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Deep neural networks (DNNs) have produced state-of-the-art results

in many benchmarks and problem domains. However, the success of DNNs

depends on the proper configuration of its architecture and hyperparameters.

DNNs are often not used to their full potential because it is difficult to deter-

mine what architectures and hyperparameters should be used. While several

approaches have been proposed, computational complexity of searching large

design spaces makes them impractical for large modern DNNs.

This dissertation introduces an efficient evolutionary algorithm (EA)

for simultaneous optimization of DNN architecture and hyperparameters. It

builds upon extensive past research of evolutionary optimization of neural net-

work structure. Various improvements to the core algorithm are introduced,

including: (1) discovering DNN architectures of arbitrary complexity; (1) gen-

erating modular, repetitive modules commonly seen in state-of-the-art DNNs;

vi



(3) extending to the multitask learning and multiobjective optimization do-

mains; (4) maximizing performance and reducing wasted computation through

asynchronous evaluations. Experimental results in image classification, image

captioning, and multialphabet character recognition show that the approach

is able to evolve networks that are competitive with or even exceed hand-

designed networks. Thus, the method enables an automated and streamlined

process to optimize DNN architectures for a given problem and can be widely

applied to solve harder tasks.
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Chapter 1

Introduction

In industries such as manufacturing, finance and construction, automa-

tion has revolutionized how products are made and increased productivity by

orders of magnitude. However, artificial intelligence (AI) and machine learning

(ML) applications are still created by hand. While computational power used

to be a bottleneck, the availability of cloud computing and extremely powerful

GPUs has shifted the bottleneck to the research scientist; in other words, hu-

man time has become much more scarce than machine time. To make things

worse, the number of people with the skills and qualifications to design AI and

ML systems are highly limited and significant amount of effort is required to

train them. If the creation and validation of AI applications can somehow be

automated, it will lead to an explosion in productivity and significantly accel-

erate progress in AI technology as well. By making AI commonplace, it could

lead to insights that will eventually make artificial intelligence (AGI) [40] pos-

sible. By creating a foundation to automate AI applications, this dissertation

hopes to contribute to this vision.
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1.1 Motivation

Machine learning and artificial intelligence have seen widespread growth

in applications recently, driven by both improvements in computing power

and dataset quality. In particular, in the past couple of years a special form

of machine learning called deep learning has become possible. Deep learn-

ing [76] uses deep neural networks (DNN) to learn rich representations of

high-dimensional data in either supervised or unsupervised manner. DNNs

have exceeded the state-of-the-art in an variety of benchmarks that were pre-

viously dominated by other machine learning algorithms. These benchmarks

include those in the computer vision, natural language processing, reinforce-

ment learning, and speech speech recognition domains [25,45,52,103].

One noticeable trend in deep learning is that state-of-the-art DNN are

becoming more complex and their performance depends more on their archi-

tecture and choice of hyperparameters [20, 52, 109, 144]. Furthermore, a lot

research in deep learning is focused on discovering of specialized architectures

that excel in specific tasks. Due to a lack of theoretical understanding of

DNNs, it is difficult to predict the performance of a DNN without empirically

testing it on a benchmark task. There is much variation between DNN archi-

tectures (even for a single task) and so far, there is no guiding principle for

deciding what is the right architecture is for a task. Finding the right architec-

ture and hyperparameters is essentially reduced to a black-box optimization

process. However, manual testing and evaluation of architectures and related

hyperparameters is a tedious and time consuming task. Often the parameters
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and choice of architecture are chosen based on history and convenience rather

than solid principles.

Some attempts have been made at partial automation. The authors

might tune a few hyperparameters or switch between several fixed architec-

tures, but rarely optimize both the architecture and hyperparameters simul-

taneously. This approach is understandable since the search space is massive

and existing methods do not scale as the the number of hyperparameters and

architecture complexity increases. The standard and most widely used meth-

ods for hyperparameter optimization is grid search [149], which involves the

discretization of hyperparameters into a fixed number of intervals and then ex-

haustingly searching through all possible combinations. Each combination is

tested by training a DNN with those hyperparameters and evaluating its per-

formance with respect to a metric on a benchmark dataset. While this method

is simple and can be parallelized easily, its computational complexity grows

exponentially with the number of hyperparameters, and becomes intractable

once the number of hyperparameters exceeds four or five [68]. Grid search also

does not address the question of what the optimal architecture of the DNN

should be, which may be just as important as the choice of hyperparameters.

Thus, manual and grid search methods are insufficient for finding state-

of-the-art DNN architectures for real world domains. Alternative, more au-

tomated methods should be considered. One key question, which always sur-

rounds architecture search algorithms, is whether they can discover solutions

that exceed the performance of hand-designed ones. This dissertation aims to
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show that DNN architectures and hyperparameters that are optimized using

an automated algorithm can match or even exceed the performance of hand-

designed and hand-tuned networks. This process is done through an empirical

comparison of performance with the latest published results on multiple bench-

marks that are commonly used in the deep learning community.

1.2 Challenges

Given the drawbacks of existing methods in finding the right architec-

ture for a task, an automatic method for searching architectures that can scale

with the complexity of the search space and number of hyperparameters be-

comes all the more important. However, there are many challenges in creating

such an automated system.

One major issue is that there is no gradient information for such search.

Normally, in the training process for DNNs, the gradient can be computed

for the network parameters with respect to the input in order to minimize

the output error [53]. This computation is possible because the weights in

a neural network are mathematically related to the input vector. However,

no such relationship exists between the network’s architecture and the input.

Without any gradient information, the search for the right DNN becomes a

black-box optimization problem where only the value of the objective function

(i.e. performance of DNN on a task) is known [64]. Furthermore, the search

space for network architectures is non-Euclidean and the arrangement of layers

in a DNN can take on any arbitrary graph structure with arbitrary numbers
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of both discrete and real-valued hyperparameters. Any practical automated

method for optimizing network structure must be able to handle such a large

and complex search space efficiently.

For many problems and benchmarks, it is important to discover good

network architectures that can perform well on not just one, but several tasks.

In other words, network architecture search must be applicable to multitask

learning (MTL) as well [19]. Unfortunately, architecture search becomes more

complicated as the right architecture for one task might not be the right ar-

chitecture for another task. Human-designed networks have shown that it

is possible to create architectures where each task is treated differently and

different layers in the network are used to process each task uniquely [99].

However, adapting such techniques to an automated method for architecture

search is hard and remains an open challenge.

Like multitask learning, other types of problems require exploring dif-

ferent trade-offs in multiple metrics in the networks whose structure is being

optimized. For example, in mobile applications, it is important to find network

architectures that have as few parameters as possible (e.g. fitting in the mem-

ory of a smartphone), but also the best possible performance on a benchmark.

Because the size of a network and its performance are often inversely corre-

lated, it is important for the architecture search algorithm be able to balance

both objectives and discover a range of solutions that offer the best trade-off

between the two objectives.

In order for an automated architecture search algorithm to optimize
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DNNs, it must have to search through hundreds, if not thousands of network

topologies. Unfortunately, DNNs are computationally very intensive to train

and require specialized hardware such as graphics processing units (GPUs) to

train. Even with the right hardware, complex network architectures such as

GoogLeNet [145] require weeks to train. Unsurprising, the total number of

GPU hours required is extremely high (up to tens of thousands) for a single

experimental run and attempting to train thousands of networks on a single

machine is thus impractical. Luckily, the rise of cloud computing [1] has

recently made hundreds of GPU equipped machines to be made available at a

click of a button. The challenge of distributing the training of networks around

the machines and making sure that the all available machines are being utilized

fully with none being idle still remains though.

This dissertation will solve the challenges listed above by using an evo-

lutionary approach. Evolutionary algorithms (EA) are black-box optimization

algorithms that can efficiently search through high-dimensional, large, and

complex search spaces [30, 80, 131]. Since there already exists EAs designed

for efficient exploration of graph topologies, EAs present a promising starting

point for improving neural architecture search.

1.3 Approach

In this dissertation a novel algorithm called DeepNEAT is proposed,

where an existing neuroevolution method called Neuroevolution of Augment-

ing Topologies (NEAT) [141] is extended to optimize the topology and hyper-
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parameters of a DNN simultaneously. NEAT is unique among other EAs in

that it can start from a minimal architecture and explore new ones through

incremental complexification. Furthermore, there are heuristics within NEAT

which are designed to make the network complexification process as efficient

as possible. Thus NEAT serves as an excellent foundation for constructing an

EA for neural architecture search.

While NEAT is powerful, it cannot search through very large search

spaces where networks can have hundreds of layers. Thus, an extension to

NEAT is developed that increases the diversity of networks that it can evolve

and allows it to generate repetitive and modular topologies commonly seen in

state-of-the-art DNNs. This version of NEAT, named CoDeepNEAT, utilizes

coevolution to evolve two separate populations, one of blueprints and the other

of modules. The two populations are combined to generate a much larger as-

sembled network. In this approach, when CoDeepNEAT evolves the blueprint

and modules incrementally, it results in a much larger change in the struc-

ture of the assembled network. As a result, very deep and modular network

architectures can be evaluated much earlier during evolution and those com-

ponents (modules) in the architecture that work will be preserved for future

generations.

To tackle architecture search for multitask learning, CoDeepNEAT is

adapted to take advantage of a recent innovation in MTL called soft-ordering

[99]. When combined with soft-ordering, CoDeepNEAT can evolve network

architectures that reuse modules of layers in different ways for each task. As a
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result, the evolved networks become much more flexible and process each task

in the best suitable way compared to conventional DNNs designed for MTL.

Similarly, to optimize problem domains where there are two or more objectives

that might also be conflicting, CoDeepNEAT is modified to take advantage of

the vast amounts of work done with multiobjective evolutionary optimization

[168]. Inspired by NSGA-II [31], an approach that ranks solutions not by a

single metric, but by a Pareto front constructed from multiple objectives is

developed.

Because it depends on training the candidate DNNs, evolutionary op-

timization of network architectures require massive amounts of computational

resources. To speed up evolution in CoDeepNEAT, the evaluation of each

candidate during evolution is done on a separate and dedicated machine that

is equipped with GPU. While parallelization can help, each network requires

a different amount of time to train and there still lies the issue of machines

becoming idle at the end of each generation. To solve this problem, CoDeep-

NEAT is modified to make use of a new asynchronous evaluation strategy. This

new strategy adapts and improves upon strategies that have been applied suc-

cessfully to asynchronous but non-distributed EAs [138] and minimizes the

time the worker machines spend idling and not evaluating networks.

One key question always surrounding automated search algorithms is

whether they can discover solutions that exceed the performance of hand-

designed ones. The novel approaches to architecture search in this dissertation

are tested in real-world domains, with the purpose of showing optimized ar-
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chitectures can match or exceed the performance of hand-designed networks.

This dissertation includes such empirical comparisons with published results

in the following types of benchmark tasks: (1) image classification (assign-

ment of a label that most fit the content of the image), (2) image captioning

(generation of human readable text that best describes the image), and (3)

multitask image classification (assignment of one or more labels to an image).

The results of these comparisons validate the effectiveness of the algorithms

introduced by this dissertation.

1.4 Dissertation Overview

The rest of this dissertation is organized as follows: (1) First, the foun-

dations of CoDeepNEAT and relevant related work are discussed in more

detail, including topics and areas such as deep learning, evolutionary com-

putation, and previous work done in neural architecture search. (2) Second,

an overview of DeepNEAT is given, including how it is modified and extended

from NEAT. Experimental results in the CIFAR-10 image classification domain

are reported. (3) Third, an improvement to DeepNEAT called CoDeepNEAT

is described in detail, including how it applies the principles of coevolution

to architecture search. Experimental results in the CIFAR-10 domain and

MSCOCO image captioning domain are provided. (4) Fourth, CoDeepNEAT

is extended to multitask learning and evaluated experimentally in the Om-

niglot character recognition and Chest X-ray image classification domains.

(5) Fifth, CoDeepNEAT is extended to the multiobjective optimization and
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evaluated in the MSCOCO and Chest X-ray domains. (6) Sixth, a discussion

session is included to provide a higher level analysis for the experimental re-

sults of the algorithms and also to propose interesting directions for future

work.
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Chapter 2

Background

The work in this dissertation, evolutionary neural architecture search,

builds upon two major areas of research within the machine learning and

artificial intelligence community: deep learning and evolutionary algorithms.

Thus, this chapter reviews foundations and related work from these two ar-

eas of research that are relevant to the topic of this dissertation. First, an

introduction to deep learning and deep neural networks is given. Second, evo-

lutionary optimization of neural networks is reviewed. Third, related work in

neural architecture and hyperparameter search is surveyed.

2.1 Deep Neural Networks and Deep Learning

This section will give an introduction deep learning, in particular, the

principles of deep learning, commonly used architectures, and the application

of DNNs to multitask learning.

2.1.1 Principles of Deep Learning

Deep learning is a relatively new and fast developing field of machine

learning. It uses multiple processing layers to learn representations of data
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with multiple levels of abstraction [76]. These processing layers are commonly

implemented using neural networks, which are mathematical functions that

process an input vector through a combination of linear operations (matrix

multiplication) and non-linear operations (element-wise transformation using

an activation function such as logistic sigmoid, hyperbolic tangent, or rectified

linear unit). Neural networks have desirable properties such as full differen-

tiability, graceful degradation, and resistance to noise/errors in inputs and

model parameters. Most importantly, a neural network can approximate any

arbitrarily complex function if the network has enough hidden neurons [27].

Because they are differentiable, neural networks can also be efficiently trained

through the backpropagation algorithm, a form of stochastic gradient descent

(SGD) [124].

Deep learning has its roots in neural network research dating back to the

early 2000’s, when researchers discovered that by repeatably stacking multiple

neural network layers (thus making the network deeper), performance, instead

of dropping due to overfitting and parameterization, actually improved. There

has been many attempts at explaining this counter-intuitive behavior but a

commonly accepted explanation is that the combination and thus represen-

tational power of features learned by neural networks increases exponentially

with both the hidden layer size and depth [76]. While shallow neural networks

typically have at most two layers, the layer count for deep neural networks

(DNNs) often can exceed 100 [51,57]. Initially, DNNs were pretrained greedily

layer by layer in an unsupervised fashion and then fine tuned on a supervised
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training set, such as with the stacked denoising autoencoder [149] or restricted

boltzmann machine architectures. However, recent advances in DNN research

showed that deep networks can be trained directly with SGD if the weights

are initialized from a suitable distribution and the learning rate is reasonably

low.

2.1.2 Common Deep Neural Network Architectures

Among the various types of DNN architectures, convolutional neural

networks (CNN) are perhaps the most popular kind of architecture in appli-

cations. CNNs are distinguished from regular neural networks by their weight

connectivity pattern, which is shared, sparse, and locally connected. As a re-

sult, CNNs are especially well suited for processing spatially structured tasks

commonly seen in computer vision and image processing. The first CNN ar-

chitecture to gain popularity was AlexNet [73], which set a new record on the

ImageNet large-scale image classification competition. AlexNet demonstrated

the power of stacking multiple convolutional layers and of using linear recti-

fied units (ReLU) as activation functions. Two other innovative architectures

introduced for image classification included: (1) GoogleNet [145], which made

use of multiple output channels and a novel modular layer structure that is

repeated stacked together, and (2) ResNet [51], which used shortcut, additive

transformations known as residual connections. CNNs are also useful for the

image embedding vectors that the second to last output layer generates. In

tasks such as object detection [39, 121] or image captioning [150], these em-
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beddings are fed as input into another DNN that performs a different function

than the original image classification CNN.

Recurrent networks are a type of DNN architecture that is popular in

tasks that require processing sequences. Sequence learning is found in rein-

forcement learning, natural language processing, language modeling, speech

recognition, and time-series data. Recurrent networks are characterized by

backward connections that feed the output of a layer in the previous timestep

to the input in the current timestep. They are trained using the backpropagation-

through-time algorithm [153], where the networks are unrolled to form an

feedforward network (with each layer sharing the same weights) and then up-

dated with regular backpropagation. One particular type of recurrent layer

called the long short-term memory (LSTM) [55] solves the vanishing gradi-

ent problem commonly seen in recurrent networks, where the gradient update

becomes negligible as the distance between the layer being updated and the

output layer increases. LSTM layers avoid this problem by having various

soft gating functions that can allow or impede the flow of gradient informa-

tion through the recurrent connections selectively. In the Penn Treebank [97]

language modeling task, LSTMs were able to beat state-of-the-art, non deep

learning approaches such as hidden Markov and n-gram models [100]. Similarly

LSTMs set recording-breaking results on the image captioning task (MSCOCO

dataset) that involves generating sentences from image embeddings [150].

Besides the popular DNN architectures mentioned above, there are

many other novel DNN architectures designed for more niche applications.

14



Figure 2.1: A visualization of a number of DNN architectures that been ex-
plored so far by the deep learning research community [148]. This diversity
suggests that architecture choice is important.

A comprehensive visualization of all the different types of DNNs is shown in

Figure 2.1. The diversity in network topologies suggests that network struc-

ture indeed matters and an automated method for discovering them could be

useful.

2.1.3 Deep Multitask Learning

Multitask Learning (MTL) [19] exploits relationships across problems

to increase overall performance. The underlying idea is that if multiple tasks

are related, the optimal models for those tasks will be related as well. In the

convex optimization setting, this idea has been implemented via various reg-

ularization penalties on shared parameter matrices [14, 37, 66, 74]. Evolution-

ary methods have also had success in MTL, especially in sequential decision-
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making domains [60,63,67,125,135].

Deep MTL extended these ideas to domains where deep learning thrives,

including vision [17, 65, 92, 102, 115, 120, 161, 167], speech [58, 59, 65, 129, 157],

natural language processing [24,33,49,65,90,95,166], and reinforcement learn-

ing [28,62,146]. The key decision in constructing a deep multitask network is

how parameters such as convolutional kernels or weight matrices are shared

across tasks. Designing a deep neural network for a single task is already a

high-dimensional open-ended optimization problem; having to design a net-

work for multiple tasks and deciding how these networks share parameters

grows this search space combinatorially. Most existing approaches draw from

the deep learning perspective that each task has an underlying feature hier-

archy, and tasks are related through an a priori alignment of their respective

hierarchies. These methods have been reviewed in more detail in previous

work [99, 123]. Another existing approach adapts network structure by learn-

ing task hierarchies, though it still assumes this strong hierarchical feature

alignment [92].

DNN architecture choice plays an very important role in MTL because

there are many ways to tie multiple tasks together. The best network ar-

chitectures are large and complex, and have become very hard for humans to

design, thus demonstrating the necessity of automated methods for optimizing

network topologies in the MTL domain.
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2.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) and their applications to neural net-

works are described in this section. Background that is necessary to un-

derstand the algorithms designed in this dissertation include neuroevolution,

asynchronous evolution, bilevel optimization, multiobjective optimization, and

novelty search for evolution.

2.2.1 Neuroevolution

In neuroevolution, evolutionary algorithms (EAs) are used to optimize

a neural network with respect to its performance on a task [78]. Neuroevo-

lution techniques have been applied successfully to sequential decision tasks

for three decades [38, 79, 104, 162]. In such tasks there is no gradient avail-

able, so instead of gradient descent, evolution is used to optimize the weights

of the neural network. Neuroevolution is a good approach in particular to

POMDP (partially observable Markov decision process) problems: It is possi-

ble to evolve recurrent connections to allow disambiguation of hidden states.

Neural network weights can be optimized using various evolutionary

techniques. Genetic algorithms are a natural choice because crossover is a

good match with neural networks: They recombine parts of existing neural

networks to find better ones. CMA-ES [47], a technique for continuous op-

timization, works well on optimizing the weights as well because it can cap-

ture interactions between them. Other approaches such as SANE, ESP, and

CoSyNE evolve partial neural networks and combine them into fully functional
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networks [41, 42, 106]. Further, techniques such as Cellular Encoding [46] and

NEAT [141] have been developed to evolve the topology of the neural net-

work, which is particularly effective in determining the required recurrence.

Neuroevolution techniques work well in many tasks in control, robotics, con-

structing intelligent agents for games, and artificial life [78]. However, because

of the large number of weights to be optimized, they are generally limited to

relatively small networks.

