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In building practical applications of evolutionary computation (EC), two optimiza-

tions are essential. First, the parameters of the search method need to be tuned

to the domain in order to balance exploration and exploitation effectively. Second,

the search method needs to be distributed to take advantage of parallel computing

resources. This thesis presents BLADE (BLAnket Distributed Evolution) as an ap-

proach to achieving both goals simultaneously. BLADE uses blankets (i.e., masks on

the genetic representation) to tune the evolutionary operators during the search and

implements the search through hub-and-spoke distribution. In this thesis, (1) the

blanket method is formalized for the (1 + 1)EA case as a Markov chain process. Its
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effectiveness is then demonstrated by analyzing dominant and subdominant eigen-

values of stochastic matrices, suggesting a generalizable theory; (2) the fitness-level

theory is used to analyze the distribution method; and (3) these insights are veri-

fied experimentally on three benchmark problems, showing that both blankets and

distribution lead to accelerated evolution. Moreover, a surprising synergy emerges

between them: When combined with distribution, the blanket approach achieves

more than n-fold speedup with n clients in some cases. The work thus highlights

the importance and potential of optimizing evolutionary computation in practical

applications.

7



Contents

Acknowledgments 5

Abstract 6

Chapter 1 Introduction 10

Chapter 2 Background 12

2.1 Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Distributed Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 3 Method 15

3.1 Blanket-based Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Theoretical Formulation . . . . . . . . . . . . . . . . . . . . . 16

3.2 Distributed Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Theoretical Formulation . . . . . . . . . . . . . . . . . . . . . 20

3.3 BLADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 4 Experimental Analysis 24

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Experiments With Blankets . . . . . . . . . . . . . . . . . . . . . . . 26

8



4.2.1 AllOnes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 OneMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 LeadingOnes . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Experiments With Distribution . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 AllOnes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 OneMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.3 LeadingOnes . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Synergy of Blankets and Distribution . . . . . . . . . . . . . . . . . . 28

4.4.1 AllOnes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 OneMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.3 LeadingOnes . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Comprehensive sets of graphs . . . . . . . . . . . . . . . . . . . . . . 29

4.5.1 Distribution Graphs . . . . . . . . . . . . . . . . . . . . . . . 29

4.5.2 Synergy Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 5 Discussion and Future Work 39

Chapter 6 Conclusion 40

Bibliography 41

Vita 46

9



Chapter 1

Introduction

The field of machine learning has seen the rise of automatic configuration, also

known as AutoML or meta-learning, as a significant and emerging topic in recent

times [Elsken et al.(2019),Liang et al.(2019),Liang et al.(2021)]. Complex machine

learning systems depend on several hyperparameters that are difficult to set right

by hand, and therefore machine learning itself is harnessed to optimize them.

Similarly, the effectiveness of an evolutionary computation method is often

contingent on the proper tuning of its operators. This thesis proposes a new method

for doing so automatically as part of the evolutionary search itself. The idea is to

use a mask, i.e. a blanket, on the genotype to focus the search on specific parts of

the problem. The masks are constructed dynamically throughout the search and

help focus it on the parts that are the most important. In a sense, they play a role

similar to attention heads in transformer neural networks [Vaswani et al.(2017)], but

adapted to population-based search.

A related practical challenge in machine learning is parallelization. As ma-

chine learning systems grow in size, there is a growing need for distributing the

computation across multiple computing resources, including multiple cores on a

single machine, multiple nodes in a cluster, and multiple resources in the cloud.
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While evolutionary computation generally parallelizes well, the method of distribu-

tion of evaluations and evolutionary operations has a large effect. The hub-and-spoke

method is often preferable for maximum scalability and flexibility.

Putting blankets and distribution together, this thesis proposes BLADE as

an effective new method for accelerated evolution. Each of its components is first for-

malized and characterized theoretically, leading to predictions of possible speedups.

These predictions are then confirmed in practical experiments with the (1 + 1)EA

optimization method on three optimization benchmarks, i.e., AllOnes, OneMax,

and LeadingOnes. The results reveal a surprising synergy between blankets and

distribution, allowing more than n-fold speedups with n clients. In future work, the

BLADE approach may be extended to other algorithms and applications and can

thus serve as a foundation for accelerated evolution in practice.
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Chapter 2

Background

This section reviews prior work related to BLADE both in automatic parameter

tuning and in distributed evolutionary computation.

