
Evolutionary Bilevel Optimization for Complex Control
Tasks

Jason Liang and Risto Miikkulainen
Dept. of Computer Science, University of Texas at Austin

Austin, Texas, United States
jasonzliang@utexas.edu, risto@cs.utexas.edu

ABSTRACT
Most optimization algorithms must undergo time consuming
parameter adaptation in order to optimally solve complex,
real-world control tasks. Parameter adaptation is inherently
a bilevel optimization problem where the lower level objec-
tive function is the performance of the control parameters
discovered by an optimization algorithm and the upper level
objective function is the performance of the algorithm given
its parametrization. In this paper, a novel method called
MetaEvolutionary Algorithm (MEA) is presented and shown
to be capable of efficiently discovering optimal parameters
for neuroevolution to solve control problems. In two chal-
lenging examples, double pole balancing and helicopter hov-
ering, MEA discovers optimized parameters that result in
better performance than hand tuning and other automatic
methods. Bilevel optimization in general and MEA in par-
ticular, is thus a promising approach for solving difficult
control tasks.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Control methods

Keywords
Genetic Algorithms;Metaheuristics;Neural Networks;Fitness
Approximation;Parameter Tuning

1. INTRODUCTION
For many traditional control tasks that involve few state

variables, classical approaches such as PID controllers are
sufficient [1]. However, many modern control problems in-
volve a large number of state of variables that interact in
a nonlinear manner, making it difficult to apply classical
methods to them [2]. A common way to solve such prob-
lems is to pose the control task as a reinforcement learning
(RL) problems where the goal is find an optimal policy func-
tion that maps states to actions [3]. Given the state of the
system as input, an optimal policy outputs a control action

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11–15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754732

that maximizes the performance of the system with respect
to some reward criteria.

Unfortunately, traditional RL methods are based on tab-
ular representations and dynamic programming, making it
difficult to extend these methods to large, partially observ-
able continuous state spaces in many modern control prob-
lems. Recently, much progress has been made in using policy
search methods to solve such control tasks [4, 5, 6]. Instead
of trying to compute a Q-value for each possible combina-
tion of state and action, the policy function is parametrized
as a fixed set of parameters p and optimization algorithms
are used to find argmaxpE(π(p)), where E(π) is the ex-
pected reward obtained by following the policy π. For many
control problems, the fitness landscape described by E(π)
is non-convex and sometimes even non-differentiable, which
means gradient descent is intractable and heuristic based ap-
proaches such as evolutionary algorithms (EA) must be used
instead [7, 8]. This paper builds on a particular approach
called neuroevolution (NE) [9, 10, 11] that combines EAs
and neural networks to search for an optimal policy. In NE,
the policy is encoded by a neural network where the input is
the state vector and the output is an action vector. A pop-
ulation of potential weight vectors for the neural network
is then formed and operators such as selection, mutation,
and crossover are used to improve the overall fitness of the
population over time. EAs have been demonstrated to per-
form well in many complex control problems, such as finless
rocket stabilization, race-car driving, bipedal walking, and
helicopter hovering [12, 13, 14, 15].

One major issue with EAs is that their performance is
highly sensitive to the parameters used. Even more so than
gradient based optimization algorithms, incorrectly set pa-
rameters not only make EAs run slowly but make it difficult
for them to converge onto the optimal solution. A com-
monly used and yet vastly inefficient parameter adaptation
method is grid search [16], where the parameter space is
discretized and all possible combinations of parameters are
exhaustively evaluated. Unfortunately, the computational
complexity of grid search increases exponentially with the
dimensionality of the parameters and is intractable once the
number of parameters exceed three or four.