Evolution can also be combined with gradient-based learning, making

it possible to utilize much larger networks. These methods are still usually

applied to sequential decision tasks, but gradients from a related task (such

as prediction of the next sensory inputs) are used to help search. Much of the

work is based on utilizing the Baldwin effect, where learning only affects the

selection [54]. Computationally, it is possible to utilize Lamarckian evolution

as well, i.e. encode the learned weight changes back into the genome [46]. How-

ever, care must be taken to maintain diversity so that evolution can continue

to innovate when all individuals are learning similar behavior.

2.2.2 Neuroevolution of Augment Topologies

Neuroevolution of Augment Topologies (NEAT) is an evolutionary al-

gorithm that is especially designed for the evolution of neural networks. Unlike

conventional EAs that can only optimize fixed vector representations, NEAT

can evolve the topology and weights of a neural network simultaneously. It

does so by representing networks with a graph-like chromosome or individual
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(a) Mutation (b) Crossover

Figure 2.2: Figure 2.2a shows how NEAT [141] mutates a chromosome (rep-
resenting a neural network) by either incrementally adding a node (neuron)
or a edge (weight) between two nodes. Figure 2.2b shows how two chromo-
somes perform crossover by swapping edges whose innovation numbers match.
NEAT can be extended to neural architecture search by representing layers in
a DNN as nodes.

that is made of two lists of edges and nodes. Besides unique genetic encoding,

NEAT also has the following features that allow it to evolve topology effi-

ciently: (1) Edges have innovation numbers to keep track of mutations to the

structure of the network, thus allowing fast alignment during crossover. (2)

Networks are grouped according to their similarity to each other into separate
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subpopulations called species. Selection, mutation and crossover only happen

within a species and the size of each species is updated according the overfall

fitness of the species. Speciation ensures that newly created network topolo-

gies are protected from competition with existing ones. (3) Networks start up

from a minimal structure (composed of only input and output neurons) and

undergo complexification through mutations that add either edges or nodes to

the network. This heuristic reduces the search space and adds a regulariza-

tion effect that encourages simple solutions. Figure 2.2 shows example NEAT

chromosomes and how the mutation and crossover operations are performed.

NEAT works well in many tasks in control, robotics, constructing in-

telligent agents for games, and artificial life [78], especially where the domain

is continuous and supervised learning is not possible. For example in the dou-

ble pole-balancing control task, NEAT discovered a single and elegant solution

that intelligently made use of recurrent connections [140]. In an approach sim-

ilar to the work in this dissertation, but in the reinforcement learning domain,

NEAT was used to evolve the structure of neural networks whose weights were

then trained with SGD [154].

However, NEAT is not without its limitations: The networks evolved

by NEAT have a messy irregular structure and it is difficult to scale NEAT to a

large number of inputs and outputs. Some modifications and variants of NEAT

attempted to address these deficiencies. In HyperNEAT [139], NEAT is used

to evolve a compositional pattern producing network or CPPN. This CPPN is

then use to generate the weight or connectivity pattern of a much large network
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that then is evaluated on the task at hand. By using an indirect encoding,

HyperNEAT allows NEAT to generate extremely large networks that exhibit

regular, repetitive weight connectivity patterns. HyperNEAT was shown to be

effective for solving complex reinforcement learning tasks such as Atari game

playing, where the state space is extremely high [50]. Due to its flexibility in

representing graphs and ease of extensibility, it is natural to use NEAT as a

starting point for optimizing the architecture of DNNs.

2.2.3 Asynchronous Evolutionary Algorithms

Asynchronous master-slave evolutionary algorithms have been around

since the early 1990s, and have been occasionally used by practitioners [32,

94, 116]. However, little work is done analyzing the behavior and benefits of

such systems [69,128,165]. Such methods have recently become more relevant

when parameter tuning for large simulations has become more common.

A popular asynchronous EA for evolving both the weights and topology

of neural networks is rtNEAT [138]. In that system, a population of neural

networks are evaluated asynchronously one at a time. Each neural network is

tested in a video game, and its fitness measured over a set time period. At the

end of the period, it is taken out of the game; if it evaluated well, it is mutated

and crossed over with another candidate to create an offspring that is then

tested in the game. In this manner, evolution and evaluation are happening

continually at the same time. The goal of rtNEAT is to make replacement

less disruptive for the player; it does not provide any performance advantage

21



because each individual is still evaluated in the same environment. Asynchrony

can help speed up neural architecture search by reducing the average idle time

of workers in a distributed EA, as this dissertation will later show.

2.2.4 Evolutionary Bilevel Optimization

Neural architecture search and hyperparameter tuning are closely re-

lated to bilevel (or multilevel) optimization techniques [133]. The general idea

of bilevel optimization is to use an evolutionary optimization process at a

high level to optimize the parameters of a low-level evolutionary optimization

process. This two level scheme is similar to neural architecture search where

evolution is used only to optimize the design of the neural network at the

higher level and gradient descent is used to optimize or train the weights of

the network at the lower-level.

More formally, bilevel optimization [26] describes a special class of opti-

mization problems where there are two levels of optimization tasks: an upper-

level optimization task with parameters pu and objective function Fu, and a

lower-level optimization task with parameters pl and objective function Fl.

The goal is find a pu that allows pl to be optimally solved:

maximize
pu

Fu(pu) = E[Fl(pl)|pu]

subject to pl = Ol(pu),
(2.1)

where E[Fl(pl)|pu] is the expected performance of the lower-level solution pl

obtained by lower-level optimization algorithm Ol with pu as its parameters.
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The maximization is done by a separate upper-level optimization algorithm

Ou. Given that bilevel optimization involves nested optimization, it is also very

computationally complex and usually requires large scale distributed compu-

tation for solving real world problems.

Consider for instance the problem of controlling a helicopter through

aileron, elevator, rudder, and rotor inputs. This is a challenging benchmark

from the 2000s for which various reinforcement learning approaches have been

developed [13,15,108]. One of the most successful ones is single-level neuroevo-

lution, where the helicopter is controlled by a neural network that is evolved

through genetic algorithms [72]. The eight parameters of the neuroevolution

method (such mutation and crossover rate, probability, and amount and pop-

ulation and elite size) are optimized by hand. It would be difficult to include

more parameters in this process because the parameters interact nonlinearly.

A large part of the parameter space thus remains unexplored in the single-level

neuroevolution approach. However, a bilevel approach, where a high-level evo-

lutionary process is employed to optimize these parameters, can search this

space more effectively [85]. With bilevel evolution, the number of parame-

ters optimized could be extended to 15, which resulted in significantly better

performance. In this manner, evolution was harnessed to optimize a system

design that was too complex to be optimized by hand.

While bilevel optimization has many applications, the particular ap-

plication that is popular in the deep learning community is hyperparameter

tuning. In such tuning, the goal is for Ou to find the optimal parameters
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pu such that it maximizes the performance of Ol. Because parameter tuning

is usually a black-box optimization task involving non-differentiable objective

functions, Ou is usually implemented as an EA. In past work on hyperparam-

eter optimization for neuroevolution [86], bilevel optimization was shown to

be an effective way of tuning neuroevolution for complex control tasks such as

double-pole balancing and helicopter hovering. Furthermore, having more hy-

perparameters to tune for Ol seems to lead to higher optimized performance.

Surrogate optimization, where E[Fl(pl)|pu] is estimated through a regression

function (instead of through the actual task at hand), is an efficient way to re-

duce the computational complexity of bilevel optimization. These findings are

especially important in the context of evolving DNNs since they often contain

many hyperparameters and require a long time for training and performance

evaluation.

2.2.5 Multiobjective Evolutionary Algorithms

Multiobjective optimization is an extension of the single-objective case:

Instead of having only one objective or fitness function to optimize, there are

two or more such functions. A multiobjective maximization problem [5, 168]

is defined as:

maximize
x

(F1(x), F2(x), ..., Fi(x)) (2.2)

where x ∈ X is a vector being optimized, Fi(x) are the objective functions

and X is the set of all feasible solutions for x. A multiobjective minimization
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Network
Complexity

Fitness

Pareto Front

Figure 2.3: A visualization of a set of solutions with respect to two objectives
(network complexity and fitness) and the Pareto front (green line) where the
Pareto optimal solutions reside. The Pareto front contain the best possible
trade-offs between the two objectives.

problem can be defined by simply replacing the maximization of Fi(x) with

minimization. Because there does not usually exist a solution x that can

maximize or minimize all of the objective functions, it is necessary to find

solutions which are Pareto optimal. Such solutions are those which cannot

improve with respect to one objective without reducing another objective. In

other words, there does not exist another solution y that dominates a Pareto

optimal solution x, where domination is defined as:

Fj(y) ≥ Fj(x) ∀j ∈ 1, 2, ..., i
Fj(y) > Fj(x) ∃j ∈ 1, 2, ..., i

(2.3)

The set of Pareto optimal solutions are also called a Pareto front [168] and

the target of most multiobjective optimization algorithms is to discover such
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a Pareto front as efficiently as possible. A visualization of an example Pareto

front is shown in Figure 2.3.

Many single-objective evolutionary algorithms have been adapted to

multiobjective search, including algorithms that make use of population-based

heuristics such as particle swarm optimization [105], differential evolution

[159], or probability distributions as in CMA-ES [61]. A popular, widely used

multiobjective EA is NSGA-II [31], which utilizes a crowding-distance heuris-

tic along with genetic operators to discover Pareto fronts efficiently. NSGA-II

was integrated into NEAT [126, 127] to evolve game-agent controllers that

are capable of complex and multimodal behavior. In addition, NSGA-II was

combined with other heuristics such as novelty search (Section 2.2.6) [82,130]

to encourage more diversity during evolution and help the EA escape local

optima in the fitness landscape. Evolutionary multiobjective optimization is

highly applicable to neural architecture search and as this dissertation will

show, can discover architectures with good trade-offs between network size

and performance.

2.2.6 Evolutionary Novelty Search

Because EAs are often utilized to optimize non-convex objective func-

tions, overcoming deception or local optima in the search space is extremely

important. Such a problem requires avoiding premature converge of the pop-

ulation towards a single target and maintaining diverse individuals within the

population. While multiobjective optimization based only on fitness (per-
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formance with respect to some task) can help with diversity, it does have

limitations and often fails in real-world applications. Novelty search [80] is a

powerful technique to allow evolution to escape deceptive traps in the fitness

landscape. In novelty search, a behavior metric or vector that is typically un-

correlated to the fitness, is defined over the individuals in the population and

is calculated during evaluation of the individual. After evaluation, behavior

metrics are added to an archive, and the distance (typically euclidean) is cal-

culated between the behavior metric of each individual and the closest one in

the archive. The most novel individuals with the greatest distance from the

others are then selected to be persisted into the next generation.

Novelty search has been used with success in neuroevolution and re-

inforcement learning domains [80, 81, 83, 98]. The behavior metric is often

derived from interactions or behavior of the neural network controller with

the environment. For example in the maze domain, where an agent must nav-

igate obstacles to reach an end position, the behavior is the end position of

the agent after a fix amount of time. One surprising finding is that novelty

alone could be used during evolution and often can outperform fitness based

search, especially in deceptive domains [81]. Novelty search can also be used

as a secondary objective along with fitness as the primary objective [82, 130]

for multiobjective optimization. As this dissertation will show later, novelty

search and fitness information can be combined with multiobjective search to

accelerate convergence during evolution.
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2.3 Hyperparameter Optimization of Deep Neural Net-
works

Efficient hyperparameter optimization of DNNs have become increas-

ing important part of deep learning research as DNNs grow in complexity, take

longer to train, and are more sensitive to architecture choice. DNN hyperpa-

rameter search is classified as a type black-box optimization problem, where

the objective function to be optimized (relation between hyperparameters and

DNN performance on some benchmark) has no analytical form and derivatives

cannot be calculated. Instead, the function can only be evaluated at points

that are explicitly specified. As a result, gradient-based methods cannot be

used for finding the optimum for black-box objective functions. Instead, fam-

ilies of diverse algorithms have been developed for this purpose.

The simplest form of hyperparameter optimization is exhaustive grid

search, where points in hyperparameter space are sampled uniformly at reg-

ular intervals [149]. One of the earliest improvements from grid search is

randomized hyperparameter search [16] where the points are randomly chosen

from a uniform distribution. Randomized search yielded significant improve-

ments over grid search for certain types of DNNs due to the fact that many

hyperparameters of these DNNs are insensitive to tuning, thus the effective

dimensionality of the search space is lower than expected. Grid search can-

not sample efficiently from this lower dimension space, but random search is

able to. Like grid search, random search can be trivial parallelized over a

distributed cluster of machines to reduce the overall running time.
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Although random search proved to effective for certain networks, it

suffers when all the hyperparameters are crucial to the performance of the

DNN and must be optimized to very particular values. For networks that

suffer from such characteristics, Bayesian optimization using Gaussian pro-

cesses [136] proved to a feasible alternative instead. The strength of Bayesian

optimization is that it requires relatively few function evaluations and works

reasonably well on multimodal, non-separable, and noisy functions where there

are several local optima. It works by first creating a probability distribution of

functions (also known as Gaussian process) that best fits the objective func-

tion. As more points of the objective function are evaluated, the distribution

becomes more well defined and the Bayesian optimization algorithm becomes

more certain of the portions of hyperparameter space that should be examined

and used to sample new points for evaluation. The main weakness of Bayesian

optimization is that it is computational expensive and scales cubically with

then number of evaluated points. DNGO [137] tried to address this issue by

replacing Gaussian processes with Bayesian neural networks that exhibited

linear scaling. Another downside of Bayesian optimization is that empirically,

it has been observed to perform poorly when the number of hyperparameters

to be optimized is moderately high [91].

EAs have been another class of algorithms which are widely used for

black-box optimization of complex, multimodal functions. They rely on biolog-

ical inspired mechanisms to iteratively improve upon a population of candidate

solutions to the objective function. One particular EA that has been success-
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fully applied to DNN hyperparameter tuning is CMA-ES [91]. In CMA-ES, a

Gaussian distribution for the best individuals in the population is estimated

and used to generate/sample the population for the next generation. Fur-

thermore, it has mechanisms for adaptively controlling the step-size and the

direction that the population will move. CMA-ES has been shown to per-

form well in many real-world high dimensional optimization problems and in

experiments performed by Loshchilov et al. [91], CMA-ES has been shown to

outperform Bayesian optimization on tuning the parameters of a convolutional

neural network.

However, hyperparameter search is fundamentally constrained by the

fact that the underlying DNN architecture might not be optimal. More ad-

vanced methods, like the ones in this dissertation, can jointly optimize the

hyperparameters and architecture of the network.

2.4 Architecture Search for Deep Neural Networks

This section will summarize related techniques and algorithms that

have been used by the deep learning community to optimize both the hyper-

parameters and the architecture of DNNs.

2.4.1 Reinforcement Learning Based Algorithms for Architecture
Search

The main drawback of the hyperparameter optimization methods de-

scribed in Section 2.3 is that they cannot modify the topology of the DNN and
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they are thus dependent on a suitable base architecture being supplied before-

hand. However, there has been research recently into reinforcement learning

based architecture (RL) search algorithms. One solution is to use an recur-

rent neural network (LSTM) controller to generate a sequence of layers that

begin from the input and end at the output of a DNN [169]. The LSTM

controller is trained through RL, in particular, a gradient-based policy search

algorithm called REINFORCE [155]. The architecture space explored by this

approach is sufficiently large and is even capable of generating skip-connections

between layers. On a popular image classification benchmarks such as CIFAR-

10 and ImageNet, such an approach achieved performance within 1-2 percent-

age points of the state-of-the-art, and on a language modeling benchmark, it

achieved state-of-the-art performance at the time [169,170].

However, the space of architectures that the algorithm can search through

is still relatively limited. For example in the RL approach [169], the archi-

tecture of the optimized network must have either a linear or tree-like core

structure; arbitrary graph topologies are outside the search space. Thus it is

still up to the user to define an appropriate search space beforehand for the

algorithm to use as a starting point. The number of hyperparameters that

can be optimized for each layer are also limited. Furthermore the computa-

tions are extremely heavy; to generate the final best network, many thousands

of candidate architectures have to be evaluated and trained, which requires

hundreds of thousands of GPU hours.

Consequently, recent work on RL based methods [88, 112] focused on
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improving the efficiency of architecture search and maximizing the perfor-

mance of the discovered network architectures when given limited computa-

tional budget. One approach [88] made use of surrogate optimization while

another approach [112] utilized parameter sharing between different candidate

architectures. Such approaches discovered architectures with excellent results

in image classification domains and repeatedly advanced the state-of-the-art

in the language modeling domain.

Besides reinforcement learning, architecture search can also be done

using evolutionary black-box optimization (as this dissertation will show later).

Evolutionary methods have certain advantages over RL based algorithms that

will be described in more detail in Section 2.4.2.

2.4.2 Evolutionary Algorithms for Architecture Search

One particularly promising direction for architecture search is the ap-

plication of evolutionary algorithms (EAs). Evolutionary methods are well

suited for this kind of problems because they are black-box optimization algo-

rithms that do not depend on gradient information. Some of these approaches

use a modified version of NEAT [118], an EA for neuron-level neuroevolu-

tion [141], for searching network topologies. Others rely on genetic program-

ming [117, 142] or hierarchical evolution [89]. There is some very recent work

on multiobjective evolutionary architecture search [34,93], where the goal is to

optimize both the performance and training time/complexity of the network.

The main advantage of EAs over RL methods is that they can optimize
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over much larger search spaces. For instance, approaches based on NEAT [118]

can evolve arbitrary graph topologies for the the network architecture. Most

importantly, hierarchical evolutionary methods [89], can search over very large

spaces efficiently and evolve complex architectures quickly from a minimal

starting point. As a result, the performance of evolutionary approaches match

or exceed that of reinforcement learning methods. For example, the current

state-of-the-art results on image recognition benchmarks such as CIFAR-10

and ImageNet are achieved by an evolutionary approach [119]. This disserta-

tion will present a novel EA that is capable of evolving networks with arbitrary

topology in a hierarchical manner.

Evolutionary architecture share with RL the drawback of computa-

tional complexity. Large populations of candidate network architectures must

be evaluated at each generation. The state-of-the-art results mentioned above

are only possible if thousands of machines equipped with GPUs are available.

Recent work has been done to make evolutionary architecture search more ef-

ficient [36, 142]. Reductions in computational cost are accomplished by using

better mutation operations or genetic encodings, thus reducing the population

size required.

2.5 Conclusion

This chapter gave an overview of the foundations and related work for

neural architecture search, a relatively new area of research. The principles be-

hind NEAT, the foundation of the approach proposed in this dissertation, were
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discussed and the main two approaches to network architecture optimization,

reinforcement learning and evolutionary algorithms were summarized. The

pros and cons of each approach, especially the strengths behind evolutionary

architecture search, were reviewed. This dissertation will draw inspiration

from many of the topics presented in this chapter to create a novel archi-

tecture search algorithm. Furthermore, other ideas such as hierarchical search

and asynchrony will serve as the basis for more advanced algorithms presented

in the later chapters.
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Chapter 3

Evolution of Deep Neural Network

Architectures

This chapter introduces a NEAT-based based neuroevolution algorithm

name DeepNEAT for evolving DNN architectures. It builds on foundations

in neuroevolution and NEAT, reviewed in Section 2.2. In this chapter the

motivation behind using a NEAT-based approach to architecture search is first

explained. DeepNEAT is described in detail, especially how it modifies and

extends NEAT. In addition, DeepNEAT is applied to evolve DNN architectures

in the CIFAR-10 image classification domain and experimental results which

are competitive with similar hand-designed networks are presented.

3.1 Motivation

Many approaches to network architecture search are powerful when

given a limited search space, but the topologies of the network must follow

certain constraints or patterns. They are less powerful when the search space

is expanded to cover arbitrary graphs or if there are too many hyperparam-

eters to optimizer. For example, in the reinforcement learning (RL) based

algorithm proposed by Zoph et al. [169], the networks that are discovered
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must have either a linear or tree-like core structure depending on the domain.

Furthermore the number of hyperparameters that could be optimized for each

layer is limited.

As black-box optimization methods, evolutionary algorithms (EA) are

especially suited for architecture search, where no gradient information with

respect to the network structure is available. Compared to RL based methods,

evolutionary methods [118, 119] have recently shown promising results when

optimizing over large search spaces where networks have arbitrary structure.

