficult, but not so difficult as to

11

Clause

(x ∨ y)

∧ (¬y ∨ ¬z)

∧ (¬x ∨ ¬z)

∧ (¬x ∨ y ∨ z)

Table 2.1: A small example instance of SAT, i.e., a Boolean formula in CNF. This instance

happens to be satisfiable: it is satisfied by x ∧ y ∧ ¬z, among other assignments. Inclusion

of the unit clause (z), however, would render the formula unsatisfiable.

be uninteresting; and, third, that effectively solving SAT is often an empirical question—

and that both developers and practitioners thus need a principled decision-making layer to

handle some of those empirical concerns. Taken together, these claims motivate SAT as the

primary testbed for portfolio research, both in this dissertation and in much of the related

literature.

2.1.1 SAT and Its Solvers

This review begins by covering the basic structure of SAT and SAT algorithms. The Boolean

formula representing an instance of the SAT problem is almost always expressed as an “and”

(∧) gate, or conjunction, over groups of “or” (∨) gates, or disjunctions. This scheme is

termed conjunctive normal form (CNF). The instance presented by Table 2.1, for example,

is a conjunction of four clauses. Each clause consists of some number of literals—symbols

representing Boolean variables, optionally negated—joined by ∨s.

Does any assignment of truth values to the V variables in this formula make it evalu-

ate to true? Naïvely, establishing the answer to this question involves generating and testing

every possible such assignment, of which there are 2V . From a worst-case perspective, of

course, no subexponential-time approach is known. In practice, however, formulae of inter-

12

est often have common structural properties that can be exploited by a solver implementing

an appropriate heuristic.

The methods employed by modern SAT solvers are the fruit of a long and active

research history. Seminal work includes that of Selman et al. (1994) on stochastic local

search (SLS), of Marques-Silva and Sakallah (1999) on conflict-directed clause learning

(CDCL), and of Gomes et al. (1998) on solver randomization. Many of these solvers derive

from the venerable Davis-Putnam-Logemann-Loveland (DPLL) procedure introduced by

Davis et al. (1962). Three aspects of SAT are responsible for much of how its solvers

behave, and are therefore important to the design and effectiveness of SAT portfolios. First,

most problem instances can be placed into one of three broad categories:

• random instances sampled from, e.g., formulae near the phase transition in the clause-

variables ratio (Mitchell et al., 1996) or from encoded random partial latin squares

(Gomes and Selman, 1997b);

• crafted instances encoding hand-selected synthetic problems such as parity checking

or puzzles such as the Towers of Hanoi; and

• industrial instances contributed by organizations using SAT solvers to tackle prob-

lems of commercial value, such as verification and electronic design automation

(EDA).

Second, the set of SAT solvers can be divided roughly into two families:

• complete solvers, which almost always implement DPLL-derived systematic tree

search, and can prove both satisfiability and unsatisfiability; and

• incomplete local-search solvers, which take a biased random walk through the space

of variable assignments, and can prove only satisfiability.

Understanding the general operation of these solver families is important to understanding

the sources of the performance diversity that allows algorithm portfolios to succeed.

13

Complete DPLL-derived solvers operate by repeatedly selecting a variable on which

to branch, guessing a value for that variable, and backtracking if a conflict is detected

(Gomes et al., 2008). They build, crucially, on this straightforward recursive foundation

by greedily applying, at every decision step, the operations of unit propagation, in which

variables are assigned so as to satisfy all single-literal clauses, and pure literal elimination,

in which variables whose literals share a common polarity are set according to that polar-

ity. The critical decisions in such a solver, then, are the choices of variable on which to

branch and of truth value for that variable. CDCL solvers add additional logic to the DPLL

foundation by automatically augmenting the formula with “conflict” clauses representing

new learned constraints among variables. The benefit provided by such clauses, in the early

detection of barren search avenues, must be weighed against their cost, in the execution

overhead incurred on larger formulae. Clause-learning solvers, then, make other important

decisions regarding how and when to learn such clauses, as well as how and when to select

learned clauses to discard.

Incomplete SLS solvers operate by repeatedly updating a global assignment of truth

values to variables, according to some randomized procedure. The random walk thus taken

through the space of assignments is biased toward minimizing the number of clauses left

unsatisfied. In the classic WalkSAT procedure, for example, the update procedure focuses

on variables appearing in unsatisfied clauses (Selman et al., 1994). Most SLS solvers mod-

ify only one variable at a time, and the central decision in such solvers is the selection of that

variable. This choice, however, is often decomposed: the solver may first choose a clause

on which to focus, or it may incorporate some random-step probability balanced against the

overall search bias.

In general, complete solvers outperform incomplete solvers dramatically on highly-

structured industrial instances. These solvers may also recognize and exploit common pat-

terns in particular application domains. The solver CryptoMiniSat, for example, im-

plements special handling of the exclusive-or (XOR) constraints common to cryptographic

14

problems (Soos et al., 2009). At the same time, incomplete solvers vastly outperform sys-

tematic methods on less-structured randomly-generated instances, and can often perform

well on satisfiable instances of hand-crafted challenge domains (Järvisalo et al., 2011a).

Among the members of a single solver family, analogous divisions exist: the complete

solvers march_hi and lingeling, for example, were developed for different reasons

and exhibit wildly different performance characteristics.

Such performance diversity drives the need and creates the opportunity for port-

folio methods like that presented by this dissertation. The next several sections dig more

deeply into the causes of this diversity. They cover the motivation behind solving SAT in

practice and behind the development of new SAT solvers, the success and struggle of solver

algorithm research, and the inherent empirical component to algorithm development.

2.1.2 Solving SAT is Important

Why does anyone care about solving SAT? Solvers, after all, cannot promise polynomial-

time solutions to worst-case instances. Instead, they offer only solutions to some instances,

some of the time. In light of that limitation, who and what drives the manifest research

interest in better solvers? Are methods that amplify solver performance, such as MAPP,

valuable? This section presents three motivations for improving SAT solver performance:

first, the value of improved performance in SAT to solvers for strongly-related problem

representations, such as satisfiability modulo theories (SMT) and answer set programming

(ASP), which may employ SAT solvers or methods at their core; second, the value to nu-

merous applications in science and industry; and, third, the value to other areas of research

in artificial intelligence (AI).

SAT is among the simplest constraint satisfaction problems. Its core problem rep-

resentation, propositional formulae in CNF, is primitive: instances consist of identical vari-

ables, locked within the rigid cage of normal form. SAT, however, sits at the center of a

constellation of computationally difficult problems that impose fewer restrictions. Two is-

15

sues have spurred interest in these more general forms. First, some important application

domains are not easily expressed as decision problems, such as those involving optimization

or maximization. Second, higher-level representations can be easier for humans to express

and to understand.

Examples of non-decision relatives of SAT include the NP-hard MAX-SAT prob-

lem and its weighted and partial variants. Examples of SAT relatives permitting more ex-

pressive decision-problem representations include the problem of SMT, the problem of

quantified Boolean formulae (QBF), and the problem of pseudo-Boolean satisfiability (PB).

Specific applications often drive interest in these areas. Arithmetic operations in a hardware

verification problem, for example, can be expressed in terms of bit vectors by SMT (Brut-

tomesso et al., 2007). Common higher-level constraints such as cardinality restrictions can

be expressed more concisely in PB than they can in propositional CNF (Dixon and Gins-

berg, 2000).

Of these difficult computational problems, this dissertation focuses on three in ad-

dition to pure SAT: MAX-SAT, PB, and ASP. Sections 2.2 to 2.4 lay out the relevant prop-

erties of these domains. Despite their apparent differences, however, these areas benefit

directly from improvements to SAT, either because their instances are solved after trans-

formation into CNF, or because new solver techniques that prove promising in SAT are

adapted by their solvers. Examples of the former include the Cmodels solver for ASP

(Lierler and Maratea, 2004; Giunchiglia et al., 2006) and the MiniSat+ solver for PB

(Eén and Sörensson, 2006). Examples of the latter include the clasp solver for ASP,

which successfully applies the techniques of CDCL to that domain (Gebser et al., 2007).

Success in solving even some instances of these difficult computational problems

is important because these instances often represent individual questions with business or

scientific value. In some cases, these problems are expressed directly in CNF. Planning was

one of the first (Kautz and Selman, 1992), and was followed by problems in verification

(Biere et al., 1999; Clarke et al., 2001), EDA (Wood and Rutenbar, 1997; Veneris, 2003),

16

configuration management (Batory, 2005), and many others (Gomes et al., 2008). Some

application areas therefore benefit immediately from improved SAT methods.

The constellation of SAT relatives covers an even wider range of applications, many

of which see regular commercial use. BMC using SAT was successfully employed during

the development of the Intel Core i7 (Kaivola et al., 2009). The Z3 solver for SMT is

used to verify device drivers for Microsoft Windows 7 (de Moura and Bjørner, 2010, 2011).

Component dependencies in the Eclipse integrated development environment (IDE), the

most widely-used Java IDE in the world, are managed as PB constraints with the solver

sat4j (Le Berre and Rapicault, 2009). Matches in the Eredivisie and Eerste Divisie, the

top soccer leagues of the Netherlands, are scheduled by the SMT solver Barcelogic

(Nieuwenhui, 2009). It is clear that the methods in the SAT constellation include some of

the most significant success stories for automated logical reasoning.

The significant commercial value of improved SAT tools is coupled with significant

value for research in other areas of AI. Research in knowledge representation and reasoning

(KRR), for example, often relies on the existence of effective methods for ASP (Gelfond and

Leone, 2002; Baral, 2003), which in turn build on approaches from SAT. Inference tools

for probabilistic reasoning have employed SAT and MAX-SAT techniques at their core

(Park, 2002), especially those for frameworks, such as Markov logic networks (MLNs),

that integrate the languages of logic and probability (Gogate and Domingos, 2011).

2.1.3 Solving SAT is Difficult (But Not Too Difficult)

The success of modern methods, however, raises the danger of overstating their power:

SAT remains, and is likely to remain always, a problem for which our demand for solutions

outstrips our ability to provide them. Even seemingly trivial problems, such as proving

the unsatisfiability of small instances of the so-called “pigeonhole principle”, are topics of

ongoing research (Audemard et al., 2010). Dozens of solvers, representing the state of the

art, running on modern hardware, each dedicated 5,000 s of processor time to every one of

17

Figure 2.1: The performance of every SAT competition winner in the INDUSTRIAL cate-

gory running on a common benchmark collection and modern hardware; these data were

provided by Le Berre (2011). The year in which each solver won is noted. Algorithmic im-

provements alone have yielded dramatic and consistent improvements in performance over

time, rendering instances tractable that were previously far out of reach. Impressive, but

also indicative of the empirical underpinnings of much of this progress, is that the progress

depicted has come after the introduction of efficient CDCL, considered the key modern

addition to DPLL (Gomes et al., 2008).

1,200 instances in the 2011 SAT competition; in the end, however, more than 200 of those

instances remained unsolved by any solver (Järvisalo et al., 2011b).

Research in SAT methods therefore sits between future challenge and past success.

Since the surprising effectiveness of early SLS solvers (Selman et al., 1992), algorithmic

gains in efficiency on instances of interest have been consistent and substantial. Figure 2.1

18

plots the performance on modern benchmarks of every winner in the INDUSTRIAL cate-

gory since the inaugural SAT competition ten years ago. Over the past decade, ignoring

gains from hardware, solvers have gained the ability to solve entire classes of instances that

were previously intractable. This remarkable achievement fuels a virtuous cycle of success

driving interest driving success.

This trajectory will continue, however, only if the research community continues

to discover new ways to exploit the structure of important instances. This pressure may

accelerate the process of specialization typified by solvers like CryptoMiniSat. In this

direction, Karp (2011) has proposed an explicit methodology for heuristic algorithm devel-

opment that focuses on specific application areas, with a strong focus on empirical evalua-

tion. Data-driven specialization in algorithm development may further increase demand for

data-driven decisions in algorithm selection.

2.1.4 Solving SAT is Empirical

Solvers are fundamentally heuristic, and their heuristic nature means that understanding

their behavior is, in practice, an empirical enterprise. The lead author of MiniSat (Eén and

Sörensson, 2004), a modular solver used as the basis of much solver research, has stated that

“SAT is an experimental science” (Eén, 2011). Solver development is shaped by a reliance

on empirical results. As different solver authors create and evaluate heuristics in a closed

loop on different benchmark instances, corresponding differences in the empirical feedback

they receive cause differences to emerge in their solvers’ performance characteristics.

Solvers are therefore often complementary. While obvious qualitative distinctions

exist between solver families—complete solvers tend to outperform local search solvers on

more structured industrial instances, while they tend to underperform them on less struc-

tured random instances—no solver is unequivocally best even within a family. Figure 2.2

summarizes the number of problem instances on which each solver performed best in the

2009 comprehensive solver evaluation. Note that every solver performs best on some non-

19

0

20

40

60

80

adaptg2w
sat+

ag2w
sat09++

C
ircU

s
clasp
glucose
gnovelty+
gnovelty+2
gnovelty+-T
hybridG

M
3

iPA
W

S
IU

T
_B

M
B

_SA
T

kw LySA
T-c

LySA
T-i

M
anySA

T
_1.1

m
arch_hi

m
arch_K

S
m

inisat
M

iniSA
T-09z

M
iniSat-2.1

m
inisat_cum

r
M

X
C

picosat
precosat
rsat
R

sat
SA

pperloT
SA

T
zilla07_C

SA
T

zilla07_R
SA

T
zilla09_C

SA
T

zilla09_I
SA

T
zilla09_R

T
N

M
VA

R
SA

T-I

Solver

B
es

tP
er

fo
rm

an
ce

s

Figure 2.2: The number of instances on which each solver performed best in the 2009 SAT

competition (Le Berre et al., 2009). Note that no solver is dominated completely. The

apparent exception at the far right is a 2007 version of the SATzilla solver, discussed in

Section 3.2.2, which is limited to the best performance of its older constituent solvers. It

was included in the competition as a point of reference.

empty subset of the benchmark collection.

The connection between heuristics and specialization has been exploited by re-

cent “highly parameterized” methods, which implement multiple heuristic variants and

intentionally expose numerous parameters. These parameters are then tuned, by an auto-

mated method, for a particular distribution of instances. The SLS solver Captain Jack,

for example, implements several dozen separate parameters that can dramatically—and

unpredictably—affect its performance on different instance classes (Tompkins et al., 2011).

Nikolić et al. (2009) and Hutter et al. (2007) obtained similar results with analogous solvers

in the DPLL family.

20

SAT is thus an appealing testbed for portfolio research. Solver behavior is complex,

and requires empirical analysis to evaluate. Improvements to SAT methods have practical

and scientific value. The prominence of solver competitions leads to the open distribution

of solver packages, solver source, and comprehensive collections of challenging problem

instances in a standard format. For these reasons, many portfolio methods have been con-

nected to SAT, such as the naïve parallel portfolios described in Section 3.1 and the particu-

larly successful SATzilla portfolio described in Section 3.2.2. It is an obvious target domain

for continued work on portfolio methods, and will be the central focus of this dissertation.

Generality, however, is an important goal of this research as well; the next several sections

describe the relevant details of other domains that will be evaluated.

2.2 Maximum Satisfiability

An instance of MAX-SAT, like an instance of SAT, is a CNF expression. Rather than

searching for a globally-satisfactory assignment, however, a MAX-SAT solution is the max-

imum number of clauses that can be satisfied by any variable assignment. Expressed as a

decision problem, MAX-SAT considers whether a formula exists that satisfies at least some

number of clauses in the formula. By assigning a weight to each clause, and requesting the

assignment maximizing the total weight of satisfied clauses, several problem variants can

be expressed:

• unweighted MAX-SAT, in which every clause receives equal weight;

• weighted MAX-SAT, in which some clauses receive different weight;

• partial MAX-SAT, in which certain clauses may not be left unsatisfied, while the

remaining “soft” clauses receive equal weight; and

• weighted partial MAX-SAT, identical to partial MAX-SAT except that the soft clauses

may receive different weights.

21

No algorithm portfolio has participated in recent MAX-SAT competitions, so the compar-

isons in this paper will be made against individual solvers and alternative baseline portfo-

lios.

2.3 Pseudo-Boolean Satisfiability

The problem of PB considers a more general class of formulae: conjunctions of inequality

constraints on first-degree polynomials, in which variables are constrained to be “pseudo-

Boolean”, i.e., to belong to the set {0, 1}. This problem is also known as “0-1 program-

ming” or “binary integer programming” in the linear programming community (Eén and

Sörensson, 2006). As in MAX-SAT, several important problem variants exist, each of

which will be addressed in this dissertation:

• pure pseudo-Boolean satisfiability (PB-DEC), a decision problem asking only whether

any assignment of values to variables can satisfy a formula’s constraints;

• linear pseudo-Boolean optimization (PB-OPT), an optimization problem which seeks

the satisfying assignment of values to variables that also minimizes the value of a

given objective function; and

• nonlinear versions PB-DEC-NLC and PB-OPT-NLC of these problems, in which the

constraints may also include product terms.

In the most recent PB solver competitions, held in 2010 and 2011, precursors to MAPP took

first place in the main SMALLINT-DEC-LIN category under the system name borg. This

dissertation generalizes the approach used to win these competitions.

2.4 Answer Set Programming

MAX-SAT and PB can be viewed as results of efforts to make SAT more expressive. The

field of ASP, however, may be best viewed as the result of making an expressive problem

22

representation—declarative logic programming in the style of Prolog—more specialized,

with the goal of enabling efficient reasoning and its application to difficult combinatorial

search problems (Lifschitz, 2008). Unlike CNF expressions in SAT, which are almost al-

ways too large to be written by hand, a problem can be specified in ASP concisely. As

an example, Lifschitz (2008) expressed the classic problem of clique-finding, in this case

looking for cliques of at least ten vertices, in only two statements:

10 {in(X) : vertex(X)}.

:- in(X), in(Y),

vertex(X), vertex(Y), X != Y,

not edge(X, Y), not edge(Y, X).

Representing such a problem directly in CNF involves understanding and considering pos-

sible encoding strategies, then implementing and testing an imperative program to generate

formulae appropriately. The formula for any graph of more than a few vertices would not fit

on this page. The expressivity of ASP can therefore be appealing in applications with a sub-

stantial modeling component, such as the management of spacecraft operations (Nogueira

et al., 2001) and the reconstruction of phylogenetic trees in linguistics and zoology (Brooks

et al., 2007).

Before solving an answer set program, it is “grounded”, i.e., it is transformed so

that its variables are eliminated. As discussed in Section 2.1.2, some instances can be

translated entirely into CNF and solved as SAT. Dedicated ASP solvers also apply many of

the methods pioneered in SAT, such as clause learning and DPLL search.

This dissertation aims to make SAT, MAX-SAT, PB, and ASP solving more effi-

cient, and, to do so, it is important to understand the landscape of these methods and the

problems they are attempting to address. The primary techniques employed by this work,

however, are not those of SAT, but those of Bayesian statistics. The following sections

briefly review these fundamental techniques.

23

N

K

x z β

µ τ

Figure 2.3: Graph representation of an example model, a standard GMM. Nodes represent

the model’s variables; shaded nodes are observed, and unshaded nodes are latent. Arrows

represent conditional dependencies. Boxes mark sections of the model that appear multiple

times, and the value associated with each box specifies the number of times the contents

of that box are duplicated. In this case, each of N data are drawn from one of K normal

distributions, where the index of z of each datum is drawn from a multinomial distribution

parameterized by β.

2.5 Graphical Models and Generative Processes

Graphical models have become a core framework for Bayesian probabilistic reasoning

(Koller and Friedman, 2009). The primary task in such reasoning is to make principled

judgments about what is unobserved, or latent, based on what is observed. Maximum like-

lihood (ML) estimation is the standard objective in this task: given a set of observations,

and a set of statistical assumptions about the process giving rise to those observations, i.e.,

a model, what is the most likely unobserved state of that process? If those assumptions are

sufficiently well-behaved, such as that the data are drawn from a single normal distribution,

ML estimation is straightforward. In some cases, for example, latent variables can be de-

termined analytically after setting the first derivative of the log probability density function

(pdf) to zero. As assumptions grow more complex, inference becomes intractable—unless

the larger model is carefully structured.

In particular, inference remains possible when the dependencies between variables

24

are minimized, allowing the joint distribution of the entire model to be factorized into

groups of related variables, each of individually tractable form. Graphical models are an

approach to representing these dependencies. In the directed graphical models used here,

one example of which is shown in Fig. 2.3, edges denote conditional dependencies. Such

a graph is therefore a partial representation of a data-generating, or generative, process, a

representation that focuses on the important relationships between variables. In the notation

used by this dissertation, the simple Gaussian mixture model (GMM) of Fig. 2.3 may be

specified fully by:

zn ∼ Mul(β), n ∈ 1 . . . N, (2.1)

xn ∼ N (µzn , τzn), n ∈ 1 . . . N. (2.2)

Less concisely, to assume that the data were drawn from this generative process is to assume

that

• the N observed data were each drawn from one of K normal distributions, each

parameterized by an unknown mean µk and precision τk, and that

• the index conveying the component associated with each datum was drawn from a

shared multinomial distribution, parameterized by β.

This combination of graph representation and process specification states the structure of a

model and its underlying statistical assumptions clearly.

Graphical models are thus an approach to understanding and building complex but

tractable joint distributions. Their flexibility allows wide latitude in choosing the distribu-

tions of internal latent variables. This dissertation makes good use of the two workhorse

distributions of discrete models, the Dirichlet-multinomial pair, described next.

25

2.6 Conjugacy and the Dirichlet-Multinomial Pair

Take a set of latent parameters of some distribution, and assume that they are drawn from

some other prior distribution. The parameters of the prior specify our initial beliefs about—

i.e., our subjective probabilities regarding—the values of the latent parameters drawn. If

some number of draws from the unknown distribution are observed, our beliefs about its

latent parameters should typically change to reflect that new information. The distribution

representing these data-conditioned beliefs is called the posterior. For certain so-called con-

jugate pairs of distributions, the prior and the posterior share the same form. The graphical

models developed in this dissertation make good use of a particular conjugate pair, the

Dirichlet-multinomial, widely employed for discrete distributions.

The multinomial distribution

Mul(x|n,θ) = n!∏D
d=1 xd!

D∏
d=1

θxd
d (2.3)

places mass on event counts x ∈ Z∗D where
∑D

d=1 xd = n. Each component xi can be

viewed as the number of occurrences of event i in n observations with D possible events.

The parameter θ ∈ ∆D−1 is a point on the unit (D − 1)-simplex, i.e., is a vector of D

probabilities that sums to one. The notation for single-event multinomial draws is relaxed

for convenience: a random variable x ∼ Mul(θ) is the index of the positive entry in x ∼

Mul(1,θ).

The Dirichlet distribution, its conjugate prior, is a density over the unit simplex

defined as

Dir(θ|α) =
Γ(

∑D
d=1 αd)

ΠD
d=1Γ(αd)

D∏
d=1

θαd−1
d (2.4)

for vectors θ ∈ ∆D−1, where Γ(z) =
∫∞
0 tz−1e−tdt is the gamma function and α ∈ R+D

controls the shape of the distribution. Because the support of the Dirichlet distribution

ranges only over l1-normalized vectors, it can be interpreted as a distribution over param-

eterizations of the multinomial distribution. Its conjugacy with that distribution makes it

particularly convenient, and widely used.

26

This conjugacy can be interpreted in surprisingly intuitive ways. Formally, the

posterior distribution over the parameters of an unknown multinomial distribution with a

Dirichlet prior Dir(α), is given, after observing count vector x, by Dir(α + x). Less for-

mally, draws from that unknown multinomial distribution can be thought of as draws in

the equivalent Pólya-Eggenberger urn scheme (Elkan, 2006). Imagine an urn from which

colored balls are drawn repeatedly with replacement. After returning each ball, another

ball of the same color is added to the urn, increasing the number of balls inside. If the

urn initially contains many balls, the additional balls have little effect, but if the urn begins

nearly empty, they make colors already drawn more likely be drawn again. The starting

configuration of the urn corresponds to the Dirichlet parameter vector α—which need not

consist of integers.

2.7 Conclusions

This dissertation leverages the techniques of probabilistic reasoning to amplify the impres-

sive efficiency gains produced by research on low-level automated reasoning over the past

two decades. It therefore spans two worlds: the discrete world of propositional logic, and

the continuous world of statistical inference. This chapter has provided a brief review of

the relevant aspects of both worlds, starting with a high-level review of the solver perfor-

mance landscape and ending with the details of the discrete distributions that Chapter 4

will employ. The next chapter moves beyond this background material to describe existing

portfolio systems, the architectures they champion, and their weaknesses addressed by this

dissertation.

27

Chapter 3

Related Work

The phenomenon of competitive, complementary solvers can be found in many different

domains. Correspondingly, many algorithm portfolio systems have been reported in the

literature. The number of unique architectures employed by these systems, however, is

small. This chapter will review these architectures, their representative portfolio systems,

and the ways in which this dissertation differs from and improves on them. It will also

briefly review the research areas, such as hierarchical Bayesian modeling, underlying the

methods applied by MAPP.