In this paper, the issues with grid search are avoided
by framing parameter adaptation as a bilevel optimization
problem [17]. Formally, a bilevel problem has two levels: an
upper level optimization task with parameters pu and ob-
jective function Fu, and a lower level optimization task with
parameters pl and objective function Fl. The goal is find a
pu that allows pl to be optimally solved:

maximize
pu

Fu(pu) = E[Fl(pl)|pu]

subject to pl = Ol(pu),
(1)

where E[Fl(pl)|pu] is the expected performance of the lower
level solution pl obtained by lower level optimization algo-
rithm Ol with pu as its parameters. The maximization is
done by a separate upper level optimization algorithm Ou.
In this paper, Ou is the proposed MEA, pu are the parame-
ters for NE, Ol is NE, pl are the weights of the neural net-
work, and Fl measures performance in two simulated and
separate control tasks: double pole balancing and helicopter
hovering. As will be shown, the right heuristics for Ou al-
low optimal parameters for Ol to be found much faster than
with grid search. Specifically, MEA makes use of fitness ap-
proximation to reduce the number of Fu evaluations by Ou.
Thus the key contributions of this paper are:

1. Casting parameter adaptation for neuroevolution as a
blievel optimization problem.

2. Presenting an efficient upper level algorithm Ou that
achieves best results to date on two real-world control
tasks.

3. Showing that a more complex parametrization of Ol can
increase its potential performance.

The rest of the paper is organized as follows: Related work
on parameter adaptation is first summarized and then the
MEA algorithm is described in detail. MEA is evaluated
in the double pole balancing and helicopter hovering tasks,
comparing its performance to other hand-designed and au-
tomatic parameter adaptation methods.

2. RELATED WORK
Automatic parameter adaptation is a widely studied prob-

lem with extensive previous research done in the area. A sur-
vey and systematic categorization of current existing tech-
niques is provided by Eiben and Smit [18]. Many conven-
tional methods for parameter adaptation are fundamentally
based on the grid search approach (evaluating all possible
parameter configurations) with additional heuristics to re-
duce computational complexity by a constant factor [16,
19]. These include racing algorithms that try to aggressively
prune out bad parameters [20]. However, such approaches
quickly become intractable as the number of parameters to
be tuned increases beyond three or four.

Modern algorithms for parameter adaptation focus on in-
telligently searching through the space of parameter con-
figurations. One such example is ParamILS [21], which
combines hill climbing with restart heuristics. Recently,
metaevolutionary algorithms have been developed for solv-
ing the parameter adaptation problem [22, 23, 24, 25]. In
metaevolution, the upper level algorithm Ou is an EA and
the objective function of Ou is the performance of Ol, an-
other EA that solves the target problem. Although more
efficient than brute-force search, metaevolution is inherently
a nested procedure and still computationally complex. To
address this issue, GGA [25] divided the upper level popu-
lation into two genders and only evaluated a subset of the
population every generation. Furthermore, because EA’s are
stochastic, it is only possible to estimate the performance

Figure 1: Overview of MEA (Ou) and how it is used
for parameter adaptation of NE (Ol). The popu-
lation in Ou consists of individuals that represent
various possible pu for Ol. To determine Fu(pu), i.e.
the fitness of an upper level individual, Ol(pu) is run
repeatedly q times. During each run, Ol terminates
once a fixed number of evaluations fmax is reached.
Fu(pu) is then set as the average fitness of the best
solutions returned by all the runs of Ol. The indi-
viduals in Ol consists of weights for a neural network
and the network is used as the policy for the control
task. The network takes as input the state vector
of the system being controlled and outputs an ac-
tion vector that updates the state of the system for
the next time step. This process repeats until a ter-
mination criterion of the control simulation is met
and a fitness value Fl(pl), measuring performance in
the control task, is then assigned to the lower level
individual pl.

of Ol by averaging results from multiple runs. Diosan and
Oltean attempted to alleviate this problem by not optimiz-
ing pu but instead optimizing the order in which genetic
operators such as mutation and crossover are applied to the
population [23].