Given that NEAT is a powerful EA capable of evolving arbitrary structure and

has discovered state-of-the-art networks in many domains such as robotics and

agents for games, it is a promising starting point for designing an EA for per-

forming architecture search. NEAT already has built in mechanisms such as

speciation and incremental complexification that allows it to efficiently search

over large amounts of networks with highly diverse structure. Although NEAT

evolves networks at the neuron level and abstracts each neuron into a node

in a graph, the abstraction can be easily modified so that each node repre-

sents a layer in the network instead, thus extending it to neural architecture

search. Lastly, NEAT is a mature, widely used algorithm and many open

source implementations of it are available as a base for building DeepNEAT.

3.2 Extending NEAT to Evolve Deep Neural Networks

DeepNEAT is a most immediate extension of the standard neural net-

work topology-evolution method NEAT to DNN. This section will describe
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Algorithm 1 DeepNEAT

1. Initialize population of chromosomes P and empty species S
2. For each generation:

3. Group each chromosome Pi into a species Si based on similarity
4. For each species Si

5. Truncate Si and remove worst chromosomes
6. Generate new chromosomes by performing following operations:

7. Tournament selection from remaining chromosomes
8. Mutation of selected chromosomes
9. Crossover of selected chromosomes

10. Add new chromosomes to Si

11. Evaluate the fitness of each Pi

Figure 3.1: Overview of the algorithm for DeepNEAT and how it evolves
networks. The main difference between NEAT and DeepNEAT is that in
DeepNEAT the chromosome represents DNN architectures at the layer level
rather than at the neuron level.

how DeepNEAT is modified to make use of the NEAT’s neural-level topology

evolution to evolve architectures of DNNs instead. In addition, a method for

improving the performance of DeepNEAT and parallelizing the evaluation of

networks is presented.

3.2.1 Algorithm Description

DeepNEAT follows the same fundamental process as NEAT: First, a

population of chromosomes of minimal complexity is created. Each chromo-

some is represented as a graph and is also referred to as an individual. Over

generations, structure (i.e. nodes and edges) is added to the graph incremen-
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Example Genome

Hidden Node 1

Kernel Size: 5
Number of Filters: 34
Dropout Rate: 0.5
Max Pooling: False

Hidden Node 2

Kernel Size: 7
Number of Filters: 22
Dropout Rate: 0.6
Max Pooling: False

Edge 1

In Node: Input
Out Node: 1
Innov #
Enabled: True

Edge 2

In Node: Input
Out Node: 2
Innov #
Enabled: True

Edge 3

In Node: 2
Out Node: Output
Innov #
Enabled: True

Edge 4

In Node: 1
Out Node: Output
Innov #
Enabled: True

Input Node Output Node

Global Hyperparameters
Learning Rate: 0.1 Momentum: 0.8 LR Decay: 0.01

(a) Example DeepNEAT chromosome.

Corresponding Constructed Network 

Input

Output

Conv Layer 2Conv Layer 1

Training Setting:

Learning Rate: 0.1 
Momentum: 0.8 
LR Decay: 0.01

Number of 
Filters: 22
Kernel Size: 7

(b) Corresponding DNN architecture.

Figure 3.2: Figure 3.2a shows an example DeepNEAT chromosome while Fig-
ure 3.2b shows corresponding DNN architecture that is created from parsing
the chromosome. Note the chromosome graph is represented as a list of nodes
and edges and each node has its own set of evolvable hyperparameters. The
chromosome also has a set of global hyperparameters that are relevant to the
DNN as a whole. This representation allows the evolution of arbitrary DNN
topologies.
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tally through mutation. As in NEAT, the mutation involves randomly adding

a node or a connection between two nodes. During crossover, historical mark-

ings are used to determine how genes of two chromosomes can be lined up and

which nodes can be randomly crossed over. The population is divided into

species (i.e. subpopulations) based on a similarity metric. Each species grows

proportionally to its fitness and evolution occurs separately in each species.

Algorithm 1 gives an overview of how DeepNEAT evolves networks; overall

the process is very similar to NEAT from a high-level perspective. For a visu-

alization of how mutation and crossover occurs in DeepNEAT, please refer to

Figure 2.2.

DeepNEAT differs from NEAT in that each node in the chromosome no

longer represents a neuron, but a layer in a DNN. Each node contains a table

of real and binary valued hyperparameters that are mutated through uniform

Gaussian distribution and random bit-flipping, respectively. These hyperpa-

rameters determine the type of layer (such as convolutional, fully connected,

or recurrent) and the properties of that layer (such as number of neurons, ker-

nel size, and activation function). The edges in the chromosome are no longer

marked with weights; instead they simply indicate how the nodes (layers) are

connected.

To construct a DNN from a DeepNEAT chromosome, one simply needs

to traverse the chromosome graph, replacing each node with the correspond-

ing layer. The chromosome also contains a set of global hyperparameters ap-

plicable to the entire network (such as learning rate, training algorithm, and
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data preprocessing). Figure 3.2a visualizes a simple example DeepNEAT chro-

mosome while Figure 3.2b shows the structure of the corresponding network

constructed from the chromosome.

When arbitrary connectivity is allowed between layers, additional com-

plexity is required. If the current layer has multiple parent layers, a merge

layer must be applied to the parents in order to ensure that the parent layer’s

output is the same size as the current layer’s input. Typically, this adjustment

is done through a concatenation or element-wise sum operation. If the parent

layers have mismatched output sizes, all of the parent layers must be down-

sampled to parent layer with the smallest output size. The specific method

for downsampling is domain dependent. For example, in domains such as

image classification, a max-pooling layer is inserted after specific parent con-

volutional layers while in other domains such as image captioning that use

recurrent layers, a fully connected bottleneck layer will serve this function.

During fitness evaluation, each chromosome is converted into a DNN.

These DNNs are then trained for a fixed number of epochs. After training,

a metric that indicates the network’s performance is returned back to Deep-

NEAT and assigned as fitness to the corresponding chromosome in the popula-

tion. While DeepNEAT can be used to evolve DNNs, the resulting structures

are often complex and unprincipled. They contrast with typical DNN archi-

tectures that utilize repetition of basic components. In Chapter 4, DeepNEAT

is extended to allow for evolution of modular, repetitive networks.
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3.2.2 Massively Distributed Evaluation and Training of DNNs

One of the main challenges involved in using DeepNEAT to evolve the

architecture and hyperparameters of DNNs is the sheer raw computational

power required to evaluate and train the networks in the population every

generation. For example, each network in domain such as image classification

requires anywhere from one to three days of training to reach full convergence.

With a typical evolution run of 50 generations and a population size of 100,

hundreds of thousands of GPU hours would have to be spent. Running Deep-

NEAT on a single computer would take over 13 years for just one experiment!

As a compromise, the time spent training the networks is capped by limiting

the number of epochs, but even then, the amount of computation required

is still immense. In order to keep the running time of DeepNEAT tractable,

the evaluation of individuals in the population every generation is parallelized

and distributed over hundreds of worker machines, each equipped with a ded-

icated GPU. For most of the experiments described in this dissertation, the

worker machines are GPU equipped EC2 instances running on Amazon AWS,

a widely used platform for cloud computing [1].

To this end, a software framework called the completion service (it is

now part of a larger open source package called StudioML [9]) was created for

allowing DeepNEAT to communicate and send jobs to the worker machines.

Completion service allows a server node running DeepNEAT to train the as-

sembled networks on worker GPU nodes running on Amazon EC2. First, the

server node submits networks ready for fitness evaluation to the completion
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service. They are pushed onto a queue (buffer) and each available worker node

pulls a single network from the queue to train. After training is finished, fit-

ness is calculated for the network and results are immediately returned back

to the server. The results are returned one at a time and without any order

guarantee through a separate return queue. By using the completion service

to parallelize evaluations, thousands of candidate networks are trained in a

matter of days, thus making architecture search tractable.

3.3 Experimental Results in CIFAR-10 Image Classifi-
cation Domain

In this section, DeepNEAT is applied to evolve networks in the CIFAR-

10 image classification domain. Experimental results and visualizations of the

best evolved networks are reported.

3.3.1 CIFAR-10 Domain Overview

In this experiment, CoDeepNEAT was used to evolve the topology of a

convolutional neural network (CNN) to maximize its classification performance

on the CIFAR-10 dataset [73], a widely used image classification benchmark

in deep learning research. The dataset consists of 50,000 training images and

10,000 testing images. The images consist of 32x32 RGB color pixels and be-

long to one of 10 classes of commonly seen animals and objects. Examples of

images from each class are shown in Figure 3.3. For comparison purposes, the

neural network layer types was restricted to those used by DNGO [137]. DNGO
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Figure 3.3: Examples of the images from the 10 classes of CIFAR-10 dataset
[73]. As a standard benchmark for testing DNNs, this dataset is a good way
to evaluate the effectiveness of neural architectures discovered by DeepNEAT.

uses Bayesian optimization for hyperparameter tuning and achieved state-of-

the-art results for hyperparameter optimization in CIFAR-10 when this exper-

iment was originally performed. Following the methodology in DNGO, data

augmentation was also used and consisted of the following: Convert the im-

ages from RGB to HSV color space, add random perturbations, distortions,

and crops, and convert them back to RGB color space.
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Node Hyperparameter Range
Number of Filters [32, 256]
Dropout Rate [0, 0.7]
Initial Weight Scaling [0, 2.0]
Kernel Size {1, 3}
Max Pooling {True, False}
Global Hyperparameter Range
Learning Rate [0.0001, 0.1]
Momentum [0.68, 0.99]
Hue Shift [0, 45]
Saturation/Value Shift [0, 0.5]
Saturation/Value Scale [0, 0.5]
Cropped Image Size [26, 32]
Spatial Scaling [0, 0.3]
Random Horizontal Flips {True, False}
Variance Normalization {True, False}
Nesterov Accelerated Gradient {True, False}

Table 3.1: Node and global hyperparameters evolved in the CIFAR-10 domain.
They show just how large of a search space that DeepNEAT is exploring.

3.3.2 Setup for CIFAR-10 Domain

DeepNEAT is initialized with a population of 100 chromosomes. The

search space and the list of hyperparameters evolved by DeepNEAT is de-

scribed in Table 3.1. Its hyperparameters determine the various properties of

the layer and whether additional max-pooling or dropout layers are attached.

In addition, a set of global hyperparameters are evolved for the assembled net-

work. During fitness evaluation, the 50,000 images in the CIFAR-10 dataset

are split into a training set of 42,500 samples and a validation set of 7,500 sam-

ples. Each network is trained for eight epochs on the training set due to the size

and complexity of the dataset. The validation set is then used to determine
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classification accuracy, i.e. the fitness of the network. After 60 generations of

evolution, the best network in the population is returned. Furthermore, as

another way to keep the running time of the experiment reasonable, the eval-

uation of CNNs every generation are parallelized over 100 AWS EC2 workers,

each equipped with a GPU for accelerating DNN training.

3.3.3 Results for CIFAR-10 Domain

Figure 3.4: Visualization of the best network evolved by DeepNEAT on the
CIFAR-10 domain. This architecture includes a lot of shortcut connections
that lack of any regular, modular structure. The performance of this architec-
ture is comparable to a similar hand-designed network [87].

After evolution was complete, the best network was trained on all

50,000 training images for 300 epochs, and the classification error on the test

set was measured. The network was able to achieve 8.9% error, which is com-

parable to hand-designed networks with roughly the same number of parame-

ters and similar layer types, such as the Network-in-Network architecture [87].

This result is not as good as the network (also with similar parameter count

and layer types) optimized by DNGO [137], thus showing that there is still po-

tential to improve DeepNEAT. For a comparison of DeepNEAT against other
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approaches in the CIFAR-10 domain, please refer to Table 4.1 in Chapter 4.

Interestingly, because only limited training could be done during evo-

lution, the best network evolved by DeepNEAT was optimized to train very

fast. The evolved network is able to reach 20% test error after just 8 epochs

and requires 80 epochs to converge. This is much faster than the networks

optimized using other hyperparameter search methods such as DNGO [137],

which requires 30 epochs to reach 20% test error and over 200 epochs to con-

verge. The fast training of the network evolved by DeepNEAT is probably due

to the numerous shortcut connections between layers at various depths within

the network. Figure 3.4 shows a visualization of the best evolved network and

its structure.

3.4 Conclusion

This chapter presented a novel EA called DeepNEAT that is capable

of optimizing both the hyperparameters and architecture of a DNN. The ap-

proach is based on an existing and powerful neuroevolution algorithm called

NEAT and makes use of mechanisms such as incremental complexity and spe-

ciation to efficient search for network architectures. Due to the computational

complexity of training DNNs, a method for parallelizing the evaluation of

the evolved networks was introduced. Results are presented in the CIFAR-10

domain, where DeepNEAT is capable of discovering networks that are com-

petitive with hand-designed architectures.
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Chapter 4

Coevolution of Modular Deep Neural Network

Architectures

CoDeepNEAT, an extension of DeepNEAT that uses coevolution, is

introduced in this chapter. It builds upon DeepNEAT, NEAT, and neuroevo-

lution, which are reviewed in Chapter 3 and Section 2.2. First, the motivation

behind coevolution of DNN architecture is reviewed. Second, the algorithms

for CoDeepNEAT and an asynchronous variant of CoDeepNEAT are described.

Third, experimental results are presented for the CIFAR-10 image classifi-

cation domain, the MSCOCO image captioning domain, and the Wikidetox

comment classification domain. They show that CoDeepNEAT can discover

architectures competitive with state-of-the-art hand-designed networks.

4.1 Motivation

Many of the most successful DNNs, such as GoogLeNet and ResNet, are

composed of modules that are repeated multiple times [51, 145]. These mod-

ules often themselves have complicated structure with branching and merging

of various layers. For example, GoogLeNet is composed of stacking several

inception modules on top of each other (Figure 4.1). Inception module’s spe-
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Figure 4.1: GoogLeNet [145], an example of a DNN with modular and repeti-
tive structure. The inception module is shown on the left while the full network
architecture is shown on the right (with the module circled in red).

cial architecture and bottleneck convolutional layers are believed to be largely

responsible for the powerful performance of the network. Similarly, ResNet is

able to improve performance simply by stacking a simple module many times

to create a deeper network.

Although DeepNEAT can generate arbitrary network graphs, the stochas-

tic nature of evolution means that it is highly unlikely for DeepNEAT to consis-

tently evolve such modular structure. Furthermore, state-of-the-art networks

like GoogleLeNet often have hundreds of layers and layer depths easily ex-

ceeding 30-40. Such complex architecture search spaces cannot be efficiently

explored by DeepNEAT alone since it has to start from a minimal topology

and slowly increase complexity through mutations.

Inspired by these observations and the limitations of DeepNEAT, an

improved version of the EA called Coevolution DeepNEAT (CoDeepNEAT),

is proposed. Coevolution is a commonly used technique in evolutionary com-

putation to generate more interesting behavior during evaluation by combin-

ing simpler components together. It has been used with success in many
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domains, including function optimization [113], modeling predator-prey rela-

tionships [163], and being combined with genetic programming for subrou-

tine optimization [160]. The specific coevolutionary mechanism in CoDeep-

NEAT is inspired mainly by Hierarchical SANE [107] but is also influenced by

component-evolution approaches of ESP [44] and CoSyNE [43]. Both CoDeep-

NEAT and SANE differ from conventional neuroevolution in that they do not

evolve entire networks. Instead both approaches evolve components that are

then assembled into complete networks for fitness evaluation. This fitness is

then attributed back to the respective components and the components are

evolved independently. In the case of SANE, the components are neurons,

while in CoDeepNEAT, they are the DNN modules.

4.2 Coevolution of Blueprints and Modules

This section will explain in depth how DeepNEAT is modified to take

advantage of coevolution and more sophisticated DNN architectures are evolved.

4.2.1 Algorithm Overview

As summarized in Algorithm 2, two populations of modules and blueprints

are evolved separately, using the same methods as described in Chapter 3 for

DeepNEAT. The blueprint chromosome (also known as an individual) is a

graph where each node contains a pointer to a particular module species. In

turn, each module chromosome is a graph that represents a small DNN. Dur-

ing fitness evaluation, the modules and blueprints are combined to create a
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Figure 4.2: A visualization of how CoDeepNEAT assembles networks for fitness
evaluation. Modules and blueprints are assembled together into a network
through replacement of blueprint nodes with corresponding modules. This
approach allows evolving repetitive and deep structures seen in many recent
DNNs.

large assembled network. For each blueprint chromosome, each node in the

blueprint’s graph is replaced with a module chosen randomly from the species

to which that node points. If multiple blueprint nodes point to the same mod-

ule species, then the same module is used in all of them. After the nodes in the

blueprint have been replaced, the individual is converted into a DNN in the

same manner as DeepNEAT. The entire process for assembling the network is

visualized in Figure 4.2.

The assembled networks are evaluated the a manner similar to Deep-

NEAT, but the fitnesses of the assembled networks are attributed back to

blueprints and modules as the average fitness of all the assembled networks

containing that blueprint or module. This fitness assignment scheme reduces
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Algorithm 2 CoDeepNEAT

1. Given population of modules/blueprints
2. For each blueprint Bi during every generation:

3. For each node Nj in Bi

4. Choose randomly from module species that Nj points to
5. Replace Nj with randomly chosen module Mj

6. When all nodes in Bi are replaced, convert Bi to assembled network Ni

7. Evaluate fitnesses of the assembled networks N
8. For each network Ni

9. Attribute fitness of Ni to its component blueprint Bi and modules Mj

10. Evolve blueprint and module population with DeepNEAT

Figure 4.3: Overview of the algorithm for CoDeepNEAT and how it uses
coevolution to create assembled networks from separate blueprint and module
populations.

evaluation noise and allows blueprints or modules to be preserved into the next

generation even if they maybe included into an occasionally poorly perform-

ing network. There is also an alternative option in CoDeepNEAT that assigns

the minimum or maximum fitness of the assembled networks to their com-

ponents, however preliminary experiments have shown that using the mean

fitness works best overall.
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4.2.2 Evolving Modular and Repetitive Structure

(a) Generation 1 (b) Generation 40 (c) Generation 60

Figure 4.4: Visualization of best assembled networks discovered by CoDeep-
NEAT at generations 1, 40, and 60. In the first generation, the networks
are minimal and have no modules. However, by generation 40, the networks
contain modules that are repeated at multiple locations (highlighted in red).
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CoDeepNEAT can evolve repetitive modular structure efficiently. Fur-

thermore, because small mutations in the modules and blueprints often lead

to large changes in the assembled network structure, CoDeepNEAT can ex-

plore more diverse and deeper architectures than DeepNEAT. An example

application to the CIFAR-10 domain is presented next. Figure 4.4 shows the

best network topologies discovered at generation 1, 40, and 60 of an exam-

ple CoDeepNEAT run in the CIFAR-10 benchmark. Initially the network

topology is minimal (Figure 4.4a). However as the generations progress, the

networks eventually become not only deeper, but also show modular, repetitive

structure (Figures 4.4b and 4.4c).

4.3 Accelerating Coevolution with Asynchronous Eval-
uations

Another optimization to the performance of CoDeepDEAT, asynchronous

evaluation strategy (CoDeepNEAT-AES), is introduced below.

4.3.1 Algorithm Overview

A key problem that CoDeepNEAT-AES aims to solve is the inefficiency

of synchronous evaluation when running an EA in a parallel, distributed en-

vironment. This problem is especially relevant to CoDeepNEAT since there

is high variance in the complexity and the evaluation times of the assembled

networks. As a result, evolution almost certainly becomes bottlenecked on

waiting for the slowest individuals to be evaluated. CoDeepNEAT-AES will
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try to alleviate this problem through two observations: (1) If there is a con-

stant supply (buffer) of individuals to be readily evaluated, the worker nodes

will have optimal throughput and minimal idle time because they are able to

pull new individuals from the buffer immediately after evaluating the existing

ones. (2) Server idle time can be minimized if evolution proceeds to the next

generation immediately once a small fraction of the total number of individuals

in the buffer have returned. In other words, it is no longer necessary to wait

for the slowest individuals and CoDeepNEAT can evolve the next generation’s

population once there a sufficient number of fitness evaluations.

At any point in time, a queue (buffer) of K individuals ready to be

evaluated are maintained. As computational resources become available, can-

didates are sent to them from this queue for evaluation. As soon as a prede-

termined batch size of M evaluations of individuals finish (where M << K),

a new population of M individuals is generated from the returned individu-

als. This population is then submitted for evaluation in order to maintain a

constant number of individuals on the buffer. In this manner, all available

computational resources are used at all times. On the other hand, the pro-

cess is no longer strictly generational, since individuals from several different

generations may be evaluated in parallel.