3.1 Economics and Naïve Parallel Portfolios

Consider the simplest possible portfolio: a suite of algorithms executed in parallel. Such

a portfolio will behave the same on every instance. Changing one algorithm’s share of

processor time can, however, change the expected cost of obtaining a solution. One way

to view such a suite of solvers is thus as analogous to a collection of financial assets, each

providing a different return on investment. The owner of an algorithm portfolio invests

computational instead of monetary resources, and it is from this perspective that Huberman

et al. (1997) introduced the term “algorithm portfolio”.

28

Important properties of both financial and algorithm portfolios include risk, de-

fined as the standard deviation of the reward distribution, and expected reward or expected

cost. Portfolios on the Pareto frontier dominate all other portfolios: for every other possi-

ble weighting of constituent algorithms, some portfolio on the frontier has greater expected

reward, lower risk, or both. The economics approach therefore provides a framework for ex-

amining two key aspects of algorithm behavior, and effectively connects portfolio methods

to the useful language of finance (Markowitz, 1952). Empirical data collected by Huber-

man et al. (1997) on the run time distribution of the Brélaz heuristic (Brélaz, 1979), a graph

coloring heuristic also employed in general constraint-satisfaction methods (Smith, 1999),

showed that these concepts could be put into practice in a standard domain.

Gomes and Selman (1997a) applied the economics framework to SAT, using empir-

ical data from heuristics running on CNF encodings of the quasigroup completion problem

(QCP), a synthetic benchmark (Gomes and Selman, 1997b). They also considered the gen-

eral case of an arbitrary-size portfolio, and demonstrated the dramatic improvements to

expected run time achievable by portfolios over individual solvers, even by portfolios as-

sembled from multiple copies of the same algorithm. In that case, performance improves

because multiple initializations mitigate the influence of heavy tails in run time distributions

(Gomes et al., 1998).

One recent example of an effective naïve portfolio, ppfolio, entered the 2011

SAT Competition. It runs, in parallel, a set of solvers consisting largely of past competition

winners (Roussel, 2011). It served as a simple but effective baseline portfolio, and, sur-

prisingly, won more medals in the final accounting than any other single system (Järvisalo

et al., 2011b). It will be included in the head-to-head portfolio comparisons conducted in

Chapter 7.

The simplicity of the economics approach makes it a useful intellectual contribu-

tion but limits its generality. For example, it typically penalizes upside and downside risk

equally; it assumes that run time distributions are known; it does not consider the role of

29

information; and it does not permit portfolios to be adjusted once their execution begins.

Despite its early influence, most modern algorithm portfolios do not employ parallel exe-

cution or the economics perspective. Instead, they focus on selecting a single algorithm for

a given instance.

3.2 Algorithm Selection

The most straightforward way to employ a suite of solvers is to pick one of them to run—and

then run it. From this perspective, the problem is clear but difficult: given only superficial

information about an instance, select the algorithm that will perform best. Most successful

portfolio methods attempt to solve this problem directly, and most use a standard supervised

learning approach to do so. This section broadly reviews their contributions.

3.2.1 The Selection Problem

The choice of best-suited algorithm and configuration for a problem instance was formal-

ized as “algorithm selection” by Rice (1976, 1979). His work identified essential elements

of the problem: identifying performance criteria, evaluating algorithm behavior, extracting

superficial features of problem instances, and using those features to choose an algorithm.

The line of research directly inheriting from this early work has focused on advice-

giving systems to aid practitioners in scientific computation (Weerawarana et al., 1996;

Houstis et al., 2000), and on the selection of partial differential equation (PDE) solvers in

particular. This area has remained largely separate from the SAT-centered field of portfolio

methods, which focuses on automatic selection based on instance features. The indepen-

dent development of such systems for PDEs, however, provides further evidence that the

sensitivity of heuristic methods to parameterization and algorithm selection is a concern

that extends far beyond SAT. The next subsection presents automatic feature-based selec-

tion methods in depth.

30

3.2.2 Supervised Selection and SATzilla

SATzilla (Nudelman et al., 2004; Xu et al., 2008a, 2009) is the most prominent mod-

ern portfolio method, at least in SAT, partly due to its dominant performance in the 2007

and 2009 solver competitions (Le Berre et al., 2007, 2009). It is the chief representative

of feature-oriented, supervised algorithm-selection methods, which focus on the two most

significant of the research problems identified by Rice (1976): extracting information about

problem instances, and exploiting that information effectively.

These methods build on work that examines how features of an instance, i.e., efficiently-

computable functions of a problem representation such as CNF, offer clues to the difficulty

posed by that instance to particular solvers. Such “empirical hardness models” have been

motivated by dramatic results in work on generating difficult instances, and especially by

the striking phase transition in the landscape of random SAT: as random instances become

more constrained, as parameterized by the ratio of clauses to variables, they undergo a

rapid shift from satisfiable to unsatisfiable and the computational cost required to solve

them spikes (Mitchell et al., 1996; Monasson et al., 1999). For the standard random k-SAT

instance distribution, in other words, the clauses-to-variables ratio is particularly predictive

of solver run time.

Early evidence specifically in hardness prediction includes the feature survey of

Nudelman et al. (2004), the earlier survey and prediction experiments of Horvitz et al.

(2001), and the analysis of combinatorial auctions by Leyton-Brown et al. (2002). Among

recent demonstrations of these ideas are successes in instance-based solver parameterization

(Nikolić et al., 2009) and problem-sensitive restarting using progress statistics (Sinz and

Iser, 2009). A vast amount of information about a SAT instance can be captured by these

features. In general, they indicate the overall constrainedness of clauses in the expression,

the overall balance of variables and clauses, and the behavior of length-limited runs of

certain search procedures. Table 3.1 summarizes the features used by the 2007 version of

SATzilla (Xu et al., 2008a).

31

Group Count Feature

Problem size 1 Number of clauses

1 Number of variables

1 Clauses-to-variables ratio

Variable-clause graph 5 Variable node degree statistics

5 Clause node degree statistics

Variable graph 4 Node degree statistics

Balance 3 Ratio of per-clause +/− literals

5 Ratio of +/− occurrences of each literal

2 Fraction of binary and ternary clauses

Horm proximity 1 Fraction of Horn clauses

5 Number of variables in Horn clauses

DPLL probing 5 Number of unit propagations

2 Estimated search space size

Local search probing 4 Number of steps to the best minimum

1 Average improvement to best in a run

2 Gain due to first local minimum

1 Variance in unsat. clauses at each min.

Table 3.1: Summary of features used in the 2007 version of SATzilla (Xu et al., 2008a),

organized into groups by kind. In all, 48 features are used in the 2007 version, while the

2009 version uses 84 features on large industrial instances and 96 features on all others

(Xu et al., 2009). Many features can be computed, and their predictive power is primarily

responsible for the success of feature-oriented portfolios like SATzilla.

32

In an algorithm-selection portfolio, supervised learning is used to build per-solver

predictors of properties of behavior, such as the time taken by the solver to solve an instance.

Training instances are used to build examples: the feature vector computed for each instance

is labeled with a score of the solver’s performance on that instance. In many cases, that

score may simply be the duration of the solver’s run on that instance. Since solvers are not

guaranteed to terminate in a reasonable amount of time on every problem instance, however,

they are killed after some cutoff, and the supervised learning method must cope with this

sample censorship. In other cases, some other measure of performance is targeted, such as

a weighted combination of efficiency and success probability (Xu et al., 2008b).

More complex supervised learning schemes can also improve prediction. Xu et al.

(2007), for example, built separate models for satisfiable and unsatisfiable instances, as

well as for the satisfiability of an instance. The latter predictor was used to merge the two

class-specific predictions at test time. Gebser et al. (2011b) found this mixture-of-experts

approach to be less helpful in ASP, however.

On each test instance, the computed feature vector is given to each learned predictor,

and the portfolio runs the solver expected to perform best. This architecture is diagrammed

in Fig. 3.1. SATzilla makes this overall procedure more complex in three ways: by

identifying a backup solver and a set of pre-solvers during training, by briefly running pre-

solvers prior to feature computation, and by predicting the cost of feature computation—

skipping it and running the backup solver if the computation is likely to be too expensive

(Xu et al., 2008a, 2009). Other algorithm-selection portfolios, described next, adapt the

standard architecture in other ways.

3.2.3 Other Supervised Portfolios

The standard supervised algorithm-selection architecture championed by SATzilla has

been altered, adapted, and tuned in many ways for many different domains. This section

briefly surveys these associated methods. In general, however, the core of the architecture

33

Instance

Features
Supervised

Model

Selected

Solver

{SAT, UNSAT,

TIMEOUT}

sa

sb
...

solver_a

solver_b
...

max

Figure 3.1: The operation of a supervised-selection portfolio, such as SATzilla. Arrows

indicate the flow of information and control. Features are computed from an instance; from

those features, a previously-trained model predicts the future performance score s of each

solver on that instance; and the solver with the highest predicted score is selected and run

until completion or timeout. This architecture is straightforward and effective, but restricted

to the selection of single solvers.

remains the same: supervised learning is used to select an algorithm to run.

Nikolić et al. (2011) employed a k-nearest neighbor (k-NN) classifier for algorithm

selection in SAT. Surprisingly few portfolios have been developed for close relatives of

SAT; the MAX-SAT portfolio of Matos et al. (2008) is one of those few. Like SATzilla,

it used ridge regression, but first applied forward feature selection and basis-function feature

expansion.

Gebser et al. (2011b) built an algorithm selection portfolio, claspfolio, for

ASP. Support vector regression (SVR) was used both with static instance features and

with dynamic search features collected from multiple restarts of the clasp ASP solver.

Their solver suite was comprised of multiple configurations of clasp. Experiments in

34

Section 8.3 will include claspfolio.

Pulina and Tacchella (2007, 2009) designed a portfolio for QBF and tested sev-

eral different classifiers, including decision trees, decision rules, logistic regression, and

nearest-neighbor, on solvers and benchmarks in that domain. In an interesting extension of

the architecture, they moved beyond offline training to consider online adaptation. Their

portfolio tried multiple solvers on test instances, and updated its model based on the addi-

tional run time information it acquired.

Some algorithm-selection methods have targeted specific applications. Arbelaez

et al. (2010) constructed a portfolio of constraint optimization algorithms for protein struc-

ture prediction. It employed instance features that analyzed the original protein structure

problem, rather than one of its encodings. They evaluated both decision trees and lin-

ear regression as their supervised learning method, finding advantages to each. Messelis

and De Causmaecker (2011) applied supervised algorithm selection to the computation of

hospital nurse rosters, using application-specific features that characterize scheduling con-

straints (Messelis and De Causmaecker, 2010). Such examples illustrate the breadth of the

need addressed by portfolio methods.

3.2.4 Non-Model-Based Portfolios

Supervised algorithm-selection portfolios now consistently dominate individual solvers in

competition. They convincingly demonstrate the potential of portfolio methods. This basic

portfolio architecture, however, suffers from two limitations. First, predictions are individ-

ual solver performance scores. While such scores can incorporate tradeoffs between mul-

tiple selection criteria, it is unclear how they can be generalized to arbitrary distributions

over run times and outcomes. Second, as in the early work of Rice, decisions are restricted

to a small fixed set. SATzilla, for example, makes only two choices: whether to compute

features, and which single solver to execute thereafter. In effect, the SATzilla method

builds a set of static portfolio schedules, one for each solver, and chooses between those

35

schedules at run time. Other possible schedules, even the simple schedules employed by

naïve parallel portfolios, cannot be chosen, even though their performance can be superior.

The probabilistic portfolio work presented in this dissertation is influenced by these

selection-based portfolios, and it employs the informative instance features that they have

identified. However, this dissertation emphasizes the prediction of complete solver perfor-

mance distributions instead of aggregate scores, and it advocates the use of general execu-

tion schedules that include solver restarts.

One important deviation from the regression approach of solvers like SATzilla

is implemented by a portfolio named 3S, the “Satisfiability Solver Selector”, which entered

the 2011 SAT competition. It finds an instance’s nearest neighbors in feature space, then fol-

lows a solver execution schedule tailored to those instances (Kadioglu et al., 2011; Malitsky

et al., 2011). In the field of constraint programming (CP), O’Mahony et al. (2008) built a

similar algorithm portfolio named CPHydra. It used “case-based reasoning”—essentially

k-NN—and also computed a custom schedule.

One drawback of the k-NN approach is that it places as much weight on features

irrelevant to solver performance as it does on features that are informative. Kroer and Malit-

sky (2011) address this shortcoming in the related “ISAC” system, which clusters instances

in feature space and tunes solvers to particular clusters (Kadioglu et al., 2010), using clever

feature selection. In contrast, the feature integration approach of MAPP, described in Chap-

ter 5, naturally handles this problem.

The use of tailored execution schedules in 3S and CPHydra makes them closer in

spirit to the approach advocated in this dissertation. Their focus remains, however, on de-

terministic solvers, and their architecture, methods, and focus are correspondingly different

from those employed in this dissertation. Furthermore, Chapter 7 will find that MAPP can

often outperform 3S, especially on domains that favor highly nondeterministic SLS solvers.

36

3.3 Solver Execution Scheduling

Solver scheduling, like that done by 3S and MAPP, is ignored in the algorithm selec-

tion perspective but is nonetheless fundamental to portfolio operation. It has long been

recognized as an important aspect of performance in nondeterministic algorithms. The

seminal work of Luby et al. (1993), for example, derived the optimality of a “univer-

sal” cutoff schedule in the case of total uncertainty: an exponential schedule of the form

⟨1, 1, 2, 1, 1, 2, 4, . . . ⟩. Modern SAT solvers often schedule internal search restarts accord-

ing to this scheme (Huang, 2007).

Solvers, however, are not scheduled under total uncertainty. Some information

about their run time distributions is often available: solvers may have been run on simi-

lar, previously-observed instances, for example. Streeter et al. (2007a) introduced greedy

algorithms for the offline, learning-theoretic, and online settings of this solver-scheduling

problem, and gave theoretical error bounds for each. Streeter et al. (2007b) applied these

ideas to solver restart scheduling, and Streeter and Smith (2007) showed how to extend

them to optimization problems.

Chapter 6 will introduce a planning approach that tackles the offline problem, but

employs a dynamic programming algorithm that, in some cases, can guarantee an optimal

execution schedule. It will be compared against the greedy approach. O’Mahony et al.

(2008) present a similar solver-scheduling objective for their work in CP, but employ inef-

ficient direct search to solve it for a limited number of solvers and instances. They make a

connection to the knapsack problem to argue for the intractability of tackling their objective

directly—and to identify solver scheduling as an open problem. This dissertation makes a

similar connection, but uses it instead to develop an efficient scheduling algorithm.

Other approaches to solver scheduling include that of Kadioglu et al. (2011), who

employed general integer programming (IP) to compute portfolio schedules that do not

include solver restarts, and that of Ruan et al. (2002), who treated single-solver restart

scheduling under partial uncertainty as a Markov decision process (MDP), applying dy-

37

namic programming to solve it exactly but inefficiently. Neither of these approaches ad-

dresses solver scheduling in the same general sense, or as efficiently, as the method pre-

sented in this dissertation.

3.4 Bandit Portfolios

One very different body of research has explored the connection between algorithm portfo-

lios and so-called “bandit” algorithms, strategies for sequential decision making that pro-

vide formal guarantees. Bandit algorithms specifically consider the case of actions repeat-

edly selected from a fixed set of k choices, i.e., repeated pulls on a k-armed bandit, when

the arms provide rewards drawn either from a fixed distribution (the stochastic case, i.e., a

one-state MDP) or arbitrarily (the nonstochastic case). They typically guarantee bounded

regret against a particular strategy, repeated pulls of the arm that provides the highest mean

reward, in hindsight (Lai, 1987; Auer et al., 2002b,a).

Bandit algorithms are general and useful. It is difficult, however, to apply a standard

bandit method to the portfolio setting because actions in that setting, i.e., solver runs, do not

typically provide individual reward. Instead, reward is obtained only once, when an instance

is solved, at which point the trial ends. A small body of work reformulates the bandit setting

to apply more directly to portfolios. In this max bandit setting, the goal is to maximize the

expected maximum payoff over trials. Unlike the nonstochastic bandits literature applied

elsewhere, payoffs from a bandit arm are assumed to be drawn independently from a fixed

distribution. In the work of Cicirello and Smith (2005) and Streeter and Smith (2006a),

this distribution is assumed to be in the extreme value family; this assumption is relaxed by

Streeter and Smith (2006b).

The max bandit work is instructive in its contrasts with the traditional bandit lit-

erature. It does not, however, exploit knowledge of solver behavior gained from running

on previously-observed problem instances. Furthermore, it applies only when solvers yield

multiple suboptimal but non-zero payoffs on individual instances, as in optimization. For

38

both of these reasons, it is unattractive as a general approach to portfolio decision making.

Another way that bandits can be applied to the portfolio setting is by using a coarse-

grained action set, choosing complete solver execution schedules instead of individual

solver runs. Streeter et al. (2007a), for example, used methods from the label-efficient

bandits literature (Cesa-Bianchi et al., 2004) to bound scheduling regret in the online set-

ting. In an elegant extension, Streeter and Smith (2008) applied a sleeping-experts bandit

algorithm (Blum and Mansour, 2007) to improve scheduling on problem instances labeled

with binary features. A schedule is constructed over those instances manifesting each fea-

ture. On new instances, the bandit algorithm then selects only from the schedules that apply.

Regret is thus bounded simultaneously against all applicable schedules.

Other work in this vein has focused on parallel schedules. Gagliolo and Schmidhu-

ber (2006) developed heuristic time allocators and used an appropriate bandit method (Auer

et al., 1995) to weight them according to their performance. Their most elaborate allocator

employed the nearest-neighbor style estimator of Wichert and Wilke (2005), one of which

is learned for each solver; others included the baseline naïve parallel allocator. This frame-

work was applied to the restarts problem by Gagliolo and Schmidhuber (2007), and was

extended to the case of an unknown bound on the loss, the cost of solving an instance, by

Gagliolo and Schmidhuber (2011).

In general, such bandit results focus on the online setting: they attempt to provide

performance guarantees throughout the learning process. This dissertation focuses instead

on the offline setting. This focus permits more complex models and stronger statistical

assumptions about instances, and can thus potentially infer more information from solver

run data.

3.5 Domain-Focused Probabilistic Models

The use of model-based inference to predict the values of unobserved variables is central to

statistics. Complex, hierarchical, generative models of discrete data, however, have gained

39

popularity only as the sinking cost of computation has made sampling and inference for

these models practical. This section reviews the use of models in predicting solver perfor-

mance specifically, and the success story of generative models, particularly in text, more

generally.

3.5.1 Models of Solver Performance

At a high level, portfolio methods acquire information, update their beliefs based on that

information, then act on those beliefs. In the Bayesian view, applied to solver behavior by

Horvitz et al. (2001) and Kautz et al. (2002), a probabilistic model represents an agent’s

assumptions and inferred probabilities represent its beliefs. Their work has had substantial

influence on the probabilistic portfolio framework outlined in this dissertation.

Three important sources of information were identified: contextual evidence about

the distribution of problem instances, structural evidence about the superficial features of an

instance, and execution evidence about the visible aspects of solver behavior. Experiments

conducted by Horvitz et al. (2001) ran two solvers on QCP instances, collecting evidence

over an initial observation horizon. The duration of each solver run was labeled “short” or

“long”, and a Bayesian learner—one that assumes a decision tree form for the conditional

distributions—built a model of that labeling. Much of the work of Horvitz et al. (2001)

examined the predictive features in that model, but it also made simple restart/continue

decisions for solver runs. Kautz et al. (2002) further developed that application.

This Bayesian perspective is attractive because it is general: it incorporates diverse

sources of evidence, it can model arbitrary aspects of solver behavior, and its probabilistic

predictions are often easy to incorporate into decision making. The specific system devel-

oped in this prior work was, however, limited. It modeled only individual solvers, assumed

a fixed, potentially-expensive observation window, and predicted only the short/long class

label. This dissertation shares the Bayesian perspective, but adopts a new set of techniques

and combines them into a system for the more general algorithm portfolio problem.

40

3.5.2 Models of Natural Language Text

Statistical models of bag-of-words (BOW) data have received substantial interest over the

past decade. So-called “topic models” in particular, which seek to infer semantically co-

herent word clusters underlying natural language text corpora (Blei et al., 2003), have seen

numerous extensions and applications: to image data (Fei-Fei and Perona, 2005; Li et al.,

2011), to multi-language corpora (Mimno et al., 2009), to the measurement of scientific

impact (Gerrish and Blei, 2010), to voting records in the United States Senate (McCal-

lum et al., 2007), even to archaeology (Mimno, 2009). While the models of Chapter 4

are motivated directly by solver performance prediction, and do not build on any specific

existing model in a different domain, the statistical tools of mixture models and Dirichlet-

multinomial conjugacy are shared across all of these applications.

Unlike the work of Horvitz et al. (2001), which focused on modeling the network

of statistical interactions among static instance features, dynamic progress information, and

solver performance, the modeling work in this dissertation is focused on inferring solver run

time better based only on patterns inferred in those data. Given a small number of runs of

each solver, the goal is to predict the statistics of future runs. From one perspective, models

of text like that of Blei et al. (2003) are engaged in a similar activity akin to imputation:

inferring the statistics of a given document, were one to somehow extend that document to

be infinitely long.

The most similar text models are those of “bursty” term distributions, which use

the properties of Dirichlet-multinomial conjugacy discussed in Section 2.6—highlighted

by the Pólya urn interpretation—to handle the situation in which a term appears either

repeatedly or not at all (Elkan, 2006; Katz, 1996; Madsen et al., 2005; Doyle and Elkan,

2009). This phenomenon is widespread. One example is sports writing: although team

names are semantically similar, a given article contains the names of only a few. Those

few teams, however, are mentioned repeatedly; once a name is seen once, it is likely to be

seen again. The same phenomenon can occur in solver behavior. A deterministic solver,

41

for example, may have some distribution over performance if the instance is unknown,

but, in repeated runs on that instance, the same run time will be repeatedly drawn. In the

portfolio domain, Silverthorn and Miikkulainen (2010) introduced a pair of discrete latent

class models, focused explicitly on modeling solver burstiness, that handle arbitrary solver

outcomes. Chapter 4 will develop simpler, more effective descendants of those models by

specializing in decision problems.

3.6 Conclusions

The portfolio architecture developed and evaluated by this dissertation stands apart from the

algorithm-selection architecture employed by other successful portfolio methods. It advo-

cates a focus on probabilistic algorithms and inference of run time distributions, neither of

which play a significant role in other approaches. It computes general execution schedules,

something rare in other approaches, and introduces a simple and efficient approach to doing

so. Its integration of instance features brings together the strengths of the model-based and

nonparametric approaches, allowing the mature and effective methods of supervised learn-

ing to provide information about complete distributions. Taken as a whole, this modular

architecture contributes a novel perspective to the field of algorithm portfolio design.

42

Chapter 4

Modeling Solver Performance

An algorithm portfolio must choose solvers to execute on a new instance without knowing,

in advance, exactly how those solvers will perform. Training data provide information about

typical solver performance on the distribution of instances at hand, but this information

is incomplete and limited to past experience. The portfolio is therefore neither entirely

ignorant nor entirely informed; it must cope with uncertainty. The fundamental principle

of the MAPP approach, as outlined in Section 1.4, is the representation of a portfolio’s

uncertainty as a weighted set of possible scenarios. Each member of this set is an estimate of

the solver suite’s performance on a specific training instance. To compute those estimates,

this chapter develops a family of probabilistic graphical models of solver performance, and

compares their predictions on SAT solver performance data.

4.1 Run Time Distributions and Las Vegas Algorithms

Heuristic solvers are examples of so-called Las Vegas algorithms. While a Monte Carlo

algorithm returns an approximate result in a predictable, deterministic amount of time, a

Las Vegas algorithm returns an exact result in an unpredictable, nondeterministic amount of

time (Babai, 1979). The distribution over the time taken by running a Las Vegas algorithm

43

0

50

100

150

0 500 1000 1500 2000 2500
Run Time (CPU seconds)

R
un

C
ou

nt

Figure 4.1: The run time distribution of the SAT solver lingeling (v276) executing on

the instance blocks-blocks-37-1.150-SAT.cnf from the 2011 SAT competition,

captured by visualizing 1024 runs as a histogram with a bin width of 50 s. While many

runs succeed in little more than 100 s, some take upwards of 1,000 s. The performance of

lingeling on this instance would be poorly represented by its expected run time or by

assuming that it operates deterministically.

to completion on some instance is known as its run time distribution (RTD) on that instance.

RTDs have received less attention as a SAT research topic with the rise of CDCL

solvers, in which randomness plays an arguably smaller role relative to SLS solvers. Mod-

ern CDCL solvers, however, remain far from deterministic. As an example, Figure 4.1

shows the RTD of a modern CDCL SAT solver, lingeling, running on a planning in-

stance included in the most recent SAT competition.

Knowledge of solvers’ RTDs on an instance enables a portfolio to schedule solvers

intelligently and thus to maximize its probability of success. A portfolio, however, has

no certain knowledge of how solvers perform on an instance it has not previously seen.

Instead, a portfolio must assume that solvers’ performance on a new instance is in some

way related to their performance on training instances. This dissertation makes a strong,

specific assumption along these lines: that solvers’ RTDs on a new instance are identical to

44

their RTDs on some unknown training instance. Training instances, in other words, form

a discrete mixture model of test instances. This modeling assumption is most appropriate

when all instances are drawn from the same, fixed distribution, as when training instances

are sampled from a larger corpus of unsolved instances.