2.1 Parameter Optimization

All problem-solving methods rely on a number of parameters that have to be set

appropriately for the method to function properly. In genetic algorithms, they

include settings for the population size, the mutation rate, the type of crossover, the

selection method, the size of the elite set, the number of offspring, etc. They can

be set up by hand through a laborious trial and error process, or a learning method

such as evolution itself can be used to discover good settings.

For instance, in bilevel evolution, low-level evolution searches for solutions

while high-level evolution searches for the best parameters for low-level evolution

[Sinha et al.(2014), Liang and Miikkulainen(2015)]. Bilevel evolution is expen-

sive because it often requires running many low-level optimizations to evaluate

the fitness of high-level individuals. Furthermore, there is a growing body of ev-

idence suggesting that operator settings and other aspects of the configurations
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should be adapted dynamically in response to changes in the fitness of the popu-

lation [Stützle et al.(2022), Ansótegui et al.(2009), Tuson and Ross(1998), Hassanat

et al.(2019),Papa and Doerr(2020),Doerr et al.(2019),Buskulic and Doerr(2019)].

The blanket method establishes such a dynamic optimization mechanism:

The settings of the search operator are adjusted as part of the search itself over the

course of the run.

2.2 Distributed Evolution

There are several different methods for distributing an evolutionary process across

multiple clients, and each method has its own advantages and disadvantages.

Synchronous distribution: The evolution engine partitions the population,

assigns each partition to an external worker to evaluate, and waits for all the evalu-

ations to return before forming the population for the next generation. This method

is simple, but it only scales well when the worker clients are machines with similar

speed and connectivity; otherwise, time is wasted waiting for the slowest clients to

finish their work. This approach can also be slow for large populations because there

is a high communication overhead for distributing individuals [Sudholt(2015),Yang

et al.(2019),Raghul and Jeyakumar(2021),Hassani and Treijs(2009)].

Asynchronous population evaluation: It starts like the synchronous method,

but the engine only waits until a part of the population has been evaluated before

generating the next population. This method improves efficiency but may lose

diversity [Sudholt(2015), Yang et al.(2019), Raghul and Jeyakumar(2021), Hassani

and Treijs(2009)].

Island model : While the above methods rely on the star topology of dis-

tribution, the island model applies to a variety of topologies, such as a ring or

hypercube. The evolution engines themselves are distributed, and they migrate

good solution candidates between themselves using peer-to-peer connections. This
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method is asynchronous and can generate a lot of diversity at scale. On the other

hand, the decentralization of evolution engines makes harvesting the best candidates

difficult, and the peer-to-peer connections may become an overhead, especially when

using highly connected topologies on different physical machines. Therefore, the is-

land model is most suitable for parallel evolution on a single machine with many

cores rather than distributing it over a network of machines [Whitley et al.(1998)].

Hub and spoke model : This model also uses the star topology, but the clients

(spokes) are full evolution engines. They evaluate candidates asynchronously on

different partitions of the data, and the results are aggregated in a centralized server

(hub). The main advantage of this method is that it can be easily distributed over a

large network of diverse computing resources. Also, each client has only one external

connection to the hub, and therefore it is possible to add or remove clients in an

asynchronous manner. On the other hand, the hub may become overwhelmed with

a very large number of clients. In such a situation, a method of load-balancing can

be implemented [O’Reilly et al.(2013)].

In sum, the choice of distribution method depends on the specific require-

ments of the evolutionary algorithm and the computational resources available. For

many evolutionary computation implementations, the hub-and-spoke model offers

the best advantages and will thus be used for BLADE as well.
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Chapter 3

Method

This section presents the details of the BLADE method. Intuition and theoreti-

cal formulation are first given for blankets and distribution separately, and these

methods are then brought together to full BLADE. The discussion focuses on the

optimization of binary strings with (1 + 1)EA. Possibilities for extending BLADE

to other representations and search methods will be discussed in Section 5.

3.1 Blanket-based Search

The blanket method refers to the process of masking parts of a candidate solution

so that they cannot be modified by the evolutionary operators such as mutation for

(1 + 1)EA. It is a way to focus the search on those solution elements that make

progress most likely.