Since the number of individuals in the buffer (K) greatly exceeds the

number of individuals used to evolve the next generation (M), it is not scalable

to have the EA keep track of all the individuals that are in the buffer and being

evaluated on the worker nodes. The solution to this problem is simple: shift
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Algorithm 3 GAES

1. Given large initial population with K individuals
2. For each generation:

3. Submit every individual for evaluation with the worker nodes
4. Wait for M individuals with fitnesses to return (M ∗D = K, D > 1)
5. Replace existing population with returned individuals
6. Evolve next generation’s population of M individuals normally

Figure 4.5: Overview of the GAES, a generic version of CoDeepNEAT-AES
that can be applied to any parallel but synchronous EA.

the burden of bookkeeping to the workers machines performing the evaluation

of the DNNs. After the server places all the individuals it wishes to evaluate in

the buffer, the server no longer keeps track of them. Instead, the workers return

back to the server both the fitness values and the corresponding individuals

together. In the case of CoDeepNEAT, the completion service provides both

the buffer for which the server submits individuals to and a way for the worker

nodes to return their results to the server. CoDeepNEAT then updates or

overwrites the current population state with these newly returned individuals

and their fitnesses.

4.3.2 Generic Asynchronous Evaluation Strategy

While this section is mainly about how asynchrony can improve the

performance of CoDeepNEAT, it is interesting to note that such an evaluation

strategy can be easily added onto any parallel, synchronous EA. Algorithm 3

describes a simple generic version of CoDeepNEAT-AES called GAES that has
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Algorithm 4 CodeepNEAT-AES

1. Given initial blueprint/module populations
2. For each generation:

3. Generate K assembled networks from blueprint/modules components
4. Submit the networks along with components to completion service for evaluation
5. Wait for M networks with fitnesses to return (M ∗D = K, D > 1)
6. Assign blueprint/modules the fitnesses of their corresponding returned networks
7. Separate blueprints/modules from the returned networks and filter out duplicates
8. Replace existing assembled networks with returned assembled networks
9. Merge returned blueprints/modules into existing blueprint/module populations
10. Evolve the blueprint/module populations like in CoDeepNEAT

Figure 4.6: Overview of CoDeepNEAT-AES, an asynchronous extension of
CoDeepNEAT that can take full advantage of a pool of workers for evaluations,
made available through the completion service.

few assumptions regarding the underlying EA framework and adds no addi-

tional computational burden. K is the initial population size, M is the number

of results to wait for (as well as population size for subsequent generations),

and D is a hyperparameter which controls the ratio between K and M .

4.3.3 Asynchronous Evaluation Strategy for CoDeepNEAT

Algorithm 4 describes how CoDeepNEAT is modified to support asyn-

chronous evaluations when evolving the topologies of DNNs. One main dif-

ference between CoDeepNEAT-AES and GAES is that there is no longer a

persistent population of individuals. Instead, two populations of blueprints

and modules are assembled together every generation to create a temporary

population of networks. As a result, after getting results back from the comple-
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tion service, CoDeepNEAT-AES not only updates the temporary population,

but also the blueprint and module populations as well.

The blueprint and module populations are updated in two steps: (1)

Determine the set of blueprints and modules that have returned from the

worker nodes but also still exist in the populations. Replace the fitnesses of

these already existing blueprints/modules with the latest updated fitnesses.

(2) For the rest of the blueprints/modules, add them to the populations. By

not discarding already existing individuals in the populations, it helps deal

with degenerate cases in CoDeepNEAT-AES where blueprints do not point

to any modules and thus as a result, no modules are returned along with the

assembled networks. Furthermore, enlarging the pool of individuals used to

generate the next generation’s population enhances diversity.

4.4 Experimental Results in CIFAR-10 Image Classifi-
cation Domain

This section will present results on evolving DNNs with CoDeepNEAT

in the CIFAR-10 domain. Section 3.3.1 gives an overview of the CIFAR-10

domain.

4.4.1 Setup for CIFAR-10 Domain

CoDeepNEAT was initialized with populations of 25 blueprints and 45

modules. From these two populations, 100 CNNs are assembled for fitness

evaluation in every generation. The search space was the same as in Deep-
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Model Test Error (%)
Network-in-Network [87] 8.8
DNGO* [137] 6.4
DeepNEAT* 8.9
CoDeepNEAT* 7.3

Table 4.1: Summary of classification accuracy of best evolved networks from
different approaches on CIFAR-10 domain. The networks evolved using Deep-
NEAT and CoDeepNEAT are highlighted in bold. The networks produced
through architecture or hyperparameter search are labeled with an asterisk.
Both CoDeepNEAT and DNGO outperform the manually designed Network-
in-Network.

NEAT (Table 3.1), where each node in the module represented a convolutional

layer. The node’s hyperparameters determined the various properties of the

layer and whether additional max-pooling or dropout layers were added. In

addition, a set of global hyperparameters were evolved for the assembled net-

work. As with DeepNEAT, the 50,000 images were split into a training set of

42,500 samples and a validation set of 7,500 samples during fitness evaluation.

Since training a DNN is computationally expensive, each network was trained

for eight epochs on the training set. The validation set was then used to

determine classification accuracy, i.e. the fitness of the network. After 72 gen-

erations of evolution, the best network in the population was returned. Like

with DeepNEAT, parallelization was required to keep the evaluation time for

CoDeepNEAT reasonable. The evaluation of DNNs in every generation were

distributed over 100 GPU equipped EC2 instances.
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4.4.2 Results for CIFAR-10 Domain

After evolution was complete, the best network was trained on all

50,000 training images for 300 epochs, and the classification error on the test

set was measured. Table 4.1 compares CoDeepNEAT with DeepNEAT, DNGO

(Bayesian optimization of hyperparameters) [137], Network-in-Network (a pop-

ular hand-designed architecture) [87]. All of the approaches were comparable

since they produced networks with similar number of parameters and layer

types. It is also important to note that DNGO had state-of-the-art results for

hyperparameter optimization in CIFAR-10 when this experiment was run. The

best network CoDeepNEAT discovered has 7.3% error, which is better than

DeepNEAT and is within a single percentage of the 6.4% error for DNGO This

is impressive considering that CoDeepNEAT was optimizing both the hyperpa-

rameters and the architecture of the network and the search space explored by

CoDeepNEAT was far larger. Both CoDeepNEAT and DNGO outperformed

the hand-designed Network-in-Network architecture.

As with DeepNEAT, because evaluation and training was limited to 8

epochs during evolution, the best network discovered by CoDeepNEAT must

be able maximize performance within those limited number of epochs. While

the network of Snoek et al. takes over 30 epochs to reach 20% test error and

over 200 epochs to converge, the best network from evolution takes only 12

epochs to reach 20% test error and around 120 epochs to converge. This

network utilizes the same modules multiple times, resulting in a deep and

repetitive structure typical of many successful DNNs. A visualization of the
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best evolved network is shown in Figure 4.7.

Figure 4.7: Top: High level visualization of the best network evolved by
CoDeepNEAT for the CIFAR-10 domain. Node 1 is the input layer, while
Node 2 is the output layer. The network has repetitive structure because its
blueprint reuses same module in multiple places. Bottom: A more detailed vi-
sualization of the entire network with the locations of the modules highlighted
in red. The use of modules allowed CoDeepNEAT to beat both DeepNEAT
and a hand-designed architecture.

4.5 Experimental Results in MSCOCO Image Caption-
ing Domain

This section with give an overview of the MSCOCO image captioning

domain and report experimental results for both CoDeepNEAT and CoDeepNEAT-

AES. In addition, a real world study is presented where a network evolved using

CoDeepNEAT is applied to caption images online.
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4.5.1 MSCOCO Domain Overview

Figure 4.8: Some examples of the types of images in the MSCOCO dataset: (a)
iconic object images, (b) iconic scene images, and (c) non-iconic images [22].

Deep learning has recently provided state-of-the-art performance in im-

age captioning, and several diverse architectures have been suggested [150,158,

164]. The input to an image captioning system is a raw image, and the out-

put is a text caption intended to describe the contents of the image. In deep

learning approaches, a convolutional network is usually used to process the

image, and recurrent units, often LSTMs, to generate coherent sentences with

long-range dependencies. Unlike image classification, the sequential nature of

generating captions means that image captioning is a much harder task. It

requires a more complicated network topology with many more different layer

types and hyperparameters. As such, image captioning is a suitable second

task to evaluate the effectiveness of CoDeepNEAT in discovering complex,

diverse neural architectures often seen in the cutting edge of deep learning

research.
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The dataset used to evaluate the effectiveness of the candidate net-

works MSCOCO (Common Objects in Context) [22], a widely used bench-

mark dataset in image captioning. The dataset contains 500,000 captions

for roughly 100,000 images that are generated by humans using Amazon Me-

chanical Turk. As seen in Figure 4.8, the images range from straightforward

depictions of common objects in everyday to more complicated scenes where

humans or animals interact with these objects.

4.5.2 Setup for MSCOCO Domain

Global Hyperparameter Range
Learning Rate [0.0001, 0.1]
Momentum [0.68, 0.99]
Shared Embedding Size [128, 512]
Embedding Dropout [0, 0.7]
LSTM Recurrent Dropout {True, False}
Nesterov Momentum {True, False}
Weight Initialization {Glorot normal, He normal}
Node Hyperparameter Range
Layer Type {Dense, LSTM}
Merge Method {Sum, Concat}
Layer Size {128, 256}
Layer Activation {ReLU, Linear}
Layer Dropout [0, 0.7]

Table 4.2: Node and global hyperparameters evolved for the image captioning
case study. They show the size of the search space explored by CoDeepNEAT.

As is common in existing approaches, the evolved system uses a pre-

trained ImageNet model to produce the initial image embeddings. The evolved

network takes an image embedding as input, along with a one-hot text input.
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During training, the text input contains the previous word of the ground-truth

caption while during inference, it contains the previous word generated by the

model.

In the initial CoDeepNEAT population the image and text inputs are

fed to a shared embedding layer, which is densely connected to a softmax

output over words. From this simple starting point, CoDeepNEAT evolves

architectures that include fully connected layers, LSTM layers, sum layers,

concatenation layers, and hyperparameters associated with each layer such as

its size and dropout probabilities (Table 4.2). A set of global hyperparameters

are also evolved, namely, the learning rate, momentum, and weight parameter

initialization scheme. In order to have a baseline network that can be compared

against, the search space for CoDeepNEAT was designed to include the state-

of-the-art Show and Tell [150] image captioning architecture. The results in

Section 4.5.3 show that CoDeepNEAT can beat the hand-designed architecture

while using the same types of layers.

Since there is no single best accepted metric for evaluating captions, the

fitness function is the mean across three commonly used metrics for evaluat-

ing caption quality (BLEU, METEOR, and CIDEr; [22]) normalized by their

baseline values. The fitness is computed over a holdout set of 5000 images, i.e.

25,000 image-caption pairs.

These components and the glue that connects them were evolved as de-

scribed in Section 4.2, with 100 networks trained in each generation. As with

the image classification experiments, fitness evaluation and training of the net-
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works were parallelized over 100 AWS EC2 workers equipped with GPUs. To

keep the computational cost reasonable, during evolution the networks were

trained for only six epochs, and only with a random 100,000 image subset of

the 500,000 MSCOCO image-caption pairs. As a result, there was evolutionary

pressure towards networks that converge quickly: The best evolved architec-

tures trained to near convergence six times faster than the baseline Show and

Tell model [150]. After evolution, the optimized learning rate was scaled by

one-fifth to compensate for the subsampling. In addition, beam search of size

three was used when generating captions for images in the test set.
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4.5.3 Results for MSCOCO Domain for CoDeepNEAT

Figure 4.9: Visualization of the best architecture found by evolution. Among
the components in its unique structure are six LSTM layers, four summing
merge layers, and several skip connections. A single module architecture (high-
lighted in red) consisting of two LSTM layers merged by a sum is repeated
three times. There is a path from the input through dense layers to the out-
put that bypasses all LSTM layers, providing the softmax with a more direct
view of the current input. The power of the architecture seems to come from
the many shortcut connections, which are unlikely to have been discovered by
hand.
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Model BLEU-4 CIDEr METEOR
Neural Show and Tell [150] 27.7 85.5 23.7
DNGO* [137] 26.7 — —
CoDeepNEAT* 29.1 88.0 23.8

Table 4.3: Summary of performance of different approaches on MSCOCO do-
main. The networks produced through architecture or hyperparameter search
are labeled with an asterisk. The evolved network using CoDeepNEAT (high-
lighted in bold) improves over the hand-designed baselines and other archi-
tecture search methods. In particular, it was able to beat the Show and Tell
network network by 5%.

Trained in parallel on about 100 GPUs, each generation took around

one hour to complete. The most fit architecture was discovered on genera-

tion 37 (Figure 4.9). This architecture performed better than the hand-tuned

baseline [150] when trained on the MSCOCO data alone (Table 4.3). In par-

ticular, the network evolved by CoDeepNEAT is able to beat Neural Show and

Tell [150] by 5%, a previous state-of-the-art architecture with the same layer

types and resides within the same search space that CoDeepNEAT explored.

Furthermore, the amount of time required to train the best evolved

network was significantly less than the hand-designed baseline. While the

baseline required roughly 60 epochs for the validation loss to converge, it

only took about 10 epochs for the evolved network to do the same. The fast

convergence speed of the evolved network was probably due CoDeepNEAT’s

bias towards evolving shortcut connections. The bias is due to the limited

number of epochs of training during evolution; thus high performing networks

had to evolve structure that maximized learning during those few epochs. The
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skip connections often ends with a sum-merge layer, which shows similarity

to residual architectures that are currently popular in deep learning [51, 145].

The many parallel, branching, and merging paths in the evolved network would

have been very difficult to discover by hand.

4.5.4 Results on MSCOCO domain for CoDeepNEAT-AES

For comparison, two separate runs of CoDeepNEAT and CoDeepNEAT-

AES were done on the MSCOCO image captioning domain. Except for pa-

rameters specific to CoDeepNEAT-AES, all other factors such as evolution

configuration, search space, and network training/evaluation methods are kept

identical. A population size of 100 was used for the synchronous version of

CoDeepNEAT. For CoDeepNEAT-AES, K = 300 and M = 100 (D = 3) were

used. The worker nodes were composed of up to 200 Amazon EC2 instances

(with GPU support for training DNNs) and the completion service provides

the interface between them and the server. Due to cost concerns of running so

many EC2 instances, a smaller value of D = 3 was used. Because EC2 spot

instances are inherently unreliable and may be temporary unavailable for any

reason, both experiments were started at the same time to remove a potential

source of bias.
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Figure 4.10: A plot of fitness versus time elapsed for synchronous CoDeep-
NEAT and CoDeepNEAT-AES. Each marker in the plot represents the fitness
at a different generation. At any given time, CoDeepNEAT-AES was able to
achieve much better fitness.

Figure 4.11: A plot of fitness versus number of generations elapsed for syn-
chronous CoDeepNEAT and CoDeepNEAT-AES. This result shows that both
algorithms achieved the same fitness when compared by generations. However,
the generations for CoDeepNEAT-AES were much shorter in duration.
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Figure 4.10 shows that when both CoDeepNEAT and CoDeepNEAT-

AES are given the same amount of time, CoDeepNEAT-AES is able to reach

better fitness and converge faster. Although both versions of CoDeepNEAT

achieve similar fitness after the same number of generations (Figure 4.11), each

generation of synchronous CoDeepNEAT takes far longer; this can be seen in

the plot of fitness versus the amount of time elapsed. Due to time constraints,

only CoDeepNEAT-AES was allowed to run to convergence. However, the

converged fitness value for CoDeepNEAT-AES (0.93) is essentially identical to

the converged fitness of a previous run of synchronous CoDeepNEAT. Overall,

the experiment results suggest that CoDeepNEAT-AES can accelerate the

performance of CoDeepNEAT by up to three times in the image captioning

domain.

4.6 Experimental Results in Wikidetox Comment Clas-
sification Domain

This section gives an overview of the Wikidetox comment classification

problem. CoDeepNEAT was used to evolve a network in this domain and

state-of-the-art experimental results are reported. 1

4.6.1 Wikidetox Domain Overview

Wikipedia is one of the largest encyclopedias that is publicly available

online [11], with over 5 million written articles for the English language alone.

1The Wikidetox experiments were ran with the assistance of Elliot Meyerson.
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Unlike traditional encyclopedias, Wikipedia can be edited by any user who

registers an account. It is common for controversial or sensitive articles to

cause disagreements between various editors. As a result, in the discussion

section for some articles, there are often vitriolic or hateful comments that are

directed at other users. These comments are commonly referred to as “toxic”

and it has become increasing important to detect toxic comments and remove

them from Wikipedia.

The Wikipedia Detox dataset (Wikidetox) is a collection of 160K ex-

ample comments that are divided into 93K train, 31K validation, and 31K

test examples [6]. The labels for the comments are generated by humans

using crowd-sourcing methods and contain four different categories for toxic

comments. However, following previous work from Chu at el. [23], all toxic

comment categories are combined together, thus creating a binary classifica-

tion problem. The dataset is also unbalanced with only about 9.6% of the

comments actually being labeled as toxic.

4.6.2 Setup for the Wikidetox Domain

The experimental setup for the Wikidetox domain was similar to the

MSCOCO image captioning domain. The layer types and hyperparameters

that CoDeepNEAT was allowed to evolve was the same as those listed for the

MSCOCO domain in Table 4.2. Like in the MSCOCO domain, the search

space for network work architectures was defined around recurrent (LSTM)

layers as the basic building block. Since comments are essentially an ordered
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list of words, recurrent layers (having shown to be effective at processing se-

quential data) were a natural choice. In order for the words to be given as

input into a recurrent network, they must be converted into an appropriate

vector representation first. Before given as input to the network, the com-

ments were preprocessed using a recently introduced method for generating

word embeddings called FastText [18], which itself is an improvement upon

the more commonly used Word2Vec [101].

During evolution, the blueprint and module population sizes for CoDeep-

NEAT were 25 and 50 respectively, with 100 assembled networks generated at

every generation. For evaluation, each evolved DNN was trained for three

epochs and the classification accuracy was returned back as the fitness. Pre-

liminary experiments showed that three epochs were enough for the network

to converge during training. Thus, unlike the CIFAR-10 and MSCOCO do-

mains, there was no need for an extra step where the best evolved network is

trained fully to convergence. Like in the previous experiments, the evaluation

of DNNs at every generation was distributed over 100 worker machines.
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4.6.3 Experimental Results in the Wikidetox Domain

Figure 4.12: A comparison of CoDeepNEAT against the networks discovered
via several commercially available methods, including Kaggle, MSFT TLC,
MOE, and Google AutoML. The Y-axis shows best fitness/accuracy achieved
so far, while the X-axis shows the generations, total training time, and total
amount of money spent on cloud compute. As the plot shows, CoDeepNEAT
is gradually able to discover better networks, eventually finding one in the
40th generation that beats all other approaches.

Wikidetox is an interesting domain since it was part of a Kaggle chal-

lenge; as a result, there already exists several hand-designed networks to com-

pare against [2]. Furthermore, due to the relative speed at which networks

can be trained on this dataset, it was practical to evaluate hyperparameter

optimization methods from companies such as Microsoft and Google on the

dataset. As a result, the networks evolved by CoDeepNEAT can be com-
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pared against networks designed by the best commercially available automatic

machine learning frameworks.

Figure 4.12 shows a comparison of CoDeepNEAT against the follow-

ing approaches: (1) A simple baseline network from the Kaggle competition,

(2) the best hand-designed architecture from the Kaggle competition, (3)

Microsoft’s TLC library for hyperparameter optimization [10], (4) MOE, a

Bayesian optimization algorithm from Yelp (commercialized by SigOpt) [4],

(5) Google AutoML [12], and (6) a stripped down version of CoDeepNEAT

which only optimizes hyperparameters and not the architecture. The figure

shows how the performance of best network discovered by CoDeepNEAT im-

proved over the generations and also the amount of training time and cost

spent so far.

Initially, the best network architectures discovered by CoDeepNEAT

were only barely better than the simple Kaggle baseline network. However,

CoDeepNEAT was eventually able to outperform all the other approaches. By

generation 40, the best evolved network was able to beat the Kaggle competi-

tion network, which is the current state-of-the-art on the Wikidetox dataset.