A portfolio does not observe solvers’ complete RTDs even on its training instances:

it observes only individual runs on those instances, i.e., samples from RTDs. Furthermore,

collecting many samples from each instance becomes impractical. Under the per-instance

cutoff used for SAT competition instances, for example, a single run may consume nearly

two hours of processor time. The challenge in training a probabilistic portfolio is therefore

to estimate solvers’ RTDs on training instances with sufficient accuracy given only a few of

these expensive samples.

The following sections build a sequence of increasingly sophisticated models of

solver runs. Each model builds on an earlier model, but captures a new aspect of solver

behavior. As experiments will show, better models allow solver behavior to be captured

more accurately from fewer runs.

4.2 General Methodology

Throughout this dissertation, solver run outcomes were reused across experiments by sam-

pling them from a database collected on a local cluster of identical machines (Xeon X5355

@ 2.66 GHz) over tens of thousands of hours of processor time. This allowed models

and portfolios to be compared without re-executing every solver in every experiment. The

per-instance run time cutoff of 6,000 s was selected to encompass that used by the SAT

competition. Whenever applicable, plots are shaded to indicate 95% confidence bounds.

Finally, all source code and data are publicly available (Silverthorn, 2012).

A standard cross-validation scheme was used to to measure the applicability of each

model empirically. A collection of problem instances was randomly split into training and

test sets, the model was fit to the training data, and the probability assigned by the model to

45

the held-out test data was measured. A model can be considered a better fit if it considers

the test data more likely. Throughout this chapter, unless otherwise specified, experiments

employ data collected by running the suite of solvers used by SATzilla2009 on every

instance included in the 2007 SAT competition.

4.3 A Family of Run Time Distribution Models

The MAPP modeling approach will treat run time distributions as discrete, like the his-

togram in Fig. 4.1. Discrete models lump runs of sufficiently similar duration together in

the same bin, and can thus be used only to predict the bin in which a run is most likely to fall.

Discretization, however, simplifies both modeling and planning: efficient, general-purpose

discrete distributions, such as the multinomial, can be simpler to estimate, and restricting

reasoning to a finite number of actions makes it simpler to plan. Chapter 6 quantifies the

cost of discretization. Furthermore, the multinomial distribution places no restriction itself

on the shape of a solver’s performance distribution.

Runs that fail, either because they exceed the cutoff or because they terminate ab-

normally, fall into an arbitrarily-designated failure bin. Let S be the number of solvers, B

the number of modeled histogram buckets (with failing runs in the final bucket, b = B), I

the number of problem instances, Rsi the number of runs made by solver s on instance i,

and bsir the index of the bin into which run r of solver s on instance i falls. Each bin index is

a random variable, one that depends both on a solver’s complex deterministic behavior and

on its internal randomness. The generative models developed in the following sections will

be used to estimate the underlying RTDs from observed values of bsir for many different s,

i, and r.

4.3.1 Maximum-Likelihood Multinomials

The simplest generative process for the discrete data in this setting is one in which each bin

index is drawn from an unconstrained multinomial distribution specific to each solver on

46

each instance, i.e.,

bsir ∼ Mul(θsi), s ∈ 1 . . . S, (4.1)

i ∈ 1 . . . I,

r ∈ 1 . . . Rsi,

where each θsi is a parameter vector of a multinomial RTD, and each element θsij is there-

fore the probability p(bsir = j) that run r of solver s on instance i will fall into bin j.

In general, of course, these probabilities are unknown. Instead, various bsir values

are observed in training, and the latent θsi parameters inferred. The maximum likelihood

(ML) parameters are those that place maximum probability mass on the observed data. In

this setting, the ML parameters are simply the observed rates of runs falling into each bin:

θsic =
1

Rsi

Rsi∑
r=1

δcbsir . (4.2)

As more data become available, the observed rates converge to the true rates and the ML

parameters converge to the true parameters. This convergence in the limit, however, is a

poor guarantee, since each additional sample may require hours of processor time to obtain.

4.3.2 Multinomials with Uniform Smoothing

The ML multinomial parameters place no probability mass on unseen events, which be-

comes problematic when few samples are available from any solver on a training instance.

If only one sample is available, for example, then the maximum-likelihood multinomial

distribution will predict with certainty that every future run will be identical to the observed

run. That prediction is reasonable only if the solver is deterministic and the machine entirely

unloaded.

Addressing this shortcoming involves moving probability mass from observed out-

comes to unobserved outcomes. Here, mass is shifted by incorporating a prior belief that

the parameter vector of each multinomial RTD is drawn from a smooth distribution over the

47

unit simplex. The Dirichlet distribution is a convenient, conjugate prior for this purpose,

leading to the hierarchical generative process

θsi ∼ Dir(a1), s ∈ 1 . . . S, (4.3)

i ∈ 1 . . . I,

bsir ∼ Mul(θsi), s ∈ 1 . . . S, (4.4)

i ∈ 1 . . . I,

r ∈ 1 . . . Rsi,

where 1 is a B-dimensional vector of ones and a a scalar hyperparameter that controls the

amount of smoothing. Section 4.4 discusses how to obtain information about a model’s

posterior distribution over RTDs, given observed runs.

Figure 4.2 plots the probability assigned to test data under various levels of uniform

smoothing. It makes clear the importance of placing mass on unobserved events, and it

establishes a baseline model. The obvious shortcomings of uniform smoothing motivate

the development of more complex models that implement more informed priors over the

RTDs.

4.3.3 Multinomials with Non-Uniform Smoothing

The approach of Section 4.3.2 spreads a fraction of the available probability mass uniformly

across all possible outcomes. Furthermore, it smooths all solvers equally. If, for example, a

given solver is particularly bad (i.e., its runs most often fall into the failure bin), or particu-

larly good (i.e., its runs most often fall into a bin associated with quick success), predictions

of that solver’s RTD may benefit from a prior belief that places mass in those particular bins.

This flexibility can be expressed by employing, instead of a single symmetric Dirich-

let prior for all solvers, a separate asymmetric Dirichlet prior for each solver. The full

48

-26

-24

-22

-20

0.02 0.04 0.06 0.08 0.10
Smoothing (a)

M
ea

n
L

og
Pr

ob
.

Model
Dir. (a)

Figure 4.2: The mean log probability of test data, using ten-fold cross validation, under the

Section 4.3.2 smoothed-multinomial model and varying values of the uniform-smoothing

parameter a. With minimal smoothing, too little probability mass is shifted to events present

in the test data but unobserved in the training data. With substantial smoothing, too much

probability mass is shifted to events unobserved in training that truly never occur. Later

models will smooth more selectively, attempting to shift mass primarily to unobserved

events considered likely to occur.

generative process for this model becomes

θsi ∼ Dir(αs), s ∈ 1 . . . S, (4.5)

i ∈ 1 . . . I,

bsir ∼ Mul(θsi), s ∈ 1 . . . S, (4.6)

i ∈ 1 . . . I,

r ∈ 1 . . . Rsi,

where each of the Dirichlet hyperparameters αsb quantifies a prior expectation that a run of

solver s will fall in bin b on a new instance.

49

4.3.4 Multinomials with Independent Mixture Smoothing

Asymmetric, solver-specific smoothing captures an important aspect of the data. Going fur-

ther involves leveraging another pattern in solver performance. It is clear that each problem

instance is not unique: the distribution of instances may, for example, include both “easy”

instances, on which a solver may succeed quickly, and “difficult” instances, on which it may

struggle. In other words, prior beliefs may not be well represented by any single Dirichlet

parameter vector, even a solver-specific vector, but rather by a mixture of such vectors.

This type of prior belief can be captured by per-solver finite mixtures of Dirichlet

distributions. For each solver, a run is drawn from a multinomial distribution whose param-

eters are in turn drawn from one member of a set of K Dirichlet distributions. Specifically:

zsi ∼ Mul(βs), s ∈ 1 . . . S, (4.7)

i ∈ 1 . . . I,

θsi ∼ Dir(αszsi), s ∈ 1 . . . S, (4.8)

i ∈ 1 . . . I,

bsir ∼ Mul(θsi), s ∈ 1 . . . S, (4.9)

i ∈ 1 . . . I,

r ∈ 1 . . . Rsi.

Each zsi is the index of the solver-specific latent class, or component, to which instance i

belongs, and each βs is a K-dimensional parameter vector specifying the mixture propor-

tions of those classes in the training data.

When a distribution of instances contains multiple groups, such as “easy” and

“hard”, the solver-wide priors of Section 4.3.3 capture any one group of instances poorly.

In the same situation, the mixture model of Eqs. (4.7) to (4.9) can employ a different prior

for each group. Even a single run may be strong evidence that an instance belongs to a

particular group, and an inferred RTD can therefore reflect information captured in runs of

the same solver on other instances.

50

4.3.5 Multinomials with Linked Mixture Smoothing

More generally, latent classes may be related across solvers. An instance that is difficult or

easy for one solver may be difficult or easy for another; or, for example, a distribution may

contain both satisfiable and unsatisfiable instances, with each kind best suited for a certain

type of solver. Relationships between solvers’ latent classes can be modeled by unifying

the latent class indices for each instance, as in

zi ∼ Mul(β), i ∈ 1 . . . I, (4.10)

θsi ∼ Dir(αszi), s ∈ 1 . . . S, (4.11)

i ∈ 1 . . . I,

bsir ∼ Mul(θsi), s ∈ 1 . . . S, (4.12)

i ∈ 1 . . . I,

r ∈ 1 . . . Rsi.

Rather than an instance belonging to multiple latent classes, one for each solver, each in-

volving a single Dirichlet distribution, it now instead belongs to a single latent class that

involves multiple Dirichlet distributions, one for each solver. This change means that the

model may shift probability mass among bins for one solver based on a run made by a

different solver on the same instance.

The four models developed in Sections 4.3.1 to 4.3.5 are visualized through the

plate diagrams in Fig. 4.3. An important empirical question is whether the additional struc-

ture in Sections 4.3.4 to 4.3.5 improves the models’ predictive power. Figure 4.4 plots the

probability of test data under the mixture models, varying the number of mixture compo-

nents K. The increase in probability with K suggests that these mixture priors do, in fact,

capture an important aspect of solver run time data.

51

Rsi

I

S

a θ b

(a) The model of Section 4.3.2. All

RTDs are smoothed uniformly and

equally.

Rsi

I

S

α θ b

(b) The model of Section 4.3.3. Each

solver’s RTDs are smoothed separately

and non-uniformly.

K Rsi

I

S

α

β z

θ b

(c) The model of Section 4.3.4. Each

solver’s RTDs are smoothed non-

uniformly by a separate mixture of

latent classes.

K Rsi

I

S

α

β z

θ b

(d) The model of Section 4.3.5. Each

solver’s RTDs are smoothed non-

uniformly by a shared mixture of latent

classes.

Figure 4.3: Sequence of plate diagrams illustrating the models from Sections 4.3.2 to 4.3.5.

Shaded nodes represent observations, unshaded nodes latent variables, and arrows con-

ditional dependencies. Boxes duplicate their contents according to their labeled counts.

All models represent RTDs as multinomial distributions, but differ in how those distribu-

tions weight unobserved events. More accurate inference of unobserved-event probabilities

should make it possible to compute better solver execution schedules.

52

-21

-20

-19

-18

10 20 30 40 50 60
Number of Mixture Components (K)

M
ea

n
L

og
Pr

ob
.

Model
Dir. Mixtures
Dir. Matrices

Figure 4.4: The mean log probability of held-out test data under the mixture-prior models of

Sections 4.3.4 to 4.3.5, 64 random 80% train/test splits, and varying the number of mixture

components K. While independent mixtures are unconstrained by those of other solvers,

and fewer mixture components are therefore required to fit the data, they also overfit more

easily. In general, the improvement in probability with K suggests that the mixture priors

are useful additions to these models.

4.4 Model Inference and Application

Conditioned on the observed durations of solver runs on training instances, a particular

model implies a particular posterior distribution over the multinomial parameters represent-

ing solvers’ RTDs on those instances. Since RTDs are estimated offline, during portfolio

training, the efficiency of model inference is not a primary concern—especially when com-

pared to the immense computational cost of obtaining solver run data. This fact expands the

set of models and inference methods that can be applied. Here, as in earlier work (Silver-

thorn and Miikkulainen, 2010), an EM algorithm is used to estimate ML parameter settings

of the Dirichlet hyperparameters, which are then optimized using the fixed-point procedures

of Wallach (2008) and Minka (2009).

The planning methods presented in Chapter 6 can incorporate model uncertainty

53

into their reasoning. Instead of computing solvers’ mean RTDs for each instance, multiple

multinomial settings can therefore be returned from the estimation procedure. For each

instance under the linked mixture model, this procedure computes the maximum a poste-

riori (MAP) set of RTDs for each mixture component, weighting them according to the

observed runs and estimated β. For each instance under the independent mixture model,

this procedure obtains possible sets of RTDs by repeatedly sampling zsi indices based on

the estimated values of the other variables, then computing MAP RTDs corresponding to

the sampled indices.

These sets of estimated multinomial parameters form a finite mixture model of

solvers’ RTDs on a particular distribution of problem instances. The next section will com-

pare the predictive utility on SAT competition instances of estimates obtained under each

of the models above.

4.5 Comparing Models Empirically

This comparison addresses two questions. First, how does the number of training instances

affect the models’ generalization to test data? Second, how does the sampling strategy

employed—the choice of solver runs made in training—affect their relative accuracy?

To answer the first question, the models are compared as increasingly many in-

stances in the training set are used for training. To answer the second question, the same

experiment is conducted under multiple sampling strategies. Two distinctions between sam-

pling strategies are particularly important. First, a strategy can run solvers the same number

of times on every instance, or it can run them more often on some instances than on others.

Second, if a strategy calls for different numbers of runs, it can run all solvers systematically

the same number of times on an instance, or it can run different solvers separately different

numbers of times on an instance. Three strategies are therefore employed: making two runs

systematically on all training instances (“[2] (Sys.)”); making four runs systematically on

half of all training instances and no runs on the rest (“[4, 0] (Sys.)”); and doing so separately

54

-50

-40

-30

-20

-10

-50

-40

-30

-20

-10

-50

-40

-30

-20

-10

[2](Sys.)
[4,0](Sep.)

[4,0](Sys.)

200 400 600
Training Instances

M
ea

n
L

og
Pr

ob
ab

ili
ty

Model
Dir. (a)
Dir. (Opt.)
Dir. Mixtures
Dir. Matrices

Figure 4.5: The mean log probability of test data under each of the models described in

Section 4.3, averaging over 32 random 90% train/test splits, varying the number of training

instances, and applying three different sampling strategies. Better models assign higher

probability to the test data. The independent mixture prior (K = 4) works best under

systematic sampling (top and bottom). The linked mixture prior (K = 32) allows the

model to acquire information about an RTD of one solver from the runs of other solvers,

and is the best model of data acquired by non-systematic sampling (middle).

55

for each solver (“[4, 0] (Sep.)”).

Figure 4.5 presents the results of these experiments. Each sampling strategy high-

lights a relative strength of each model. When solvers are run systematically, the inde-

pendent mixture prior has sufficient information about every instance to reconstruct RTDs,

and it predicts the test data well. When solvers are run non-systematically, the linked-prior

model performs best. The independent prior is less able to infer RTDs from which it has

no samples, but the linked prior can use runs made by other solvers on the same instance

to gain relevant information. Each model may therefore be useful, depending on the task to

which it is applied and the structure of available training data.

4.6 Visualizing Model Output

Visualizing each model’s estimates, even on a single instance, can provide additional in-

tuition about their differences. Figure 4.6 presents such an example, on which the latent

structure identified by the linked mixture model allows it to infer the RTD of a solver from

which no runs were observed.

It is also informative to examine the high-level structure that such models infer in the

data. To this end, Figs. 4.7 to 4.8 visualize the latent Dirichlet parameters fit by EM under

the same model. These class parameters represent only prior information shared among

instances. They do not control performance estimates directly: if many runs are made on

an instance, those observations may outweigh the classes’ influence on the estimated RTD.

Nonetheless, the performance patterns they encapsulate match knowledge of the solvers

and instances involved. For example:

• Component 2 describes challenging instances on which no solver succeeds.

• Component 9 describes instances easy for incomplete SLS solvers such as gnovelty+,

but difficult for complete DPLL-derived solvers such as minisat20. The solver

kcnfs04, DPLL-derived but explicitly designed for the random k-SAT instances

56

Observed Dir. (a) Dir. (Opt.)

Dir. Mixtures Dir. Matrices True

TNM

cryptominisat

clasp

TNM

cryptominisat

clasp

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Bin Index

So
lv

er

Probability
0.0
0.2
0.4
0.6
0.8
1.0

Figure 4.6: The MAP estimate under each model of

ppfolio subsolvers’ RTDs on SAT 2009 competition instance

unif-k3-r4.2-v14000-c58800-S1339275181-076.cnf. Failed runs fall

in bin 8. Four runs from TNM and cryptominisat and no runs from clasp were

observed. Important differences between the models are evident. The uniformly smoothed

model (“Dir. (a)”) cannot provide any information about the RTD of clasp on this in-

stance. If optimized asymmetric Dirichlet priors are used (“Dir. (Opt)”), the RTD becomes

clasp’s average performance; note, also, that this stronger prior incorrectly places some

mass on the failure bin of TNM. The independent mixture prior (“Dir. Mixtures”) provides

a similar estimate of clasp’s performance, but does not overly smooth the RTD of TNM.

Since clasp rarely succeeds on instances easy for TNM, the linked mixture prior (“Dir.

Matrices”) can use that pattern to better estimate its RTD. The best choice of model thus

depends on the sampling strategy employed.

57

0 1 2 3

4 5 6 7

SATen_pre
SATen_qcp
adg2wsat+
adg2wsat0
gnovelty+
kcnfs04
march_dl
minisat20
mxc-sr08
picosat
saps

tts-4-0
vallst

zchaff_rand

SATen_pre
SATen_qcp
adg2wsat+
adg2wsat0
gnovelty+
kcnfs04
march_dl
minisat20
mxc-sr08
picosat
saps

tts-4-0
vallst

zchaff_rand

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Bin Index

Value
0.2
0.4
0.6
0.8
1.0

Figure 4.7: Latent classes inferred by the linked-component mixture model of Section 4.3.5,

using K = 16 mixture components and B = 10 performance bins. Solver names have been

shortened when necessary. Continued in Fig. 4.8.

58

8 9 10 11

12 13 14 15

SATen_pre
SATen_qcp
adg2wsat+
adg2wsat0
gnovelty+
kcnfs04
march_dl
minisat20
mxc-sr08
picosat
saps

tts-4-0
vallst

zchaff_rand

SATen_pre
SATen_qcp
adg2wsat+
adg2wsat0
gnovelty+
kcnfs04
march_dl
minisat20
mxc-sr08
picosat
saps

tts-4-0
vallst

zchaff_rand

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Bin Index

Value
0.2
0.4
0.6
0.8
1.0

Figure 4.8: Latent classes inferred by the linked-component mixture model of Section 4.3.5.

The structure it identifies in the solver performance data can be observed; these observations

are expounded in the text.

59

on which SLS solvers excel, shares some of the performance characteristics of both

families (Dequen and Dubois, 2004).

• Components 0 and 4 complement component 3: they describe instances easy for most

complete solvers, but difficult for SLS solvers.

• Component 3, in particular, shows the older solvers zchaff and vallst struggling

to match the performance of other solvers, even on instances easy for both complete

and incomplete solvers.

The model’s performance expectations are justified by domain knowledge. The model,

however, discovers these expectations automatically, and quantifies them on particular in-

stance distributions.

Another way to examine this model is through the responsibility its components

take for instances across the data set. Those responsibilities can be compared to other

domain knowledge about those instances, specifically, knowledge of the category to which

each instance belongs. Figure 4.9 plots the share of responsibility each mixture component

takes for each instance, i.e., the value of each βk conditioned on each set of observations.

With the instances reordered to group those of the same class, Fig. 4.10 shows that the

correlation between an instance’s class and its category becomes apparent. The structure

identified by the model has, therefore, further justification in knowledge of the domain.

4.7 Modeling for Exploratory Visualization

Models of solver performance can also be applied for purposes outside the immediate goals

of MAPP. One purpose which this dissertation explores is the human interpretation of per-

formance data. The volume of data generated by a typical solver competition, the outcomes

of dozens of solvers running on hundreds of instances, makes it difficult to uncover inter-

esting aspects of performance buried in tabular results. How are instances organized in

solver performance space? Are there instances on which all solvers perform poorly? Are

60

0

5

10

15

200 400 600 800
Instance

C
om

po
ne

nt

Prob.
0.0
0.2
0.4
0.6
0.8
1.0

Figure 4.9: The responsibilities assumed for each SAT 2007 competition instance by each

component of the model also visualized in Fig. 4.7. The same set of values underlie both

figures. Each row corresponds to a mixture component, and each column corresponds to

an instance. To highlight patterns in the data, the matrix has been reordered to minimize

inter-column Euclidean distance (Hahsler et al., 2008). This reordering has the effect of

grouping instances that belong to the same components. Most instances, but not all, are

the responsibility of only one component. The model has thus rigidly divided the space

of solver performance, sharing statistical strength only amongst instances it deems similar.

Figure 4.10 shows that these classes correlate with known facts about instance performance.

there important differences between solvers’ performance on satisfiable and unsatisfiable

instances? Instance clustering and performance estimation, both of which are products of

applying a mixture model to these data, can make it easier for humans to understand com-

petition results and answer such questions.

The borg-explorer tool, part of the borg system in which MAPP has been im-

61

RANDOM

INDUST.

CRAFTED

200 400 600 800
Instance

C
at

eg
or

y

Figure 4.10: The competition categories of each instance, presented in the same order as in

Fig. 4.9, i.e., so that instances belonging to the same component are adjacent. Each point

represents an instance, and they are grouped into horizontal bands by category. Within a

band, points are spaced vertically to make them more visible. Instances in a band tend to

cluster together, meaning that the competition category and primary model component of

an instance are correlated. This effect is particularly evident for the RANDOM and INDUS-

TRIAL categories. Instances in the CRAFTED category, which contains an assortment of

challenging instances of various kinds, cluster less easily according to solver performance.

This visualization shows that the mixture model is naturally recovering some of how a hu-

man might organize the data.

62

Figure 4.11: Screenshot of the borg-explorer visualization tool in use. This web-

based tool leverages a mixture model of performance, such as that examined in Figs. 4.7

to 4.10, to provide a picture of solver performance more accessible than the raw data and

more detailed than a simple solver ranking. Each circle represents a satisfiable instance,

and each diamond an unsatisfiable instance; each symbol is numbered with the latent class

to which it predominantly belongs; and symbols are positioned to maintain, as much as

possible, distances between them proportional to the differences in the estimated RTDs.

The performance of solvers in selected regions of this space can be plotted. The tool makes

high-level patterns evident: the performance differences between clusters 7 and 12 in the left

half of the space, for example, can be seen as also correlated with a satisfiable / unsatisfiable

split.

63

plemented, was designed to make such exploration possible. As seen in Fig. 4.7, it provides

an interactive, high-level picture of solver behavior on large benchmark collections by lay-

ing out instances in a two-dimensional space according to performance. Visualization en-

vironments generated by the tool are available online12, and can used to explore the results

of the 2009 and 2011 competitions. After its introduction, interest in borg-explorer

drove its integration by the developers of EDACC, an environment for conducting rigorous

solver experiments on cluster hardware (Balint et al., 2010).

While designed to visualize competition data, borg-explorer could be used

for any solver performance data set. Virtually every paper on solver development, for ex-

ample, includes an empirical analysis of a new technique’s performance. Tools such as

borg-explorer might allow researchers to interactively explore such results. The abil-

ity of models to aid human understanding thus provides another reason for their continued

development in this domain.

4.8 Conclusions

The core of MAPP is a set of solver performance distributions estimated for training in-

stances. Since these estimates must be made from a limited number of observed solver

runs, this chapter introduced a family of discrete mixture models of solver performance.

Estimating values for the latent variables in these models, using EM, corresponds to esti-

mating the run time distributions underlying solver performance. On data collected from

a standard suite of solvers running on benchmark instances, various strengths of models

are apparent: simple models with minimal structure are robust and effective when data are

plentiful, while models with more complex priors can be useful when data are scarce or

missing. The modeling component of MAPP thus provides an essential link between the

portfolio’s raw training data and the beliefs on which it bases its actions. The following
1http://nn.cs.utexas.edu/pages/research/borg-explorer/sat09/
2http://nn.cs.utexas.edu/pages/research/borg-explorer/sat11/

64

http://nn.cs.utexas.edu/pages/research/borg-explorer/sat09/
http://nn.cs.utexas.edu/pages/research/borg-explorer/sat11/

chapter develops and evaluates a method for combining instance feature information with

those beliefs, adjusting them to better suit each test instance.

65

Chapter 5

Integrating Instance Features

There are three sources of information available to a portfolio: past solver runs on training

instances, past solver runs on the current instance, and the superficial appearance of that

instance. Chapter 4 and Chapter 6 allow MAPP to make use of the first two sources of in-

formation. This chapter handles the third. Its feature integration approach allows MAPP to

tailor its decisions to particular instances before running a solver. It leverages existing su-

pervised classifiers, and provides multiple performance scenarios to planning. This chapter

lays out the details of feature integration in MAPP, evaluates its effectiveness, and analyzes

its operation.

