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Abstract. Topology and Weight Evolving Artificial Neural Networks
(TWEANNs) have been shown to be powerful in nonlinear optimiza-
tion tasks such as double pole-balancing. However, if the input, output,
or network structures are high dimensional, the search space may be
too large to search efficiently. If the symmetries inherent in many large
domains were correctly identified and used to break the problem down
into simpler sub-problems (to be solved in parallel), evolution could pro-
ceed more efficiently, spending less time solving the same sub-problems
more than once. In this paper, a coevolutionary modular neuroevolution
method, Modular NeuroEvolution of Augmenting Topologies (Modular
NEAT), is developed that automatically performs this decomposition
during evolution. By reusing neural substructures in a scalable board
game domain, modular solution topologies arise, making evolutionary
search more efficient.

1 Introduction

Topology and Weight Evolving Artificial Neural Network (TWEANN) meth-
ods become increasingly intractable as the network complexity of the individual
solutions (and thus the complexity of the space of solutions) being searched in-
creases. This complexity is known as dimensionality, and is influenced primarily
by two factors: the number of inputs and outputs a solution network has, and the
topological complexity (e.g. amount of hidden neurons) of that network. Many
board games are difficult to learn because they have high dimensional input and
output spaces (i.e. the board size is large). Even powerful Neuroevolution (NE)
methods such as NeuroEvolution of Augmenting Topologies (NEAT) are chal-
lenged in these domains because the search space is too large [1]. In this paper,
an NE method is proposed to increase the efficiency of high-dimensional search.

The dimensionality problem exists in biological evolution, however nature
is able to overcome it and produce exceedingly complex phenotypes through
modularization of the genotype-phenotype map [2]. Also, developmental modu-
larity allows for reuse of complex phenotypic structures without correspondingly
complex mutations in the genotype. Modularization can be thought of as a de-
composition operation that reconstitutes the search space in a way that is more
amenable to natural evolution [3].
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The key to tackling the dimensionality problem in artificial evolution, then,
is to find ways to perform a similar modular decomposition of the genotypic
search space. One way to accomplish this decomposition in NE is to evolve
reusable neural substructures (modules) and combine them together.

With the added level of abstraction that modules provide, more complex
solutions are searched with fewer operations than standard NE. The trade-off
is that the search becomes coarser. For example, mutations represent combina-
tions of modular building blocks instead of weights, making it difficult or even
impossible to find some solutions.

In this paper, a coevolutionary NE method Modular NeuroEvolution of Aug-
menting Topologies (Modular NEAT) is proposed that allows reusing fundamen-
tal neural substructures, which encourages modularization. Modular NEAT is
tested on an artificial board game domain with scalable input/output complex-
ity, and is shown to be 1) several times more efficient than the standard NEAT
method and also 2) generate modular solution networks. This approach allows
for the solutions to a class of difficult problems to be approximated more easily
than with non-modular NE techniques.

2 Modularity in Natural Evolutionary Systems

Modularity can be intuitively defined as “the integration of functionally related
structures and the dissociation of unrelated structures” [4]. In other words the
structures are some combination of reusable, interchangeable, and functionally
separate. A technical discussion of modularity is given in [5] and also [6]. In-
dependent functions are coded independently using modularity, and as such
each function can be optimized separately with little interference with other
already optimized functions. Thus modularity not only structures the genotype-
phenotype map for mutational stability, but also increases evolvability.

Natural modularity makes a significant class of difficult problems tractable
by rearranging the structure of the search space [3]. This has previously been
accomplished in NE through gene-duplication [7–9], and gene reuse[10, 11]. In a
gene-duplication scheme, two copies of the gene are made and the resulting two
functions can specialize independently. In contrast, modularity can also arise
from gene reuse, which has not yet been fully explored with regards to NE.
In a gene reuse scheme, genes that perform one function are reused wherever
that function is needed, and are functionally separate from other genes. Gene
reuse can be thought of as a process for generalizing gene function, whereas gene
duplication can be thought of as a process for specializing it.