3.1.1 Method Description

The blanket method involves modifying the mutation rate of bits in a binary string

of length N according to another binary string, i.e. the blanket, which can be any

one of the 2N such strings except all zeros and all ones. The mutation rate µ is
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modified by the factor of N
N−len(blanket) .

For example, if N = 5, µ = 1/4, and the blanket is ”01011”, len(blanket) = 3,

and the second, fourth, and fifth bits are preserved, and the first and third bits are

mutated independently with the modified mutation probability µb = 1
4 ∗

5
5−3 = 5

8 . If

µb exceeds 1.0, it is clipped to 1.0, meaning that all bits not under the blanket are

flipped deterministically. Algorithm 1 shows a modified version of (1 + 1)EA that

incorporates the blanket method.

Algorithm 1 Blankets only (non-distributed BLADE)

Initialization:
Sample x ∈ {0, 1}N uniformly at random and evaluate f(x)

Optimization:
for t = 1, 2, 3, ... do
Offspring generation with blanket:

Calculate mutation rate µ
Sample blanketLength from [1, N − 1] randomly
Set blanket ← flip blanketLength random bits in {0}N
Set µb ← min(1, µ( N

N−blanketLength))

Sample y ∈ {0, 1}N at random with p(1) = µb

Set blanket← blanket ∧ y (∧ is bitwise AND)
Create x∗ ← x⊕ blanket (⊕ is bitwise XOR)

Selection:
if f(x∗) ≥ f(x) then

x← x∗

end if
end for

3.1.2 Theoretical Formulation

The blanket method may initially seem counterintuitive: It may help search if it

masks those parts of the string that are indeed part of the solution, but it may also

hinder search if it masks parts where further mutations are needed. Without further

knowledge of the problem domain or a method for dynamically constructing blan-

kets, its potential benefits and drawbacks may cancel out. A simple formalization
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is helpful in showing why this is not a problem, and blankets can indeed speed up

the search process.

Consider (1+1)EA on a 2-bit version of the AllOnes problem: Starting from

random bits, where each bit gets independently mutated at each iteration with the

probability of 1
2 until both bits are one. This process can be formalized as a Markov

chain, i.e. a random process in which the future state of the system depends only

on its current state and not its past history [Gagniuc(2017)]. A transition matrix

stores the probabilities of the system moving from one state to another, with zero

indicating that a transition is not possible. An absorbing state is a state that cannot

be left once it has been entered; it is represented by a row with a single non-zero

element of 1.

Since there are 22 = 4 different combinations of two bits, the transition

matrix is of size 4× 4. A possible such matrix is shown in Figure 3.1(a). The rows

represent the current states, the columns the possible next states, and each cell the

probability of the corresponding transition. Once the system gets to the state in

the bottom row, it stays there forever; otherwise, it can transition from any state

to any other state with a probability of 0.25.

With two bits, there are two possible blankets, ”[0,1]” and ”[1,0]”. Thus

the number of states doubles, except the absorbing state in which the blanket has

no effect, so the transition matrix expands to 7 × 7, as shown in Figure 3.1(b).

For instance, from the state (0,0) with the blanket of (0,1), i.e. the top left cell,

the system cannot go to state (0,0): By masking the second bit, the 1
2 baseline

probability of mutation increases by the factor of N
N−len(blanket) = 2

2−1 = 2 and thus

becomes 1. Therefore, the system can only transition to the state (1,0); since there

are two possibilities for the blankets in that state, their probabilities are 0.5 for

both.

Note that an n × n entrywise nonnegative matrix P is considered to be
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stochastic if the sum of its every row is equal to 1, i.e. P1 = 1, where 1 is an

all-ones column vector of size n. Transition matrices such as those in Figure 3.1

above are thus stochastic matrices. Further, from the definition of eigenvalue and

eigenvector (i.e., Px = λx), it is clear that 1 is an eigenvalue of P . According to

the Perron-Frobenius theorem [Seneta(2008)], the dominant eigenvalue λ1 of P is

always 1, and its ordered eigenvalues λi(P ) satisfy

1 = |λ1(P )| ≥ |λ2(P )| ≥ ... ≥ |λn(P )|. (3.1)

Importantly, when the absolute value of the subdominant eigenvalue λ2(P ) < 1,

the Markov chain converges; further, it converges faster with smaller |λ2(P )| [Kirk-

land(2009)].