What is interesting about CoDeepNEAT is that there are clear trade-offs be-

tween the amount of training time/money used and the quality of the re-

sults. Depending on the budget available, an user running CoDeepNEAT can

stop earlier to get results competitive with existing approaches such as TLC

or AutoML or run CoDeepNEAT to convergence to get the best possible re-

sults. Moreover, the results demonstrate the value of architecture optimization
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over just hyperparameter optimization. While MOE and hyperparameter-only

CoDeepNEAT perform similarly, full CoDeepNEAT performs significantly bet-

ter.

Figure 4.13: A visualization of the best network discovered by CoDeepNEAT in
the Wikidetox domain. As the network architecture shows, it is most optimal
to use a combination of both simple and complex modules within the blueprint
of the network.

A visualization of best performing network discovered by CoDeepNEAT

in the Wikidetox domain is shown in Figure 4.13. This network architecture

is composed of a relatively linear blueprint that uses one simple module and

two instances of a complicated module architecture. The complicated module

contains many shortcut connections and branching parallel paths between the

layers. As with the MSCOCO and CIFAR-10 domains, it appears that these

shortcut connections and branching paths accelerate learning and allow for

faster convergence.
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4.7 Real-World Use of DNNs Evolved with CoDeep-
NEAT

One important aspect of CoDeepNEAT that has not been explored is

its effectiveness in building real-world deep learning applications. This section

will explore using CoDeepNEAT to evolve a image captioning network for

helping blind people recognize images that are often shown in popular online

websites.

Unlike most real world images, the MSCOCO dataset is chosen to de-

pict “common objects in context”. The focus is on a relatively small set of

objects and their interactions in a relatively small set of settings. The inter-

net as a whole, and an online magazine website in particular, contain many

images that cannot be classified as “common objects in context”. Other types

of images from the magazine include staged portraits of people, infographics,

cartoons, abstract designs, and iconic images, i.e. images of one or multiple

objects out of context such as on a white or patterned background. Therefore,

an additional dataset of 17,000 image-caption pairs was constructed for the

case study, targeting iconic images in particular. First, 400 images were first

scraped from Wired.uk, a popular technology magazine website, and 1000 of

them were identified as iconic. Then, 16,000 images that were visually similar

to those 1000 were retrieved automatically from a large image repository. A

single ground-truth caption for each of these 17K images was generated by

human subjects from MightyAI [3]. The holdout set for evaluation consisted

of 100 of the original 1000 iconic images, along with 3000 other images.
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During evolution, networks were trained and evaluated only on the

MSCOCO data. The best architecture from evolution was then trained from

scratch on both the MSCOCO and MightyAI datasets in an iterative alternat-

ing approach: one epoch on MSCOCO, followed by five epochs on MightyAI,

until maximum performance was reached on the MightyAI holdout data. Beam

search was then used to generate captions from the fully trained models. Per-

formance achieved using the MightyAI data demonstrates the ability of evolved

architectures to generalize to domains towards which they are not evolved.

Once the model was fully-trained, it was placed on a server where it

could be queried with images to caption. A JavaScript snippet was written

that a developer can embed in his/her site to automatically query the model

to caption all images on a page 2. This snippet runs in an existing Chrome

extension for custom scripts and automatically captions images as the user

browses the web. These tools add captions to the ‘alt’ field of images, which

screen readers can then read to blind internet users (Figure 4.14).

2Thanks to Olivier Francon for the script
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Figure 4.14: An iconic image from an online magazine captioned by an evolved
model. The model provides a suitably detailed description without any un-
necessary context.

However, a more important result is the performance of this network

on the magazine website. Because no suitable automatic metrics exist for the

types of captions collected for the magazine website (and existing metrics are

very noisy when there is only one reference caption), captions generated by the

evolved model on all 3100 holdout images were manually evaluated on a scale

from one to four (Figure 4.15). The model performed reasonably on iconic

images, where it accurately captioned roughly half of them. Unfortunately it

did not too well on more general images and was only able to correctly caption

roughly 20% of such images.
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Figure 4.15: Results for captions generated by an evolved model for the on-
line magazine images rated from 1 to 4, with 4=Correct, 3=Mostly Correct,
2=Mostly Incorrect, 1=Incorrect. Left: On iconic images, the model is able
to get about one half correct; Right: On all images, the model gets about one
fifth correct. The superior performance on iconic images shows that it is useful
to build supplementary training sets for specific image types.

Figure 4.16 shows some examples of good and bad captions for these

images. The images that were accurately captioned typically are simpler in

content, contain few objects in the foreground of the image, and share simi-

larities with images present in the MSCOCO dataset. On the other hand, the

images which could not be captioned properly are more abstract or contained

objects typically not seen in the MSCOCO dataset. Nevertheless, the bad

captions are not always completely wrong and there often are some details in

the image which are preserved in the caption. One way to boost performance

in the future might be to add more such images into the training set.
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(a) Good captions

(b) Bad captions

Figure 4.16: Top: Four good captions. The model is able to abstract about
ambiguous images and even describe drawings, along with photos of objects in
context. Bottom: Four bad captions. When it fails, the output of the model
still contains some correct sense of the image. The results overall are promising
and suggest that the model can be improved by including more difficult images
in the training set.

The model is not perfect, but the results are promising. There are many

known improvements that can be implemented, including ensembling diverse

architectures generated by evolution, fine-tuning of the ImageNet model, us-
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ing a more recent ImageNet model, and performing beam search or scheduled

sampling during training [151]. For this application, it is also important to

include methods for automatically evaluation caption quality and filtering cap-

tions that would give an incorrect impression to a blind user. However, even

without these additions, the results demonstrate that it is now possible to

develop practical applications through evolving DNNs.

4.8 Conclusion

This chapter introduced CoDeepNEAT, a coevolutionary EA for effi-

ciently evolving DNNs, and CoDeepNEAT-AES, the asynchronous version of

CoDeepNEAT. Experimental results in both the CIFAR-10 and MSCOCO do-

mains validated that CoDeepNEAT can evolve networks that outperform pre-

vious state-of-the-art hand-designed architectures and even those evolved with

DeepNEAT. The best discovered networks not only have good performance,

but are also quick to train as well. By using CoDeepNEAT to optimize a net-

work to caption images found on popular websites, it shows that evolutionary

architecture search is useful for building real-world applications.
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Chapter 5

Coevolution of Deep Neural Network

Architectures for Multitask Learning

This chapter is organized as follows: (1) First, the motivation behind

modifying CoDeepNEAT to the multitask learning (MTL) domain is explored.

(2) Afterwards, soft-ordering and how it can be applied to MTL is reviewed.

(3) Next, CodeepNEAT is extended and modified to incorporate elements

from the Soft-ordering architecture to evolve better multitask architectures.

(4) This improved version, which has been adapted to MTL, is then applied

to two popular MTL domains, namely the Omniglot character recognition

dataset and the medical Chest X-ray image classification dataset. 1

5.1 Motivation

So far, CoDeepNeat has been applied to evolve and optimize the ar-

chitecture of deep neural networks (DNN) on a single task. In this chapter,

CoDeepNEAT is modified to search for multitask neural network architec-

tures. It is already possible to apply CoDeepNEAT to the multitask domain

1Some work in this chapter was previously published [84]. The author’s specific contri-
butions included the CM and CMSR algorithms.
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by simply forcing the last layer of the evolved network to have a multi-head

decoder, one for each task. This is the architecture commonly used in classical

MTL architectures [19] and often copied in many DNN applications of MTL.

However, this architecture would force all the tasks to share the same weights

except for the last layer and as shown by Meyerson, et al. [99], such a design

is not optimal and can be improved.

This chapter will describe how CoDeepNEAT can be leveraged to evolve

non-trivial multitask architectures that perform significantly better in a variety

of MTL domains. One straightforward way is to generalize the soft-ordering

architecture described in [99] by allowing CoDeepNEAT to evolve how the

different components are routed and connected with each other. Figure 5.1

provides an overview of how this generalization is accomplished. The founda-

tion is (1) the original soft-ordering, which uses a fixed architecture for the

modules and a fixed routing (i.e. network topology) that is shared among all

tasks. This architecture is then extended in two ways with CoDeepNEAT: (2)

by coevolving the module architectures (CM), and (3) by coevolving both the

module architectures and a single shared routing for all tasks using (CMSR).

Figure 5.3 gives high-level algorithmic descriptions of these methods, which

are described in more detail in Sections 5.3 and 5.4.

It is interesting to note that there is another algorithm similar to CMSR

called Coevolution of Task Routings (CTR) [84]. This algorithm evolves sep-

arate routings for each task and has been combined with CM to produce

state-of-the-art results on the Omniglot domain.
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1. Original Soft Ordering
Modules: Fixed

Routing: Fixed, Shared

2. CM
Modules: Evolved

Routing: Fixed, Shared

3. CMSR
Modules: Evolved

Routing: Evolved, Shared

Figure 5.1: The relationships of various MTL architectures described in this
chapter. The soft-ordering method [99] is used as the starting point, extending
it with CoDeepNEAT, leading to CM and CMSR on the bottom.

5.2 Soft-ordering Architecture

One way to improve upon the classical MTL DNN architecture is to

apply soft-ordering of layers to DNN architectures [99]. This approach allows

shared layers to be used across different depths in an unique manner for differ-

ent tasks. Through backpropagation, the joint model learns how to use each

shared (potentially nonlinear) layer Wd at each depth d for the t-th task. This

idea is implemented by learning a distinct scalar stdl for each such location,

which then multiplies the layer’s output. The final output at depth d for the

task is then the sum of these weighted outputs across layers, i.e., a soft-merge.

83



More generally, a soft-merge is a learnable function given by

softmerge(in1, . . . , inM) =
∑

m=1..M

sminm, with
∑

m=1..M

sm = 1 , (5.1)

where the inm are a list of incoming tensors, sm are scalars trained simulta-

neously with internal layer weights via backpropagation, and the constraint

that all sm sum to 1 is enforced via a softmax function. Figure 5.2 shows an

example soft-ordering network.

More formally, given shared layers W1,W2, . . . ,WD, the soft-ordering

model yt = f(xt) for the t-th task {(yti,xti)}Ni=1 is given by yt = Dt(y
D
t ),

where y0
t = Et(xt) and

yd
t = softmerge

(
W1(y

d−1
t ), . . . ,WD(yd−1

t )
)
∀ d ∈ 1..D , (5.2)

where Et is a task-specific encoder mapping the task input to the input of the

shared layers, Dt is a task-specific decoder mapping the output of the shared

layers to an output layer, e.g., classification.

Although soft-ordering allows flexible sharing across depths, layers are

still only applied in a fixed grid-like topology, which biases and restricts the

type of sharing that can be learned. A visual overview of soft-ordering is

given below in Figure 5.2. This chapter will use CoDeepNEAT to generalize

soft-ordering layers to more general modules, and introduces evolutionary ap-

proaches to both design these modules and to discover how to assemble these

modules into appropriate topologies for multitask learning.
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Figure 5.2: Example soft-ordering network with three shared layers [99]. Soft-
ordering learns how to use the same layers in different locations by learning a
tensor S of task-specific scaling parameters. S is learned jointly with the Wd,
to allow flexible sharing across tasks and depths. This architecture enables
the learning of layers that are used in different ways at different depths for
different tasks.

5.3 Coevolution of Modules

In Coevolution of Modules (CM), CoDeepNEAT is used to search for

promising module architectures, which then are inserted into appropriate po-

sitions to create an enhanced soft-ordering network.

5.3.1 Algorithm Overview

The evolutionary process for CM is described in detail below:

1. CoDeepNEAT initializes a population of modules PM . The blueprints

are not used.

2. Modules are randomly chosen from each species in PM , grouped into sets

M and are assembled into enhanced soft-ordering networks.

3. Each assembled network is trained/evaluated on some task and its per-

formance is returned as fitness.

85



Algorithm 5 CM (Section 5.3)

1. Given fixed blueprint
2. Initialize module population
3. Each generation:

4. Assemble MTL networks with modules
5. Randomly initialize all weights
6. Train each MTL network with backprop
7. Assign fitnesses to modules
8. Update module populations

Algorithm 6 CMSR (Sec. 5.4)

1. Initialize blueprint/module populations
2. Each generation:

3. Assemble MTL networks with blueprints/modules
4. Randomly initialize all weights
5. Train each MTL network with backprop
6. Assign fitnesses to modules and blueprints
7. Update blueprint/module populations

Figure 5.3: High-level algorithm outlines of CM and CMSR, illustrating how
they are similar and different from each other. In particular, the algorithms
differ in whether or not the blueprint is evolved along with the modules (see
line 7 in Algorithm 6).
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4. Fitness is attributed to the modules, and NEAT evolutionary operators

are applied to evolve the modules.

5. The proess is repeated from Step 1 until CoDeepNEAT terminates, i.e.

no further progress is observed for a given number of generations.

Unlike in soft-ordering [99], the number of modules and the depth of the

network are not fixed but are evolved as global hyperparameters by CoDeep-

NEAT (however the layout is still a grid-like structure). Since the routing

layout is fixed, the blueprint population of CoDeepNEAT, which determines

how the modules are connected, is not used. Thus one key operation in the

original CoDeepNEAT, i.e. inserting modules into each node of the blueprint

DAG, is skipped; only the module population is evolved.

To assemble a network for fitness evaluation, an individual is randomly

chosen from each species in the module population to form an ordered set

of distinct modules M . These modules are NEAT graphs where each node

represents a particular convolutional layer and associated hyperparameters.

The hyperparameters evolved in each of the module’s layers include the acti-

vation function, kernel size, number of filters, L2 regularization strength and

output dropout rate. In addition, CoDeepNEAT also coevolves global hyper-

parameters that are relevant to the entire assembled network as a whole; these

include learning rate, the number of filters of the final layer of each module,

and the weight initialization method. Evolvable hyperparameters in each node

include the activation function, kernel size, number of filters, L2 regulariza-
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tion strength and output dropout rate. The modules are then transformed

into actual neural networks by replacing each node in the DAG with the cor-

responding layer. To ensure compatibility between the inputs and outputs of

each module, a linear 1× 1 convolutional layer (number of filters determined

by a global hyperparameter), followed by a max-pooling layer (provided that

the feature map before pooling is at least 4 × 4) is included as the last layer

in each module.

The modules are then inserted into the soft-ordering network. The

architecture of the network is interpreted as a grid of K × D slots, where d

indicates the depth of the network and the slots with the same k value have the

same module topology. For each available slot Tkd, the corresponding module

Mk is inserted. If k > |M |, then Mk mod |M | is inserted instead.

5.3.2 Weight Sharing Between Modules

Each module in a particular slot has the potential to share its weights

with modules that have the same architecture and are located in other slots of

the blueprint. Flag Fk in each module indicates whether or not the module’s

weights are shared. This flag is evolved as part of the module genotype in

CoDeepNEAT. Also, there is also global flag Fd for each depth of the soft-

ordering network. If the Mk is placed in Tkd and both Fk and Fd are turned

on, then the module is able to share its weights with any other Mk whose slot

have both flags turned on as well. Such an arrangement allows each slot to

have sharing enabled and disabled independently.
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The assembled network is attached to separate encoders and decoders

for each task and trained jointly using a gradient-based optimizer. Average

performance over all tasks is returned as fitness back to CoDeepNEAT. That

fitness is assigned to each of the modules in the assembled network. If a

module is used in multiple assembled networks, their fitnesses are averaged

into module fitness. After evaluation is complete, standard NEAT mutation,

crossover, and speciation operators are applied to create the next generation

of the module population [141].

5.4 Coevolution of Modules and Shared Routing

Coevolution of Modules and Shared Routing (CMSR) extends CM to

include blueprint evolution.

5.4.1 Algorithm Overview

IN CMSR, the routing between various modules no longer follows the

fixed grid-like structure, but instead an arbitrary DAG. Each node in the

blueprint genotype points to a particular module species. During assembly,

the blueprints are converted into deep multitask networks as follows:

1. For each blueprint in the population, an individual module is randomly

chosen from each species.

2. Each node in the blueprint is then replaced by the module from the

appropriate species.
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3. If a module has multiple inputs from previous nodes in the blueprint,

the inputs are soft-merged first [99].

4. The process is repeated from step 1 until reaching a target number of

assembled networks.

As in CM, each node in the blueprint has a flag Fi that indicates

whether node Ni should be shared or not. If two nodes are replaced by the

same module and if both nodes have the sharing flag turned on, then the two

modules will share weights. Such an arrangement allows each node to evolve

independently whether to share weights or not. The training procedures for

both CM and CMSR are otherwise identical. After fitness evaluation, the fit-

ness is assigned to both blueprints and modules in the same manner as with

CM. To accelerate evolution, the blueprint population is not initialized from

minimally connected networks like the modules, but from randomly mutated

networks that on average have five nodes.

5.4.2 Random Population Initialization

One main concern regarding CMSR compared to CM is that the search

space has been massively increased. In CM, only module architectures are

searched and evolved, but in CMSR, both the module architectures and shared

routing between the modules have to be optimized. As a result, if both CM

and CMSR are to start evolving from minimal topologies, CMSR takes sig-

nificantly longer than CM to converge. One way to accelerate search is to al-

low CMSR to start with populations of randomly initialized blueprint/module
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genes of some arbitrary complexity. First, blueprint and module populations

of minimal complexity are initialized. Then, the NEAT add-connection and

add-node mutation operators are repeatedly applied with some probability P

to each blueprint and module K times. Afterwards, evolution is then allowed

to proceed as normal. Preliminary results show that this initialization method

creates a diverse population with varying complexity and significantly closes

the gap in convergence speed between CMSR and CM.

5.5 Experimental Results for Omniglot Multitask Learn-
ing Domain

This section will describe experimental setup and results for the Om-

niglot character recognition MTL domain.

5.5.1 Omniglot Domain Overview

The Omniglot dataset consists of 50 alphabets of handwritten charac-

ters [75], each of which induces its own character recognition task. There are 20

instances of each character, each a 105×105 black and white image. Omniglot

is a good fit for MTL, because there is clear intuition that knowledge of several

alphabets will make learning another one easier. Omniglot has been used in an

array of settings: generative modeling [75,122], one-shot learning [71,75,132],

and deep MTL [17,96,99,120,161]. Previous deep MTL approaches used ran-

dom training/testing splits for evaluation [17, 99, 161]. However, with model

search (i.e. when the model architecture is learned as well), a validation set

91



separate from the training and testing sets is needed. Therefore, in the experi-

ments in this paper, a fixed training/validation/testing split of 50%/20%/30%

is introduced for each task. Because training is slow and increases linearly

with the number of tasks, a subset of 20 tasks out of the 50 possible is used

in the current experiments. These tasks are trained in a fixed random or-

der. Soft-ordering is the current state-of-the-art method in this domain [99].

The experiments therefore used soft-ordering as a starting point for designing

further improvements.

5.5.2 Setup for Omniglot Domain

For CoDeepNEAT fitness evaluations, all networks were trained using

Adam [70] for 3000 iterations over the 20 alphabets. Each iteration is equiva-

lent to one full forward and backward pass through the network with a single

example image and label chosen randomly from each task. The fitness assigned

to each network was the average validation accuracy across the 20 tasks af-

ter training. No data augmentation was performed during training during

evolution.

For CM and CMSR, CoDeepNEAT was initialized with approximately

50 modules (in four species) and 20 blueprints (in one species). During each

generation, 100 networks were assembled from modules and/or blueprints for

evaluation. The global and layer-specific evolvable hyperparameters are de-

scribed in Section 5.3. With CoDeepNEAT, the evaluation of assembled net-

works was distributed over 100 separate EC2 instances with a K80 GPU in
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Algorithm Val Accuracy (%) Test Accuracy (%)

1. Single Task [99] 63.59 (0.53) 60.81 (0.50)
2. Soft-ordering [99] 67.67 (0.74) 66.59 (0.71)

3. CM 80.38 (0.36) 81.33 (0.27)
4. CMSR 83.69 (0.21) 83.82 (0.18)
5. CMSR (Data Aug) 92.16 (0.16) 91.57 (0.15)

Table 5.1: Average validation and test accuracy over 20 tasks for each al-
gorithm. CMSR performs the best as it combines both module and routing
evolution. Pairwise t-tests show all differences are statistically significant with
p < 0.05.

AWS. The average time for training was usually around 1-2 hours depending

on the network size.

Because the fitness returned for each assembled network was noisy,

to find the best assembled CoDeepNEAT network, the top 50 highest fitness

networks from the entire history of the run were retrained for 30,000 iterations.