In this paper, automatic modular decomposition is implemented in a cooper-
ative coevolution system with a population of reusable genes (i.e. modules) and
a population of blueprints specifying combinations of modules. In such a system,

– Evolution and modularization take place at the same time as modules are
discovered.

– The space of a complex fitness function is restructured [12].
– Genes are reused explicitly without the need for a more complex genotype-

phenotype map (such as a system with development).
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Thus an NE system that takes advantage of modularization can be more
efficient than one that does not. The next section presents Modular NEAT, an
implementation for modular decomposition with coevolution.

3 Modular NEAT Method

A method that allows for concurrent evolution and modularization of network
topologies is developed and tested in this paper. The method is based on NEAT
[1], which provides a simple but efficient way to automatically discover the cor-
rect level of complexification.

3.1 Standard NEAT Implementation

The standard NEAT implementation has been shown to be a highly effective NE
method in several domains [13]. It addresses three problems commonly found in
TWEANN systems: 1) how to crossover topologically disparate chromosomes,
2) how to protect new topological innovation, and 3) how to keep topologies
as simple as possible throughout evolution [1]. This is accomplished through
historical markings, speciation, and incremental complexification.

First, each genome in NEAT includes a list of connection genes, each of which
refers to two node genes being connected. In order to perform crossover, the
system must be able to tell which genes match up between any two individuals
in the population. For this reason, NEAT keeps track of the historical origin of
every gene. Two genes that have the same historical origin represent the same
structure (although possibly with different weights), since they were both derived
from the same ancestral gene from some point in the past. Tracking the historical
origins requires very little computation. Whenever a new gene appears (through
structural mutation), an innovation number is incremented and assigned to that
gene. The innovation numbers thus represent a chronology of every gene in the
system, and allows crossover of diverse networks without extensive topological
analysis. With historical markings the problem of having to match different
topologies [14] is avoided.

Second, NEAT networks are speciated so that individuals compete primarily
within their own niche. This way, topological innovations are given time to op-
timize their structure before they have to compete with the entire population.
Also, networks share the fitness of their species [15], to prevent one species from
taking over the entire population.

Third, unlike other TWEANN methods [7, 16], NEAT networks are built from
a minimal configuration and complexified incrementally to ensure that solutions
of minimal complexity are searched first. This procedure has two advantages:
first, it minimizes topology bloat, and second, it improves the efficiency of evo-
lution by complexifying the search space only as needed. On the other hand,
minimal starting is problematic in domains with high input/output dimension-
ality because “minimal” starting actually represents a huge space of weights. The
Modular NEAT method allows for input and output connections to be added
during evolution, allowing for even simpler initial topologies.

For more details about NEAT, see Stanley and Miikkulainen [1].
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3.2 Modular NEAT Overview

To allow for concurrent evolution and modularization, Modular NEAT reuses
arbitrarily complex neural substructures, from a single connection to large sub-
networks, to form complete neural networks. This method is similar in vein
to the gene-duplication scheme of NE proposed by Calabretta et. al. [9, 17],
however in Modular NEAT, genes are reused in different spatial locations in
the network instead of duplicated. This encourages generalization of function,
instead of specialization.

Modular NEAT encodes each reusable substructure (module) as a function-
ally independent NEAT network from a set of input neurons to a set of output
neurons. Since the building blocks are complete neural networks, they can be
evolved using standard NEAT.

In addition to the population of NEAT modules, Modular NEAT makes use
of blueprints that specify combinations of those modules. Both populations are
evolved together symbiotically, as in the SANE method [18]. Good modules must
evolve to work well with other modules, and across different spatial locations in
the network.

The main difference is that in SANE each neuron can only be used in one
place in the resulting network. If a neuron were reused, it would perform the exact
same function as before, effectively just reinforcing that particular function. In
Modular NEAT, modules can be bound to different subsets of input and output
neurons without overlap, or with little overlap, so reuse of modules actually has
a constructive effect. For example, if the optimal solution network has bilateral
symmetry (i.e. the left and right halves are the same network), one module half
the size of the target network can be bound on both halves to solve the problem.