5.1 Motivation

MAPP uses the models developed in Chapter 4 to acquire knowledge of solvers’ perfor-

mance distributions on training instances. Even perfect knowledge of these distributions,

however, leaves the portfolio method knowing only how solvers performed in the past.

When faced with a new instance, MAPP must somehow apply this knowledge of the past

toward making a judgment about the future. In particular, the portfolio must predict how

solvers are likely to perform on that instance given only information about its superficial

66

appearance. Does it include many clauses? Are those clauses tightly linked? Such details

can, when coupled with experience, offer clues to how well different solvers will perform.

Algorithm-selection portfolios often leverage these features by training supervised

learners to predict solver performance directly—but, because the notion of performance

they employ is limited to an aggregate score, such portfolios cannot construct or benefit

from solver execution schedules. In contrast, so-called “non-model-based” portfolios do

build such execution schedules, tailoring them to an instance’s neighborhood in feature

space—but the relevance of that neighborhood depends on the fortuitous suitability of the

feature set.

MAPP leverages instance features in a way that combines the strengths of both ap-

proaches. It does so by using features to predict the similarity between instances, and, crit-

ically, by defining that similarity in terms of solver performance. As in algorithm-selection

portfolios, this approach builds on the mature field of supervised learning, and it trains

discriminative models specifically to associate feature values with properties of solver per-

formance, and naturally to ignore irrelevant features. As in non-model-based portfolios,

the outcome of this integration is the ability to connect training instances to previously-

unobserved test instances. That connection makes it possible to create solver execution

schedules. The fundamental principle of MAPP, the explicit representation of uncertainty

as a weighted collection of performance scenarios, is also maintained.

5.2 A Review of Instance Features

Instance features are arbitrary, efficiently-computable properties of the members of a given

problem domain. Features are an important aspect of most successful portfolio methods (Xu

et al., 2008a; Kadioglu et al., 2011; Gebser et al., 2011b). Commonly-used features in SAT

include the number of variables, counts of particular clause structures, summaries of local

search trajectories, and statistics of the constraint graph (Nudelman et al., 2004). Such fea-

tures are often supplied to a regression method in order to predict a performance score, such

67

as expected run time, for every solver. This approach is employed by the claspfolio

portfolio for ASP, which uses a support vector machine (SVM), and by SATzilla2009,

which uses ridge regression. In SAT, MAPP uses a subset of the standard feature set intro-

duced by Nudelman et al. (2004), as presented in more detail in Chapter 7.

Features are useful because they provide information about solver performance.

This connection, however, may be indirect and situation-dependent. Even the file path of

an instance, for example, could provide information about its provenance, the encoding

scheme that generated it, and thus its difficulty. It will do so, however, only within a single

environment. Commonly employed features are less arbitrary, but their meaning may still

be sensitive to the distribution of instances at hand.

Before diving into the process by which such features are used in MAPP, it may

therefore be instructive to focus briefly on an example feature and to describe the infor-

mation it conveys. The prototypical feature, as mentioned in Section 3.2.2, is the ratio of

clauses to variables in CNF SAT. As clauses are added to an instance of random k-SAT,

the formula becomes increasingly constrained and fewer satisfying assignments exist. At a

high ratio of clauses to variables, then, the formula is likely unsatisfiable. At a low ratio, it

is likely satisfiable. Between these extremes, there is a point where random formulae have

either few or zero satisfying assignments, and the addition or subtraction of a clause tips an

instance to one side. This point has been deemed the phase transition in random SAT. In

3-SAT, the phase transition lies near a ratio of 4.26 (Crawford and Auton, 1996).

For a distribution of random k-SAT instances, this ratio is not of exclusively sci-

entific interest: it also provides information that can help to solve those instances. If an

instance appears largely unconstrained, a short run of an SLS solver is likely sufficient to

identify a satisfying assignment. If an instance appears highly constrained, a short run of a

DPLL-derived solver is likely sufficient to prove unsatisfiability. Instances near the phase

transition may require much longer runs of both solver types. Knowledge of this instance

feature thus enables solution strategies to be specialized for particular instances, by provid-

68

adaptg2wsat+ march_dl2004

0

2

4

6

8

0.1 0.2 0.3 0.1 0.2 0.3
Variables-to-Clauses Ratio

D
en

si
ty Succeeded

False
True

Figure 5.1: The proportion of successful and unsuccessful runs of two different solvers

on SAT 2007 RANDOM instances, as a function of those instances’ variables-to-clauses ra-

tio, estimated by KDE. In some cases, this ratio expresses how constrained a formula is;

and complete solvers like march_dl2004 often perform better than incomplete solvers

like adaptg2wsat+ on highly constrained instances, which may be more likely to be

unsatisfiable. In this case, however, the ratio expresses a different aspect of the instance

distribution, and our expectations about its import are incorrect. This example illustrates

the difficult, empirical nature of connecting feature values to predictions about solver per-

formance.

ing information about solver performance on a new instance before the first solver run has

been made.

The clauses-to-variables ratio, however, is only one of many possible features. It

is most useful on collections of random k-SAT instances when k is fixed. On structured

instances, other features may be more valuable. Detailed statistics of the constraint graph,

for example, may suggest satisfiability or unsatisfiability in situations where the clauses-to-

variables ratio does not. Furthermore, even that well-studied feature can exhibit unexpected

patterns. Figure 5.1 plots the run times of a complete and an incomplete solver against

the reciprocal of this ratio on the RANDOM instances used in the 2007 competition. In

69

this situation, unexpectedly, the incomplete solver succeeds more often at higher values of

the clauses-to-variables ratio, and the complete solver succeeds more often at lower val-

ues. Expectations fail to match observed behavior because these particular random k-SAT

instances were generated over a range of k, rather than over a range of clause counts.

The precise connection between features and solver performance can, therefore,

quickly become an empirical question, and one that depends on the composition of a partic-

ular instance mixture. The next section thus applies the machinery of supervised learning

to the specific set of performance and feature data at hand.

5.3 Feature Integration as Classification

MAPP leverages features by associating them with distances between instances. In this

approach, multiple discriminative models predict the distance, according to some metric,

between a new instance and every training instance. Unlike the nearest-neighbor approach

of portfolio methods like those of Malitsky et al. (2011) and Nikolić et al. (2011), which

measure distances in feature space, MAPP measures distances between instances in solver

performance space. This difference makes feature integration in MAPP more robust to

differences between the two spaces. This section lays out the integration scheme in detail.

Recall the central modeling assumption of Chapter 4, that solvers’ RTDs on a test

instance are identical to their RTDs on some training instance. This assumption might

suggest one possible goal for feature integration: to identify groups of instances on which

solvers perform identically, based on the features of those instances. In reality, however, the

assumption of performance-identical instances does not hold perfectly; solvers’ behaviors

on different instances are rarely truly the same. Instead, for the purpose of feature integra-

tion, the goal of finding identical instances can be relaxed into the closely-related goal of

finding most-similar instances.

For a test instance with feature vector ϕ, then, the goal of feature integration is a

weighting over training instances that expresses their likely similarity to the test instance,

70

measured according to the similarity of their RTDs. An RTD-based distance between two

instances with sets of RTDs {θ(1), . . . ,θ(S)} and {β(1), . . . ,β(S)} can be defined as

f(θ,β) =
1

S

S∑
s=1

[
max

b∈{1,...,B}

∣∣∣∣∣
b∑

i=1

θ
(s)
i −

b∑
i=1

β
(s)
i

∣∣∣∣∣
]
, (5.1)

i.e., analogously to the standard Kolmogorov-Smirnov test, as the mean of the maximum

differences between their corresponding per-solver RTDs represented as cumulative distri-

bution functions (cdfs).

In practice, there is little value in predicting distances between dissimilar instances

precisely; a portfolio method gains more value from focusing on similar instances than it

does from estimating long distances exactly. Features, then, are used in MAPP to predict the

probability that each training instance is one of the M training instances whose RTDs are

most similar to those of the test instance. This goal can be cast as a classification problem:

for each training instance, M training instances are labeled as similar to that instance, and

the remaining as dissimilar. A binary classifier is then trained to predict those class labels.

This process builds one classifier for each instance in the training set.

For a given test instance, the probability of class membership predicted by each

classifier becomes the weight of consideration given to its associated training instance dur-

ing planning, as developed in Chapter 6. The supervised learning method applied in this

dissertation is l2-regularized logistic regression, the standard first choice in binary classi-

fication (Hastie et al., 2009). It is straightforward, efficient, and widely-used. It assumes

that features are independent and contribute additively to a binary class probability through

the nonlinear logistic function. It is this class probability that is taken as each instance’s

weight.

Early experiments found one small modification to typical logistic regression to be

important. Since few instances receive the most-similar label relative to the number of

training instances as a whole, the distribution of labels is skewed. To force logistic regres-

sion out of the baseline strategy of labeling every instance as dissimilar, the two classes

are treated differently: in training, false negatives are penalized ten times more highly than

71

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
Size of Feature Set

C
ha

ng
e

in
M

M
L

P

Model
Dir. (a)
Dir. (Opt.)
Dir. Mixtures
Dir. Matrices

Figure 5.2: The change in the mean log probability of held-out test data after including in-

stance feature information. Single models were trained on a random 80% subset of the 2007

SAT competition instances, then predictions made and results averaged over randomly-

selected feature sets of varying size. The static features of Nudelman et al. (2004) were

used, excluding expensive clustering coefficient information. Classifiers were trained on

M = 32 positive examples. Features measurably improved predictions. The results in

Chapter 7 will further show that this improvement is capitalized in the problem-solving

performance of the portfolio.

false positives. This class-specific weighting is a standard feature of most implementations

of logistic regression (Pedregosa et al., 2011; Fan et al., 2008).

The ability to leverage the standard tools of supervised learning in this way is an

important advantage of MAPP’s approach to feature integration. If important feature in-

teractions are known, for example, a more expressive classifier could be applied without

changing any aspect of the surrounding framework. More generally, supervised learning is

a well-studied area; it is reassuring to know that its methods can be brought to bear.

72

Change in MMLP

Year INDUSTRIAL CRAFTED RANDOM

2007 0.53 0.54 0.90

2009 0.41 0.66 1.05

Table 5.1: The reduction in uncertainty achieved by including feature information on each

2007 and 2009 competition category, in terms of the change in the mean log probability

of held-out runs of the SATzilla2009 suite. Results are averaged over random 80%

train/test splits. Features benefit the RANDOM category the most and the INDUSTRIAL

category the least, an effect consistent with knowledge of the SAT/UNSAT split that is

most important for solvers on RANDOM. Features are, however, measurably useful on every

category.

5.4 Experiments

While evaluations in Chapter 7 will consider the effect of feature integration on the per-

formance of MAPP as a whole, experiments in this chapter examine it entirely through

its effect on the probabilities assigned to test data. These experiments therefore focus di-

rectly on the reduction in uncertainty that features bring, with uncertainty expressed by the

mixture-of-instances representation that forms the core of MAPP. In this representation, un-

certainty is reduced by producing a weighting over the training instances that favors more

strongly those with more performance similarity to a new instance.

Figure 5.2 shows results of an experiment compares mean scores under feature sub-

sets of varying size. Although certain models appear to respond more strongly than others,

log probability shows clear improvement in every case as the classifiers gain access to more

feature information. That information, in other words, measurably reduces uncertainty. Ta-

ble 5.1 extends this measurement to specific categories: features remain consistently useful,

73

albeit not equally so. Extensive experiments in Chapters 7 to 8 will confirm that this reduc-

tion in uncertainty makes MAPP substantially more successful. Furthermore, the curve of

improvement suggests that, while some features may be more valuable than others, most

features contribute some piece of useful information.

A related observation can be drawn from Fig. 5.3, which visualizes the weight each

classifier gives to each feature. Different features appear useful for identifying different

areas of similar solver performance. This observation further motivates going beyond pure

feature-space similarity, as in the k-NN approach, by connecting features to the true goal of

predicting performance. It also suggests that feature-selection approaches, like that of Kroer

and Malitsky (2011), cannot completely mitigate drawbacks of k-NN-based performance

prediction by focusing on fewer features; such an approach still employs the same feature

set across the entire space.

The supervised scheme, as described, should be more robust to misleading features.

To test this hypothesis, Fig. 5.4 plots the change in the feature-conditioned log probability

of test data as garbage features are added to the feature set. Indeed, k-NN is less predictive

as the feature space is corrupted, while the similarity-based scheme declines only mini-

mally. This scheme thus makes it simpler to construct a MAPP portfolio in a new domain,

since features may be devised, implemented, and applied without separately evaluating their

utility.

5.5 Conclusions

Leveraging information from superficial instance features allows a portfolio to acquire more

knowledge of solvers’ performance on an instance before it makes its first decision. It

is, therefore, a valuable part of a portfolio method. Existing feature integration schemes

operate by predicting independent solver performance scores, or by grouping neighboring

instances in feature space. The former provides too little information for planning, and the

latter is sensitive to arbitrary aspects of the feature set. The experiments in this chapter

74

0

50

100

150

200

250

V
G
-
m
i
n

V
G
-
m
e
a
n

V
G
-
m
a
x

V
G
-
c
v

V
C
G
-
C
L
A
U
S
E
-
m
i
n

V
C
G
-
C
L
A
U
S
E
-
m
e
a
n

V
C
G
-
C
L
A
U
S
E
-
m
a
x

V
C
G
-
C
L
A
U
S
E
-
e
n
t

V
C
G
-
C
L
A
U
S
E
-
c
v

v
a
r
s
-
c
l
a
u
s
e
s
-
r
a
t
i
o

V
C
G
-
V
A
R
-
m
i
n

V
C
G
-
V
A
R
-
m
e
a
n

V
C
G
-
V
A
R
-
m
a
x

V
C
G
-
V
A
R
-
e
n
t

V
C
G
-
V
A
R
-
c
v

U
N
A
R
Y

T
R
I
N
A
R
Y
+

n
v
a
r
s

n
c
l
a
u
s
e
s

H
O
R
N
Y
-
V
A
R
-
m
i
n

H
O
R
N
Y
-
V
A
R
-
m
e
a
n

H
O
R
N
Y
-
V
A
R
-
m
a
x

H
O
R
N
Y
-
V
A
R
-
e
n
t

H
O
R
N
Y
-
V
A
R
-
c
v

h
o
r
n
-
c
l
a
u
s
e
s
-
f
r
a
c

B
I
N
A
R
Y
+

P
N
-
R
A
T
I
O
-
V
A
R
-
s
t
d
e
v

P
N
-
R
A
T
I
O
-
V
A
R
-
m
i
n

P
N
-
R
A
T
I
O
-
V
A
R
-
m
e
a
n

P
N
-
R
A
T
I
O
-
V
A
R
-
m
a
x

P
N
-
R
A
T
I
O
-
V
A
R
-
e
n
t

P
N
-
R
A
T
I
O
-
C
L
S
-
m
i
n

P
N
-
R
A
T
I
O
-
C
L
S
-
m
e
a
n

P
N
-
R
A
T
I
O
-
C
L
S
-
m
a
x

P
N
-
R
A
T
I
O
-
C
L
S
-
e
n
t

P
N
-
R
A
T
I
O
-
C
L
S
-
c
v

Feature

C
la

ss
ifi

er

Coeff.
-4
-2
0
2

Figure 5.3: Values of the coefficients associated with each feature across per-instance clas-

sifiers for all 2007 instances. The order of classifiers is arbitrary. Feature values were scaled

to zero mean and unit variance. Some features, such as the raw clause count nclauses,

can be seen receiving higher average weight than others. Classifiers associated with differ-

ent instances, however, use different sets of features; some, for example, give nclauses

zero weight. This observation suggests that different sets of features are relevant to distin-

guishing different regions of this solver performance space.

75

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0 5 10 15
Number of Random Features

C
ha

ng
e

in
M

M
L

P

Scheme
RTD
k-NN

Figure 5.4: The change in the mean log probability of held-out run data according to

mixtures of training instances weighted by k-NN and by RTD-based feature integration,

as random features are added to the feature set. Values were averaged over 64 random

80% train/test splits of 2007 competition instances, and runs were of the SATzilla2009

suite. For both schemes, M = 32 nearest neighbors were used. An approach that weights

instances solely according to their proximity in feature space, as k-NN does, is sensitive to

the feature set employed. In contrast, discriminative models of RTD similarity are trained

to ignore non-predictive features, and are thus less likely to be misled.

showed that the alternative scheme employed in MAPP combines the strengths of both

approaches.

Chapter 4 established the initial state of the MAPP belief representation, and this

chapter enabled feature information to influence it. The fundamental principle of MAPP—

the representation of portfolio information as a weighted mixture of possible performance

scenarios—thus remains an effective, flexible way to manipulate and reason about perfor-

mance uncertainty in the portfolio context. The next chapter shows that this representation

can also be naturally employed in the computation of solver execution schedules.

76

The MAPP feature integration scheme, however, yields a weighting over all possible

performance scenarios, i.e., over all training instances, of which there may be thousands.

To fully leverage the information provided by instance features, then, a solver execution

schedule should take all of those scenarios into account, not only a small neighborhood

of them. This goal may be particularly important when features are unavailable, as in a

new domain, or less informative, as they are on the INDUSTRIAL collections in the 2007–

2011 SAT competitions. The efficiency of planning over many possibilities is therefore an

important concern, and will be addressed in Chapter 6 as well.

77

Chapter 6

Planning Solver Execution

The preceding chapters constructed the components of MAPP that acquire information.

These components extract performance distributions from limited run data, and leverage in-

stance appearance to predict the similarity between such distributions. This chapter builds

the third component of MAPP, which uses that information to solve computationally diffi-

cult instances given limited processor time. Its input is a suite of solvers and their estimated

RTDs on a set of instances, and its output is a solver execution schedule that allocates that

processor time to solver runs. The ideal schedule maximizes the expected number of in-

stances solved; equivalently, given those solvers and a set of their possible RTDs on a single

instance, it maximizes the probability of solving that instance.

As mentioned in Chapter 3, Streeter et al. (2007a,b) reduced this run scheduling

problem to the min-sum set cover problem (Feige et al., 2004). They further developed a

greedy approximate portfolio scheduling algorithm, and showed that any better approxima-

tion would be NP-hard. This chapter will nonetheless improve on their result by reduc-

ing instead to the knapsack problem and leveraging dynamic programming to arrive at a

pseudopolynomial-time solution that remains practical in the context of MAPP.

78

SATenstein_qcp

kcnfs04

gnovelty+

adaptg2wsat0

adaptg2wsat+

0 5 10 15 20 25 30
Time Allocation (Bin Widths)

So
lv

er

Figure 6.1: An example run schedule, including restarts, computed for the set of

SATzilla2009 subsolvers on the set of all instances from the RANDOM category of

2007 SAT competition. The goal in computing such a schedule is to maximize the number

of instances it will solve in that set. Common tradeoffs in solver scheduling are visible: the

plan mixes short runs to quickly solve easy, satisfiable instances with longer runs to solve

more difficult, unsatisfiable instances, and it spends the largest amount of time executing a

general-purpose CDCL solver effective at both tasks.

6.1 Planning for a Known Run Time Distribution

A run schedule can be represented as a sequence of T solver-duration pairs ⟨(s1, b1), . . . , (sT , bT)⟩

where each st is the index of a solver and each bt is the index of a particular run duration,

typically associated with a model bin. An example of such a schedule is presented in

Fig. 6.1. A planning algorithm constructs a schedule subject to a constraint on the total

runtime
∑T

t=1 dbt ≤ C, for some budget or “cutoff” C, where dt is the upper end of the run

duration range spanned by bin t.

First, consider scheduling solvers on a single instance for which their run time dis-

tributions are known. The models in Chapter 4 estimate the probability p(bsir = j) that run

r of solver s on instance i would fall into bin j of B discrete bins, with a designated bin

79

receiving only all failing runs. Each run is independent: conditioned on the choice of solver,

instance, and duration, a run’s outcome depends only on the solver’s internal randomness.

The overall probability of a plan’s success does not, therefore, depend on the order of its

actions. Furthermore, if the RTDs are known, the outcome of a run provides no additional

information about the unobserved outcomes of later runs.

Planning in this setting can be cast as a variant of the classic unbounded knapsack

problem (UKP), and this interpretation leads to an efficient algorithm for computing a run

schedule. The UKP asks for the selection, made with replacement from a set of items that

are each associated with a “value” and a “weight”, that maximizes the total value subject to

a maximum total weight (Kellerer et al., 2004). Formally, this goal is to

maximize
A∑

a=1

vaxa, (6.1)

subject to
A∑

a=1

waxa ≤ d, (6.2)

where A is the number of items, va the value of item a, wa the weight of item a, and

xa the number of copies of item a that were selected. In solver scheduling, a selection is

made from a set of possible runs, each associated with a solver and a duration, subject to a

maximum total duration. That selection should minimize the probability that every selected

run takes longer than the duration allotted to it. If bin B is assumed to be the failure bin,

and if bins are equally spaced, so that a bin index j can be seen as a duration expressed in

bin widths and B taken as the cutoff, then this objective can be written as:

minimize
S∏

s=1

B−1∏
j=1

p(bsi· > j)xsb , (6.3)

subject to
S∑

s=1

B−1∑
j=1

jxsb ≤ B. (6.4)

The correspondence between the knapsack problem and the solver scheduling problem can

be made even more evident by rewriting the objective in Eq. (6.3) in terms of total log

80

probability, as

minimize
S∑

s=1

B−1∑
b=1

xsb log p(bsi· > j), (6.5)

subject the same constraint, Eq. (6.4). Thus solver scheduling is an instance of the knapsack

problem where the items consist of solver-duration pairs, the objective measures failure

probability, and the goal is minimization instead of maximization.

Note that the probability p(bsi· > j) of a run of solver s failing on instance i, i.e.,

falling into a bin representing more time than bin j, is the inverse of the cdf known as the

survival function. Survival analysis is a rich field whose connections to algorithm portfolios

have been explored more deeply by Gagliolo and Schmidhuber (2006), also discussed in

Section 3.4.

The standard knapsack problem, and thus—when the true probabilities are known—

the solver scheduling problem, can be solved exactly via dynamic programming (Bellman,

1957). Call the minimum survival probability with m bin intervals remaining p∗mi, and

consider the situation when time remains for only a single, short run. Then the objective

becomes:

minimize
S∑

s=1

1∑
b=1

xsb log p(bsi· > j) =

S∑
s=1

xs1 log p(bsi· > 1). (6.6)

The optimal choice in this situation is the solver most likely to terminate successfully in the

first bin, so

log p∗0i = 0, (6.7)

log p∗1i = min
s∈{1,...,S}

log p(bsi· > 1), (6.8)

and the survival probability with m bin intervals remaining is given in general by:

log p∗mi = min
s∈{1,...,S},j∈{1,...,m}

log p(bsi· > j) + log p∗(m−j)i. (6.9)

By computing each p∗mi starting from p∗1i, the minimum probability of failure on instance i,

p∗Bi, can be computed in time O(SB2). The plan associated with this value is the desired

81

optimal plan. Dynamic programming solves the knapsack problem in pseudopolynomial

time, i.e., in time polynomial in the value of the inputs, but the problem remains NP-

complete: it is believed to require time exponential in the size of its inputs.

In practice, a user wishes not only to maximize the probability of success within the

cutoff, but also to solve instances quickly. Every ordering of actions in a plan computed as

above will share the same probability of success, but some orderings will solve instances

more quickly on average. A plan should therefore be reordered after it is obtained. In this

dissertation, actions are sorted in decreasing order of the quantity p(bsi· ≤ j)/j, the cost-

weighted probability of each action succeeding. This quantity is known as “efficiency” in

the knapsack literature and elsewhere (Kellerer et al., 2004).

6.2 Planning for an Uncertain Run Time Distribution

If an instance’s RTDs are known with certainty for every solver, the approach of Section 6.1

results in an optimal plan for solving that instance, even when solvers are nondeterministic.

In general, of course, these distributions are not known. One way to express this uncertainty

is as a set of RTD matrices, each providing one possible distribution for every solver, and

each associated with a probability of representing the instance accurately. This approach

integrates well with the models in Chapter 4, which characterize an RTD distribution as a

finite mixture, and from which multiple candidate settings of their latent parameters can be

obtained. As outlined in Chapter 1, this explicit representation of uncertainty is the core

principle of the MAPP approach.

When uncertainty is represented by such a mixture, the problem of computing a

schedule for one instance with unknown RTDs is equivalent to that of computing a sched-

ule for many instances with known RTDs. The greedy planner of Streeter et al. (2007b)

works with the latter formulation, and their results therefore apply directly to this setting

as well. Adapted slightly to account for the probability associated with every RTD matrix,

82

this greedy planner chooses an action according to

gj = argmax
a∈{1,...,S}×{1,...,T}

f(⟨g1, . . . , gj−1, a⟩)− f(⟨g1, . . . , gj−1⟩)
j

, (6.10)

where

f(⟨(s1, b1), . . . , (sT , bT)⟩) =
I∑

j=1

p(i = j)

[
1−

T∏
t=1

p(bstj· > bt)

]
(6.11)

is the probability of a given plan succeeding. Intuitively, this greedy planner employs the

same type of efficiency heuristic that was used to reorder actions in the knapsack plan: it

starts from an empty sequence of actions, and repeatedly augments that sequence with the

action that maximizes the probability of success per time step. Its greedy nature, however,

means that this planner never revisits actions once they have been added to the plan.