Metaevolutionary algorithms are closely related to but dis-
tinct from self-adaptive EAs [26]. The main difference is that
metaevolution attempt to find optimal parameters in an of-
fline environment whereas self-adaptive EAs do so online.
Self-adaptive EAs thus can change their parameters dynam-
ically based on the state of the population [26]. On the
other hand, they run slower than EAs with static, adapted
parameters.

Most current research into metaevolutionary algorithms
focuses on fitness function approximation to reduce compu-
tational complexity [24, 17]. Fu(pu) is not always deter-
mined by running Ol(pu), but is sometimes estimated using
a regression model. Numerous models have been proposed,
including both parametric and nonparametric ones [27, 28,
29, 30]. BAPT, the most recent such algorithm [17], uses a
localized quadratic approximation model and achieves good

results on classic test problems. However, BAPT has not
been tested on real-world problems and in problems with
more than three parameters in pu. Such more challenging
problems are the focus of this paper.

Algorithm 1: MEA

1 Randomly initialize a population of K individuals. Set
Fu(pu) of individuals to actual fitness from evaluating
Ol(pu). Add them to archive Z, and fit regression
model R to Z.

2 Create X new individuals via tournament selection,
uniform crossover, and uniform Gaussian mutation.

3 Sort population by fitness, and replace X worst
individuals in population with the new individuals.

4 Set Fu(pu) of new individuals to approximate fitness
predicted by R.

5 Sort population by fitness again. Set Fu(pu) of top Y
individuals to actual fitness from evaluating Ol(pu).
Add them to Z, and fit R to Z.

6 Repeat from Step 2 until the total number of lower
level evaluations by Ol exceeds tmax. Return best
individual in population.

3. ALGORITHM DESCRIPTION
MetaEvolutionary Algorithm (MEA) is fundamentally a

real valued genetic algorithm [31], a type of EA that uses
genetic operators such as selection, mutation, crossover, and
replacement to improve the overall fitness of a population of
solutions, represented by vectors of real numbers, iteratively
over generations. NE is another real-valued GA that evolves
weights for a neural network with a fixed topology. MEA
serves as the upper level algorithm Ou while NE serves as
the lower level algorithm Ol. The roles of both MEA and
NE within the bilevel optimization framework are described
in detail by Fig. 1. A step by step summary of MEA is given
by Algorithm 1.

In BAPT [17], Fu(pu) is sometimes approximated using
a regression model in order to reduce the number of times
Ol(pu) is called. However, BAPT’s model assumes that the
fitness landscape can be described by a quadratic function
and requires a large number of data points to avoid overfit-
ting. In contrary, MEA uses a regression model based on
randomized decision trees, also known as Random Forests
[32]. Random Forests are used for two main reasons: (1)
They are nonparametric and make no prior assumptions re-
garding the shape of Fu(pu). (2) Random Forests are robust
to overfitting [33]. Furthermore, in preliminary experiments,
Random Forests gave more accurate approximations, espe-
cially when the number of data points is small.

There are two undesirable side effects of fitness approx-
imation: (1) The approximate fitness estimated by the re-
gression model is noisy and (2) as the dimensionality of pu
increases, the archive Z and population K must increase to
avoid overfitting. For example in BAPT, which uses R to
fit pu directly, K must increase quadratically with the di-
mension of pu [17], which makes it difficult to scale up the
approach.

To deal with (1), Step 5 is included in MEA to ensure
that the actual fitness of promising but approximately eval-
uated individuals is always known. In addition, MEA deals
with issue (2) by replacing pu with performance metrics that

Figure 2: The double pole balancing task. The
system consists of two vertical poles with different
lengths that are attached to a movable cart with
one degree of freedom. The goal is to apply a force
to the cart at regular time intervals to ensure that
both poles remain upright and that the cart remains
within fixed distance of its starting position. The six
state variables of the system are the angular position
and velocities of the poles, as well as the position and
velocity of the cart. The fitness of the controller (Fl)
is ts, the number of time steps it can prevent either
pole from falling over or the cart from straying too
far away. A pole balancing episode/evaluation is ter-
minated when ts = 100, 000 or when failure occurs.