It turns out that the subdominant eigenvalues for the matrices in Figure 3.1

are both less than one. However, without blankets, λ2 = 0.75, and with blan-

kets λ2 = 0.71, suggesting that the blanket method should converge faster. Fig-

ures 3.1(c,d) show the actual convergence of the transitions in these two cases,

confirming the theory: While without blankets, the process takes 26 steps to con-

verge, only 21 are required with blankets. This result is robust: While the precise

number of steps may vary e.g. depending on the level of precision in the calculation,

the exponential term 0.71n approaches zero more rapidly compared to 0.75n as the

value of n increases. As a result, regardless of the specific values or precision used,

the blanket method converges more quickly due to this inherent difference in con-

vergence rates dictated by the subdominant eigenvalues of the transition matrices.

Thus the formalization in terms of Markov chains leads to a powerful con-

clusion in 2-bit AllOnes. The experimental results in Section 4 further suggest that

the same conclusion should apply to larger N and to other problems. A challenge

for the future is to extend the theory to the general case, as outlined in Section 5.
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(a) Example transition matrix without blankets

(b) Example transition matrix with blankets

. . .

(c) Convergence without blankets

. . .

(d) Convergence with blankets

Figure 3.1: A comparison of convergence with and without blankets on a 2-bit
AllOnes problem is shown using transition matrices (a) and (b). The presence of
two possible blankets for each state in (a) results in twice as many states in (a),
except for the last converging state of (1,1). The subdominant eigenvalue is 0.75
for matrix (a) and 0.71 for matrix (b), indicating faster theoretical convergence
with blankets. The convergence process is depicted in (c) and (d), starting from
a randomly chosen initial state S0 with uniform probability. The process takes
26 transitions to converge without blankets, and only 21 transitions with blankets,
confirming the theoretical advantage of using blankets in the search.
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3.2 Distributed Evolution

As described in the Background section, although a variety of methods exist for

distributed computing, the hub and spoke model is a particularly effective approach

for evolutionary computation. Through distribution, it is possible to take advantage

of modern computing resources, including multiple cores on a single machine, several

machines in a LAN (i.e., Local Area Network), or machines in the cloud. In this

section, this method of distribution is first instantiated in the (1 + 1)EA algorithm.

The approach is then formalized and an upper bound is derived for the speedup it

offers compared to the non-distributed version.

3.2.1 Method Description

With (1 + 1)EA, the hub is a node that stores only a global variable that main-

tains the best candidate solution so far. The spokes, or clients, are nodes running

(1 + 1)EA. They regularly communicate with the hub to possibly obtain a better

candidate, or to inform the hub that they have found such a candidate. Algorithm 2

specifies these exchanges in detail.

3.2.2 Theoretical Formulation

The fitness-level theory, also called the fitness-based partitions method, is widely

used for analyzing the runtime of evolutionary algorithms [Droste et al.(2002)]. In

this subsection, it is adapted to determining the upper bound of the computational

effort required by the distribution model compared to a non-distributed evolution.

To begin, the search space is divided into sets A1, ..., Am, ordered based on

their fitness values. Each set has a lower bound for the probability of improvement

si, i.e. the chance that the search advances to the next set, i.e. to a higher fitness

level. Note that there is no sm because the global optimum Am has no room for

improvement.
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Algorithm 2 Hub-and-Spoke distribution (without blankets)

Initialization:
Sample x ∈ {0, 1}N uniformly at random and evaluate f(x)

Optimization:
for t = 1, 2, 3, ... do
Hub interaction:

Get the hub’s candidate z
if f(x) ≥ f(z) then

Put x as the new hub’s candidate
else

x← z
end if

Offspring generation:
Calculate mutation rate µ
x∗ ← flip each bit of x independently with probability µ

Selection:
if f(x∗) ≥ f(x) then

x← x∗

end if
end for

In elitist evolutionary algorithms such as (1 + 1)EA (where the individual

with the highest fitness value is always selected for survival), the best fitness value in

the population can only increase. The set s1, ..., sm−1 can thus be used to calculate

an upper bound on the running time T of the algorithm. In the case of (1 + 1)EA

it is equal to the expected number of fitness evaluations:

T ≤
m−1∑
i=1

1

si
. (3.2)

Algorithm 2 specifies that all clients are at the same fitness level almost

always (i.e. within two hub interactions). Each client might jump from fitness level

Ai to a higher level with probability si, i.e. each client fails to find an improvement

with a probability of (1− si). Because clients are independent, the probability that

all of them fail is (1− si)
c. Thus, the probability of leaving Ai is di = 1− (1− si)

c.
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The upper bound for the running time of Algorithm 2 with c clients is then

T ≤
m−1∑
i=1

1

1− (1− si)c
. (3.3)

Note that for any 0 ≤ x ≤ 1, and any n > 0,

(1− x)n ≤ 1

1 + nx
. (3.4)

This inequality [Rowe and Sudholt(2012)] can be used to simplify Equation 3.3 and

thus get a better sense of the expected amount of speedup:

T ≤
m−1∑
i=1

[
1 +

1

c.si

]
,

or simply

T ≤ (m− 1) +
1

c

m−1∑
i=1

1

si
.

This result means that the speedup is linear with more clients. The (m −

1) offset becomes negligible for harder problems that have smaller si or a smaller

number of fitness levels. Note, however, that this T is an upper bound. Therefore,

it is possible that in special cases, the speedup can be higher than the number of

clients, as will be seen later.

3.3 BLADE

The blanket and distribution methods can be combined seamlessly into full BLADE,

as described in Algorithm 3. This combination is straightforward to implement and

leads to a surprising synergy, as seen in Section 4.4.

Although BLADE in this thesis is implemented for (1 + 1)EA on binary

strings, it can be applied to other population-based evolutionary methods and other
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representations. Some opportunities are outlined further in Section 5.

Algorithm 3 BLADE (blankets & hub-and-spoke distribution)

Initialization:
Sample x ∈ {0, 1}N uniformly at random and evaluate f(x)

Optimization:
for t = 1, 2, 3, ... do
Hub interaction:

Get the hub’s candidate z
if f(x) ≥ f(z) then

Put x as the new hub’s candidate
else

x← z
end if

Offspring generation with blanket:
Calculate mutation rate µ
Sample blanketLength from [1, N − 1] randomly
Set blanket ← flip blanketLength random bits in {0}N
Set µb ← min(1, µ( N

N−blanketLength))

Sample y ∈ {0, 1}N at random with p(1) = µb

Set blanket← blanket ∧ y (∧ is bitwise AND)
Create x∗ ← x⊕ blanket (⊕ is bitwise XOR)

Selection:
if f(x∗) ≥ f(x) then

x← x∗

end if
end for
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Chapter 4

Experimental Analysis

BLADE was evaluated in three benchmark problems, selected to cover domains with

a variety of different fitness landscapes. Experiments were performed on each to

evaluate the contribution of masking and distribution separately and then together.

4.1 Experimental Setup

The first problem, AllOnes, is an optimization problem where the goal is to find a

binary string of length N that consists of all ones. The fitness landscape is a needle

in a haystack: While it is easy to identify the global optimum, it is hard to find

it among all the solutions. There is only one combination of the N bits that has

the fitness of one, and all the remaining (2N − 1) combinations have the fitness of

zero. Solving AllOnes is analogous to searching through the 2N possibilities to open

a binary combination lock.

The second problem, OneMax (or Hamming distance) [Buskulic and Do-

err(2019)], is a classic problem in evolutionary computation and is widely used to

evaluate the performance of optimization algorithms. In OneMax, the goal is also to

find a binary string where all the bits are one, but the fitness of a candidate solution
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is equal to the number of ones in the string. OneMax is a relatively easy problem

for evolutionary computation; however, it is a useful baseline often referred to as

the “drosophila of evolutionary computation” [Buzdalov and Doerr(2020)]

The third problem, LeadingOnes, is another classical problem widely used

to evaluate the performance of optimization algorithms. The goal is, again, to find

a binary string where all the bits are one, but in this case, the fitness of a candidate

solution is equal to the number of ones at the beginning of the string. An advantage

of using this problem for benchmarking evolutionary computation methods is that

its theoretical convergence bounds for both static and adaptive mutation rates are

known for (1 + 1)EA [Papa and Doerr(2020)]. Therefore, it is possible to compare

empirical results against them to establish the baseline.