To move beyond greedy planning, the dynamic programming approach can be ex-

tended to provide an approximation in the case of uncertainty. Equation (6.9) becomes:

log q∗mi = min
s∈{1,...,S},j∈{1,...,m}

log

I∑
l=1

p(i = l)p(bsl· > j)p∗(m−j)l. (6.12)

This algorithm chooses actions by considering their effects averaged over all performance

scenarios. Each scenario is weighted by the predicted probability, computed by the distribution-

similarity approach developed in Chapter 5, that it accurately represents the current situa-

tion. Since it proceeds by constructing multiple candidate plans, this approach is not tied to

past decisions as rigidly as is the greedy planner.

However, since the algorithm computes a plan by working, in effect, backwards in

time, it ignores the information-gathering effects of actions under uncertainty. The success

or failure of the first action in a plan should alter the probabilities assigned to the scenar-

ios considered, as observations affect belief state in any partially observable MDP—but

the dynamic-programming paradigm means that those probabilities are taken as fact before

the actions that affect them are selected. The algorithm is, therefore, suboptimal. It ap-

pears that suboptimality is the price paid for efficiency. Furthermore, unlike those of the

83

greedy planner, plans computed by the knapsack planner become optimal as knowledge of

a solver’s RTDs on an instance becomes certain: if only a single instance receives weight,

the algorithm collapses to solving an instance of the standard UKP.

6.3 Experimental Evaluation

The knapsack planner offers compelling benefits in theory, such as optimal planning un-

der known RTDs, but it is nonetheless approximate in general. Its performance relative to

the greedy planner can be evaluated empirically. Figure 6.2 does so, comparing the per-

formance of both planners under increasingly fine-grained levels of discretization. It finds

the knapsack planner to perform more consistently than the greedy planner, and its peak

performance to be higher.

This experiment also provides some information about the cost of discretization it-

self. Between B = 1 and B ≈ 60, the success rate climbs from 0.62 to 0.67, corresponding

to solving more than 40 additional instances on average. Coarse discretization does harm

performance. The existence of the plateau in success rate above B ≈ 60, however, shows

that the number of bins required to escape this cost is not impracticably high. Furthermore,

the relationship between discretization and performance can be surprising: while additional

bins do tend to improve performance, the improvement is not monotonic. Since bins are

evenly spaced, the addition of a new bin affects the locations of all bins, and can thus nega-

tively affect the set of schedules available for consideration by a planner.

The planners may also be compared by examining, directly, the plans they compute

for a small suite of solvers on different categories of instances. Figure 6.3 does so for the

ppfolio solver suite on three categories of the 2011 SAT competition, and overall. Both

planners leverage large-scale patterns in performance. Neither, for example, allocates any

processor time to the SLS solver TNM on the category of highly-structured INDUSTRIAL

instances. The greedy planner, however, appears less likely to schedule long solver runs.

This phenomenon is consistent with our understanding of the algorithm. As planning be-

84

0.62
0.63
0.64
0.65
0.66
0.67

20 40 60 80 100 120
Bins

M
ea

n
Su

cc
es

sR
at

e

Planner
Greedy
Knapsack

Figure 6.2: The mean fraction of all 2007 SAT competition instances solved by execution

schedules for SATzilla2009 subsolvers, computed across those instances by the greedy

and knapsack planners, as the number of available solver run durations is increased. Re-

sults are averaged over solver nondeterminism. While both are approximate, the knapsack

planner consistently outperforms the greedy planner.

gins, it may select an action that, in isolation, makes efficient use of processor time. Once

selected, however, that action is locked into the plan, even though it may leave insufficient

time for longer runs that, while less efficient, may be necessary to maximize the probability

of solving an instance. The knapsack planner, while still likely to schedule short runs—

especially of SLS solvers like TNM—on some categories, is also capable of dedicating its

time to single long runs.

Figure 6.4 shows that this ability makes a difference in terms of the number of

instances solved on these instance collections, and on the INDUSTRIAL category in partic-

ular. These plots highlight the connection between the number of instances solved and the

amount of processor time required to solve them, exposing any tradeoff between speed and

reliability. In every category, the shorter runs chosen by the greedy planner do solve slightly

more instances quickly. In no category, however, does its plan solve more instances in total

than does the knapsack planner, and its repeated cryptominisat runs solve many fewer

85

Knapsack Greedy

clasp

cryptominisat

TNM

clasp

cryptominisat

TNM

clasp

cryptominisat

TNM

clasp

cryptominisat

TNM

IN
D

U
S

T
R

IA
L

C
R

A
F

T
E

D
R

A
N

D
O

M
A

ll

0 10 20 30 40 50 0 10 20 30 40 50
Time Allocation (Bin Widths)

So
lv

er

Figure 6.3: Plans computed by the greedy and knapsack planners for the ppfolio sub-

solvers over all instances in each of SAT 2011 competition categories and overall. The

effects of their algorithmic differences can be observed in the plans they compute. The

greedy planner, which focuses on its actions’ time-weighted probabilities of success, tends

to make shorter runs. It is less likely to schedule long runs in certain domains; this effect

is especially stark in the INDUSTRIAL category, on which the knapsack planner allocates

the majority of its computation to a single cryptominisat run while the greedy planner

makes repeated shorter runs. Figure 6.4 plots the number of instances solved by each plan,

demonstrating that these differences affect performance.

86

INDUSTRIAL CRAFTED

RANDOM All

0
1000
2000
3000
4000
5000

0
1000
2000
3000
4000
5000

50 100 150 50 100 150

100 200 300 100 200 300 400 500 600
Number of Instances Solved

Pe
r-

In
st

an
ce

C
ut

of
f(

C
PU

Se
co

nd
s)

Portfolio
Greedy
Knapsack

Figure 6.4: Cactus plots comparing the performance of the plans shown in Fig. 6.3 in terms

of instances solved versus processor time required. The greedy planner tends to solve more

instances quickly, a difference especially noticeable on CRAFTED, but it appears to do so at

the cost of solving fewer overall. The knapsack planner instead successfully optimizes the

number of instances solved. The longer runs in its schedules are, in fact, beneficial.

INDUSTRIAL instances than does the single long run of the knapsack plan. The dynamic

programming approach appears to strike a good compromise between efficient and effective

solver execution scheduling.

87

6.4 Conclusions

The planning algorithm presented in this chapter builds on a connection to the knapsack

problem and employs dynamic programming for solver scheduling. In experiments on mul-

tiple categories, the plans computed by this approach outperform those of an existing greedy

algorithm developed for the same purpose. Furthermore, the discretization it requires does

not appear overly burdensome: on the collections of instances tested, it reaches its perfor-

mance peak while the number of bins required remains reasonably small. The algorithm

plays a critical role in MAPP, but also addresses the important need for simple, efficient

solver scheduling in portfolio methods more generally.

The knapsack planning algorithm completes the third component of the MAPP

framework. To solve a previously-unobserved test instance, the framework follows a solver

execution schedule computed over its training instances; its performance model was previ-

ously used to estimate likely RTDs for its solvers on those instances. When domain-specific

features are available, those RTDs are weighted according to the similarity-prediction scheme

presented in Chapter 5, and the planner incorporates that weighting into its decisions. With

the architecture complete, the next step is to compare the performance of this portfolio ar-

chitecture with that of other methods. Chapter 7 will do so, presenting experiments that

simulate past SAT competitions and pit MAPP directly against algorithm portfolios repre-

senting the state of the art.

88

Chapter 7

Evaluation in SAT

The individual components of MAPP were developed and evaluated in isolation in Chap-

ters 4 to 6. They hold out the promise, however, of providing MAPP as a whole with

compelling advantages over existing algorithm portfolio architectures. Its planning method

is efficient and effective, allowing the portfolio to compute a schedule over many possible

scenarios; it can choose to run nondeterministic solvers multiple times, employing them

more effectively; its modeling step can handle nonstandard training sets and limited data; it

can use instance features to consider a range of possible performance scenarios, while stay-

ing robust to irrelevant features. In practice, do these benefits translate to more instances

solved?

This chapter measures and analyzes the performance of MAPP relative to that of

other portfolio methods. Comparing directly against the three most recent portfolio systems

to win in competition, it demonstrates that the conceptual benefits of MAPP are practical

benefits as well. These evaluations are conducted by reenacting, approximately, the past

solver competitions in which these alternative portfolios have been successful, and finding

that MAPP indeed outperforms them.

89

Benchmark Instances

Year INDUSTRIAL CRAFTED RANDOM All

2011 300 300 600 1200

2009 290 281 610 1181

2007 175 201 511 887

Table 7.1: Number of instances in each category of the past three SAT competitions. The

RANDOM category tends to include more instances than the others because arbitrary num-

bers of such instances can be generated. The “IBM” instances, which were not distributed in

the main collection and on which few solvers were successful, are not included in the 2007

collection. That collection was used only for training. Knowledge of the sizes of these

competitions allows the relative performance of each portfolio to be better understood.

7.1 Competition Benchmarks and Methodology

As discussed in Chapter 2, SAT solver competitions offer a valuable resource for judging

the state of the field and for replicating experiments. Most importantly, they provide consis-

tently packaged solver archives and a common set of benchmark collections. Major com-

petitions are held every two years, and experiments in this chapter will use every instance

from the 2007, 2009, and 2011 competitions. The sizes of these benchmark collections are

summarized in Table 7.1, along with per-category breakdowns.

In competition, each solver is run on every instance in at least one of the three

categories. In recent competitions, scoring has shifted from a purse-based scheme that

rewarded multiple criteria (Van Gelder et al., 2005) to a simple ranking based solely on the

number of instances solved, with ties broken by solver efficiency. These experiments—and

the planner used by MAPP—focus on the number-of-solutions ranking, although efficiency

will also be measured and discussed. Runs are subject to a standard CPU-time cutoff.

90

Competitions have used different cutoffs for different categories. The 2007 competition,

for example, applied a 5,000 s cutoff to RANDOM and CRAFTED instances and a 10,000 s

cutoff to INDUSTRIAL instances. In this chapter, for simplicity and consistency, and due to

practical cluster constraints, a 6,000 s cutoff will be used in all categories. Four solver runs

were collected on each training instance, and 60 performance bins were used for modeling

and planning. A subset of the standard SAT features of Nudelman et al. (2004) is used to

provide domain-specific instance information.

When they enter a solver competition, portfolio solvers are not granted prior ac-

cess to the benchmarks on which they will be tested. Instead, they must train on some

benchmark collection selected by their authors. This training set is often the collection

of instances used by the previous competition. That scheme is applied in this chapter as

well: each alternative portfolio was used exactly as submitted to the competition, trained on

whatever set its authors chose, while MAPP was trained only on instances from the previ-

ous competition. Furthermore, comparisons against a competing portfolio were made using

only its own suite of constituent solvers. In some cases, portfolios like SATzilla are trained

on specific categories, and multiple specialized variants entered. Training of MAPP may,

therefore, be focused on specific instance categories, but only as noted and only when the

competing portfolio did so as well.

Despite this methodology, comparisons between portfolio methods are inherently

inexact. Since experiments were run on a local cluster but competing portfolios were not

retrained on that cluster, for example, any hardcoded timing information becomes less ac-

curate in the local execution environment. These experiments can, therefore, only estimate

the performance differences between methods, not quantify them precisely. Note that the

same mismatch between training and test environments applies to portfolios executing in

the official competition environment as well.

91

120

130

140

150

120

130

140

150

[1,0](Sep.)
[1,0](Sys.)

50 100 150 200
Training Instances

M
ea

n
In

st
an

ce
sS

ol
ve

d

Model
Dir. (a)
Dir. Matrices
(||α||1 = 0.01)

Figure 7.1: The mean number of 2009 competition instances solved by execution schedules

for ppfolio subsolvers, computed using probabilities estimated under different models.

Results were averaged over 128 random 80% train/test splits, varying the number of training

instances used, and applying two different sampling strategies. Schedules computed with

the simple model perform well when data for every solver are available on every instance

(“[1, 0] (Sys.)”); when some data are missing (“[1, 0] (Sep.)”), the mixture models can infer

the missing data, which results in better schedules.

7.2 Evaluating Model Utility

Models have thus far been compared by examining the probabilities they assign to held-out

test data. These experiments provide a useful illustration of the models’ differences, and

such probabilities can be useful in their own right; for example, they can help understand

or visualize solver behavior, as in the borg-explorer tool presented in Section 4.7.

Figure 7.1 presents the outcome of an experiment that goes further: it demonstrates that a

model’s predictions can be valuable in the creation of a solver execution schedule. It also

92

demonstrates that the benefits of a complex model do not always outweigh the risk of being

misled, and evaluates a way to mitigate this effect.

This experiment contrasts performance under two sets of solver run data collected in

different ways. In the first set, all solvers were run systematically on the same subset of the

training set. In the second set, solvers were run separately on different non-disjoint subsets.

The same distinction was explored in the data-likelihood experiments of Fig. 4.5. As ob-

served there, the appropriate model depends on the structure of available data. When plen-

tiful runs have been systematically collected for training, as in the portfolio comparisons to

follow, a uniformly-smoothed multinomial model is sufficient. It can also be quickly fit to

data. For these reasons, it will be used in later comparisons.

When training runs have been sporadically collected, however, the predictable pat-

terns in performance identified by the mixture model allow it to fill gaps in performance

data—and the resulting execution schedules are more efficient. The results under system-

atic sampling show that the unconstrained mixture model can lead planning astray, with

worse performance in that situation than under the smoothed multinomial model. To com-

pensate for this weakness, the Dirichlet prior can be constrained (||α||1 = 0.01). This

change allows observed run data to dominate when available, while inferring the likely dis-

tribution when data are unavailable. This combination enables the best schedules across

sampling strategies.

In the next three sections, the performance of the entire MAPP approach is mea-

sured on standard benchmarks and compared with that of the three most successful portfo-

lios in SAT to date: SATzilla2009, which dominated the 2009 competition (it did not

compete in 2011); ppfolio, a simple parallel portfolio that performed well at the 2011

competition; and 3S, a more complex portfolio using k-NN prediction that also performed

well in 2011. Each of these portfolios won at least one competition category in 2009 or

2011. Results are illustrated through cactus plots that convey every portfolio’s overall per-

formance under the 6,000 s cutoff. Two other portfolios are included for perspective: a

93

“preplanning” portfolio, a stripped-down version of MAPP that applies the dynamic pro-

gramming planner without the benefit of information provided by static instance features,

and an oracle portfolio, which applies that planner to each instance given perfect knowledge

of solvers’ RTDs.

7.3 Comparison with ppfolio

The first comparison pits MAPP against a simple but successful naïve portfolio, ppfolio.

This approach runs a manually-selected set of solvers in parallel, ignoring instance fea-

tures and employing the trivial schedule in which every solver receives an equal share of

the processor on every instance (Roussel, 2011). Despite its simplicity, it won more cate-

gories than any other solver that entered the 2011 competition. This dissertation evaluates

the single-core version of ppfolio, in which only three solvers are used. Two of these

solvers, TNM and clasp, are the winners of, respectively, the RANDOM and CRAFTED

categories in the 2009 competition. The third solver, cryptominisat, won the smaller,

applications-focused “SAT Race” in 2010. Although it can execute additional solvers on

parallel hardware, such configurations are intended to optimize wall-clock rather than CPU

time, and are not tested here.

Figure 7.2 compares the MAPP portfolios to ppfolio on all of the relevant com-

petition categories, and overall. With feature information, MAPP outperforms ppfolio

in every category. Its performance edge is greatest on RANDOM instances, a result that will

be repeated in the comparisons to come. Since ppfolio is a simple parallel portfolio

that ignores instance features, its performance can be matched—and, over all categories,

slightly exceeded—by the preplanning version of MAPP as well. The plateaus evident in

the performance of preplanning occur after a transition in its execution schedule, as the new

solver quickly succeeds on the instances to which it is uniquely suited. Since ppfolio

executes its solvers in parallel, it does not exhibit the same transition points. When MAPP

is given access to feature information, its transition points also disappear: its schedules

94

INDUSTRIAL CRAFTED

RANDOM All

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

50 100 150 200 50 100 150

100 200 300 200 400 600
Number of Instances Solved

Pe
r-

In
st

an
ce

C
ut

of
f(

C
PU

Se
co

nd
s)

Portfolio
MAPP-Feat.
MAPP-Prep.
ppfolio

Oracle

Figure 7.2: Cactus plots contrasting the mean performance of the MAPP portfolios with

that of ppfolio. Performance overall, and on each of the three categories of the 2011

SAT competition, is shown averaged over solver and training nondeterminism. Portfolios

were trained on all 2009 competition instances; they were not category-specific. Better

performance curves are lower and farther to the right. With features, MAPP outperforms

ppfolio on the INDUSTRIAL and RANDOM categories by a wide margin, and exceeds it

slightly on CRAFTED. On RANDOM instances, its performance nearly reaches that of the

oracle portfolio.

95

MAPP-Feat. MAPP-Prep.

TNM

cryptominisat

clasp

TNM

cryptominisat

clasp

TNM

cryptominisat

clasp

TNM

cryptominisat

clasp

IN
D

U
S

T
R

IA
L

C
R

A
F

T
E

D
R

A
N

D
O

M
A

ll

0 10 20 30 40 50 0 10 20 30 40 50
Bin Index

So
lv

er

Run Frac.
0.0
0.2
0.4
0.6
0.8
1.0

Figure 7.3: Summary of plans employed by the MAPP portfolios in the comparison pre-

sented in Fig. 7.2. The shading of each cell denotes the fraction of runs in which a particular

solver was recorded as executing during a particular timeslice. Since the same preplanning

portfolio is used in every category, its plans do not vary. With access to feature information,

however, MAPP can predict the type of instance on which it runs, and tailor its schedule

appropriately. This tailoring is evident in the schedules employed, such as the heavy use of

cryptominisat on the INDUSTRIAL instances for which it was developed.

remain sequential, but their transitions occur at different times on different instances.

To peer more deeply into the behavior of MAPP, Fig. 7.3 visualizes logged records

of the solver execution plans it followed, both when it did and not have access to feature

information. With its early, short runs of TNM, MAPP has learned to employ a strategy

similar to the “presolvers” scheme designed into SATzilla, in which a fixed set of several

96

solvers is run briefly on every instance. In general, the portfolio effectively tailors its run

schedules to each category. Its plans on INDUSTRIAL instances are dominated by long runs

of the CDCL solver cryptominisat. On RANDOM instances, a mixture of TNM and

clasp runs is used, reflecting the split between satisfiable and unsatisfiable instances. On

CRAFTED instances, a mixture of all three solvers reflects the heterogeneous nature of the

category.

This comparison with ppfolio measured the performance of MAPP against a

simple alternative portfolio architecture, and established that MAPP can perform well using

a small suite of solvers. The next section gathers performance data in a different region

of the space of portfolio environments: using a mid-sized solver suite, and measuring its

performance relative to the standard SATzilla algorithm-selection architecture.

7.4 Comparison with SATzilla2009

The architecture of SATzilla, described further in Section 3.2.2, forms the basis of other

algorithm-selection portfolios such as claspfolio, against which MAPP is compared

in the next chapter. The fundamental principle of SATzilla is the use of instance features

to select a single solver, which is then run to completion on a given instance. Secondary

functionality includes a small set of presolvers run briefly on every instance, and a fixed

backup solver run only if the selected solver terminates prematurely. SATzilla2009 is

the most recent version of this architecture to enter a SAT competition.

Figure 7.4 shows that, despite using fewer features, MAPP performs substantially

better than SATzilla2009 on RANDOM instances, matches it on INDUSTRIAL, and slightly

exceeds it on CRAFTED. On RANDOM, the planner appears to trade off faster solutions to

easier instances for attainable solutions to more difficult ones. While the performance curve

of the preplanning portfolio is worse overall, it is both interesting and surprising to observe

it matching the overall success rate of SATzilla2009 on that category even though it

does not apply domain-specific information. On this category, the combination of restarts

97

INDUSTRIAL CRAFTED

RANDOM

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

50 100 150 200 50 100 150 200

100 200 300 400 500
Number of Instances Solved

Pe
r-

In
st

an
ce

C
ut

of
f(

C
PU

Se
co

nd
s)

Portfolio
MAPP-Feat.
MAPP-Prep.
SATzilla2009

Oracle

Figure 7.4: Cactus plots contrasting the mean performance of MAPP with that of

SATzilla2009. Because no version of SATzilla entered the 2011 competition, 2007

instances were used for training and 2009 for testing. Furthermore, since three category-

specific variants of SATzilla2009 were entered, the other portfolios were also trained

and tested separately on each category, and no all-category experiment could be conducted.

With features, MAPP matches or exceeds the performance of SATzilla2009 in every

case. On RANDOM, it solves fewer instances in less than 1,000 s, but many more instances

overall.

98

and multiple solvers appears to be particularly valuable. The same result was suggested by

the earlier experiments of Silverthorn and Miikkulainen (2010), which focused on modeling

“burstiness”, i.e., the degree to which restarts affect solver success.

Table 7.2: Instance features used by “MAPP-Feat.” in the experiments in this chapter. This

feature set is a strict subset of that used by 3S and by SATzilla2009, which computes up

to 96 features (Xu et al., 2009), but observed performance shows that it provides sufficient

information to MAPP.

Name Description

BINARY+ Number of unary and binary clauses.

horn-clauses-fraction Fraction of clauses that are Horn clauses.

HORNY-VAR-cv CV of the variables’ Horn clause counts.

HORNY-VAR-entropy Entropy of variables’ Horn clause counts.

HORNY-VAR-max Max. number of Horn clauses in which a variable appears.

HORNY-VAR-mean Mean number of Horn clauses in which a variable appears.

HORNY-VAR-min Min. number of Horn clauses in which a variable appears.

nclauses Number of clauses.

nvars Number of variables.

PN-RATIO-CLAUSE-cv CV of the ratios of pos. to neg. literals in clauses.

PN-RATIO-CLAUSE-entropy Entropy of the ratios of pos. to neg. literals in clauses.

PN-RATIO-CLAUSE-max Maximum ratio of positive to negative literals in a clause.

PN-RATIO-CLAUSE-mean Mean ratio of positive to negative literals in a clause.

PN-RATIO-CLAUSE-min Minimum ratio of positive to negative literals in a clause.

PN-RATIO-VAR-entropy Entropy of the ratios of pos. to neg. literals for variables.

PN-RATIO-VAR-max Maximum ratio of pos. to neg. literals for a variable.

PN-RATIO-VAR-mean Mean ratio of positive to negative literals for a variable.

PN-RATIO-VAR-min Minimum ratio of pos. to neg. literals for a variable.

99

Table 7.2: Continued.

PN-RATIO-VAR-stdev Std. dev. of ratios of pos. to neg. literals for variables.

TRINARY+ Number of unary, binary, and trinary clauses.

UNARY Number of unit clauses.

vars-clauses-ratio Ratio of variables to clauses.

VCG-CLAUSE-cv CV of clause-node degrees in variable-clause graph.

VCG-CLAUSE-entropy Entropy of clause-node degrees in variable-clause graph.

VCG-CLAUSE-max Maximum clause-node degree in variable-clause graph.

VCG-CLAUSE-mean Mean clause-node degree in variable-clause graph.

VCG-CLAUSE-min Minimum clause-node degree in variable-clause graph.

VCG-VAR-cv CV of variable-node degrees in variable-clause graph.

VCG-VAR-entropy Entropy of variable-node degrees in variable-clause graph.

VCG-VAR-max Maximum clause-node degree in variable-clause graph.

VCG-VAR-mean Mean clause-node degree in variable-clause graph.

VCG-VAR-min Minimum clause-node degree in variable-clause graph.

VG-cv CV of node degrees in the variable graph.

VG-max Maximum node degree in the variable graph.

VG-mean Mean node degree in the variable graph.

VG-min Minimum node degree in the variable graph.

The feature set used by MAPP, listed in Table 7.2, is a small subset of that used

by SATzilla2009. A smaller set provides less information, but obviates the need for

the more complex scheme employed by SATzilla2009. That scheme trains a regression

model to predict the cost of feature computation, and avoids it if that cost is likely to exceed

a specified threshold (Xu et al., 2009). The success of MAPP shows that the information

provided by the larger feature set is not essential for competitive performance, perhaps

because solver scheduling can partly compensate for the additional uncertainty.