remain fixed in dimensionality. Ol(pu) is run for roughly
fmax/α (α > 1) evaluations and the following six metrics
mu regarding the population of Ol are collected: (1) best
fitness, (2) average fitness, (3) fitness standard deviation,
(4) population diversity, (5) increase in average fitness over
last 10 generations and (6) exact number of function evalu-
ations, which can vary depending on K. Finally, R is fitted
using the mu and actual fitness of individuals in Z, aver-
aged over q runs. The metrics mu can be used to predict
the performance of Ol(pu) since there is usually strong corre-
lation between an algorithm’s initial and final performance.
Because the size of mu is independent of pu, MEA has no
problems dealing with high-dimensional pu.

As an additional way of smoothing noise, if an upper level
individual remains in the population for multiple genera-
tions, its fitness is averaged over multiple evaluations. Con-
straints for pu are enforced by clipping them to the desired
minimum and maximum values after mutation is performed.
The archive Z has a maximum size to limit the computa-
tional costs of fitting R and when it is full, the newly added
individuals replace the oldest ones. MEA terminates auto-
matically when the total number of lower level fitness eval-
uations by Ol exceeds tmax and returns the pu with highest
fitness. If there is a tie, the individual that remained longest
in the population is returned.

4. EXPERIMENTAL RESULTS
In order to judge the performance of MEA better, it is

compared against two other EAs designed for parameter
adaptation on two real-world control tasks. The first one is
SMEA, a simplified version of MEA that does not perform
any fitness function approximation. Instead of performing
Steps 4 and 5, the actual fitness of every individual in the
population is evaluated before proceeding to the next gen-
eration. The second EA is a version of BAPT designed for
comparison with MEA and thus named BAPTM; it has the
same localized quadratic approximation scheme as BAPT

Figure 3: The fitness of the best upper level indi-
vidual pu over the number of lower level evaluations
Fl. Each plot is an average over 150 Ou runs, where
the best individual in the population each genera-
tion is retested with another independent set of 30
evaluations. Vertical bars show standard error while
black lines at top of plot indicate regions where dif-
ferences between MEA and SMEA are statistically
significant (p-value < 0.05). MEA overtakes SMEA
in performance after 500,000 evaluations.

but uses MEA’s uniform crossover in place of PCX crossover
[34]. Uniform crossover is a commonly used operator that
is shown to be effective in many domains [35, 36], including
preliminary experiments in double pole balancing and heli-
copter hovering. For all experiments except where indicated,
the maximum size of Z is set to 100K, K = 20, X = K/2,
Y = K/2 and α = 4. Because of an elitist replacement
scheme and constraints on pu, a high mutation rate of 0.5
can be utilized, along with a crossover rate of 0.5. As men-
tioned in the introduction, NE is utilized as the lower level
Ol since it is well suited for finding robust, efficient solutions
to difficult control problems [12, 13, 14, 15].

4.1 Double Pole Balancing
Pole balancing, or inverted pendulum, has long been a

standard benchmark for control algorithms [37, 38, 3, 7]. It
is easy to describe and is a surrogate for other real-world
control problems such as finless rocket stabilization. While
the original version with a single pole is too easy for modern
methods, the double-pole version can be made arbitrarily
hard, and thus serves as a good first benchmark for bilevel
optimization. A detailed description of the double pole bal-
ancing task is given by Fig. 2.

For Ol, a conventional NE algorithm common in the lit-
erature [39] is used and the label PNE refers to this NE
with hand-designed parameters. The evolved genotype is a
concatenation of real-valued weights of a feedforward neu-
ral network (with five hidden units) and PNE performs 1-
point crossover and uniform mutation. In the first experi-
ment (PNE5), pu adapts five of its parameters; in the second
(PNE15), 15. The details of these parameters are given in
the Appendix.