Each optimization problem was run a thousand times; the reported conver-

gence numbers are the averages for those runs. Further, 95% confidence bounds

were calculated to measure the statistical significance of the results. In AllOnes,

convergence time increases exponentially with the size of the problem, and there-

fore the string lengths of 2 to 16 bits were used. In OneMax and LeadingOnes,

experiments were run from 2 to 32 bits.

The same mutation rates were used as a basis for all runs; BLADE modifies

it on the fly based on the length of its random blanket (according to Algorithms 1

and 3). In AllOnes and OneMax, the static rate of 1
N was used. In LeadingOnes,

there were two cases: 1.5936
N was used in the static case, and 1

1+LO(x) , where LO(x)

is the fitness of the candidate x, in the adaptive case. These are the theoretical

optimum rates for this domain [Papa and Doerr(2020),Buzdalov and Doerr(2020)].

The results for the masking component alone, i.e. BLADE on a single client,

are described in the next subsection, followed by experiments on evaluating the

effect of distributing BLADE over two to eight clients. The final subsection analyzes

the speedups resulting from distribution, identifying a surprising synergy between
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blankets and distribution

4.2 Experiments With Blankets

The blanket technique was first implemented and evaluated on a single client without

distribution. A summary of the results is shown in Figure 4.1; a detailed discussion

follows for each benchmark problem.

4.2.1 AllOnes

Figure 4.1(a) illustrates the advantage of using blankets on AllOnes. Given that this

is a needle-in-a-haystack problem, and the search space grows exponentially with

string length, it is no surprise that the convergence time increases exponentially as

well. However, BLADE converges slightly faster than the baseline, presumably due

to the subdominant eigenvalues of the corresponding transition matrices. Further,

as the problem size increase, the advantage of blankets becomes more pronounced.

4.2.2 OneMax

Figure 4.1(b) shows the advantage of using blankets on OneMax. BLADE converges

significantly faster than the baseline, as indicated by a wide separation of the 95%

confidence bound, and the difference increases with problem size.

4.2.3 LeadingOnes

Figure 4.1(c) compares BLADE with the static mutation baseline and Figure 4.1(d)

with the adaptive mutation baseline on LeadingOnes. Again, BLADE converges

significantly faster than the baseline in both cases and its advantage increases with

problem size.

With the theoretically optimal mutation rate, the convergence rate with

static mutation is 0.77N2, and with adaptive mutation is 0.68N2 [Papa and Do-
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err(2020), Buzdalov and Doerr(2020)]. These rates are plotted as continuous lines

in Figures 4.1(c,d). As expected, they match the experimental results well.

4.3 Experiments With Distribution

The aim of these experiments is to study the contrast between just distributing the

problem set and utilizing both blanket and distribution as BLADE does. Experi-

ments were conducted for two, four, and eight clients, and the results are depicted

in Figure 4.2. A thorough discussion for each problem set is provided. In addition,

a complete collection of these graphs can be found in 4.5.1 for further examination.

4.3.1 AllOnes

Figure 4.2(a) shows the advantage of using BLADE (combining distribution and

masking) on AllOnes. The results are similar to the single client case: Both are

exponential, and BLADE is slightly better, with an increasing difference. Similar

results were obtained in the four and eight-client cases.

4.3.2 OneMax

Figure 4.2(b) shows the advantage of BLADE on OneMax with distribution over

four clients. Again, the results are similar to the single-client case, with BLADE

converging significantly and increasingly faster than the baseline. Similar results

were obtained in the two and eight-client cases.

4.3.3 LeadingOnes

Figures 4.2(c,d) compares BLADE with baseline on LeadingOnes distributed over

eight clients. Again, BLADE converges significantly and increasingly faster than

the baseline. Similar results were obtained in the two and four-client cases.
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4.4 Synergy of Blankets and Distribution

Previous sections demonstrated that using blankets improves search performance

over baseline both when it is run on a single client and when it is distributed over

several clients. An interesting question is: Is there a synergy between blankets and

distribution? That is, does distribution offer a larger speedup with BLADE than it

does with the baseline?