100

MAPP-Feat. MAPP-Prep.

zchaff_rand
vallst
tts-4-0

SATen_qcp
SATen_pre

saps
picosat846
mxc-sr08
minisat20

march_dl2004
kcnfs04SAT07
gnovelty+

adaptg2wsat0
adaptg2wsat+

zchaff_rand
vallst
tts-4-0

SATen_qcp
SATen_pre

saps
picosat846
mxc-sr08
minisat20

march_dl2004
kcnfs04SAT07
gnovelty+

adaptg2wsat0
adaptg2wsat+

zchaff_rand
vallst
tts-4-0

SATen_qcp
SATen_pre

saps
picosat846
mxc-sr08
minisat20

march_dl2004
kcnfs04SAT07
gnovelty+

adaptg2wsat0
adaptg2wsat+

IN
D

U
S

T
R

IA
L

C
R

A
F

T
E

D
R

A
N

D
O

M

0 10 20 30 40 50 0 10 20 30 40 50
Bin Index

So
lv

er

Run Frac.
0.0
0.2
0.4
0.6
0.8
1.0

Figure 7.5: The fraction of runs in which MAPP executed each solver in each bin, in runs

on 2011 instances using the SATzilla2009 solver suite. Since, like SATzilla2009,

a specialized portfolio was trained on each category, multiple plans are computed by

the preplanning portfolio. Both with and without features, plans differ strongly between

categories, ranging from an essentially single-solver strategy on INDUSTRIAL—although

picosat846 is, in fact, executed on a small fraction of instances—to a blended strat-

egy with multiple restarts on RANDOM. This range illustrates the flexibility of the MAPP

approach. 101

The plans employed by the MAPP portfolios are presented in Fig. 7.5. The plans

computed by portfolios trained per-category, as in this section, contrast starkly with those

computed by a single general-purpose portfolio, as in Section 7.3. Portfolios in this section

generate plans that focus exclusively on a subset of solvers, and the sets of solvers executed

on each category are almost disjoint. In some cases, such as the INDUSTRIAL category,

the portfolio appears to employ a single solver almost entirely—mirroring, in a different

solver suite, the results of Fig. 6.3, and explaining all portfolios’ similar performance on

INDUSTRIAL instances in Fig. 7.4. The contrast between these plans shows that instance

features are unable to distinguish between categories of instances with certainty, at least

given the supervised learning methods employed. The plans also expose another point in

favor of portfolio methods: solvers that would otherwise be considered obsolete—such as

zchaff_rand—still play a role in the portfolio. Such solvers are unlikely to be consid-

ered by a human user.

The flexibility of MAPP, especially the support for overall solver scheduling, seems

justified by this comparison with an algorithm-selection scheme. The final comparison will

pit MAPP against a competing portfolio that uses a larger suite of solvers, and that, like

MAPP, computes solver schedules—but without restarts, and without MAPP’s more so-

phisticated feature integration. The comparison will thus measure the advantages conferred

by these components specifically.

7.5 Comparison with 3S

The “satisfiability solver selector”, 3S, is a new approach entered in the 2011 competi-

tion. Unlike the algorithm-selection architecture of SATzilla2009, 3S computes ex-

ecution schedules: for each test instance, it follows a schedule tailored to that instance’s

nearest neighbors in feature space. Its set of features is a subset of those established by

SATzilla, and larger than that implemented in MAPP. Unlike the simple, efficient plan-

ner used by MAPP, 3S uses a general-purpose IP solver and plans only over a small number

102

of instances.

Although both portfolios use planning, Fig. 7.6 shows that their performance differs

markedly. With features, MAPP measurably outperforms 3S in every category of the 2011

competition. Their joint performance advantage over preplanning is more pronounced in

this context than in other two comparisons, especially on INDUSTRIAL instances. Two rea-

sons may cause this difference: unlike in Fig. 7.4, the portfolios are not category-specific,

and, unlike in Fig. 7.2, a large solver suite with correspondingly greater performance diver-

sity is used.

As in previous comparisons, Figs. 7.7 to 7.10 visualize the plans used by MAPP.

The combination of a shared training set and a large solver suite apparently causes a wider

variety of solvers to be used, but obvious differences remain between the plans applied

to instances in different categories. Unlike in previous comparisons, multiple solvers are

employed on the INDUSTRIAL category: both lingeling and cryptominisat re-

ceive significant CPU time. On RANDOM, time is largely split between SLS solvers (TNM,

hybridGM3, etc.) and a single CDCL solver (march_hi), as in every previous effective

schedule on such instances. Even in this challenging evaluation, in other words, trained on

multiple categories of a different competition, using a large solver suite, MAPP continues

to execute good, category-specific solver execution plans.

7.6 Conclusions

In all experiments, MAPP solves at least as many instances as the competing portfolio

in every category, and solves measurably more instances in at least one category. These

results suggest that the framework presented in this work improves upon existing portfolio

methods, while employing a novel combination of techniques.

This picture of MAPP performance illustrates its comparative strengths. It provides

the greatest advantage, over both single solvers and existing portfolio methods, on hetero-

geneous instance sets, such as a mix of satisfiable and unsatisfiable instances of random

103

INDUSTRIAL CRAFTED

RANDOM All

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

50 100 150 200 50 100 150 200

100 200 300 400 200 400 600 800
Number of Instances Solved

Pe
r-

In
st

an
ce

C
ut

of
f(

C
PU

Se
co

nd
s)

Portfolio
MAPP-Feat.
MAPP-Prep.
3S

Oracle

Figure 7.6: Cactus plots contrasting the mean performance of MAPP with that of 3S in the

2011 SAT competition environment. Portfolios were not category-specific. The probabilis-

tic portfolio exceeds the performance of 3S in every category, although the difference on

CRAFTED is small. The gap versus oracle is large throughout, perhaps due to the large size

of the 3S solver suite.

104

k-SAT, and when using a suite of substantially nondeterministic solvers, such as those in

the SLS family. In these situations, the combination of complete and incomplete solvers

allows the portfolio to handle both SAT and UNSAT instances, while MAPP’s integrated

restart scheduling maximizes the value of stochastic search strategies. This strength can

be seen in the consistently strong performance of the MAPP portfolios on the RANDOM

category.

These results also illuminate both the power and the limits of portfolio methods in

general. In categories where long runs are required and divisions between instances less

clear, such as on the collections of INDUSTRIAL instances in Section 7.3 and Section 7.4,

the performance of all portfolios can converge as their strategies collapse to a single solver

run. Note, however, that—tested on the same set of instances—what was a single-solver

strategy in Section 7.4 becomes an informed mix of multiple solvers in Section 7.5, as the

suite of solver options expands and training data become more ambiguous. The promise of

portfolio methods, of leveraging empirical data to make the often-subtle judgments between

alternative algorithms, seems justified by these data: it is better to have a portfolio method

decide whether to apply one or many algorithms, than to make that difficult judgment one-

self. The next chapter will move these experiments beyond SAT, applying MAPP to PB,

MAX-SAT, and ASP. This work will test whether the effectiveness of portfolios in general,

and of MAPP in particular, extends to new domains.

105

MAPP-Feat. MAPP-Prep.

TNM
saps

precosat
picosat

mxc-sat09
march_nn
march_hi
LySATi

lingeling
kcnfs04SAT07
hybridGM3

gnovelty+2-H
gnovelty+2

glucose_static
cryptominisat
clasp-1.3.6
AshiSwgcp
AshiR3fix
AshiQcp
AshiHgen
AshiFact
AshiCbmc

adg2wsat2009++
adg2wsat2009

IN
D

U
S

T
R

IA
L

0 10 20 30 40 50 0 10 20 30 40 50
Bin Index

So
lv

er

Run Frac.
0.0
0.2
0.4
0.6
0.8
1.0

Figure 7.7: Solver executions, averaged over instances in the INDUSTRIAL category, se-

lected by the MAPP portfolios in the comparison with 3S. The shared training set appears

to make plans less rigid—even SLS solvers such as hybridGM3 are occasionally run on

INDUSTRIAL instances—but distinctions between the strategies on each category are appar-

ent when comparing this figure to Figs. 7.8 to 7.10.

106

MAPP-Feat. MAPP-Prep.

TNM
saps

precosat
picosat

mxc-sat09
march_nn
march_hi
LySATi

lingeling
kcnfs04SAT07
hybridGM3

gnovelty+2-H
gnovelty+2

glucose_static
cryptominisat
clasp-1.3.6
AshiSwgcp
AshiR3fix
AshiQcp
AshiHgen
AshiFact
AshiCbmc

adg2wsat2009++
adg2wsat2009

C
R

A
F

T
E

D

0 10 20 30 40 50 0 10 20 30 40 50
Bin Index

So
lv

er

Run Frac.
0.0
0.2
0.4
0.6
0.8
1.0

Figure 7.8: The plan visualizations of MAPP in the 3S comparison, continued; this figure

presents average solver executions in the CRAFTED category.

107

MAPP-Feat. MAPP-Prep.

TNM
saps

precosat
picosat

mxc-sat09
march_nn
march_hi
LySATi

lingeling
kcnfs04SAT07
hybridGM3

gnovelty+2-H
gnovelty+2

glucose_static
cryptominisat
clasp-1.3.6
AshiSwgcp
AshiR3fix
AshiQcp
AshiHgen
AshiFact
AshiCbmc

adg2wsat2009++
adg2wsat2009

R
A

N
D

O
M

0 10 20 30 40 50 0 10 20 30 40 50
Bin Index

So
lv

er

Run Frac.
0.0
0.2
0.4
0.6
0.8
1.0

Figure 7.9: The plan visualizations of MAPP in the 3S comparison, continued; this figure

presents average solver executions in the RANDOM category.

108

MAPP-Feat. MAPP-Prep.

TNM
saps

precosat
picosat

mxc-sat09
march_nn
march_hi
LySATi

lingeling
kcnfs04SAT07
hybridGM3

gnovelty+2-H
gnovelty+2

glucose_static
cryptominisat
clasp-1.3.6
AshiSwgcp
AshiR3fix
AshiQcp
AshiHgen
AshiFact
AshiCbmc

adg2wsat2009++
adg2wsat2009

A
ll

0 10 20 30 40 50 0 10 20 30 40 50
Bin Index

So
lv

er

Run Frac.
0.0
0.2
0.4
0.6
0.8
1.0

Figure 7.10: The plan visualizations of Figs. 7.7 to 7.9, continued; this figure presents

average solver executions across all categories. Considering these figures together, the set

of solvers applied to RANDOM instances overlaps with that for CRAFTED instances, but

different solvers are emphasized—lingeling, for example, a heavyweight CDCL solver

suited to large, structured instances but ill-suited to random k-SAT, is run earlier, longer,

and more frequently on CRAFTED. MAPP continues to focus on effective strategies even

with a large solver suite and even without category-specific training.

109

Chapter 8

Evaluations in PB, MAX-SAT,

and ASP

Existing portfolio approaches are often constructed to target specific domains. SATzilla,

for example, was built and named with a focus squarely on SAT. In contrast, the proba-

bilistic portfolio framework presented in this dissertation was developed specifically to be

more versatile. To evaluate whether that goal was achieved, this chapter applies MAPP to

three domains beyond pure SAT: to pseudo-Boolean satisfiability, in Section 8.1; to maxi-

mum satisfiability, in Section 8.2; and to answer set programming, in Section 8.3. Without

altering its core configuration, MAPP outperforms its constituent solvers in all of these do-

mains, measurably improves its performance by leveraging domain-specific features when

they are provided, and compares well to a domain-specific portfolio even when it is limited

to deterministic solvers. These results confirm that its original design goal was reached:

MAPP makes effective algorithm scheduling decisions in multiple domains.

110

8.1 Comparisons in Pseudo-Boolean Satisfiability

Evaluations in these new domains are similar to those of earlier sections: domain-specific

instance features are identified, an appropriate suite of solvers is compiled, runs of those

solvers are collected on training instances, and the performance characteristics of different

solvers and portfolios are measured and compared on test instances.

The first new domain to be examined, pseudo-Boolean satisfiability (PB), replaces

the propositional formulae of SAT with more general linear inequality constraints on integer

variables in {0, 1}. A PB instance may optionally include an optimization objective, and a

further generalization supports nonlinear constraints. PB was described in greater detail by

Section 2.3.

No other prominent portfolio exists for PB. Experiments in this domain therefore

focus on measuring the improvement offered by the probabilistic portfolios over individ-

ual solvers, and on measuring the performance advantage, if any, gained by access to in-

stance feature information. Instances from the 2010 PB competition are used, under cross-

validation, both for training and testing. Table 8.1 lists the solvers included in the portfolio.

Solvers in PB are expected to assert the optimality of solutions to optimization instances,

so they are Las Vegas algorithms that can be handled, even for such instances, in exactly

the same way as solvers in SAT.

Table 8.2: The 20 instance features applied to the PB domain, ordered according to their

relevance in RTD-similarity classification across all categories. Relevance is measured by

the mean magnitudes of the corresponding classifier coefficients, after each feature is scaled

to zero mean and unit variance. This set of features is small and straightforward, but its use

improves portfolio decisions, confirming that significant feature engineering is not neces-

sarily required.

Weight Name Description

111

Table 8.2: Continued.

1.26 totals_log_max Log of the absolute value of the largest-

magnitude sum used in a constraint.

1.24 totals_log_std Log of the standard deviation of the sums used

by constraints.

1.18 variables Number of variables used.

1.06 vcg_cnode_deg_std Standard dev. of clause-node degrees in the var/-

clause graph.

1.05 ratio_reciprocal Reciprocal of the constraints / variables ratio.

1.02 vcg_cnode_deg_mean Mean clause-node degree in the var/clause graph.

1.01 vcg_vnode_deg_std Standard dev. of var-node degrees in the var/-

clause graph.

0.95 optimization Does the instance specify an objective?

0.95 ratio Ratio of constraints to variables.

0.90 vg_node_deg_std Standard deviation of node degrees in the vari-

able graph.

0.89 totals_log_min Log of the absolute value of the smallest-

magnitude sum used in a constraint.

0.86 cg_cnode_deg_std Standard deviation of node degrees in the clause

graph.

0.77 totals_log_mean Log of the absolute value of the mean sum across

all constraints.

0.77 vcg_vnode_deg_mean Mean var-node degree in the var/clause graph.

0.74 constraints Number of inequality constraints used.

0.69 nonlinear Is the instance nonlinear?

0.58 cg_cnode_deg_mean Mean node degree in the clause graph.

0.53 vg_node_deg_mean Mean node degree in the variable graph.

112

Table 8.2: Continued.

0.47 coef_means_std Standard deviation of constraint coefficient

means.

0.23 coef_means_mean Mean of constraint coefficient means.

To measure their value, a modest set of static features is assembled. These fea-

tures are described in Table 8.2. Some, such as the statistics of the clause, variable, and

clause-variable graphs, mirror those developed by Nudelman et al. (2004) for CNF SAT.

Others, such as the statistics of clause coefficients, are domain-specific. The importance

of each feature is roughly estimated by its mean classifier coefficient weight. This ranking

shows that PB-specific features, especially log-scale statistics of the inequality thresholds,

are particularly useful, but that certain standard SAT features also remain valuable.

Cactus plots of portfolio performance on competition benchmarks in PB are pre-

sented in Fig. 8.1. The individual solver that performs best on training instances is taken as

a baseline. The probabilistic portfolios, both with and without access to feature information,

solve substantially more instances than this baseline in both the decision and optimization

categories. Feature information, however, further improves efficiency.

In addition to the results of these local experiments, precursors to MAPP entered

and won the decision-problem category of both the 2010 and 2011 PB competitions, under

the system name borg. Table 8.3 lists the results of the most recent competition. Portfo-

lios entering such competitions can only include constituent solvers available to them well

before the competition, and must therefore demonstrate their effectiveness against a larger,

more advanced field of competitors. The success of the MAPP approach in the competition

setting demonstrates that it can operate well even outside of the controlled experimental

environment in this dissertation, i.e., in a rigorous, externally-administered comparison. It

also shows that the advantages conferred by a portfolio strategy can, in some situations,

outweigh disadvantages in the composition of its solver suite.

113

DEC-SMALLINT OPT-SMALLINT

All

500

1000

1500

2000

2500

500

1000

1500

2000

2500

70 80 90 100 120 140 160 180

180 200 220 240 260 280
Number of Instances Solved

Pe
r-

In
st

an
ce

C
ut

of
f(

C
PU

Se
co

nd
s)

Portfolio
MAPP-Feat.
MAPP-Prep.
Best Solver
Oracle

Figure 8.1: Cactus plots comparing the performance of probabilistic portfolios in PB,

with and without using static instance features, to oracle performance as well as the single-

solver baseline. Performance averages were computed over five-fold cross validation on

the 2010 PB competition instances. As it did in pure SAT, MAPP dramatically outperforms

individual solvers. Furthermore, the use of static instance features measurably improves

solving efficiency versus pure preplanning.

114

Name Author(s)

pbct-0.1.2-linear Anders Franzén and Roberto Bruttomesso

sat4j-pb-v20101225 Daniel Le Berre and Anne Parrain

sat4j-pb-v20101225-cutting Daniel Le Berre and Anne Parrain

bsolo_pb10-l1 Vasco Manquinho and José Santos

bsolo_pb10-l2 Vasco Manquinho and José Santos

bsolo_pb10-l3 Vasco Manquinho and José Santos

wbo1.4a Vasco Manquinho, Joao-Marques Silva, and Jordi Planes

wbo1.4b-fixed Vasco Manquinho, Joao-Marques Silva, and Jordi Planes

clasp-1.3.7 Martin Gebser, Benjamin Kaufmann,

André Neumann, and Torsten Schaub

scip-2.0.1-clp Stefan Heinz and Michael Winkler

scip-2.0.1-spx Stefan Heinz and Michael Winkler

Table 8.1: The solvers included in the PB portfolio evaluated in this section. The range of

solvers is smaller in PB than in SAT, and this portfolio includes multiple parameterizations

of certain solvers. The results of Fig. 8.1, however, confirm that even this smaller portfolio

significantly outperforms in combination any one of its members in isolation.

Next, the same methodology is applied to a domain that generalizes propositional

SAT in a different direction.

8.2 Comparisons in Maximum Satisfiability

PB replaces the Boolean constraints of SAT with inequalities. The problem of maximum

satisfiability (MAX-SAT) instead maintains the structure of CNF SAT, but expands the def-

inition of an acceptable solution, allowing certain clauses to be left unsatisfied if necessary.

115

Solved

Rank Solver Total SAT UNSAT Cum. CPU (s)

1 borg-pb-dec 431 183 248 10281.04

2 Sat4j-Res//CP 420 183 237 51588.82

3 bsolo-3.2 416 179 237 58921.79

4 wbo-1.6 394 180 214 17024.67

5 Sat4j-Resolution 392 184 208 33537.21

6 SCIP-spx-E_2 384 149 235 46478.58

7 SCIP-spx-2 383 148 235 44742.45

8 clasp-2.0-R4191 380 168 212 12375.19

9 MinisatID-2.5.2 368 169 199 19281.13

10 MinisatID-2.5.2-gmp 362 165 197 37474.45

11 Sat4j-CuttingPlanes 242 114 128 22807.02

Table 8.3: Results of the main decision-problem category (DEC-SMALLINT) of the 2011

PB solver competition. As in the 2010 competition, the winner was a precursor of MAPP

entered under the system name borg-pb-dec. It solved many more instances than did the

second-place solver, while using less than 20% of the total CPU time. The overall difference

in efficiency is striking: despite solving the greatest number of instances, the probabilistic

portfolio accumulated the lowest total CPU time of any solver over completed instances.

This success appears due to MAPP effectively employing both SAT-derived solvers based

on resolution and IP-derived solvers based on cutting-plane inference. The competition

thus provides an example of MAPP automatically allocating computational resources across

solution strategies whose strengths may be difficult to integrate into a single solver.

116

MAX-SAT solvers, like those for PB, are expected to assert optimality, and are therefore

Las Vegas algorithms suitable for inclusion in the probabilistic portfolio framework. The

MAX-SAT problem was described in detail by Section 2.2. The methodology of this sec-

tion is identical to that of Section 8.1: solvers and portfolios are evaluated, under cross

validation, on the instances used by a recent competition.

The suite of solvers included in this portfolio, listed in Table 8.4, is even smaller

than that in PB. Nonetheless, Fig. 8.2 shows that the probabilistic portfolio solves more

instances, more quickly, both overall and in the weighted and unweighted partial MAX-

SAT categories (PMS and WPMS), than the best single solver. In the two categories in which

the portfolio architecture offers little improvement (MS and WMS), the gap between that

baseline and oracle performance is small: MAPP is unhelpful because, like any portfolio

architecture, it relies on substantial performance diversity among its constituent solvers. On

these categories, the solvers themselves are not complementary.

In those categories where such diversity exists, domain-specific features are again

successfully leveraged. Table 8.5 describes these features. Furthermore, the breadth of ex-

periments in this chapter allows the value of analogous features in different domains to be

compared. Differences are evident between the value of such features in PB, as reported in

Table 8.2, and in MAX-SAT. While some features (e.g., ratio_reciprocal) appear in-

formative in both domains, others (e.g., variables and vcg_vnode_degree_mean)

are weighted heavily in one but not the other. This fluctuation suggests that features should

be pruned with caution, if at all: their value may depend unpredictably on the domain and

the instance distribution.

Two other conclusions are clear from the MAX-SAT domain. First, a portfolio can

provide substantial benefit even when few solvers are available. Second, if solvers do not

offer complementary strengths to be leveraged for some distribution of instances, a portfo-

lio method can track both oracle and best-single-solver performance. Thus, if a portfolio

method avoids expensive instance features, its application need not incur unnecessary cost.

117

Name Author(s)

akmaxsat Adrian Kuegel

sat4j-maxsat-v20101225 Daniel Le Berre

sat4j-maxsat-v20101225-p Daniel Le Berre

inc-maxsatz Han Lin, Kaile Su, and Chu Min Li

IncWMaxSatz Han Lin, Kaile Su, Chu Min Li, and Josep Argelich

wbo1.4b-fixed Vasco Manquinho, Joao-Marques Silva, and Jordi Planes

Table 8.4: The six MAX-SAT solvers used in the portfolio evaluation presented by Fig. 8.2.

The IncWMaxSatz and inc-maxsatz solvers are applied exclusively to weighted and

unweighted instances respectively; only five distinct choices are therefore available. This

small collection of solvers has too little performance diversity to allow a portfolio to provide

benefit in every category (i.e., one solver largely dominates on MS and WMS instances). Its

solvers are, however, sufficiently complementary on multiple other categories.

These evaluations in PB and MAX-SAT have measured the advantage over individ-

ual solvers produced by the probabilistic portfolio approach. The third evaluation beyond

SAT, in the domain of ASP, will include another portfolio method in the comparison.

Table 8.5: The 20 static instance features used in the MAX-SAT domain, ordered according

to their estimated importance to nearest-RTD classification. Other than the clause weight

statistics, the features are a subset of those used in pure CNF SAT. As in PB, even this

modest feature set allows the portfolio to allocate processor time better.

Weight Name Description

118

Table 8.5: Continued.

1.51 ratio Ratio of constraints to variables.

1.49 vcg_vnode_deg_mean Mean variable-node degree in the vari-

able/clause graph.

1.10 vcg_vnode_deg_std Standard deviation of variable-node de-

grees in the variable/clause graph.

0.97 constraints Number of clauses in the Boolean for-

mula.

0.97 ratio_reciprocal Reciprocal of the constraints / variables

ratio.

0.95 vcg_cnode_deg_mean Mean clause-node degree in the vari-

able/clause graph.

0.86 vcg_cnode_deg_std Standard deviation of clause-node de-

grees in the variable/clause graph.

0.82 cg_cnode_deg_std Standard deviation of node degrees in

the clause graph.

0.81 var_bal_ratio_std Standard deviation of variables’

positive-/negative-literal ratios.

0.74 constr_bal_ratio_std Standard deviation of clauses’ positive-

/negative-literal ratios.

0.69 constr_bal_ratio_mean Mean of clauses’ positive-/negative-

literal ratios.

0.56 var_bal_ratio_mean Mean of variables’ positive-/negative-

literal ratios.

0.54 cg_cnode_deg_mean Mean node degree in the clause graph.

0.54 variables Number of variables in the Boolean for-

mula.

119

Table 8.5: Continued.

0.53 vg_node_deg_mean Mean node degree in the variable graph.

0.48 vg_node_deg_std Standard deviation of node degrees in

the variable graph.

0.41 weights_min Smallest clause weight to appear.

0.20 weights_max Largest clause weight to appear.

0.20 weights_mean Mean clause weight.

0.20 weights_std Standard deviation of clause weights.

8.3 Comparisons in Answer Set Programming

MAX-SAT, and to some extent PB, can be viewed as generalizing pure SAT. The domain

of answer set programming (ASP), in contrast, was born in the field of logic programming

and comes with a rich history in its own right. The advantages of ASP include an ex-

pressive standard modeling language, which allows problems to be specified concisely and

declaratively. This domain was described by Section 2.4. The set of competitive solvers

aimed at ASP is small, and the clasp system (Gebser et al., 2007) has become dominant;

it and its variants took first through third place in the 2011 ASP competition. The suite of

constituent solvers will therefore consist entirely of different parameterizations of clasp.

Both the new domain and this unusual style of solver suite thus pose an interesting new test

of portfolio performance.

An existing portfolio system, claspfolio, uses SVR to select from a predeter-

mined set of clasp configurations (Gebser et al., 2011b). The following experiment will

use the same set of potential configurations as claspfolio, listed in Table 8.6. The ex-

periment will compare claspfolio and the probabilistic architecture with both of them

trained on the claspfolio training set, a mix of competition and standard benchmark

120

MS WMS

PMS WPMS

All

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

20 40 60 10 20 30 40

50 100 150 20 40 60 80 100

100 200 300
Number of Instances Solved

Pe
r-

In
st

an
ce

C
ut

of
f(

C
PU

Se
co

nd
s)

Portfolio
MAPP-Feat.
MAPP-Prep.
Best Single
Oracle

Figure 8.2: Cactus plots comparing the number of MAX-SAT 2011 competition instances

solved by reference schemes and MAPP, overall and in each competition category. Sub-

stantial differences are visible on the partial MAX-SAT categories (PMS and WPMS), on

which the probabilistic portfolio performs best. The advantage offered by MAPP is slight

on MS and nonexistent on WMS, but even the oracle portfolio is unable to beat the baseline

to any greater degree on these categories.
121

instances. This training set is unusual in that the majority of its instances are trivial for

clasp—i.e., all configurations solve them in under one CPU second—and is therefore a

new challenge for MAPP. The same set of instance features will be used by both systems.