3.3 Module Population

Modules are composed of a set of links between input, output and hidden neurons
that are specific to the module. These abstract neurons are later assigned to real
neurons in the solution network, through a process called binding. Each link
has a globally unique identifier (for historical marking), a weight, and a start
and end neuron. The module population is divided into species based on how
similar the individual network topologies are (figure 1) [1]. Topological similarity
is determined according to the equation

d = k1w + k2t,

where w is the sum of the absolute value of the weight differences for all connec-
tions, and t is the number of differing topological innovations (i.e. the number of
links not shared by both individuals). The constants k1 and k2 can be changed
in order to balance the net effects of the two difference measures.

The module population is speciated for two reasons in addition to those
proposed by NEAT: first, it helps maintain specializations in module function,
and second, it provides a simple way to determine what other modules could
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serve as replacements when one is needed in a blueprint (i.e. when another
member of the species dies and the blueprints need to be updated).

Module crossover is implemented similarly to crossover in NEAT. The match-
ing historical markings are lined up and crossed over randomly (genes that do
not line up are inherited from the most fit parent). Crossover using historical
markings ensures that only complete mutations are inherited (i.e. no dangling
neurons or unconnected edges will be present in the children). The majority
of module crossovers take place with modules of the same species, however it
is possible for higher fitness modules of some species to be paired with other
modules outside the species.

There are three types of module mutations, two of which increase the dimen-
sionality of the network:

– Perturb an individual weight (Gaussian weight mutation).
– Split a link (adding an additional input, output, or hidden neuron).
– Add a new link between two existing neurons.

Modules begin as a single connection between an abstract input and output
neuron, so before new links can be added, the module must mutate to include
new input or output neurons. Note that Modular NEAT diverges from NEAT
in that new input and output neurons can be added to a module, up to the
maximum specified by the solution network topology. This allows modules to
“grow” new inputs or outputs as needed.

3.4 Blueprint Population

Blueprints are composed of a fixed-size list of modules paired with mappings
from the abstract input/output neurons to real input/output neurons from the
final neural network. These mappings are referred to as bindings. For example,
module A may specify a link between neuron 0 and 1, however its binding in a
certain blueprint may be 0:5, 1:6, 2:7, etc. Thus all references to abstract neuron
0 in the module under this binding actually refer to neuron 5 (in the actual
network), etc. These module/binding pairings also have historical markings, in
order to track the spread of mutations for data collection (figure 1).

Blueprints are recombined using standard one-point crossover. Cuts in the
genetic material can only be made between modules, so blueprint crossover does
not contribute to module mutation. The child blueprints inherit the order of the
modules and their bindings from the parents.

There are three types of blueprint mutation: toggling a gene (module+binding)
expression on or off, changing an entire module and changing part of the bindings
on a module. When mutating one module to another, as much of the original
binding is left intact as possible. If the new module has fewer inputs or outputs,
the current binding is cut to fit, likewise if the new module is too large, then
new neurons are added randomly to the current binding.

3.5 Evolving Modules and Blueprints

The modular NEAT algorithm consists of the module and blueprint popula-
tions undergoing cooperative coevolution. This is implemented in two sequential
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Fig. 1. Graphical indication of how a module is bound into the solution network. An
example blueprint from the blueprint population is shown with its binding and module
pairs list. The result of applying a binding to a single module is demonstrated in the
resulting network.

phases, a module phase and a blueprint phase. Both phases include separate se-
lection, crossover, and mutation steps, after which fitness calculation takes place
and the weakest members of the two populations are replaced. This process
consists of the following steps:

– Initialize Modules – create an initial population of modules with a static
size. These modules begin with minimum complexity.

– Initialize Blueprints – create an initial population of blueprints from the
population of modules. Each blueprint has a static size n, i.e. n modules are
randomly bound to it. For each blueprint, calculate an initial fitness.