For the CM and CMSR experiments, decaying the learning rate by a factor of

10 after 10 and 20 epochs of training gave a moderate boost to performance.

There was also an option to enable data augmentation, where the image was

randomly shifted horizontally and vertically 16 pixels before given as input

to the network. To evaluate the performance of the best assembled network

on the test set (which is not seen during evolution or training), the network

was trained from scratch again for 30,000 iterations. This snapshot was then

evaluated and the average test accuracy over all tasks returned.
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Figure 5.4: Comparison of fitness (validation accuracy after partial training
for 3000 iterations) over generations of single runs of CM and CMSR. Solid
lines show the fitness of best assembled network and dotted line show the mean
fitness. Both methods reach a similar fitness, but CMSR is slower to converge.

5.5.3 Results for Omniglot Domain

Figure 5.4 demonstrates how the best and mean fitness improves for

CM and CMSR in the CoDeepNEAT outer loop where module/blueprint co-

evolution occurs. While networks evolved by CMSR were able to reach a higher

accuracy when trained fully, both algorithms converged roughly to the same

final fitness value during evolution, which is around 78% validation accuracy.

However due to its smaller search space, CM converged faster than CMSR.

This result is expected since the search space of CM (evolution of modules

and weight sharing) is smaller than CMSR (evolution of modules, blueprints,

and weight sharing).

One open question is how much sharing of weights between modules
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Figure 5.5: Comparison of fitness over generations of CM with disabling,
enabling, and evolving module weight sharing. No sharing is better than
forced sharing, but evolvable sharing outperforms them both, validating the
approach.

affects the performance of the assembled network. Figure 5.5 compares the

effect of enabling, disabling, and evolving weight sharing with CM. Interest-

ingly, disabling weight sharing led to better performance than enabling it, but

evolving it is best. Thus, the design choice of evolving sharing in CM and

CMSR is vindicated. An analysis of the architecture of the best assembled

networks shows that weight sharing in particular locations such as near the

output decoders is a good strategy.

Table 5.1 shows the validation and test accuracy for the best evolved

network produced by each method, averaged over 10 runs. The best-performing

methods are highlighted in bold and standard error for the 10 runs is shown

in parenthesis. In addition, performance of the baseline methods are shown,
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namely (1) a hand-designed single-task architecture, i.e. where each task is

trained and evaluated separately, and (2) the soft-ordering network architec-

ture [99]. Indeed, the methods improve upon the baseline according to in-

creasing complexity: Evolving modules and evolving topologies is significantly

better than the baselines, and evolving both is significantly better than either

alone. Interestingly, data augmentation during training gave CMSR a massive

boost in performance and allowed CMSR to overtake similar methods such as

CMTR (combination of CTR and CM) [84] in the Omniglot domain.

Figure 5.6a and 5.6b displays the module routing and architectures

of the best network evolved using CM on the Omniglot domain. In the vi-

sualization, each unique module architecture is associated with a particular

color; this color is then used to show what architecture is used at different

locations in the overall network. The routing between the modules is rela-

tively fixed, only the depth and width of the arrangement of the modules can

change. However, the modules themselves can have arbitrary structure and

as seen by their visualizations, there is a mixture of both complex and simple

module architectures.

Similarly, Figure 5.6c and 5.6d visualizes the best network that was

evolved using CMSR. In this architecture, the routing between the module

is fully evolvable and is characterized by lots of shortcut connections and

branching paths. Similar to CM, the modules evolved using CMSR are also a

mix of both complex and simple structure.
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(a) Fixed mod-
ule routing used
by CM.

(b) Best modules
evolved by CM.

(c) Best module
routing evolved
by CMSR.

(d) Best modules
evolved by CMSR.

Figure 5.6: Visualizations of the best networks evolved by CM (Figures 5.6a
and 5.6b) and CMSR (Figures 5.6c and 5.6d) on the Omniglot domain. The
module routing for CM is fixed but is evolvable in CMSR. The module routing
(blueprint) evolved by CMSR contains many shortcut connections and could
be a possible factor in CMSR’s superior performance. Both methods evolve a
mixture of both complex and simple module architectures.
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5.6 Experimental Results for Chest X-Ray Multitask
Learning Domain

This section will describe experimental setup and results for the Chest

X-Ray MTL domain.

5.6.1 Chest X-ray Domain Overview

Figure 5.7: The top row shows negative examples of images from the Chest
X-ray dataset where no disease is present. The bottom row show positive
examples where the images do show a disease.

Chest X-ray is a recently introduced MTL benchmark that involves

classifying x-ray images of the chest region of various patients [114,152]. The

dataset is composed of 112,120 high resolution frontal chest X-ray images, and

the images are labeled with one or more of 14 different diseases, or no diseases

at all. The multi-label nature of the dataset naturally lends to a MTL setup

where each disease is an individual binary classification task. Both positive and

negative example images from the Chest X-ray dataset are shown in Figure 5.7.

This domain is considered to be significantly more difficult than the
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Omniglot domain since the images are less sparse and more complex in con-

tent. In fact, even for humans, it takes a trained eye to diagnosis what dis-

eases are present in each image. Past approaches generally apply the classical

MTL DNN architecture [152] and the current state-of-the-art approach uses

a slightly modified version of Densenet [114], a widely used, hand-designed

architecture that is competitive with the state-of-the-art on the Imagenet do-

main [57]. The images are divided into 70% training, 10% validation, and 20%

test while the metric used to evaluate the performance of the network is the

average area under the ROC curve for all the tasks (AUROC). Although the

actual images are larger, all existing approaches preprocess the images to be

224× 224 pixels, the same size used by many Imagenet DNN architectures.

5.6.2 Setup for Chest X-ray Domain

For the Chest X-ray experiments, only the CMSR variant of Codeep-

NEAT was evaluated because it has been show to perform better than CM in

the Omniglot domain. One major technical challenge faced was that evolv-

ing networks with a separate set of soft-ordering weights for each task results

in much longer training times than in the Omniglot domain. This increase

in training time was due to how soft-ordering layers are implemented in the

deep learning library being used and the significant increase of the dataset

size when compared to Omniglot. As a result, an optimization was introduced

where the same set of Soft-ordering weights are used for each of the tasks or

diseases. Preliminary experiment results show that the optimization did not
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Name Description

Normal This is the same search space that has been used for the Omniglot
evolution experiments. It covers arbitrary configurations of soft-
ordering architectures.

Expanded Compared to normal, the space is expanded by increasing the
number of filters, module output filter size, and module output
activation functions that can be discovered by evolution.

Hypercolumn Same search space as normal, however the input is not the image
directly. Instead, the image is given as input to Densenet and the
feature maps from various key layers (also known as hypercolumns
[48]) in Densenet are used as input to the evolved network instead.

Table 5.2: Summary of different search spaces; for normal and expanded, the
input size is 224× 224. For encoder, the input size is 28× 28.

significantly hurt performance, but allows very significant speedups during

training.

CMSR was used to evolve networks in different architecture search

spaces. The search spaces from the worst to the best performance are nor-

mal, expanded, and hypercolumn and are described in detail in Table 5.2.

Out of the three, the hypercolumn search space is the smallest while expanded

is the largest, with normal somewhere in between the two.

The configuration for CMSR when evolving networks in the Chest X-ray

domain is similar to that for Omniglot. However, there are some differences.

For CMSR fitness evaluations, all networks were trained using Adam [70] for

8 epochs. After training is completed, AUROC was computed over all images

in the validation set and returned as the fitness. No data augmentation was

performed during training and evaluation in evolution, but the images were
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normalized using the mean and variance statistics from the Imagenet dataset.

As in the Omniglot domain, CMSR was initialized with approximately

50 modules (in four species) and 20 blueprints (in one species). During each

generation, 100 networks were assembled from modules and/or blueprints for

evaluation. Random initialization of the blueprints and modules was disabled

since evaluations were found to be too slow in the first few generations. The

evaluation of assembled networks was distributed over 100 machines, each

equipped with a GTX 1080 GPU. The average time for training was usually

around 3-4 hours depending on the network size, although for some larger

networks the training time exceeded 12 hours.

After evolution converged, the best evolved network was trained for

an increased number of epochs using the ADAM optimizer [70]. Similar to

other approaches to neural architecture search [119, 169], the model augmen-

tation method was used, where the number of filters of each convolutional

layer was increased. Data augmentation was also applied to the images during

every epoch of training, including random horizontal flips, translations, and

rotations. The learning rate was dynamically adjusted downward based on

the validation AUROC every epoch and sometimes reset back to its original

value if the validation performance plateaued. After training was complete,

the test images were evaluated 20 times with data augmentation enabled and

the model outputs were averaged to form the final prediction result.
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Figure 5.8: Comparison of fitness over generations of CMSR with different
search spaces as described in Table 5.2. Solid lines show the fitness of best
assembled network and dotted lines shows the mean fitness. The hypercolumn
search space is quickest to converge and reaches the best fitness.

5.6.3 Results for Chest X-ray Domain

Figure 5.8 summarizes how the mean and best fitness improved dur-

ing evolution for the three search spaces mentioned in the Table 5.2. The

hypercolumn search space is the smallest and as a result it converged first.

Such behavior is expected since hypercolumn evolved a smaller network to

process high level features extracted from the larger, more powerful Densenet

network. Next to converge is the normal search space, which evolved net-

works from scratch, but with less free hyperparameters than the expanded

search space. The expanded search space has the largest number of different

architecture configurations to explore and thus was the slowest to converge.

Overall, the hypercolumn search space achieved the best fitness as it was able
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Algorithm Test AUROC (%)

1. Wang et al. (2017) [152] 73.8
2. CheXNet (2017) [114] 84.4
3. Google AutoML (2018) [12] 79.7

4. Normal (CMSR) 81.1
5. Expanded (CMSR) 82.2
6. Hypercolumn (CMSR) 84.3

Table 5.3: AUROC on test set for existing approaches that use hand-designed
architectures and networks which are evolved using CMSR. CMSR combined
with the hypercolumn approach results in an architecture that is competitive
with the state-of-the-art.

to make use of higher level features extracted another powerful state-of-the-art

network.

Table 5.3 compares the performance of the best evolved networks with

existing approaches that use hand-designed network architectures on a holdout

test set of images. These include results from the authors who originally intro-

duced the Chest X-ray dataset and also CheXNet [114], which is the currently

published state-of-the-art. For comparison with existing architecture search

algorithms, results from Google AutoML [12], a service for automatically op-

timizing the architecture and weights of the network given a dataset, are also

listed. The results show that while CheXNet overall has the highest AUROC

score, the results from evolved networks in the hypercolumn search space are

almost equivalent. More impressively, the results from evolving the network

architectures from scratch (normal and expanded) are only around 2 AUROC

points behind the state-of-the-art. Lastly, all the CMSR results exceed the
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performance of the model generated by Google AutoML.

Visualizations of the best evolved networks from the expanded and

hypercolumn search spaces are displayed in Figure 5.9. The visualization for

the normal search space has been omitted because it looks very similar to

the best evolved network from the expanded search space. For the expanded

network, Figure 5.9a shows the routing between the modules that is evolved

using CMSR while Figure 5.9b shows the architecture of different modules

themselves. Figures 5.9c and 5.9d show the same, but for the hypercolumn

network. Each unique module architecture is associated with a corresponding

color. As in the Omniglot domain, the evolved topologies show a mixture of

both complex and simple modules. However, it is interesting to note that the

evolved architecture for the hypercolumn search space is significantly simpler

than for the expanded one. The hypercolumn network is given high-level

features as input and thus fewer layers and modules are required to process

the input.

5.7 Conclusion

This chapter has introduced an extension to CoDeepNEAT (CMSR)

that generalizes the soft-ordering architecture and allows CoDeepNEAT to

evolve more powerful networks in the MTL domain. Promising experiment re-

sults are shown for two MTL domains, namely the Omniglot character recogni-

tion and the Chest X-ray image classification domain. The results support that

CMSR is a powerful approach and is capable of evolving multitask networks
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(a) Best ex-
panded module
routing.

(b) Best expanded
modules.

(c) Best hyper-
column module
routing.

(d) Best hypercol-
umn modules.

Figure 5.9: Overview of the best architectures evolved for the expanded (Fig-
ures 5.9a and 5.9b) and hypercolumn (Figures 5.9c and 5.9d) search spaces.
The best hypercolumn network is significantly simpler than the best expanded
network.
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that achieve results capable of meeting or exceeding the state-of-the-art.
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Chapter 6

Multiobjective Coevolution of Deep Neural

Network Architectures

This chapter will describe how multiobjective optimization can be ap-

plied to architecture search for deep neural networks. The foundations and

related work of evolutionary multiobjective optimization are covered in Sec-

tion 2.2.5. This chapter will first review the motivations and two interesting

use cases for multiobjective neural architecture search. Second, an overview is

given of how CoDeepNEAT, a single-objective optimization algorithm, is mod-

ified to support multiobjective search. Third, multiobjective CoDeepNEAT is

combined with novelty search to accelerate performance during evolution and

experimental results are presented in the image captioning domain. Fourth,

multiobjective evolution is combined with CMSR to optimize both the fit-

ness and complexity and experimental results are reported in the Chest X-ray

multitask classification domain.

6.1 Motivation

Multiobjective optimization techniques are widely used in the neuroevo-

lution and reinforcement learning domain. For example, it has been used to
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evolve diverse multimodal behaviors for agents in games [127] and also has been

applied to help escape deceptive local optima in the fitness landscape [82,130].

Unfortunately, there has not been much work until very recently [35,93] on ap-

plying multiobjective techniques to neural architecture search. However, there

are many scenarios where having another objective besides the performance

of the network could be beneficial. This chapter addresses two such use cases:

Accelerating convergence by overcoming deception in architecture search.

One of the challenges of neural architecture search is that the fitness land-

scape is very ill-defined and there many deceptive traps or local optima in

the search space. For example, in the ImageNet image classification domain,

ResNet [51] is a local optima while GoogLeNet [145] is another one. Although

the performance between the two networks are relatively close, their network

architectures can not be further apart. This observation suggests that the

fitness landscape is highly deceptive and there is no obvious path going from

one good architecture to another good one. Fortunately, novelty search [80] is

a promising method for overcoming deception during optimization. It would

be useful if novelty and fitness based objectives can be combined to help es-

cape local optima more easily, thus accelerating convergence to good network

architectures during evolution.

Optimizing DNNs for Mobile Applications. Smartphones are becoming

increasingly prevalent and replacing other devices such as cameras or music

players. AI enabled smartphone applications are also becoming more popular

but they often are restricted by the limited memory present in mobile devices.
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As DNNs can have up to hundreds of millions of weights, they often cannot fit

inside the one or two gigabytes of RAM that most smartphones have. Much

research is focused on minimizing the size of a network while maximizing its

performance [56]. Multiobjective architecture search is a promising approach

for automatically discovering compact network architectures that also perform

well on a benchmark or task.

6.2 Multiobjective CoDeepNEAT

In this section, CoDeepNEAT is modified and extended to support

multiobjective optimization. The procedure for integrating novelty search into

multiobjective CoDeepNEAT is also covered in more detail.

6.2.1 Algorithm Overview

In a single-objective evolutionary algorithm like CoDeepNEAT, evolu-

tionary elitism is applied in both the blueprint and the module populations.

The elitism involves preserving the top fraction Fl of the individuals within

each species into the next generation based on their ranking within the species.

Normally, this ranking is based on sorting the individuals by the primary and

only objective fitness. In the multiobjective version of CoDeepNEAT (MCDN),

this ranking is computing using multiple fitness values for each individual. The

ranking is based on generating successive Pareto fronts [29,168] from the indi-

viduals and ordering the individuals within each Pareto front based on either

the primary objective fitness or a secondary objective value. This approach
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to ranking the individuals with Pareto fronts draws inspiration from NSGA-

II [31], a powerful and widely used multiobjective EA.

In addition, elitism is applied at the coevolutionary level where net-

works are assembled together from the blueprints and modules. In particular,

elitism is used to determine the assembled networks that are preserved and

reevaluated in the next generation. The ranking method that is used to de-

termine what fraction Fu assembled networks are preserved is the same as the

method used for the blueprints and modules.

While the ranking method can be generalized to any number of objec-

tives, the implementation inside CoDeepNEAT is limited to two objectives.

This restriction is for the sake of simplicity and because the use cases de-

scribed earlier do not require more than two objectives. Algorithm 7 gives a

detailed explanation of how the ranking is performed within a single genera-

tion of MCDN for the blueprints and modules. Similarly, Algorithm 8 details

how the assembled networks are ranked. Algorithm 9 shows how the Pareto

front, which is necessary for ranking, is calculated given a group of individuals

that have been evaluated for each objective.

There is also an optional configuration parameter for MCDN (last line

in Algorithm 8) that allows the individuals within each Pareto front to be

sorted and ranked with respect to the secondary objective instead of the pri-

mary one. This configuration parameter can control whether the primary or

secondary objective is favored more during evolution. The right choice for this

configuration parameter will depend on the use case.
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Algorithm 7 Ranking for Blueprints/Modules in MCDN

1. Given population of modules/blueprints, evaluated primary and secondary objectives
(X and Y )
2. For each species Si during every generation:

3. Create new empty species Ŝi

4. While Si is not empty
5. Determine Pareto front of Si by passing Xi and Yi to Alg. 9
6. Remove individuals in Pareto front of Si and add to Ŝi

7. Replace Si with Ŝi

8. Truncate Ŝi by removing the last fraction Fl

8. Generate new individuals using mutation/crossover
9. Add new individuals to Ŝi, proceed as normal

Algorithm 8 Ranking for Assembled Networks in MCDN

1. For each generation:
2. Create archive A using leftover networks from last generation
3. Add to A newly assembled networks
4. Evaluate all networks in A on each objective Oi

5. Create new empty archive Â
6. While A is not empty
7. Determine Pareto front of A using Alg. 9
8. Remove individuals in Pareto front of A and add to P̂

9. Replace A with Â
10. Truncate Â by removing the last fraction Fu

Algorithm 9 Calculating Pareto front for MCDN

1. Given list of individuals I, and corresponding objective fitnesses X and Y
2. Sort I in descending order by first objective fitnesses X
3. Create new Pareto front PF with first individual I0
4. For each individual Ii, i > 0

5. If Yi is greater than the Yj , where Ij is last individual in PF
6. Append Ii to PF

7. Sort PF in descending order by second objective Y (Optional)

Figure 6.1: Overview of lower and upper levels of MCDN perform ranking of
individuals and also how the Pareto front is calculated from two objectives.
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6.2.2 Combining Multiobjective CoDeepNEAT with Novelty Search

Novelty search is a powerful method for overcoming deceptive traps in

evolution and local optima in the fitness landscape [80]. It avoids deceptive

local optima by pressuring the EA to search for solutions that result in novel

phenotypical behaviors and encourage exploration of the search space. The

foundations of novelty search and how the novelty of an individual is calculated

are reviewed in Section 2.2.6. As in previous work [82,130,156], novelty search

is combined with MCDN by using it as a secondary objective in addition to

the performance of the network, which is still the primary objective.

In architecture search, the novelty behavior metric is not as well defined

as in reinforcement learning domain. The evolved network is not interacting

with an environment where there is an easily observable behavior [80]. Thus,

the behavior metric is instead defined by extracting features or embeddings

from the graph structure of the evolved networks, as Figure 6.2 shows.

During evaluation of a candidate network, these features are computed

at the end of training and are then concatenated into a 11-dimensional long

behavior vector. The vector is then added to a common shared novelty archive,

which is used to compute the novelty value for the network by calculating its

Euclidean distance to the closest other network in behavior space. The novelty

score and fitness for the network are then returned back to MCDN. As the

fitness is the only metric that truly matters in the end, the parameter described

earlier is configured to favor the primary objective (fitness).
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1. Number of parameters of the network

2. Number of layers in the network (N)

3. Number of connections between layers (E)

4. The length of the longest path within the network

5. The density of the network, defined as D = |E|
|N |(|N |−1)

6. Maximum of the number of connections for each layer

7. Mean of the number of connections for each layer

8. Standard deviation of the number of connections for each layer

9. Maximum of the pagerank for each layer

10. Mean of the pagerank for each layer

11. Standard deviation of the pagerank for each layer

Figure 6.2: List of the hand-crafted features used to characterize the behavior
of each evolved network for novelty search. The novelty score generated using
the behavior metric is used as a secondary objective along with fitness.