Table 8.6: Suite of clasp configurations used in claspfolio, and by the comparison

in this section. Even these small differences between parameter settings provide sufficient

performance diversity to enable a portfolio to substantially outperform the default configu-

ration. Note that clasp is deterministic in all of these configurations. Although MAPP is

particularly suited to nondeterministic solvers, it also performs well here.

Arguments

1

2 -sat-pre=20,25,120 -trans-ext=dynamic -backprop

3 -sat-pre=20,25,120

4 -eq=20 -backprop

5 -restarts=16000

6 -restarts=100,1.5,1000

7 -restarts=100,1.5,1000 -local-restart

8 -restarts=100,1.5,1000 -save-progress

9 -restarts=100,1.5,1000 -local-restart -save-progress

10 -restarts=256

11 -restarts=256 -save-progress

12 -restarts=256 -local-restart

13 -restarts=256 -local-restart -save-progress

122

Table 8.6: Continued.

14 -heuristic=VSIDS

15 -heuristic=Berkmin -berk-max=512

16 -heuristic=Berkmin -berk-max=512 -berk-huang

17 -heuristic=Berkmin -berk-max=512 -berk-once

18 -deletion=1,1,1 -reduce-on-restart

19 -dinit=800,10000 -dsched=5000,1.1 -deletion=3,1.1,10000

20 -heu=VSIDS -sat-pre=20,25,120 -trans-ext=integ

21 -heu=VSIDS -sat-pre=20,25,120 -trans-ext=dynamic

22 -sat-pre=20,25,120 -trans-ext=dynamic -initial-look=10

-restarts=no -recursive-str

23 -sat-pre=20,25,120 -trans-ext=dynamic -initial-look=10

-restarts=no -recursive-str

24 -otfs=1 -recursive-str -reverse-arcs=2

-sat-pre=20,25,120,-1,2

25 -heu=VSIDS -sat-pre=20,25,120 -trans-ext=dynamic

-loops=no -loops-in-heu=0

Figure 8.3 presents the outcome of this comparison. All portfolio methods outper-

form the default clasp configuration by wide margins. The baseline best single solver

over training instances, listed as configuration 20 in Table 8.6, is much more effective than

the default configuration on this instance mixture. Both claspfolio and the probabilistic

architecture, however, measurably outperform it when they are given feature information.

Even though the clasp configurations are deterministic, which does not emphasize some

of the specific advantages of the probabilistic approach, the performance of MAPP matches

that of the special-purpose portfolio—a portfolio that, on this same set of test instances,

won the 2011 ASP competition.

123

ASP11

0

200

400

600

800

1000

20 40 60 80
Number of Instances Solved

Pe
r-

In
st

an
ce

C
ut

of
f(

C
PU

Se
co

nd
s)

Portfolio
MAPP-Feat.
MAPP-Prep.
Best Single
Oracle
clasp (Default)
claspfolio

Figure 8.3: Portfolio performance on the instances used in the 2011 ASP competition, with

MAPP trained on the instances used to train claspfolio. The best single solver and

MAPP without features perform almost identically—much better than the default config-

uration of clasp—and are beaten slightly by claspfolio and by MAPP with feature

information, both of which exhibit very similar performance.

The results of this comparison therefore support the robustness of the probabilistic

architecture: in a fourth domain, using an unusual suite of solvers, it again provides a per-

formance advantage over its constituents and remains competitive with the state of the art.

These results also identify areas for portfolios to improve in this domain. In particular, the

size of remaining gap to oracle performance suggests that additional informative instance

features could be valuable.

124

8.4 Conclusions

The set of experiments in this chapter, spread across three new domains, is instructive,

both with respect to the performance of probabilistic portfolios and to the capabilities of

portfolios in general. Three lessons in particular may be drawn.

First, taken with the outcomes in SAT, these results reinforce the claim that this

architecture is a general-purpose tool. It operated well with small solver suites, such as

those in PB and MAX-SAT, with large suites, such as those in SAT, and with an unusual

parameterization-based suite in ASP. It was tested over a similar range of instance feature

sets. The same underlying decision mechanism was used throughout, and, in all cases, it

performed robustly: it pushed performance toward that of oracle when there was room to

do so, and tracked baseline performance when there was not.

Second, the inclusion of claspfolio in the ASP experiment shows that the ar-

chitecture compares well with the state of the art performance outside of SAT as well. This

result suggests that general-purpose portfolio decision making can be developed and can be

kept separate from domain-specific solver and instance interaction.

Third, the engineering effort required to build a portfolio in a new domain is not pro-

hibitively expensive. The feature sets in PB and MAX-SAT are modest, build on existing

research in other domains, and include a common set of feature types: most often, mea-

sures of instance size, graph properties representing constrainedness, and simple statistics

of an instance’s raw coefficients. The supported class of solvers, i.e., Las Vegas algorithms,

includes solvers for a range of difficult computational problems, including those discussed

in this dissertation as well as domains such as SMT and QBF. Competitions in these areas

often drive solvers to support a rough standard pattern for user interaction, and for instance

and solution representation.

Overall, the experiments in this chapter and in Chapter 7 establish MAPP as broadly

effective on multiple domains. The dissertation now shifts from presenting and evaluating

MAPP to taking stock of the results obtained. The next chapter considers these lessons

125

learned, and how they should be applied to future research.

126

Chapter 9

Discussion and Future Work

The preceding chapters have described MAPP, the details of its components, and its perfor-

mance in a number of experimental settings. These results are positive, and MAPP should

raise expectations for what can be achieved by an algorithm portfolio method. Another

important reason to engage in such a research project, however, is to raise new questions

and to arrive at new means of making progress toward a larger goal. This chapter there-

fore considers MAPP critically and in hindsight, with an eye toward applying the lessons

learned. It discusses insights to be drawn from its development, both positive and negative,

encouragement that can be taken from its results, and potential paths forward in relevant

research directions. Organized around the three core MAPP components, it examines their

strengths, expands on their weaknesses, describes the most promising options for improving

them, and proposes their application beyond the standard algorithm portfolio problem.

9.1 The Modeling Component

Solver performance models are a conceptually vital aspect of MAPP, bridging the gap be-

tween the portfolio’s observations in training, i.e., sets of solver runs, and its belief state,

i.e., sets of run time distributions. Significant statistical machinery, however, is not always

127

required for the portfolio to perform well overall: given a systematically sampled set of

training runs, the simple multinomial model is often sufficient. More complex mixture

models can be a valuable tool for gaining insight into solver performance, as discussed in

Section 4.7, and they can improve portfolio beliefs in situations where frequent gaps in

sampling exist in the training data, as described in Section 7.2. Ideally, however, a single

model would handle both roles.

The experience gained in developing and evaluating these models suggests a way

forward. Consider two of their primary disadvantages. First, the use of a discrete distribu-

tion entails obvious drawbacks, such as the spurious distinction engendered between nearly

identical runs that fall across a bin boundary. Second, the general-purpose distributions em-

ployed, such as the multinomial, provide significant flexibility at a cost: a model’s goal is

to infer distributions from limited data, but learning each multinomial distribution involves

fitting values to as many parameters as there are performance bins, typically on the order of

B ≈ 60. In practice, data is not so limited as to make this task futile, but is certainly limited

enough to motivate a search for alternatives.

Ideally, then, a performance model would represent each run time distribution with

fewer parameters. Doing so implies making a stronger statistical assumption about the

form of those distributions, and thus implies making a well-justified decision about what

distribution is most appropriate. Speculatively, are any candidate distributions available?

The “three-parameter” log-normal distribution is one. Widely used in survival analysis

and elsewhere (Kalbfleisch and Prentice, 2011), it embodies the assumption that the log of

a random variable is normally distributed, or, equivalently, that a random variable is the

product of many arbitrarily distributed random variables. Its properties seem appropriate

for the portfolio setting: it is effectively heavy-tailed, an important and commonly-observed

feature of solver behavior (Gomes et al., 2000), and it includes an explicit starting time that

corresponds to a solver’s minimum reasonable run time. Choosing a distribution correctly

for this task, however, requires considering other candidates carefully, such as the Weibull

128

distribution and truly heavy-tailed “power law” distributions, and an extensive empirical

analysis of many solvers’ behavior across many instances of multiple domains.

Using a continuous alternative to the multinomial does not require altering the es-

sential model structure developed in this dissertation. The key insight of these models—the

value of the mixture structure for inferring RTDs—can be kept intact. Furthermore, this

change would not require moving fully away from the discrete nature of these models, since

the underlying continuous distribution can be used to parameterize a multinomial distribu-

tion deterministically. Discretization at the modeling level, in fact, appears to be a virtue, in

that it keeps the modeling and planning components operating on the same representation.

Large changes in the density assigned by a continuous distribution may correspond to min-

imal changes in the probabilities of performance bins and no changes to the derived plans;

model discretization mitigates this mismatch.

Such interaction between modeling and planning is another area that deserves fur-

ther study. The goals of these two components do not perfectly mesh: fitting a model

optimizes the probability of data, while planning optimizes the probability of success. An

estimated RTD that assigns low probability to run data may, nonetheless, result in plans with

a much higher probability of success than those yielded by an estimated RTD that assigns

greater probability to run data. Take a simple example involving two estimated RTDs, with

three performance bins representing short, long, and failing runs respectively. Let the first

distribution place 10% of its probability mass in the first bin, and let the second distribution

place none of its mass there. If, in reality, a run falls into the first bin with 1% probability,

then the second distribution is an extremely poor model of the data: it assigns zero prob-

ability to an event that does, in fact, occur, albeit rarely. In planning, however, the first

distribution may lead to plans involving frequent short runs—while the second distribution

leads to plans involving the long runs that are truly necessary. This pitfall is important to

consider during model development, and is one reason that a distribution capable of placing

zero density over low values explicitly, such as the three-parameter log normal, is an appeal-

129

ing choice. Somehow altering the model-fitting objective to better suit planning, however,

might solve this issue with more generality. This dissertation has laid out the framework

and demonstrated the promise of solver performance modeling. Future research may tap its

full potential.

9.2 The Feature Integration Component

Related to the future modeling work proposed above are research directions involving new

sources of, and new uses for, feature information. These directions can be divided into

three areas: first, better features, particularly dynamic features; second, the incorporation

of feature information into RTD estimation; and, third, incremental improvements to the

feature integration scheme presented in Chapter 5.

A more complete solver performance model would incorporate dynamic features of

solver runs. Iterative improvements in the value of the objective function in domains such

as MAX-SAT and PB, for example, provide a time series that might allow stalled search

paths to be detected more quickly. Work along these lines has been undertaken in the

area of online algorithm control (Hansen and Zilberstein, 2001; Nareyek, 2004; Cicirello,

2003), but not substantially applied to algorithm portfolios. Similar examples are the search

statistics used in the full SATzilla feature set. These statistics are collected during a short,

fixed window before true portfolio operation, often by simpler solvers than are used by the

portfolio. By instrumenting the solvers that make up the portfolio suite proper, more data

could be collected, and new data could be obtained throughout the portfolio’s operation on

an instance. The greatest obstacle to this improvement is practical. Solver implementations,

when they offer any additional information about the status and progress of their search, do

so in nonstandard ways that are awkward, at best, to interpret. This reality highlights the

need for both solver authors and tool developers, including algorithm portfolio researchers,

to develop a common standard for richer interaction with running solvers. Such standards

could also aid the development of portfolio methods for important subproblems, such as

130

incremental SAT.

It may also be useful to integrate models’ discriminative and generative compo-

nents more tightly, or to otherwise use instance features to aid RTD inference—perhaps by

sharing statistical strength between superficially similar instances. The current modeling

scheme shares statistical strength only among instances whose run data appear similar; no

useful performance estimate can be obtained for an instance on which no runs have been

observed. Two instances of random k-SAT, however, are more likely, a priori, to yield

similar performance distributions. Including feature information in modeling, then, could

further improve the sample efficiency of RTD estimation. The goals of RTD estimation and

feature modeling, however, may be difficult to balance.

With the pragmatic goal of improving solver performance in mind, incremental im-

provements to the MAPP feature integration component could yield a more straightforward

return on research effort. Although the nearest-M classification objective works well in

practice, it is not strictly connected to the true goal of maximizing the probability of a

plan’s success. A better notion of performance-based distance might involve the success

of plans constructed over a pair of instances; under such a definition, two instances are

similar if they can be solved by similar plans. Furthermore, identifying a fixed-size set of

nearest instances is not the only possible way to cast this problem as classification. One

simple alternative would be to label sets of instances on which solvers perform within some

threshold of similarity.

The shared goal of both modeling and feature integration is to provide better input

to solver scheduling. Potential improvements to that component are discussed next.

9.3 The Scheduling Component

While the pure dynamic programming planner presented in Chapter 6 has been shown to

offer good performance in practice, it is not truly optimal. An example may illustrate this

point. Consider the RTDs presented in Table 9.1, for which dynamic programming com-

131

Success Prob.

Solver Cutoff (s) X Y Z

A 10 0.2 1.0 0.0

20 0.2 1.0 0.0

B 10 1.0 0.0 0.0

20 1.0 0.0 0.0

C 10 0.0 1.0 0.1

20 0.0 1.0 0.1

Table 9.1: Probabilities of solver success under two different run times in an example sit-

uation, constructed to illustrate that the dynamic programming planner, while consistently

effective, is not truly optimal. This situation involves three solvers, A, B, and C, and three

possible performance scenarios, X, Y, and Z, each equally likely a priori. Dynamic pro-

gramming first selects a plan for 10 s remaining, choosing to run A. For 20 s remaining, it

chooses to run B for 10 s, then its plan for 10 s remaining, i.e., A. The optimal plan, however,

is to run C followed by B.

putes the plan ⟨B,A⟩. That plan succeeds with probability 2
3 . An optimal but exponential-

time algorithm instead generates the plan ⟨C,B⟩, whose probability of success is 7
10 . Be-

cause the dynamic programming approach proceeds backwards in time, it suffers from ef-

fective amnesia: its choice of final run in this example fails to take advantage of the infor-

mation gained from an earlier failure. Moving beyond pure dynamic programming might

improve its performance. For example, an optimal planner could be employed out to a fixed

number of steps, and the dynamic programming approximation used after that point.

It may be more rewarding to allow greater flexibility in the targeted objective, how-

ever, than to take the last few, difficult steps toward it. In particular, the current objective

focuses exclusively on the probability of success, ignoring efficiency entirely. While maxi-

132

mizing the chance of success is almost always a substantial component of a user’s true goal,

it is rarely the only component. Users, even those with significant computational resources

to employ, care about how quickly their problems are solved. In many situations, they also

care about the quality of those solutions. The planning algorithm should allow the user to

trade off multiple goals. How best to specify that tradeoff, however—for example, whether

as a linear weighting between goals, as an exponential discount factor, or as the entire set

of plans along the Pareto front—is unclear. Progress along these lines may benefit from ex-

isting work on similar problems, such as multiobjective optimization, where the user often

participates in the optimization process (Miettinen et al., 2008).

It could also be productive to understand more deeply the relationship between

solver execution planning, as developed in Chapter 6, and existing variants of the UKP,

such as the multiobjective knapsack problem (Kellerer et al., 2004). Along with greater

understanding, finding connections to such applications could simplify the derivation of

tighter formal bounds on the optimality of planned schedules. Formal bounds could offer

insight into future directions for planning.

9.4 Parallelism and Beyond

Potential new applications of portfolio methods are numerous, and MAPP, as a particu-

larly flexible architecture, presents a particularly useful foundation for new work on such

applications. Interesting options include parallel portfolios, single-instance portfolios, and

sample-efficient algorithm configuration. Each option is discussed below.

Parallel portfolios are an area of ongoing research and of substantial interest (Hamadi,

2009). Existing parallel SAT solvers, such as ManySAT, often employ what is effectively a

portfolio approach (Hamadi et al., 2009), and the naïve portfolio ppfolio was successful

in wall-clock comparisons in the 2011 SAT competition (Järvisalo et al., 2011b). Further-

more, the overhead of interaction between constituent search threads in a parallel solver,

via mechanisms such as clause sharing, is not always outweighed by its benefits; for this

133

reason, some successful parallel solvers, such as plingeling, share only learned unit

clauses (Biere, 2010). Significant interaction between solvers may not, therefore, be neces-

sary. These observations suggest that it may be possible to generalize sequential algorithm

portfolio approaches into good parallel methods, and that the advantages of MAPP in the

sequential case may also carry over. For example, it may be possible to extend the dynamic

programming planner directly to the multicore case. Little else about the architecture would

require modification.

Another paradigm for parallel portfolio operation, and especially for cluster-scale

computation (Bordeaux et al., 2009), is the division of a single problem instance into mul-

tiple independent subproblems. In the simplest such divide-and-conquer approach, the ad-

dition of a unit clause to a CNF formula, and its contradiction to a copy of the original

formula, yields two versions of the problem under different assumptions. The critical di-

vision between satisfiable and unsatisfiable instances applies to these subproblems as well,

since a satisfying assignment to a subproblem corresponds to a satisfying assignment to

the complete instance, but the vast majority of the subproblems of any nontrivial instance

will be unsatisfiable. It would be interesting to evaluate whether different heuristic search

strategies exhibit complementary strengths across subproblems of a single instance.

In a different direction, solver performance models provide a general methodology

for extracting information from run time data, and could thus play a role in automatic al-

gorithm configuration systems, such as those of Hutter et al. (2009) and Xu et al. (2011).

These systems are, to some extent, orthogonal to portfolio methods: they optimize the per-

formance of a single solver for a specific class of instance, and therefore offer the most value

when instances are similar. A portfolio method, in contrast, offers the most value when in-

stances are different. Because algorithm configuration methods search through the space of

parameterizations by repeatedly collecting run data on a group of instances, a solver per-

formance model could reduce the number of runs required to understand a configuration’s

overall performance.

134

Portfolio methods are also orthogonal to systems that apply learning to lower-level

solver decisions, as in the polarity prediction work of Silverthorn and Miikkulainen (2011).

Such systems assume that instances are similar, and learn how to solve them more quickly

by emulating the decisions that led to success in previous runs. Integrating such func-

tionality into a portfolio architecture could yield a system that employs multiple strategies

across a heterogeneous group of instances, identifies distinct subgroups, and exploits the

predictable aspects of each subgroup.

Finally, simple applications of scheduling and modeling could add value to solver

competitions. The preplanning MAPP portfolio performs surprisingly well, despite its igno-

rance of domain-specific feature information. Such a portfolio makes an excellent baseline

method, and would be an effective replacement in the role of competition foil currently

played by a hand-selected parallel portfolio such as ppfolio. These competitions, in

SAT and elsewhere, also generate valuable data on solver performance. That value could

be increased by employing a solver performance model to estimate solvers’ complete RTDs

on competition instances. Occasional repeated runs of a solver on an instance would allow

the model to learn how consistently a solver performs.

9.5 Conclusions

Overall, it is instructive to revisit the results of Chapters 7 to 8. The experiments in

these chapters demonstrate the present capabilities of portfolio methods, which consistently

solve large collections of instances more quickly and more reliably than any individual

solver. Even the best methods, however, substantially underperform the oracle limit in ev-

ery situation—even when, as in Fig. 7.2, competing portfolios choose between only three

different solvers. Such results highlight the opportunity that remains for advances in this

area, some of which could be realized by the work described this chapter.

It speaks well of the flexibility of MAPP that much of that work can be performed

without altering its high-level structure. Regardless of the role that its concrete building

135

blocks end up playing in future systems, however, MAPP emphasizes conceptual questions

that seem likely to remain important. How should the behavior of complex, nondetermin-

istic solvers be inferred from data? How should uncertainty about that behavior be charac-

terized? How can plans be computed under that characterization? What planning objective

should be optimized? This dissertation has offered provisional responses to such questions,

but not conclusive answers. The final chapter reviews the contributions made by this dis-

sertation, and the progress that MAPP makes toward the larger goals of computer science

as a whole.

136

Chapter 10

Conclusions

This final chapter summarizes the key contributions of this dissertation: MAPP, the com-

ponents developed to make it possible, and the software toolkit that implements it. It then

broadly relates the dissertation to the history and direction of relevant research in AI, and

to the field’s progress toward the larger goal of efficient, widely applicable, and fully auto-

mated logical reasoning.

10.1 Summary of Contributions

The architecture of MAPP is the primary contribution of this dissertation. This architec-

ture centers the operation of an algorithm portfolio around a clear organizing principle: its

representation of uncertainty as a finite, weighted set of possible performance scenarios.

Each component of the architecture manipulates this representation, and is permitted broad

flexibility in how the requirements placed on it are achieved. MAPP offers new capabili-

ties unavailable from other portfolio methods, such as tailored restarts of nondeterministic

solvers. It improves on existing portfolio capabilities, as in planning and feature integration.

Finally, instantiations of the architecture are successful in four different domains, using a

variety of solver suites, benchmark collections, and feature sets, when compared against

137

a cross-section of the portfolio state of the art. The architecture, then, is both novel and

effective. Furthermore, the three main components of MAPP are important contributions in

their own right.

The first component applies generative modeling to the estimation of possible per-

formance scenarios from observed run data. This work is valuable in two ways: it in-

troduced solver performance modeling in general, and sample-efficient RTD estimation in

particular, as problems worth solving, and proposed and demonstrated the applicability of

the mixture-model structure to solving them. In practice, a MAPP portfolio performs well

even when a simple multinomial model is used, but more complex models provide good

estimates under a larger variety of sampling strategies.

The second component incorporates information about an instance’s appearance

into a model’s estimates of solver performance. This feature information is used to enable

the supervised prediction of instance similarity, and the component maintains robustness to

poor features by defining similarity in terms of solver performance. This approach builds on

the reliability of well-studied classifiers, and works well in combination with solver perfor-

mance modeling, the MAPP representation of uncertainty, and the component responsible

for solver scheduling.

That third component provides a straightforward and efficient solution to the prob-

lem of planning solver execution given the information provided by the other pieces of

MAPP. By applying dynamic programming to this scheduling problem, it strikes a critical

balance between effectiveness and computational complexity: it maintains efficiency in the

case of uncertainty by ignoring the information gained from earlier solver runs, but provides

optimal planning in the case of perfect information.

Finally, while its presence has remained in the background of this dissertation, en-

abling the experimental results presented throughout, the custom software used to imple-

ment MAPP is an important contribution as well. This borg toolkit for algorithm portfolio

development provides a straightforward system for collecting solver performance data, as-

138

sembling solver suites, interacting with domain-specific features, training multiple portfo-

lio methods, and using them to solve problems through a consistent interface. Its flexibility

was demonstrated in the construction of portfolios for the variety of domains and solvers

explored in this dissertation, and its practicality was demonstrated in competition environ-

ments. It is publicly available, easily installed, and a valuable aid both to those conduct-

ing research on algorithm portfolio methods and to those tackling problems with modern

solvers (Lierler et al., 2012).

10.2 Closing Thoughts

Algorithm portfolios have become powerful tools for solving instances of difficult and im-

portant decision and optimization domains. The major contributions of this dissertation are

involved in developing the capability, and in demonstrating the benefits, of accounting for

the probabilistic behavior of the heuristic algorithms deployed by such tools. This disser-

tation showed that, by doing so, these tools can be made both more powerful and more

general, and the portfolio framework it introduced further amplifies our ability to solve

challenging computational problems.

Consider, as well, the role that portfolios may play in the larger scope of research in

AI. The ability of heuristic algorithms to solve difficult problems outstrips our understand-

ing of when and how they solve them. The story of automated logical reasoning over the

past two decades, the transition from surprising to impressive to frequent success, remains

hobbled by this lack of predictability: human experience has taken its place, and the human

bottleneck now holds back the spread of automation and the goals of AI. The recent history

of solver development should contradict any expectation that these fields are converging

on a single implementation or a single algorithm that would obviate the need for judgment

based in experience. Instead, we continue to witness new additions to the heuristic zoo, as

researchers pursue their separate interests and individual goals.

This situation is unlikely to change, nor should it: it is because we can tailor our

139

algorithms to specific problems, because we can benefit from experience in addition to

analysis, that AI escapes from the complexity trap. Rather than frustrate, this situation

should further motivate the application of statistical tools, formal methods for learning from

experience, to computational problems. The use of a heuristic calls for two responses: first,

if possible, its formal understanding and theoretical justification; and, second, a principled

methodology for its use. Portfolios can provide this second response. Logical reasoning will

be truly automatic only when human input is unnecessary, when problem-solving systems

themselves learn from the experience of solving problems—as humans do, but in ways that

humans cannot. The algorithm portfolio paradigm is a practical vehicle for moving toward

that goal. This dissertation moves it farther down the road.

140

Bibliography

Arbelaez, A., Hamadi, Y., and Sebag, M. (2010). Building portfolios for the protein struc-

ture prediction problem. In Workshop on Constraint Based Methods for Bioinformatics.

Audemard, G., Katsirelos, G., and Simon, L. (2010). A restriction of extended resolution

for clause learning SAT solvers. In Proceedings of the 24th AAAI Conference on Artificial

Intelligence (AAAI).