To answer this question, the ratios of total evaluations in single-client and

multi-client runs are plotted in Figure 4.3 for representative cases in each benchmark.

A ratio of 1.0 means that the speedup is perfectly efficient, e.g. a run distributed

over two clients converge twice as fast as a run on a single client. A ratio above

one means that the threads provide additional information that the distribution

algorithm can utilize to speed up the search even more.

A summary of these results is given below, and the comprehensive set of

plots is included in Section 4.5.2.

4.4.1 AllOnes

Figure 4.3(a) shows the improvement ratios in AllOnes when the runs are distributed

over eight clients. When N is small, there is a non-negligible chance that some clients

have high-fitness individuals in their initial population, resulting in high ratios up to

N = 8. With larger N , the ratios are close to one, suggesting that the distribution is

efficient, and both the baseline and BLADE benefit from it equally. Similar results

were obtained in the two and four-client cases.

4.4.2 OneMax

Figure 4.3(b) illustrates the improvement ratios in OneMax with a four-client dis-

tribution. The chance of having high-fitness individuals in the initial population are

higher in this problem and have a significant effect up to N = 20. With larger N ,

28



the ratios are again close to one for both the baseline and BLADE, as in AllOnes.

Similar results were obtained in the two and eight-client cases.

4.4.3 LeadingOnes

Figures 4.3(c,d) plots the improvement ratios in LeadingOnes with the static and

adaptive mutation with a two-client distribution. In this benchmark, the effect of

getting lucky with random initialization is again small and negligible after about

N = 8. With larger N , an interesting observation can be made: The improvement

is significantly greater than one for BLADE in the static case and for both the

baseline and BLADE in the adaptive case. Similar results were obtained in the four

and eight-client cases.

Apparently, in LeadingOnes, there is information in the two threads that

can be utilized to improve the search. This information can be captured to an

extent through adaptive mutation; however, even when the mutation rate is static

(as in Figure 4.3(c)), BLADE can still capture it. BLADE adjusts its mutation rate

based on the blankets and therefore establishes a version of the adaptive mutation

process. This process allows it to take advantage of the synergy between threads

more effectively than the baseline. Characterizing and optimizing this mechanism

is a most exciting direction for future work.

4.5 Comprehensive sets of graphs

4.5.1 Distribution Graphs

Figures 4.4, 4.5, and 4.6 show the results of the comparisons between BLADE and

the baseline on the four benchmark problems with two, four, and eight clients,

respectively.
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Figure 4.1: A comparison between the blanket method (i.e. BLADE on a single
host) and the baseline method (i.e. standard evolution without blankets) across
four benchmark problems: (a) AllOnes, (b) OneMax, and LeadingOnes with (c)
static mutation and (d) adaptive mutation. The mutation rate for AllOnes and
OneMax was µ=

1
N . For LeadingOnes, the theoretically optimal mutation rates were

used, i.e. µ = 1.5936
N in the static case and µ = 1

LO(x)+1 in the adaptive case. The

blanket method modifies these mutation rates by a factor of N
N−len(blanket) and clips

them to one. The x-axis denotes the problem size N (i.e. the length of the binary
string), and the y-axis the average number of generations to converge, averaged over
1000 runs. The shaded areas indicate 95% confidence intervals. The results show
that blankets improve convergence significantly on all problems.