– Until a certain terminating condition:
• Select modules and perform crossover (binary tournament selection, NEAT

multi-point crossover [1]).
• Select blueprints and perform crossover (tournament selection and one-

point crossover).
• Mutate modules by randomly perturbing weights, adding new neurons,

and adding new connections. Modules that change input/output size
must be rebound at the blueprint level.

• Mutate blueprints by changing bindings, and change bound modules.
• Calculate fitness for modules and blueprints.
• Replace modules.
• Replace blueprints.

– Repeat.

During the fitness evaluation step, the fitness in the population is calculated,
and the scores are propagated to each of the modules. To help keep modules
diverse, the fitness scores a module receives from each blueprint are summed
and divided by the number of times that module is used (expressed) in the
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blueprint population, making sure that modules that are expressed less often
have a fair chance to compete against well-established modules.

Also, the blueprint population is allowed several generations to optimize after
a change is made in the module population. Kvasnic̆ka et. al. presented a similar
method in which the genotype and genotype-phenotype map are optimized on
different time scales [19]. Applied to Modular NEAT, Kvasnic̆ka’s procedure
allows for more data to be gathered on module fitness resulting in better module
evaluations, and also allows the blueprints to better incorporate old modules,
before new ones are created. Experimentally, a coevolutionary ratio of 5 blueprint
generations to a single module generation is effective.

In the next section, a scalable board game domain is proposed that highlights
the types of domains under which Modular NEAT is effective.

4 Experimental Setup

Modular NEAT was tested in an aritificial board game domain where the size of
the board can be varied, i.e. the input/output dimensionality. The game itself is
relatively simple, so as to focus on modular reuse.

The board is a square with n × n positions initially with n/2 black stones
placed about randomly on the left half of the board, and n/2 white stones on
the right half. The neural network then proceeds to play n stones the board.
Stones played on the left half appear white, and stones played on the right half
appear black. Play occurs iteratively, with each subsequent board state fed as
a three-state (-1, 0, and 1) vector to the neural network, and location of the
highest output value taken as the network’s next move. To score a game, the
neural network is given a point for each of the stones that it places next to one of
the initial stones (i.e. “checks” it). Scoring occurs after a fixed number of moves,
5 stones for the 5 × 5 case, and 10 stones for the 7 × 7 case.

The domain requires the neural network to learn to differentiate between
empty space and the types of stones on the board, and also whether or not it
has already played next to a certain stone (otherwise it may end up wasting
stones trying to check the same piece more than once). By reversing the color
for the two halves of the board (and thus negating the input), modules that are
usable on one side of the board are rendered useless on the other half. Having
two functionally different regions encourages a modularization that minimizes
interactions between the two halves.

A 10 × 10 board requires a neural network with 100 inputs and 100 out-
puts, but is still simple enough to be solved without a correspondingly complex
topology. Thus this domain tests Modular NEAT’s ability to deal with large
input/output spaces, complimenting NEAT’s ability to deal with topologically
complex solutions.

For the experiments described in this paper, the following genetic algo-
rithm parameters were used for the module population: 100 modules, 10% out-
side species mating, 1% add link, .8% add hidden node, 3% add abstract in-
put/output, and 50% Gaussian weight mutation. For the blueprint population
the parameters: 500 blueprints, 10% outside species mating, 1% gene expression
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mutation, 5% change module mutation, and 10% perturb binding mutation were
used. Also, each network was evaluated over 50 random board configurations,
and each trial was run for 3000 generations, to ensure that the highest fitness
possible is reached. After 3000 generations, little useful evolution takes place.

5 Results

Several experiments were conducted with Modular NEAT. First, it was compared
to NEAT in terms of solution quality and evolutionary efficiency, second, the
degree to which modular phenotypes emerged was measured, and third, how
useful the evolved modularizations were was tested.

5.1 Comparison to NEAT

Modular NEAT was compared to the standard NEAT implementation of [1].
With 500-member populations over 3000 generations on a 5 × 5 instance of the
game, standard NEAT was able to evolve solutions that played correctly on av-
erage 96.66% of the time over 30 trials, and modular NEAT 98.9% (difference
is statistically significant, p < 10−23). Also, the efficiency of the two algorithms
in evolving a 96% accurate solution was measured. It took NEAT on average
1753.87 generations, while Modular NEAT took only 420.73 generations (statis-
tically significant, p < 10−23), an effective four-fold increase in efficiency (table
1).