Auer, P., Bianchi, N. C., Freund, Y., and Schapire, R. E. (1995). Gambling in a rigged

casino : the adversarial multi-armed bandit problem. In Proceedings of the 36th Annual

Symposium on Foundations of Computer Science (FOCS).

Auer, P., Bianchi, N. C., Freund, Y., and Schapire, R. E. (2002a). The nonstochastic multi-

armed bandit problem. SIAM Journal on Computing.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002b). Finite-time analysis of the multiarmed

bandit problem. Machine Learning.

Babai, L. (1979). Monte-Carlo algorithms in graph isomorphism testing. Technical report,

Université de Montréal.

Balint, A., Gall, D., Kapler, G., and Retz, R. (2010). Experiment design and administra-

tion for computer clusters for SAT-solvers (EDACC). Journal on Satisability, Boolean

Modeling and Computation (JSAT).

141

Baral, C. (2003). Knowledge representation, reasoning and declarative problem solving.

Batory, D. (2005). Feature models, grammars, and propositional formulas. In Software

Product Lines.

Bellman, R. (1957). Dynamic programming.

Biere, A. (2010). Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Tech-

nical report, Institute for Formal Models and Verification, Johannes Kepler University.

Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu, Y. (1999). Symbolic model

checking using SAT procedures instead of BDDs. In Proceedings of the 36th Annual

ACM/IEEE Design Automation Conference (DAC).

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of

Machine Learning Research.

Blum, A., and Mansour, Y. (2007). From external to internal regret. Journal of Machine

Learning Research (JMLR).

Bordeaux, L., Hamadi, Y., and Samulowitz, H. (2009). Experiments with massively parallel

constraint solving. In Proceedings of the 21st International Joint Conference on Artificial

Intelligence (IJCAI).

Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of the

ACM (CACM).

Brooks, D. R., Erdem, E., Erdoğan, S. T., Minett, J. W., and Ringe, D. (2007). Inferring

phylogenetic trees using answer set programming. Journal of Automated Reasoning.

Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Hanna, Z., Nadel, A., Palti, A., and

Sebastiani, R. (2007). A lazy and layered SMT(BV) solver for hard industrial verifica-

tion problems. In Proceedings of the 19th International Conference on Computer Aided

Verification (CAV).

142

Cesa-Bianchi, N., Lugosi, G., and Stoltz, G. (2004). Minimizing regret with label efficient

prediction. Proceedings of the 17th Annual Conference on Learning Theory (COLT).

Cicirello, V., and Smith, S. (2005). The max k-armed bandit : a new model for explo-

ration applied to search heuristic selection. In Proceedings of the Twentieth National

Conference on Artificial Intelligence (AAAI).

Cicirello, V. A. (2003). Boosting stochastic problem solvers through online self-analysis of

performance. PhD thesis.

Clarke, E., Biere, A., Raimi, R., and Zhu, Y. (2001). Bounded model checking using

satisfiability solving. Formal Methods in System Design.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the

Third Annual ACM Symposium on Theory of Computing (STOC).

Crawford, J. M., and Auton, L. D. (1996). Experimental results on the crossover point in

random 3-SAT. Artificial Intelligence.

Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem-

proving. Communications of the ACM (CACM).

de Moura, L., and Bjørner, N. (2010). Bugs, moles and skeletons : symbolic reasoning

for software development. In International Joint Conference on Automated Reasoning

(IJCAR).

de Moura, L., and Bjørner, N. (2011). Applications and challenges in satisfiability modulo

theories. In Workshop on Invariant Generation (WING).

Dequen, G., and Dubois, O. (2004). kcnfs : an efficient solver for random k-SAT formu-

lae. In Theory and Applications of Satisfiability Testing (SAT).

Dixon, H. E., and Ginsberg, M. L. (2000). Combining satisfiability techniques from AI and

OR. Knowledge Engineering Review.

143

Doyle, G., and Elkan, C. (2009). Accounting for word burstiness in topic models. In

Proceedings of the Twenty-Sixth International Conference on Machine Learning (ICML).

Eén, N. (2011). Introduction to satisfiability solving with practical applications. Presenta-

tion at the SAT/SMT Summer School.

Eén, N., and Sörensson, N. (2004). An extensible SAT-solver. In Theory and Applications

of Satisfiability Testing.

Eén, N., and Sörensson, N. (2006). Translating pseudo-Boolean constraints into SAT. Jour-

nal on Satisfiability, Boolean Modeling and Computation.

Elkan, C. (2006). Clustering documents with an exponential-family approximation of the

Dirichlet compound multinomial distribution. In Proceedings of the Twenty-Third Inter-

national Conference on Machine Learning (ICML).

Erkök, L., Carlsson, M., and Wick, A. (2009). Hardware/software co-verification of cryp-

tographic algorithms using cryptol. In Formal Methods in Computer-Aided Design (FM-

CAD).

Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., and Lin, C. J. (2008). LIBLINEAR : a

library for large linear classification. Journal of Machine Learning Research.

Fei-Fei, L., and Perona, P. (2005). A Bayesian hierarchical model for learning natural scene

categories. In Proceedings of the 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR).

Feige, U., Lovász, L., and Tetali, P. (2004). Approximating min sum set cover. Algorith-

mica.

Gagliolo, M., and Schmidhuber, J. (2006). Learning dynamic algorithm portfolios. Annals

of Mathematics and Artificial Intelligence.

144

Gagliolo, M., and Schmidhuber, J. (2007). Learning restart strategies. In Proceedings of

the Twentieth International Joint Conference on Artificial Intelligence (IJCAI).

Gagliolo, M., and Schmidhuber, J. (2011). Algorithm portfolio selection as a bandit prob-

lem with unbounded losses. Annals of Mathematics and Artificial Intelligence.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2011a). Challenges in answer set

solving. In Proceedings of Logic Programming, Knowledge Representation, and Non-

monotonic Reasoning (LPNMR).

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M., and Ziller, S. (2011b).

A portfolio solver for answer set programming : preliminary report. In Logic Program-

ming and Nonmonotonic Reasoning.

Gebser, M., Kaufmann, B., Neumann, A., and Schaub, T. (2007). Conflict-driven answer

set solving. In Proceedings of the 20th International Joint Conference on Artificial Intel-

ligence.

Gelfond, M., and Leone, N. (2002). Logic programming and knowledge representation—

the A-Prolog perspective. Artificial Intelligence.

Gerrish, S. M., and Blei, D. M. (2010). A language-based approach to measuring schol-

arly impact. In Proceedings of the 26th International Conference on Machine Learning

(ICML).

Giunchiglia, E., Lierler, Y., and Maratea, M. (2006). Answer set programming based on

propositional satisfiability. Journal of Automated Reasoning.

Gogate, V., and Domingos, P. (2011). Probabilistic theorem proving. In Proceedings of the

27th Conference on Uncertainty in Artificial Intelligence (UAI).

Gomes, C. P., Kautz, H., Sabharwal, A., and Selman, B. (2008). Satisfiability solvers.

145

Gomes, C. P., and Selman, B. (1997a). Algorithm portfolio design : theory vs. practice. In

Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI ’97).

Gomes, C. P., and Selman, B. (1997b). Problem structure in the presence of perturbations.

In Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI).

Gomes, C. P., Selman, B., Crato, N., and Kautz, H. (2000). Heavy-tailed phenomena in

satisfiability and constraint satisfaction problems. Journal of Automated Reasoning.

Gomes, C. P., Selman, B., and Kautz, H. (1998). Boosting combinatorial search through

randomization. In Proceedings of the Fifteenth National Conference on Artificial Intelli-

gence (AAAI).

Hahsler, M., Hornik, K., and Buchta, C. (2008). Getting things in order : an introduction to

the R package seriation. Journal of Statistical Software.

Hamadi, Y. (2009). From SAT to parallel SAT solving. Tutorial at Learning and Intelligent

Optimization (LION).

Hamadi, Y., Jabbour, S., and Sais, L. (2009). ManySAT : a parallel SAT solver. Journal on

Satisfiability, Boolean Modeling and Computation.

Hansen, E. A., and Zilberstein, S. (2001). Monitoring and control of anytime algorithms :

a dynamic programming approach. Artificial Intelligence.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning.

Horvitz, E., Ruan, Y., Gomes, C. P., Kautz, H. A., Selman, B., and Chickering, D. M.

(2001). A Bayesian approach to tackling hard computational problems. In Proceedings

of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI).

Houstis, E. N., Catlin, A. C., Rice, J. R., Verykios, V. S., Ramakrishnan, N., and Houstis,

C. E. (2000). PYTHIA-II : a knowledge/database system for managing performance data

and recommending scientific software. ACM Transactions on Mathematical Software.

146

Huang, J. (2007). The effect of restarts on the efficiency of clause learning. In Proceedings

of the 20th International Joint Conference on Artifical Intelligence (IJCAI).

Huberman, B., Lukose, R., and Hogg, T. (1997). An economics approach to hard computa-

tional problems. Science.

Hutter, F., Babić, D., Hoos, H. H., and Hu, A. J. (2007). Boosting verification by automatic

tuning of decision procedures. In Proceedings of Formal Methods in Computer Aided

Design (FMCAD).

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). ParamILS : an automatic

algorithm configuration framework. Journal of Artificial Intelligence Research (JAIR).

Järvisalo, M., Le Berre, D., and Roussel, O. (2011a). The SAT 2011 competition results :

part 2. Presentation at Theory and Applications of Satisfiability Testing (SAT).

Järvisalo, M., Le Berre, D., and Roussel, O. (2011b). SAT competition results. http:

//www.satcompetition.org/2011/.

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. (2011). Al-

gorithm selection and scheduling. In 17th International Conference on Principles and

Practice of Constraint Programming (CP).

Kadioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K. (2010). ISAC—instance-specific

algorithm configuration. In Proceedings of the 19th European Conference on Artificial

Intelligence (ECAI).

Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S., Slo-

bodová, A., Taylor, C., Frolov, V., Reeber, E., and Naik, A. (2009). Replacing testing

with formal verification in Intel Core i7 processor execution engine validation. In Com-

puter Aided Verification (CAV).

Kalbfleisch, J. D., and Prentice, R. L. (2011). The statistical analysis of failure time data.

147

http://www.satcompetition.org/2011/
http://www.satcompetition.org/2011/

Karp, R. M. (2011). Heuristic algorithms in computational molecular biology. Journal of

Computer and System Sciences.

Katz, S. M. (1996). Distribution of content words and phrases in text and language mod-

elling. Natural Language Engineering.

Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., and Selman, B. (2002). Dynamic restart

policies. In Proceedings of the Eighteenth National Conference on Artificial Intelligence

(AAAI).

Kautz, H., and Selman, B. (1992). Planning as satisfiability. In Proceedings of the 10th

European Conference on Artificial Intelligence (ECAI).

Kautz, H., and Selman, B. (2007). The state of SAT. Discrete Applied Mathematics.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack problems.

Koller, D., and Friedman, N. (2009). Probabilistic graphical models.

Kroer, C., and Malitsky, Y. (2011). Feature filtering for instance-specific algorithm con-

figuration. In 23rd IEEE International Conference on Tools with Artificial Intelligence

(ICTAI).

Lai, T. L. (1987). Adaptive treatment allocation and the multi-armed bandit problem. The

Annals of Statistics.

Le Berre, D. (2011). A brief introduction to practical SAT solving. Presentation at the

Tübingen SAT Workshop.

Le Berre, D., and Rapicault, P. (2009). Dependency management for the Eclipse ecosystem

: Eclipse p2, metadata and resolution. In Proceedings of the 1st International Workshop

on Open Component Ecosystems (IWOCE).

148

Le Berre, D., Roussel, O., and Simon, L. (2007). SAT competition results. http://www.

satcompetition.org/2007/.

Le Berre, D., Roussel, O., and Simon, L. (2009). SAT competition results. http://www.

satcompetition.org/2009/.

Leyton-Brown, K., Nudelman, E., and Shoham, Y. (2002). Learning the empirical hardness

of optimization problems : the case of combinatorial auctions. In Proceedings of the

Eighth International Conference on Principles and Practice of Constraint Programming

(CP).

Li, L., Zhou, M., Sapiro, G., and Carin, L. (2011). On the integration of topic modeling and

dictionary learning. In Proceedings of the 28th International Conference on Machine

Learning (ICML).

Lierler, Y., and Maratea, M. (2004). Cmodels-2 : SAT-based answer set solver enhanced to

non-tight programs. In Proceedings of Logic Programming and Nonmonotonic Reason-

ing (LPNMR).

Lierler, Y., Silverthorn, B., and Schneider, M. (2012). Surviving solver sensitivity : an ASP

practitioner’s guide. Under review.

Lifschitz, V. (2008). What is answer set programming? In Proceedings of the 23rd National

Conference on Artificial Intelligence.

Luby, M., Sinclair, A., and Zuckerman, D. (1993). Optimal speedup of Las Vegas algo-

rithms. Information Processing Letters.

Madsen, R. E., Kauchak, D., and Elkan, C. (2005). Modeling word burstiness using the

Dirichlet distribution. In Proceedings of the Twenty-Second International Conference on

Machine Learning (ICML).

149

http://www.satcompetition.org/2007/
http://www.satcompetition.org/2007/
http://www.satcompetition.org/2009/
http://www.satcompetition.org/2009/

Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. (2011). Non-model-based

algorithm portfolios for SAT. In Theory and Applications of Satisfiability Testing (SAT).

Manquinho, V., and Roussel, O. (2010). PB competition results. http://www.cril.

univ-artois.fr/PB10/.

Manquinho, V., and Roussel, O. (2011). PB competition results. http://www.cril.

univ-artois.fr/PB11/.

Markowitz, H. (1952). Portfolio selection. Journal of Finance.

Marques-Silva, J. a. P., and Sakallah, K. A. (1999). GRASP : a search algorithm for propo-

sitional satisfiability. IEEE Transactions on Computers.

Matos, P., Planes, J., Letombe, F., and Marques-Silva, J. a. (2008). A MAX-SAT algorithm

portfolio. In Proceedings of 18th European Conference on Artificial Intelligence (ECAI).

McCallum, A., Wang, X., and Mohanty, N. (2007). Joint group and topic discovery from

relations and text. In Statistical Network Analysis: Models, Issues, and New Directions.

Messelis, T., and De Causmaecker, P. (2010). An NRP feature set. Technical report,

Katholieke Universiteit Leuven.

Messelis, T., and De Causmaecker, P. (2011). An algorithm selection approach for nurse

rostering. In Proceedings of the 23rd Benelux Conference on Artificial Intelligence.

Miettinen, K., Ruiz, F., and Wierzbicki, A. P. (2008). Introduction to multiobjective opti-

mization : interactive approaches. In Multiobjective Optimization.

Mimno, D. (2009). Reconstructing Pompeian households. In Applications of Topic Models

Workshop at Neural Information Processing Systems (NIPS).

Mimno, D., Wallach, H. M., Naradowsky, J., Smith, D. A., and McCallum, A. (2009).

Polylingual topic models. In Proceedings of the 2009 Conference on Empirical Methods

in Natural Language Processing (EMNLP).

150

http://www.cril.univ-artois.fr/PB10/
http://www.cril.univ-artois.fr/PB10/
http://www.cril.univ-artois.fr/PB11/
http://www.cril.univ-artois.fr/PB11/

Minka, T. P. (2009). Estimating a Dirichlet distribution. Technical report.

Mitchell, D., Selman, B., and Levesque, H. J. (1996). Generating hard satisfiability prob-

lems. Artificial Intelligence.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L. (1999). Deter-

mining computational complexity from characteristic ‘phase transitions’. Nature.

Nadel, A. (2011). SAT technology @ Intel. Presentation at the SAT 2011 Workshop on

Pragmatics of SAT.

Nareyek, A. (2004). Choosing search heuristics by non-stationary reinforcement learning.

Naveh, Y. (2010). The big deal : applying constraint satisfaction technologies where it

makes the difference. In Theory and Applications of Satisfiability Testing (SAT).

Nieuwenhui, R. (2009). Professional football scheduling with Barcelogic.

Nikolić, M., Marić, F., and Janičić, P. (2009). Instance-based selection of policies for SAT

solvers. In Theory and Applications of Satisfiability Testing (SAT 2009).

Nikolić, M., Marić, F., and Janičić, P. (2011). Simple algorithm portfolio for SAT. Artificial

Intelligence Review.

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., and Barry, M. (2001). An A-

Prolog decision support system for the space shuttle. In Practical Aspects of Declarative

Languages.

Nudelman, E., Leyton-Brown, K., Hoos, H. H., Devkar, A., and Shoham, Y. (2004). Under-

standing random SAT : beyond the clauses-to-variables ratio. In Principles and Practice

of Constraint Programming (CP).

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., and O’Sullivan, B. (2008). Using case-

based reasoning in an algorithm portfolio for constraint solving. In 19th Irish Conference

on AI.

151

Park, J. D. (2002). Using weighted MAX-SAT engines to solve MPE. In Eighteenth Na-

tional Conference on Artificial Intelligence.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., and E., D. (2011). Scikit-learn : machine learning in Python.

Journal of Machine Learning Research.

Pulina, L., and Tacchella, A. (2007). A multi-engine solver for quantified Boolean formulas.

In Principles and Practice of Constraint Programming (CP).

Pulina, L., and Tacchella, A. (2009). A self-adaptive multi-engine solver for quantified

Boolean formulas. Constraints.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers.

Rice, J. R. (1979). Methodology for the algorithm selection problem. In Proceedings of the

IFIP TC 2.5 Working Conference on Performance Evaluation of Numerical Software.

Roussel, O. (2011). Description of ppfolio. In SAT Competition 2011.

Ruan, Y., Horvitz, E., and Kautz, H. (2002). Restart policies with dependence among runs

: a dynamic programming approach. In Principles and Practice of Constraint Program-

ming (CP).

Selman, B., Kautz, H. A., and Cohen, B. (1993). Local search strategies for satisfiability

testing. In Proceedings of the Second DIMACS Challange on Cliques, Coloring, and

Satisfiability.

Selman, B., Kautz, H. A., and Cohen, B. (1994). Noise strategies for improving local

search. In Proceedings of the Twelfth National Conference on Artificial Intelligence

(AAAI).

152

Selman, B., Levesque, H., and Mitchell, D. (1992). A new method for solving hard satis-

fiability problems. In Proceedings of the Tenth National Conference on Artificial Intelli-

gence (AAAI).

Silverthorn, B. (2012). Supporting source code and data. http://nn.cs.utexas.

edu/pages/research/borg/.

Silverthorn, B., and Miikkulainen, R. (2010). Latent class models for algorithm portfolio

methods. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-

gence.

Silverthorn, B., and Miikkulainen, R. (2011). Learning polarity from structure in SAT. In

Theory and Applications of Satisfiability Testing (SAT).

Sinz, C., and Iser, M. (2009). Problem-sensitive restart heuristics for the DPLL procedure.

In Proceedings of the Twelfth International Conference on Theory and Applications of

Satisfiability Testing (SAT).

Smith, B. M. (1999). The Brélaz heuristic and optimal static orderings. In Principles and

Practice of Constraint Programming (CP).

Soos, M., Nohl, K., and Castelluccia, C. (2009). Extending SAT solvers to cryptographic

problems. In Theory and Applications of Satisfiability Testing (SAT).

Streeter, M., Golovin, D., and Smith, S. F. (2007a). Combining multiple heuristics online.

In Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI).

Streeter, M., Golovin, D., and Smith, S. F. (2007b). Restart schedules for ensembles of

problem instances. In Proceedings of the Twenty-Second National Conference on Artifi-

cial Intelligence (AAAI).

Streeter, M., and Smith, S. F. (2007). Using decision procedures efficiently for optimization.

153

http://nn.cs.utexas.edu/pages/research/borg/
http://nn.cs.utexas.edu/pages/research/borg/

In Proceedings of the Seventeenth International Conference on Automated Planning and

Scheduling (ICAPS).

Streeter, M., and Smith, S. F. (2008). New techniques for algorithm portfolio design. In

Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI).

Streeter, M. J., and Smith, S. F. (2006a). An asymptotically optimal algorithm for the max

k-armed bandit problem. In Proceedings of the Twenty-First National Conference on

Artificial Intelligence (AAAI).

Streeter, M. J., and Smith, S. F. (2006b). A simple distribution-free approach to the max

k-armed bandit problem. In Principles and Practice of Constraint Programming (CP).

Tompkins, D. A. D., Balint, A., and Hoos, H. H. (2011). Captain Jack : new variable

selection heuristics in local search for SAT. In Theory and Applications of Satisfiability

Testing (SAT).

Van Gelder, A., Le Berre, D., Biere, A., Kullmann, O., and Simon, L. (2005). Purse-based

scoring for comparison of exponential-time programs. Poster at Theory and Applications

of Satisfiability Testing (SAT).

Veneris, A. (2003). Fault diagnosis and logic debugging using boolean satisfiability. In

Proceedings of the 4th International Workshop on Microprocessor Test and Verification:

Common Challenges and Solutions.

Wallach, H. M. (2008). Structured topic models for language. PhD thesis, University of

Cambridge.

Weerawarana, S., Houstis, E. N., Rice, J. R., Joshi, A., and Houstis, C. E. (1996). PYTHIA

: a knowledge-based system to select scientific algorithms. ACM Transactions on Math-

ematical Software.

154

Wichert, L., and Wilke, R. A. (2005). Application of a simple nonparametric conditional

quantile function estimator in unemployment duration analysis. Social Science Research

Network Working Paper Series.

Wood, R. G., and Rutenbar, R. A. (1997). FPGA routing and routability estimation via

boolean satisfiability. In Proceedings of the Fifth International Symposium on Field-

Programmable Gate Arrays (FPGA).

Xu, L., Hoos, H., and Leyton-Brown, K. (2007). Hierarchical hardness models for SAT. In

Principles and Practice of Constraint Programming (CP).

Xu, L., Hutter, F., Hoos, H., and Leyton-Brown, K. (2009). SATzilla2009: an automatic

algorithm portfolio for SAT. In SAT Competition 2009.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2008a). SATzilla: Portfolio-based

algorithm selection for SAT. Journal of Artificial Intelligence Research (JAIR).

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2008b). SATzilla2008 : an auto-

matic algorithm portfolio for SAT. System Description for SAT Race 2008.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Hydra-MIP : automated algo-

rithm configuration and selection for mixed integer programming. In Proceedings of the

18th RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems

with Combinatorial Explosion.

155

Vita

Bryan was born in Phoenix, Arizona, and lived there until attending Cornell University in

Ithaca, New York, from which he graduated in 2005. After surviving four winters, he chose

to move somewhere with less snow, more sun, and better music, entering The University of

Texas at Austin in the fall of 2005.

Permanent Address: USA

This dissertation was typeset with LATEX 2ε1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the

American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das,

Department of Computer Sciences, The University of Texas at Austin, and extended by Bert Kay and James A.

Bednar.

156

	Acknowledgments
	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms
	Symbols
	Chapter Introduction
	Motivation
	Why Algorithm Portfolios?
	General Portfolio Operation
	The Modular Architecture for Probabilistic Portfolios
	Outline of the Dissertation

	Chapter Background
	Satisfiability
	SAT and Its Solvers
	Solving SAT is Important
	Solving SAT is Difficult (But Not Too Difficult)
	Solving SAT is Empirical

	Maximum Satisfiability
	Pseudo-Boolean Satisfiability
	Answer Set Programming
	Graphical Models and Generative Processes
	Conjugacy and the Dirichlet-Multinomial Pair
	Conclusions

	Chapter Related Work
	Economics and Naïve Parallel Portfolios
	Algorithm Selection
	The Selection Problem
	Supervised Selection and SATzilla
	Other Supervised Portfolios
	Non-Model-Based Portfolios

	Solver Execution Scheduling
	Bandit Portfolios
	Domain-Focused Probabilistic Models
	Models of Solver Performance
	Models of Natural Language Text

	Conclusions

	Chapter Modeling Solver Performance
	Run Time Distributions and Las Vegas Algorithms
	General Methodology
	A Family of Run Time Distribution Models
	Maximum-Likelihood Multinomials
	Multinomials with Uniform Smoothing
	Multinomials with Non-Uniform Smoothing
	Multinomials with Independent Mixture Smoothing
	Multinomials with Linked Mixture Smoothing

	Model Inference and Application
	Comparing Models Empirically
	Visualizing Model Output
	Modeling for Exploratory Visualization
	Conclusions

	Chapter Integrating Instance Features
	Motivation
	A Review of Instance Features
	Feature Integration as Classification
	Experiments
	Conclusions

	Chapter Planning Solver Execution
	Planning for a Known Run Time Distribution
	Planning for an Uncertain Run Time Distribution
	Experimental Evaluation
	Conclusions

	Chapter Evaluation in SAT
	Competition Benchmarks and Methodology
	Evaluating Model Utility
	Comparison with ppfolio
	Comparison with SATzilla2009
	Comparison with 3S
	Conclusions

	Chapter Evaluations in PB, MAX-SAT, and ASP
	Comparisons in Pseudo-Boolean Satisfiability
	Comparisons in Maximum Satisfiability
	Comparisons in Answer Set Programming
	Conclusions

	Chapter Discussion and Future Work
	The Modeling Component
	The Feature Integration Component
	The Scheduling Component
	Parallelism and Beyond
	Conclusions

	Chapter Conclusions
	Summary of Contributions
	Closing Thoughts

	Bibliography
	Vita