6.2.3 Experimental Results in MSCOCO Image Captioning Do-
main

This section reviews results from applying MCDN to the MSCOCO

image captioning domain. The domain and the metrics used to characterize

network performance are presented in Section 4.5.

The primary objective fitness is the performance relative to a baseline

image captioning architecture [150] on common sentence similarity metrics

such as BLEU, METEOR, and CIDER. Figure 6.3 shows how fitness improved

during evolution for both MCDN and CoDeepNEAT. It is interesting to note

that MCDN improved slower than CoDeepNEAT for the first 12 generations.

This is expected since MCDN used both novelty and fitness as the objectives
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Figure 6.3: Comparison of fitness over generations of MCDN (multiobjective)
and CoDeepNEAT (single-objective) on the MSCOCO image captioning do-
main. Solid lines show the fitness of best assembled network and dotted lines
shows the mean fitness. MCDN is able to converge at generation 15, 15 gen-
erations faster than CoDeepNEAT.

and novelty required some time to build up an archive of individuals to be

able to accurately calculate distances of individuals in behavior space. However

after 12 generations, MCDN began to outperform CoDeepNEAT, and was able

to converge roughly 15 generations before CoDeepNEAT. Novelty encouraged

exploration of the architecture search space and allowed MCDN to overcome

deceptive traps in network design. Both the multiobjective MCDN and single

CoDeepNEAT eventually converged to around the same fitness ceiling. This

fitness ceiling does not represent the final performance of evolved networks

and was due to the reduced number of training epochs used during evolution

to keep the time of each generation reasonable.
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(a) Best network for MCDN (b) Best network for CoDeepNEAT

Figure 6.4: Visualizations of best networks evolved by MCDN (Figure 6.4a)
and CoDeepNEAT (Figure 6.4b) on the image captioning domain. The mod-
ules in both networks are highlighted in red. Both networks are able to reach
similar fitness after six epochs of training, but the network evolved by MCDN
is significantly more complex and contains more novel module structures.
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Figure 6.4a shows the architecture of the best evolved network by

MCDN while Figure 6.4b shows the best architecture of the best evolved net-

work by CoDeepNEAT. Both algorithms were run for approximately the same

number of generations and with the same evolution parameters (except for

those related to multiobjective search) but the networks discovered are very

different. Interestingly, the network evolved by MCDN is significantly more

complex with regards to the number of layers, modules, and the depth of the

network. The increased complexity could suggest that novelty is helping evo-

lution escape local optima in fitness that are caused by the networks being not

deep enough.

6.3 Multiobjective CMSR

Multiobjective CMSR (MCMSR) is an immediate extension of CMSR

to multiobjective search by incorporating MCDN’s Pareto front and ranking

algorithms (described in Section 6.2).

6.3.1 Using Multiobjective CMSR for Network Complexity Mini-
mization

MCMSR is applied to simultaneously optimize the evolved network ar-

chitectures and to minimize the complexity of the network. There are many

ways to characterize how complex a DNN is, including number of param-

eters, number of floating point operations (FLOPS), and training/inference

time of the network. The most commonly used metric is number of parame-
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ters because other metrics can change depending on the deep learning library

implementation and performance of the hardware. In addition, this metric is

becoming increasingly important in mobile applications [56] as mobile devices

are highly constrained in terms of memory and require networks with as high

performance per parameter ratio as possible. Thus, number of parameters is

also used as the secondary objective with MCMSR in the experiments in the

following section.

Although the number of parameters can be very large it does not pose

a problem for MCMSR since it only cares about the relative rankings between

different objective values, not their absolute differences. As a result, no scal-

ing of the secondary objective is required for MCMSR. Preliminary results

show that favoring the secondary objective (minimizing network complexity)

during ranking will lead to the evolution of slightly smaller networks with

slightly worse fitness. Since network performance is typically more important

that achieving the smallest possible networks in mobile applications, the con-

figuration parameter described in Section 6.2 is set to put more pressure on

optimizing the primary objective (fitness).

An alternative approach for minimizing the network size is to add a

complexity penalty term to the fitness for single objective CMSR. However

this approach only discovers a single kind of trade-off between the size and

performance of the evolved networks, while MCMSR can explore more varied

trade-offs between the two objectives. The complexity penalty also introduces

a new hyperparameter which must be tuned beforehand and preliminary ex-
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Figure 6.5: Comparison of fitness over generations of the single-objective
CMSR and multiobjective MCMSR with the normal search space (Table 5.2).
Solid lines show the fitness of best assembled network and dotted lines shows
the mean fitness. Minimizing network complexity also seems to benefit the pri-
mary objective; MCMSR is able to achieve higher fitness and converge faster
than CMSR.

periments showed that applying such a penalty often caused evolution to pre-

maturely converge due to lack of diversity in the population.

6.3.2 Experimental Results in Chest X-ray domain

MCMSR, the multiobjective version of CMSR, was evaluated on the

Chest X-ray domain, described back in to Section 5.6.1. The experimental

setup for MCMSR is very similar to that of CMSR, which is detailed in Sec-

tion 5.6.2. The primary objective fitness for MCMSR was still AUROC, and

the secondary objective was the number of parameters in the evolved network.

The search space was the normal search space described in Table 5.2; the exper-
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imental configuration parameters like population size and training time during

evaluation remained the same. After evolution, the best evolved network from

MCMSR was trained fully using the same methods in Section 5.6.2. The same

data augmentation techniques (random translations, flips, and rotations) and

model augmentation method [119,169] were used.
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(a) Generation 10
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(b) Generation 20
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(c) Generation 30
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(d) Generation 40
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(e) Generation 50
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Figure 6.6: Comparison of the single and multiobjective Pareto fronts for
CMSR (green) and MCMSR (blue) respectively at various generations dur-
ing evolution. The X-axis shows number of parameters (secondary objective)
while Y-axis shows AUROC fitness (primary objective). The Pareto front for
MCMSR consistently dominates over CMSR’s Pareto front. In other words,
MCMSR discovers trade-offs between complexity and performance that are
always better than those found by CMSR.
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Figure 6.5 compares the main objective fitness (AUROC) during evo-

lution for CMSR and MCMSR. Although MCMSR is optimizing for both the

primary fitness and the complexity of the network, it is able to discover bet-

ter performing networks faster. Both methods eventually were able to reach

the same fitness, but MCMSR converges faster than CMSR. In addition, as

expected from an multiobjective optimization algorithm, MCMSR is able to

discover networks with fewer parameters. As shown in Figure 6.6, the Pareto

front generated during evolution by MCMSR (blue) dominates that of the

CMSR (green) when compared at same generations during evolution. Al-

though CMSR is a single-objective algorithm, it is still possible to generate a

Pareto front by giving the primary and secondary objective values of all the

networks discovered in past generations to Algorithm 9. The Pareto front for

MCMSR was also created in a similar manner.

121



(a) 56K network (b) 125K network

(c) Module
used by both
networks

Figure 6.7: Visualizations of networks with different complexity discovered
by MCMSR. The performance of the significantly smaller 56K network (Fig-
ure 6.7a) is nearly as good as that of the larger 125K network (Figure 6.7b).
The smaller network uses only two instances of the module architecture shown
in Figure 6.7c while the larger network uses four instances of the same module.
These two networks show that MCMSR is able to find good trade-offs between
two conflicting objectives by clever usage of modules.

Visualizations of the some of the networks evolved by MCMSR are
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shown in Figure 6.7. MCMSR was able to discover a very powerful network

(Figure 6.7b) that achieved 77 AUROC after 8 epochs of training. This net-

work has 125K parameters and is already significantly smaller than networks

with similar fitness discovered with CMSR. Furthermore, MCMSR was able

to discover an even smaller network (Figure 6.7a) with only 56K parameters

and a fitness of 74 AUROC after 8 epochs of training. The main difference

between the smaller and larger network is that the smaller one uses a par-

ticularly complex module architecture (Figure 6.7c) only two times within its

blueprint while the larger network uses the same module four times.

6.4 Conclusion

This chapter introduced a multiobjective extension of CoDeepNEAT

and its multitask variant (MCDN, MCMSR). MCDN was combined with nov-

elty search and was applied to the MSCOCO image captioning domain. Nov-

elty search allowed MCDN to escape deception in the architecture search space

and as a result, MCDN was able to reach the best possible fitness faster than

CoDeepNEAT. Likewise, MCMSR was applied to the Chest X-ray domain to

optimize both the complexity and the fitness of the networks. MCMSR was

consistently able to discover networks with better trade-offs with respect to

complexity and fitness when compared to CMSR. These results validate the

effectiveness of multiobjective optimization and its relevance to neural archi-

tecture search.
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Chapter 7

Discussion and Future Work

While experimental results in many domains such as image classifica-

tion, image captioning, and multitask learning have validated the power of

the methods described in this dissertation, it is still necessary to draw some

higher level conclusions regarding evolutionary approaches to neural archi-

tecture search in general. In order do to so, this chapter will examine the

algorithms described in this dissertation in more detail. By discussing their

successes limitations, promising areas of future work to improve performance

are revealed.

7.1 DeepNEAT and CoDeepNEAT

This section summarizes the important lessons learned from the experi-

ments that used DeepNEAT or CoDeepNEAT evolve the network architecture.

Future work for improving CoDeepNEAT, also applicable to the multitask and

multiobjective versions such as CMSR, MCDN and MCMSR are proposed as

well.
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7.1.1 Discussion

The results for DeepNEAT and CoDeepNEAT show that the evolution-

ary approach to optimizing deep neural networks is feasible: The results are

comparable to hand-designed architectures in benchmark tasks, and it is pos-

sible to build real-world applications based on the approach. It is important to

note that the approach has not yet been pushed to its full potential. It takes a

couple of days to train each deep neural network on a state-of-the-art GPU, and

over the course of evolution, thousands of them need to be trained. Therefore,

the results are limited by the available computational power. Interestingly,

since it was necessary to train networks only partially when evaluating them,

evolution is biased towards discovering fast learners instead of top performers.

This is an interesting result on its own since evolution can be guided with

goals other than simply accuracy, including training time, execution time, or

memory requirements of the network.

Significantly more computational resources are likely to become avail-

able in the near future. Already cloud-based services such as Amazon AWS [1]

offer GPU computation with a reasonable cost, and efforts to harness idle cy-

cles on gaming center GPUs are underway. At Sentient Technologies [7], where

most of the research in this dissertation was done, a distributed AI computing

system called DarkCycle was built between 2015 and 2017. Darkcycle could

potentially utilize idle cycles of 2M CPUs and 5000 GPUs around the world,

resulting in a peak performance of 9 petaflops, on par with the fastest super-

computers in the world. Not many approaches can take advantage of such
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power, but evolution of deep learning neural networks can. The search space

of different components and topologies can be extended, and more hyperpa-

rameters be optimized. Given the results in this paper, this approach is likely

to discover designs that are superior to those that can be developed by hand

today. It is also likely to make it possible to apply deep learning to a wider

array of tasks and applications in the future.

DeepNEAT and CoDeepNEAT (along with its variants such as CMSR,

CMDN, and MCMSR) are automated and efficient methods for DNN archi-

tecture and hyperparameter optimization that is applicable to many domains

and use cases. However there are still many opportunities to improve the per-

formance and search space explored. For example, recent innovations in the

architecture and training procedure of DNNs such as attention layers [147] and

cyclical learning rates [134] could be incorporated into the architecture search

space.

There also exists much potential for improving the running time of

evolution. The experiments described in Chapter 4, 5 and 6 are expensive to

run, requiring more than 100 worker machines each equipped with a GPU.

Another major compromise with the current version of CoDeepNEAT is that

during evaluation, the number of training epochs for the networks are capped

at a very low number for the sake of limiting generation time to a few hours

and keeping the overall computational time tractable. Unfortunately, lack of

training could lead to biased results and premature convergence of evolution

to a suboptimal solution. A possible way to deal with this problem might be
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to learn a regression model to predict the fitness when the network is fully

trained.

7.1.2 Future Work

Since DeepNEAT has already been superseded and outperformed by

CoDeepNEAT, most of the focus of future work will be improving CoDeep-

NEAT and its variants. There are two major areas where there is potential for

improvement: (1) Generalizing and enlarging the search space that CoDeep-

NEAT explores, thereby making it more likely to discover novel architectures

that beat existing hand-designed ones. (2) Improving the efficiency of evolu-

tion: For a given computational and time budget, maximize the number of

candidate architectures to be evaluated. In other words, if the amount of time

to find a state-of-the-art DNN is minimized, even better networks can be found

by running evolution longer.

Potential ideas for achieving the first goal include the following:

Layer-type-aware mutation and crossover. In the current implementa-

tion of CoDeepNEAT, the neural network layer type for each node in the chro-

mosome is stored as part of the binary hyperparameter table. Consequently,

during evolution, CoDeepNEAT is not aware of which layer corresponds to

which node and thus during mutation and crossover, might cause incompati-

ble layers to be grouped together (for example a convolutional and a recurrent

layer). In the current implementation, this drawback is avoided by restricting

evolution to just a few layer types that are guaranteed to be compatible with
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each other. However, in order increase the search space and diversity of archi-

tectures evolved, explicit support for many different types of layers must be

added to CoDeepNEAT.

One solution is to store the layer type explicitly and separately from

the rest of the hyperparameters and to maintain a compatibility matrix that

indicates which pairs of layers are allowed to be connected with each other and

which are not. During mutation, all connection genes in the chromosome are

checked to ensure no layer type violations; if any violations are discovered, the

mutation is declared invalid and aborted. Similarly, the crossover operation

will be aborted if it leads to two incompatible layers connected to each other.

Lastly, depending on the domain, the user should be able to specify to the EA

a set of relevant layer types to be used during evolution.

Support for multiple input and output types. One issue with the cur-

rent implementation is that there is only one input and one output layer in

each evolved DNN architecture. While this limitation is fine for tasks such

as image classification, other domains such as MTL could benefit from archi-

tectures with multiple input and output connections. Such an extension is

straightforward for DeepNEAT (since NEAT already supports multiple input

and output neurons), but the extension to CoDeepNEAT requires more effort.

For example, should only the blueprint chromosomes support multiple inputs

and outputs or should multiple inputs be handled in the modules instead?

One issue with modules having multiple inputs and outputs is that connecting

two modules together will become more difficult. There now could be many
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different connectivity patterns between the output layers of one module and

the inputs of another module. For example, each output layer might connect

randomly to another input layer, or it could connect to every possible input.

One of the possible future experiments will be to explore different connectivity

patterns and evaluate how they affect the performance of CoDeepNEAT.

Evolution of Custom Layer Types and Loss Functions. While CoDeep-

NEAT can evolve how different layer types connect, it is unable to optimize

the internals of a layer. Each layer in a neural network can be thought of as

a mathematical function, in other words, a hierarchical composition of differ-

ent types of elementary mathematical operations such as products, sums, etc.

Such tree-like structure can be clearly seen in the equations for describing an

LSTM layer [55]:

ft = σg(Wfxt + Ufht−1 + bf )
it = σg(Wixt + Uiht−1 + bi)
ot = σg(Woxt + Uoht−1 + bo)
ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc)
ht = ot � σh(ct)

(7.1)

Evolving novel functions makes it possible to create entirely new layers with

potentially better performance than existing ones. Since mathematical func-

tions often have a tree-like structure, genetic programming (GP) [110,117,142]

is likely to be more an appropriate approach. For example, GP and CoDeep-

NEAT can be setup to run together in parallel. From time to time, CoDeep-

NEAT can pull novel layers from the GP population pool, use them in can-

didate DNN architectures and then assign the performance of these DNN ar-

129



chitectures as fitness to these novel layers. A similar approach could also be

applied to evolve the loss function that is used during training of candidate

DNNs generated by CoDeepNEAT.

Evolution of Preprocessing and Data Augmentation. In many tasks,

data augmentation and preprocessing have been shown to be crucial in achiev-

ing good performance, especially when the amount of training data is limited.

The boost in performance from data augmentation sometimes can exceed the

improvement achieved through a new architecture algorithm or a new training

algorithm. Data augmentation can be thought of as a special non-differentiable

and non-trainable computation graph (where each node is some sort of data

transformation) that is applied to each training sample before it is passed

as input into the DNN. Similarly, data preprocessing is a similar computa-

tion graph that is applied only once to the input data before training. These

computational graphs could be evolved with CoDeepNEAT, either through a

coevolution approach where there is a separate population of data augmenta-

tion/preprocessing graphs alongside the blueprint/module populations, or as a

special type of module that represents the input blueprint node. As with the

layer types, it is necessary to check that incompatible data transformations

are not placed right next to each other in the computational graph.

Promising ideas for achieving the second goal, improving the efficiency

and performance of CoDeepNEAT, include:

Surrogate Optimization with Vector Representations of DNNs. As past

work in bilevel optimization of control tasks [86] has shown, surrogate opti-
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mization is an efficient way to reduce the number of evaluations required to

reach a high fitness. In surrogate optimization, real fitness evaluations are

replaced by predictions from a regression (surrogate) model trained on data

collected by actual evaluations. There are two possible ways in which surro-

gate optimization can be used to improve the performance of CoDeepNEAT:

(1) During mutation, a large number of mutated child chromosomes are gen-

erated. The networks that correspond to these chromosomes are assigned a

fitness by the surrogate model and only those child networks with the high-

est predicted fitnesses are allowed to continue onto the next generation. This

modification results in more intelligent mutations than a purely random ap-

proach. (2) During evaluation of individuals in the population, some of the

individuals are randomly chosen to be evaluated by the surrogate model in-

stead, thus reducing the burden for computationally intensive evaluation and

training. The surrogate model is updated at the end of every generation using

fitness and performance metrics collected from DNNs that underwent actual

fitness evaluation.

One issue with using a regression model as the surrogate is that it

requires a fixed length vector or feature representation of the network. As

evolution of DNNs creates networks of arbitrary size, complexity, and struc-

ture, it is not easy to compress the network into a fixed length description.

There has been recent work on using data-driven methods such as Deepwalk

to come up with vector embeddings for nodes in graphs [111]. In Deepwalk,

random walks across the nodes of the graph are used to generate embeddings
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for each node through an embedding algorithm such as Word2Vec [101]. A

extension of this idea called Skip-Graph [77] uses recurrent neural networks

and random walks to generate a single embedding for the entire graph. As the

topology of DNNs is essentially a graph, it will be relatively straightforward to

extend the basic methodology behind Deepwalk and Skip-Graph to generating

embeddings or representations of DNNs.
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(a) hand-designed embedding

(b) Deepwalk embedding

Figure 7.1: Comparison of the predictive performance of hand-crafted embed-
dings described in Figure 6.2 and learned embeddings using Deepwalk [111].
The histogram of error is shown on the left while the correlation between pre-
dicted and actual fitnesses is shown on the right. Deepwalk is able to predict
the fitnesses of the networks with smaller mean absolute error (MAE) and with
higher correlation to the actual fitnesses than the hand-designed embeddings.
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Preliminary experiments showed that Deepwalk can generate embed-

dings that perform better than handcrafted features such as those described

in Figure 6.2. Figure 7.1 shows the performance of both in predicting the

fitnesses of different network topologies in the MSCOCO image captioning do-

main. Deepwalk was first used to learn the embedding on a training set of

about 3000 networks evolved from the MSCOCO experiments with CoDeep-

NEAT. Both approaches were then evaluated on a test set of 500 networks.

As seen in Figure 7.1b, Deepwalk is able to learn a better embedding that

predicts the fitness of the networks with less mean absolute error than the

hand-designed embedding shown in Figure 7.1a (0.0733 vs 0.0891). In ad-

dition, the correlation between the predicted and actual fitness is higher for

Deepwalk as well when compared to the hand-designed approach (0.7946 vs

0.7555). Future work will investigate the effectiveness of DNN embeddings or

representations that are learned from data (such as Deepwalk and Skip-graph)

during evolution, where they are used to train a surrogate model in an online

manner.
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Figure 7.2: Visualization of a sequence-to-sequence model. The model is com-
posed of two LSTM layers [8]. The LSTM on the left is called the encoder
and the LSTM on the right is called the decoder. This sequence-to-sequence
network can be used to accurately predict the learning curves of DNNs.