30



Figure 4.2: A comparison between full BLADE (including both blankets and distri-
bution methods) and the baseline across the four benchmark problems. Representa-
tive results with two, four, and eight clients are shown; the complete set is included
in Section 4.5.1. The experimental and display details are the same as in Figure 4.1.
The advantage of blankets extends to distribution across several clients: BLADE
converges significantly faster than the baseline in all cases.
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Figure 4.3: A comparison of the speedup ratio of BLADE vs. the baseline on the
four benchmark problems. Similarly to Figure 4.2, representative results with two,
four, and eight clients are shown; the complete set is included in Section 4.5.2.
A ratio of 1.0 indicates that the distribution is perfectly efficient, i.e., the total
number of evaluations across all clients is the same as the number of evaluations on
a single client. As the problem size grows, the ratio approaches 1.0 for AllOnes and
OneMax. Remarkably, for LeadingOnes, the ratio is above 1.0 for both the baseline
and BLADE with adaptive mutation (d) and for BLADE only with static mutation
(c). The results thus suggest that there is a synergy between adaptive mutation
and distribution and that BLADE provides the crucial adaptation in the otherwise
static mutation case.
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Figure 4.4: A comparison between BLADE and the baseline across the four bench-
mark problems with distribution over two clients; the experimental and display
details are the same as in Figure 4.2. BLADE converges significantly faster than
the baseline.
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Figure 4.5: A comparison between BLADE and the baseline across the four bench-
mark problems with distribution over four clients; the experimental and display
details are the same as in Figure 4.2. BLADE converges significantly faster than
the baseline.
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Figure 4.6: A comparison between BLADE and the baseline across the four bench-
mark problems with distribution over eight clients; the experimental and display
details are the same as in Figure 4.2. BLADE converges significantly faster than
the baseline.
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4.5.2 Synergy Graphs

Figures 4.7, 4.8, and 4.9 compare the improvement ratios of BLADE and the baseline

on the four benchmark problems with two, four, and eight clients, respectively.

Figure 4.7: A comparison of the speedup ratio of BLADE vs. the baseline on the
four benchmark problems with distribution over two clients; the experimental and
display details and conclusions are similar to those in Figure 4.3.
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Figure 4.8: A comparison of the speedup ratio of BLADE vs. the baseline on the
four benchmark problems with distribution over four clients; the experimental and
display details and conclusions are similar to those in Figure 4.3.
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Figure 4.9: A comparison of the speedup ratio of BLADE vs. the baseline on the
four benchmark problems with distribution over eight clients; the experimental and
display details and conclusions are similar to those in Figure 4.3.
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Chapter 5

Discussion and Future Work

BLADE can potentially be used to accelerate evolutionary algorithms by utilizing

blanket-based tuning of search and by distributing the search. The experiments

covered a wide range of fitness landscapes representative of many practical problems.

The method is easily integrated as a plug-in into any preferred evolutionary method.

In order to put these conclusions into practice, there are two immediate di-

rections for future work. The first is to extend the method from a (1 + 1)EA to a

population-based approach; the second is to generalize blankets to other evolution-

ary representations, such as multi-dimensional vectors and trees. Once the BLADE

method is extended in this manner, it can be tested in real-world applications. The

goal will be to verify that more than n-fold speedup can be obtained with n clients,

taking advantage of the synergy between its two components.

Future theoretical research may seek to generalize the Markov chain approach

to other problems and sizes. An exciting challenge is identifying the conditions under

which the synergy can emerge and derive bounds for it. Such an understanding could

be instrumental in developing faster evolutionary computation implementations in

the future.
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Chapter 6

Conclusion

BLADE was demonstrated to accelerate a fundamental evolutionary algorithm in

several benchmark problems. It can be easily integrated into other existing algo-

rithms, making it possible to take advantage of it in practical applications. Its

potential for providing more than n-fold speedup with n clients is particularly in-

triguing and worthy of further study.
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[Ansótegui et al.(2009)] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney.

2009. A gender-based genetic algorithm for the automatic configuration of

algorithms. In Principles and Practice of Constraint Programming-CP 2009:

15th International Conference, CP 2009 Lisbon, Portugal, September 20-24,

2009 Proceedings 15. Springer, New York, NY, USA, 142–157.

[Buskulic and Doerr(2019)] Nathan Buskulic and Carola Doerr. 2019. Maximizing

Drift is Not Optimal for Solving OneMax. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion (Prague, Czech Republic)

(GECCO ’19). Association for Computing Machinery, New York, NY, USA,

425–426. https://doi.org/10.1145/3319619.3321952

[Buzdalov and Doerr(2020)] Maxim Buzdalov and Carola Doerr. 2020. Optimal

Mutation Rates for the EA on OneMax. In Parallel Problem Solving from Na-

ture – PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The

Netherlands, September 5-9, 2020, Proceedings, Part II (Leiden, The Nether-

lands). Springer-Verlag, Berlin, Heidelberg, 574–587. https://doi.org/10.

1007/978-3-030-58115-2_40

[Doerr et al.(2019)] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M.
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