Standard NEAT Modular NEAT
Quality Efficiency Quality Efficiency

5x5 96.66 1753.87 98.9 420.73
7x7 87.5 1981.33 92.5 327.2

Table 1. Final solution quality in 3000 generations, and number of generations required
on average to reach the goal fitness for both NEAT and Modular NEAT. Modular
NEAT not only evolves solutions of higher quality, but also evolves them several times
faster. All differences are statistically significant (p < 0.05), averaged over 30 trials.

In the 7 × 7 case, the solution quality was on average 87.5% for NEAT and
92.5% for Modular NEAT. In evolving to a fitness goal of 86.6%, NEAT took on
average 1981.33 generations, while Modular NEAT took only 327.2 generations,
an effective six-fold increase in efficiency (table 1). All differences in means were
statistically significant (p < 0.05).

These results indicate that Modular NEAT is able to obtain better solution
networks than standard NEAT, and find good networks faster. Let us examine
how modules contributed to this result next.

5.2 Modularization

Modular NEAT is able to identify and separate the two functions by assigning
different module species to either one half or the other. The degree to which
modular phenotypes evolved can be measured by counting how often a module
takes an input from one half and maps it to an output of the second half, or vice
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Fig. 2. Crosslink percentage per generation in the 5×5 and 7×7 board game domains.
Unlike NEAT, Modular NEAT reduces crosslinks over time, focusing evolution on useful
connections.

versa. This kind of crosslink does not improve fitness, and should be suppressed
if possible.

The expected percentage of crosslinks out of the total links, if no modulariza-
tion occurs, is 50%. In NEAT, since no modularization occurs, the percentage of
crosslinks in the champion genomes indeed stays around 50% during evolution.
In Modular NEAT, however, this percentage decreases over time. In the 5 × 5
case, the percentage of crosslinks decreases to below 10% on average, and in the
7 × 7 case it decreases to slightly above 10% (figure 2).

This result indicates that the substructures can be arranged in a way that
separates them by function, supporting the hypothesis that reusing substructures
leads to a modular phenotype. By reusing certain modules on only one half or
the other, evolution of both sides can occur simultaneously without interference.

5.3 Module Use

Because modules are reused in many different combinations across many dif-
ferent spatial locations, typical module evaluation is often not consistent, and
hence the modules themselves remain relatively generic in function. Two tests
are conducted to measure the usefulness of the evolved modules.

Topological Decomposition How well does Modular NEAT decompose the
problem space? One test is to freeze the module bindings and module topologies
and randomize the module weights. Re-evolving only the weights from this base
gives a good idea as to how well the module topologies and bindings decompose
the problem, when compared to a randomly evolved modularization. A random
modularization can be created by running the algorithm for a fixed period of
time, evaluating blueprints normally and then assigning all modules the same
fitness. With this method, the average module complexity can be kept about the
same in both the evolved population and the random population.

The evolved population solved the problem on average 1.37 times faster than
the random population with 160 generations of setup time, 1.57 times faster
with 320 generations of setup time, and 1.65 times faster with 480 generations of
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setup time (table 2). In all three cases the differences in means were statistically
significant (p < 0.05). Thus the decomposition encoded in the evolved module
topologies and the module bindings is useful even if all the module weights are
randomized.

Setup Generations 160 320 480

Evolved 291.933 333.9 237.898
Random 400.111 524.792 391.8

Speedup 1.371 1.572 1.647

Table 2. Averages of efficiencies (out of 60 trials) for the test and random populations.
Setup Generation refers to the number of generations used in setting up the modular-
ization before the module weights are randomized. Speedup is the effective gain in
efficiency from the evolved module topologies and bindings combined. The evolved
population clearly outperforms the random one.