Fitness Prediction with Sequence-to-Sequence Network. Another ap-

proach similar to surrogate optimization for reducing computation time is fit-

ness prediction with sequence-to-sequence models. Such models are powerful

approaches that make use of recurrent neural networks to learning a mapping

between two different sequences of multi-dimensional vectors [143]. As shown

in Figure 7.2, the network is composed of two LSTM layers, one called the en-

coder and another called the decoder. A sequence of arbitrary length is given

as input to the encoder and the encoder is used to generate an embedding

from its hidden-state representation. This embedding is then passed to the

decoder (which shares the same architecture and number of parameters) as

the encoder and another sequence is outputted. The model can be trained so

that when given an input sequence it can predict a particular output sequence

that is associated or related with the input.
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Sequence-to-sequence models can be used to improve the performance

of CoDeepNEAT by reducing the number of epochs require for training during

evaluation of the assembled networks. For example, some of the assembled

networks are trained for a reduced number of epochs while the remaining are

fully trained. The data points (such as training loss and fitness after every

epoch) can be used to train a model to predict the full training curves of

networks that are only partially trained. Such method can significantly reduce

the computational budget required to perform evolutionary architecture search

and the number of generations required for fitness to converge.
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Figure 7.3: Visualizations of the example predictions of a sequence-to-sequence
model when given three epochs of training loss (green) and fitness (blue) as
input. The solid line shows the ground-truth values while the break shows the
first few epochs that were given as input to the model. The dotted line shows
the predicted values of the model. The model is accurate and able to predict
within 2% error of the ground-truth.

Preliminary experiments in applying a sequence-to-sequence model to

predict the training curves of networks in the Omniglot domain are promising.
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The model is trained on training data (both training loss and fitness on vali-

dation set) from approximately 300 networks and then tested on a holdout set

of 100 networks. The input sequence length was only three and much smaller

when compared to the length of the full sequence (30). However, as Figure 7.3

shows, the predicted training curves (dotted lines) are very close to the actual

training curves (solid lines) for both the loss (green) and the fitness (blue).

The average error is with 2% and shows the power of the model even when

given very little training data. Future work will attempt to perform online

learning of the model during evolution to substantially reduce the training

times of many networks.

Hyperparameter Fine-tuning with CMA-ES. CMA-ES is a state-of-the-

art EA for the optimization of fixed-length real-valued vectors [47, 91]. The

algorithm works well because it can capture interactions between dimensions.

While CMA-ES can outperform other EAs, it cannot optimize the architecture

of DNNs by itself. However, it is conceivable that after the evolution of a

DNN’s architecture through CodeepNEAT, any real-valued hyperparameters

can continue to be optimized using CMA-ES. These values include critical

training parameters such as learning rate and momentum, weight initialization,

weight regularization, and various data augmentation parameters.

Preservation of Network Weights During Mutation and Evaluation.

One of the main sources of computational complexity in the current framework

for training and evaluating DNNs is that the networks have to be trained from

scratch. Even if a network remains unchanged from one generation to the
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next, any previous effort spent on training it during the previous generation is

completely wasted. The number of epochs that each network can be trained

is limited to a relatively low number, leading to premature fitness convergence

in CoDeepNEAT and creates an undesirable bias towards networks that learn

very fast, but also overfit when trained for longer.

This problem can be solved by sending back the weights/parameters

of the trained networks along with the fitness from the workers, storing the

weights, and sending the weights along with the DNN for evaluation during

the next generation. Consequently, a network with pretrained weights will

not start training from scratch and if it stays in the population long enough,

the network might be trained until its loss converges. However, there are still

two issues with this solution: (1) Networks that undergo mutations that add

new layers or connections between layers cannot simply use the weights of the

parent. In this case, something similar to Net2Net [21] can be implemented,

where new weights parameters are added in a way that preserves the behavior

of the network. (2) Weight preservation is biased towards older, well trained

networks and might lead to new but promising networks being crowded out.

This bias can be alleviated by using a regression model that incorporates

features describing the network’s actual performance to predict its converged

fitness; this predicted fitness is then used in place of the original fitness.

All of the proposed future work for CoDeepNEAT require minimal

changes to the core algorithm and have the potential to significantly improve

performance or reduce computation time.
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7.2 CoDeepNEAT-AES

Figure 7.4: Histogram of time per generation for synchronous CoDeepNEAT
and CoDeepNEAT-AES. The average time per generation for CoDeepNEAT-
AES is significantly less than that for CoDeepNEAT.

As the experimental results show, the asynchronous CoDeepNEAT-

AES provides significant speedups when compared to its synchronous base-

line. Furthermore, the hyperparameter D, which controls the ratio between K

(initial population size) and M (number of results to wait for), has a massive

impact on the performance for CoDeepNEAT-AES. In the case where D = 1

(M = K), CoDeepNEAT-AES becomes identical to a synchronous evalua-

tion strategy and slow for the reasons mentioned in Section 4.3. Interestingly

enough, setting a value for D that is too large also hurts performance because

as M becomes smaller, both the returned individuals and the new population

that is generated from them become less diverse.

The histogram in Figure 7.5 reveals how CoDeepNEAT-AES improves
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performance over a synchronous evaluation strategy. This plot visualizes the

relative frequency at which individuals (along with their fitness) return from

the completion service over the duration of a typical generation. In the syn-

chronous version of of CoDeepNEAT, individuals in the population are sub-

mitted and all come back in the same generation before evolution can proceed.

As a result the histogram for synchronous CoDeepNEAT resembles a Gaussian

distribution with only a few individuals returning early and later. Thus, much

time is spent waiting for the last few individuals to return at the end of a

generation. On the other hand, less time is wasted with CoDeepNEAT-AES,

as indicated by the flat distribution in the histogram. Individuals are returned

at a very steady, regular rate over the course of a generation and there are no

slow individuals that might bottleneck the EA.

Figure 7.5: Histogram of frequency of returned results over the course of a
typical generation for both algorithms. CoDeepNEAT-AES wastes less time
because the result results have a flat distribution compared to the Gaussian
distribution for CoDeepNEAT.
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Figure 7.6: Histogram comparing the delay between submission of individuals
by the EA and when they are actually trained. The average delay time is longer
for CoDeepNEAT-AES, but does not seem to negatively affect performance.

There is one statistic where the synchronous version of CoDeepNEAT

has an advantage and can be seen in the histogram in Figure 7.6. This his-

togram visualizes the time delay between when an individual is submitted by

the server to the completion service and when that same individual is eval-

uated (trained) by a worker node. The delay amount is slightly higher on

average for CoDeepNEAT-AES and is probably because CoDeepNEAT-AES

maintains more individuals on average on the completion service submission

buffer. However, as the fitness plot in Figure 4.10 indicate, having a higher

delay does not negatively affect performance.

In the future, it will be interesting to explore how the distribution of

evaluation times for the population affects the speed-up provided by asyn-

chrony. Second, more extensive experiments can be done to analyze how dif-
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ferent values for K and D will affect the performance of CoDeepNEAT-AES.

Third, more work can be done to determine how CoDeepNEAT-AES will per-

form in a heterogeneous distributed environment where the compute resources

can vary in terms of performance and hardware configuration.

Asynchronous evaluations are a promising method to speed up evolu-

tionary architecture search and as shown by CoDeepNEAT-AES, can be easily

integrated into a synchronous EA.

7.3 CM and CMSR

The experiments show that MTL can improve performance significantly

across tasks, and that the architecture used for it matters a lot. Multiple ways

of optimizing the architecture are proposed in this paper and the results lead

to several insights.

First, modules used in the architecture can be optimized and they do

end up different in a systematic way. Unlike in the original soft-ordering

architecture, evolution in CM and CMSR discovers a wide variety of simple

and complex modules, and they are often repeated in the architecture. They

thus serve as building blocks that are diverse in structure.

Second, the routing of the modules matter as well. In CMSR, the shared

but evolvable routing allows much more flexibility in how the modules can be

reused, extending the principles that make soft ordering useful. If indeed

the power from multitasking comes from integrating requirements of multiple
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tasks, this integration will happen in the embeddings that the modules form,

so it makes sense that sharing plays a central role.

Third, sharing components (including weight values) in CM can result

in powerful networks that are better than the original soft-ordering architec-

ture, However, CMSR often evolves away from sharing module weights, despite

the fact that module architectures are often reused in the network. This result

makes sense as well: Because the topology is shared in this approach, the dif-

ferentiation between tasks comes from differentiated modules. While shared

topology is effective on its own, experimental results in Table 5.1 show that

data augmentation leads to even better performance. These results suggest

that the performance boost that CMSR gives is orthogonal to other methods

to improve network generalization and can be combined with techniques such

as more advanced data augmentation, ensembling, and cyclical learning rate

scheduling.

There are several directions for future work in CMSR in particular. The

proposed algorithm can be extended to many applications that lend themselves

to the multitask approach. For instance, it will be interesting to see how it can

be used to find synergies in different tasks in vision and language. Furthermore,

as was shown in related work, the tasks do not even have to be closely related

to gain the benefit from MTL. For instance, object recognition can be paired

with caption generation. It is possible that the need to express the contents

of an image in words will help object recognition, and vice versa. Discovering

ways to tie such multimodal tasks together should be a good opportunity
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for evolutionary optimization, and constitutes a most interesting direction for

future work.

7.4 MCDN and MCMSR

(a) CoDeepNEAT (b) MCDN

Figure 7.7: Visualization of the number of unique species created for both
CoDeepNEAT (Figure 7.7a) and MCDN (Figure 7.7b) during evolution. Each
species are represented as a unique color, with the X-axis showing the current
generation. The increased number of species created by MCDN shows that
it is able to maintain a more diverse population through using novelty as a
secondary objective.

The faster convergence of MCDN compared to CoDeepNEAT shows

that novelty indeed helps to overcome deception and local optima in the ar-

chitecture search space. While both MCDN and CoDeepNEAT start from

minimal topologies, MCDN complexifies network structure faster and favors

individuals whose structure is more unique than the rest of the population.

As a result, it maintains a more diverse population pool which is critical in
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preventing premature convergence [83]. The increased diversity of the the

population pool can be visualized through speciation mechanism in CoDeep-

NEAT. As shown in Figure 7.7, the number of unique species created during

evolution in the module population pool is higher in MCDN than in CoDeep-

NEAT. In CoDeepNEAT, species rarely die out, but in MCDN, new species

are created and become extinct at a higher rate.

The experiment with MCMSR shows that multiobjective optimization

is effective in discovering networks that can balance trade-offs between multiple

metrics. As seen in the Pareto fronts of Figure 6.6, the networks discovered by

MCMSR dominate those evolved by CoDeepNEAT with respect to the com-

plexity and fitness metrics in almost every generation. Interestingly enough,

this domination is not symmetrical and evolves over time. In generation 10,

networks discovered by MCMSR and CoDeepNEAT have similar average com-

plexity but those evolved by MCMSR have much higher average fitness. This

situation changes later in evolution; by generation 40, the average complex-

ity of the networks discovered by MCMSR is noticeably lower than that of

CoDeepNEAT, but the gap in average fitness between MCMSR and CoDeep-

NEAT has also narrowed. In other words, MCMSR first tries optimize for the

first objective (fitness)and only when fitness is starting to converge, does it try

to improve the second objective (network complexity). Thus, multiobjective

evolution favors progress in the metric that is easiest to improve upon at the

moment and moves in the direction of least resistance. MCMSR does not get

stuck on one objective; it will try to optimize another objective if no progress
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is made on the current one.

More surprisingly, MCMSR maintains a higher average fitness with

each generation (Figure 6.5). This finding suggests that minimizing network

complexity produces a regularization effect that also improves the general-

ization of the network. This effect could be due to the fact that networks

evolved by MCMSR reuse modules more often when compared to CoDeep-

NEAT; extensive module reuse has been shown to improve performance in

many hand-designed architectures [51,145].

7.5 Conclusion

In this chapter, detailed analysis is carried out for the evolutionary ar-

chitecture search algorithms introduced in this dissertation. The successes and

limitations of these algorithms are explored and several interesting directions

of future work are proposed. In particular, the two most promising areas are

surrogate optimization and fitness prediction from partial training. Prelimi-

nary experimental results suggest that these two improvements might have a

large impact on the performance of evolutionary architecture search.
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Chapter 8

Conclusion

One of the biggest challenges faced in deep learning research today

is determining a suitable architecture and hyperparameters for deep neural

network (DNN) models. The success of deep learning in many problem do-

mains depends on solving this problem. For example, recent innovations and

advances in the large-scale image classification domain are mostly due to inno-

vations in the design of DNN architecture [145]. However, as deep learning has

scaled up to more challenging tasks, the architectures have become difficult

to design by hand. Subtle changes in network architecture can have a large

impact on performance, and as a result, it is difficult to tell what the right

architecture is for a given problem. In many deep models, the choice of ar-

chitecture/hyperparameters are often made based on history and convenience,

without extensive experimentation and testing. Such an informal architec-

ture optimization is most done by hand or by inefficient methods such as grid

search [149]. Unfortunately, these methods do not scale with the increasingly

complex architectures and hyperparameters often found in state-of-the-art net-

works.

Since significant gains in performance could be extracted with the right
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DNN configuration, there has been considerable research into automated meth-

ods for optimizing DNN hyperparameters such as Bayesian optimization [137].

Such methods usually assume a fixed architecture and optimize the hyperpa-

rameters only. While reinforcement learning based methods for architecture

search exist [169], they are restricted to optimizing within a limited search

space. This dissertation shows that an evolutionary approach to designing

network architectures can scale up to finding the right network architectures

in previously intractable search spaces. Given the anticipated increases in

available computing power, evolution of deep networks is promising approach

to constructing deep learning applications in the future. The following section

will list the significant contributions of this dissertation.

8.1 Contributions

Extending Neuroevolution to Deep Learning. This dissertation made a

connection between the vast amount of previous work done in evolving neural

networks with evolving DNN topology. By extending existing neuroevolution

methods to topology, components, and hyperparameters, an efficient EA for

architecture search called DeepNEAT was created. Powerful heuristics such as

incrementally complexifying DNNs and protecting innovation through speci-

fication allow DeepNEAT to evolve networks with arbitrary graph structure

and hyperparameters.

Extending Coevolution to Neural Architecture Search. Coevolution is

another innovation in DNN architecture search that is inspired by evolution-
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ary computation. CoDeepNEAT utilizes the principles behind coevolution by

evolving modules and blueprints; they are then combined to form an assem-

bled network for evaluation. CoDeepNEAT discovers promising architectures

within a much larger search space, including modular, repetitive structures

commonly seen in state-of-the-art DNNs.

Improving Performance through Asynchronous Evolution. CoDeepNEAT

can be parallelized by distributing network evaluations to a cluster of ma-

chines, but the drawback of such an approach is that many machines will be

idle at the end of a generation. An asynchronous version of CoDeepNEAT is

proposed that minimizes idle time and enables CoDeepNEAT to converge sig-

nificantly faster given a fixed computational budget. As a result, evolutionary

approaches to architecture search become less computationally complex.

Adapting Evolutionary Architecture Search to Multitask Learning. This

dissertation introduced a novel version of CoDeepNEAT called CMSR that

is specially designed for evolving deep multitask networks. CMSR extends

previous work that showed carefully designed routing and sharing of modules

can help multitask learning significantly. By evolving modules that can be used

in different ways by different tasks and incorporating a recent innovation called

soft-ordering, each task is processed differently in the evolved network. As a

result, CMSR achieves significantly better results than conventional neural

architectures in the multitask learning domain.

Evolutionary Multiobjective Architecture Search. Another major contri-

bution is the application of multiobjective optimization to neural architecture
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search. This application is done through a novel, multiobjective variant of

CoDeepNEAT that searches for a Pareto front of solutions, trading off two or

more objectives. This mechanism allows discovery of networks that not only

perform well but also have specific properties such as small size.

Competitive Results in Multiple Problem Domains. The methods pro-

posed in this dissertation achieve results comparable or exceeding the best

human designs in standard benchmarks in image classification, image caption-

ing, and multitask learning. This is especially true in the Omniglot domain,

where the evolved network beats the previous state-of-the-art by a large mar-

gin of 22%. Just as important is the fact the networks evolved by CoDeep-

NEAT and its variants are often smaller in size and faster to train than their

hand-designed counterparts.

Real World Applications of Evolutionary Architecture Search. The dis-

sertation also presented a case-study where a evolved network was used to

build a real-world application of automated image captioning on a magazine

website. The case-study shows the commercial viability of CoDeepNEAT and

its wide applicability to solve difficult and challenging problems commonly

seen in the real world.

8.2 Concluding Remarks

The work in this dissertation addressed the need and opportunity for

evolutionary computation in designing the next generation of deep learning

systems. The topology, components, and hyperparameters of the architecture
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can all be optimized simultaneously to fit the requirements of the task, re-

sulting in superior performance. Currently such designs are comparable or

slightly better than the best human designs; with steady increase in available

computing power, they should soon surpass them by a large margin, putting

the power to good use. This dissertation already showed that many different

domains can benefit from evolutionary neural architecture search; many more

areas remain where this technology can be applied to improve the user ex-

perience or improve productivity. Such automated design can make new and

unexpected applications of deep learning possible in vision, speech, language,

and other areas. In the long term, hand-design of algorithms and DNNs may

be fully replaced by more sophisticated and general-purpose automated sys-

tems to aid scientists in their research or engineers in designing an AI-enabled

product.
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[48] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Ma-

lik. Hypercolumns for object segmentation and fine-grained localization.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 447–456, 2015.

[49] K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher. A joint many-

task model: Growing a neural network for multiple NLP tasks. CoRR,

abs/1611.01587, 2016.

[50] Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, and Pe-

ter Stone. Hyperneat-ggp: A hyperneat-based atari general game player.

In Proceedings of the 14th annual conference on Genetic and evolution-

ary computation, pages 217–224. ACM, 2012.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-

ual learning for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 770–778,

2016.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity

mappings in deep residual networks. CoRR, abs/1603.05027, 2016.

[53] Robert Hecht-Nielsen. Theory of the backpropagation neural network.

In Neural networks for perception, pages 65–93. Elsevier, 1992.

159



[54] Geoffrey E. Hinton and Steven J. Nowlan. How learning can guide

evolution. Complex Systems, 1:495–502, 1987.

[55] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[56] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-

jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mo-

bilenets: Efficient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[57] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-

berger. Densely connected convolutional networks. In CVPR, volume 1,

page 3, 2017.

[58] J. T. Huang, J. Li, D. Yu, et al. Cross-language knowledge transfer

using multilingual deep neural network with shared hidden layers. In

Proc. of ICASSP, pages 7304–7308, 2013.

[59] Z. Huang, J. Li, S. M. Siniscalchi, et al. Rapid adaptation for deep neu-

ral networks through multi-task learning. In Proc. of INTERSPEECH,

2015.

[60] J. Huizinga, J.-B. Mouret, and J. Clune. Does aligning phenotypic

and genotypic modularity improve the evolution of neural networks? In

Proc. of GECCO, pages 125–132, 2016.

160



[61] Christian Igel, Thorsten Suttorp, and Nikolaus Hansen. Steady-state

selection and efficient covariance matrix update in the multi-objective

cma-es. In International Conference on Evolutionary Multi-Criterion

Optimization, pages 171–185. Springer, 2007.

[62] M. Jaderberg, V. Mnih, W. M. Czarnecki, et al. Reinforcement learning

with unsupervised auxiliary tasks. In ICLR, 2017.

[63] W. Jas̀kowski, K. Krawiec, and B. Wieloch. Multitask visual learning

using genetic programming. Evolutionary Computation, 16(4):439–459,

2008.

[64] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient

global optimization of expensive black-box functions. Journal of Global

optimization, 13(4):455–492, 1998.

[65] L. Kaiser, A. N. Gomez, N. Shazeer, et al. One model to learn them all.

CoRR, abs/1706.05137, 2017.

[66] Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in

multi-task feature learning. In Proc. of ICML, pages 521–528, 2011.

[67] S. Kelly and M. I. Heywood. Multi-task learning in atari video games

with emergent tangled program graphs. In Proc. of GECCO, pages

195–202, 2017.

[68] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In

Encyclopedia of machine learning, pages 257–258. Springer, 2011.

161



[69] Jinwoo Kim. Hierarchical asynchronous genetic algorithms for paral-

lel/distributed simulation-based optimization. PhD thesis, University of

Arizona, 1994.

[70] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

CoRR, abs/1412.6980, 2014.

[71] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for

one-shot image recognition. In Proc. of ICML, 2015.

[72] Rogier Koppejan and Shimon Whiteson. Neuroevolutionary reinforce-

ment learning for generalized control of simulated helicopters. Evolu-

tionary Intelligence, 4:219–241, 2011.

[73] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. In Advances in

neural information processing systems, pages 1097–1105, 2012.
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