Module Population Decomposition The results in the previous section indi-
cate that bindings and module topologies together enhance evolution. However,
it does not answer how useful the module population itself is, without the set
of bindings. The set of modules would have to be generic enough to guide the
blueprint evolution quickly to the correct decomposition, and still be specialized
enough to represent a better solution to the problem in this configuration, in
order to be useful.

One test is to perform evolution for a fixed number of generations, then
destroy the blueprint population, and re-evolve from a new random blueprint
population that uses the same set of modules. The re-evolved population should
be able to reach the same fitness level than the initial population, but faster.

Two experiments were conducted, one with evolution taking place for 300
generations, and one for 500 generations (table 3). On the 300 generation ver-
sion, the best solution took on average 255.977 generations to reach, and the
re-evolved solution took 236.167 generations, representing an effective speedup
of 1.08 times. These means differ by about twenty generations, however the dif-
ference is not statistically significant (p = 0.152). With 500 generations, the
means differed by approximately seventy generations, representing a speedup of
1.19 times (p < 0.003).

Setup Generations 300 500

Before 255.967 451.433
After 236.167 380.3

Speedup 1.084 1.187

Table 3. Modules and blueprints are evolved for a fixed number of generations and
then the bindings are randomized and evolution proceeds until the highest fitness from
the previous run is reached again. The number of generations on average to reach the
highest fitness both initially, and after randomization is recorded.

These results indicate that evolved modules are more useful than random
ones. However they are not useful enough to warrant eradicating the set of
bindings: separating modules from their expression does not significantly speed
up evolution.
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Taken together, the conclusions in these two experiments suggest that binding
information could be specified on the modules themselves, instead of on separate
chromosomes. Such an encoding is a promising direction for future research, as
will be discussed in the next section.

6 Discussion and Future Work

Modular NEAT is powerful because it can restructure the search space and yield
automatic decompositions of the problem without solving parallel sub-tasks more
than once. That is, a module that performs a certain function can be reused
wherever that function is needed. Although searching through combinations of
highly complex modules may prevent the algorithm from finding the optimal
solution, the chances are high that it finds a good solution. In domains currently
intractable due to their dimensionality, finding such a decomposition may be an
essential first step in actually finding a solution.

As the experiments in section 5.3 indicate, separating generic modules from
their bindings yields a module population only slightly more useful than the
initial random one. Even with highly generic modules, modular decompositions
are only useful when the modules and their expression information are coupled.
This result makes intuitive sense. If the information is separated, generic modules
will be selected more often since modules do not have genetic control over their
expressions. What is needed is a system that combines both module topology
and expression information into the same chromosome.

In the current version of Modular NEAT, explicit module bindings increase
the size of the search space proportional to the number of reuses. However, as
long as the overhead of module binding can be kept low and the number of reuses
kept high, this overhead is negligible. Compared to systems with developmen-
tal elements (i.e. genotype-phenotype maps that are not one-to-one) [7, 20, 21],
explicit module bindings are not efficient. Natural and artificial developmental
systems rely on relative targeting [2], which could be used in Modular NEAT to
reduce the binding overhead for each module (e.g. modules could be tessellated
regularly across the binding space).

Modular NEAT is most suited to domains where there are spatial regularities,
such as Go and Othello. Like the test domain, they have rotational symmetry.
Another large, self-similar domain is low-level vision processing such as filtering.
Although it may be orientation specific, the input is still scalable. Since modules
can add new input connections, the controllers can start out using a small subset
of the inputs and add more if needed.

7 Conclusions

Modular NEAT has been shown to 1) make evolution significantly more efficient
than standard NEAT in a scalable board game domain, and 2) implicitly gen-
erate modular solutions. Since there is no explicit selection for modularity built
into Modular NEAT, phenotypic modularity must arise from the reuse of fun-
damental substructures. In nature, this is similar to the modularity that arises
from reusing genes. By simultaneous modularization and evolution through co-
operative coevolution, Modular NEAT is a principled approach to a significant
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class of difficult problems, i.e. those with high input/output dimensionality and
self-similarity.
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