For PNE5, the following parameters are set for each Ou:
q = 1, fmax = 2, 000, and tmax = 5, 000, 000. K = 26 is

Figure 4: The fitness of the best pu over the num-
ber of evaluations of Fl for different values of q with
MEA. The data is gathered in the same manner as
Fig. 3. Lower values of q result in better perfor-
mance, suggesting that MEA is surprisingly robust
against evaluation noise.

used for BAPTM as the minimum population size required
for optimizing the five parameters of pu [17]. In Fig. 3, the
performances of all three Ou with PNE5 as Ol are com-
pared. MEA achieves statistically significant higher fitness
than SMEA after approximately 500,000 lower level evalu-
ations; both are significantly better than BAPTM in both
metrics. Fig. 4 shows how the performance of MEA is af-
fected by different values of q, the number of times Ol(pu)
is evaluated. Interestingly, lower values of q result in faster
learning with no difference in peak fitness achieved.

Figure 5: Similar plot as Fig. 3, but with PNE15

as Ol. Both MEA and SMEA perform better than
BAPTM by a wide margin. MEA begins to over-
take SMEA in performance after roughly six million
lower level evaluations.

PNE15 is a generalization of PNE5, with 10 of the hand
selected parameters of PNE5 replaced by adaptable parame-
ters. These 10 additional parameters allow the EA to choose
what selection and crossover operators to use. The follow-

Figure 6: Cumulative histogram of success rate of
PNE, PNE5, and PNE15 over the number of evalu-
ations of Fl, with success defined as balancing the
poles for ts time steps. Results are from 200 inde-
pendent runs of each Ol. All runs solved the task
in significantly less time than fmax = 40, 000 evalua-
tions. PNE15 is 1.5 times faster than PNE5, and five
times faster than PNE.

ing parameters are set for each Ou : K = 30, q = 1, fmax =
2, 000, and tmax = 15, 000, 000. For BAPTM, K = 151 as
the minimum required size for 15 parameters. The perfor-
mance of all three Ou are compared in Fig. 5. While MEA
and SMEA learn equally fast initially, the difference between
the two become statistically significant after six million lower
level evaluations and MEA terminates with a higher peak fit-
ness. BAPTM only achieves a fraction of the peak fitness of
MEA and SMEA.

So far, the results of PNE5 and PNE15 only show their
performance when evaluated up to fmax. It remains to be
shown that they can consistently and successfully evolve net-
works that balance poles for ts = 100, 000 time steps. Thus,
fmax is increased to 40, 000 evaluations and Ol is run 200
times with the parameters pu of the median performing in-
dividual returned by MEA from its 150 runs. As Fig. 6
shows, PNE15 performs better than PNE5 and both PNE15

and PNE5 perform much better than hand-designed PNE,
verifying that the optimal pu are indeed discovered in the
full double pole balancing task.

4.2 Helicopter Hovering
The goal in the helicopter hovering task [15] is to keep a

simulated helicopter in a fixed position in the air subject to a
constant wind velocity. Compared to double pole balancing,
helicopter hovering is a significantly more difficult task due
to the larger state and action space, sensor noise, complex
dynamics, and a fitness function that punishes any deviation
from the optimal control policy (Fig. 7).

ForOl, a specialized NE algorithm that has additional mu-
tation replacement and crossover averaging operators [15] is
used. The original version with hand-designed parameters
is referred to as HNE and the version of this algorithm that
adapts eight parameters (specified in the Appendix), is re-
ferred to as HNE8. The network evolved by HNE has a
hand-designed topology and consists of 11 linear and sig-

Figure 7: The helicopter hovering task. The goal
is to steer a simulated helicopter to remain as close
as possible to a fixed point in 3D space. There are
12 state variables that describe the helicopter’s po-
sition, rotation, linear/angular velocities and four
continuous action variables which determine the
pitch of the aileron, elevator, rudder, and main ro-
tor. The system takes into account a constant wind
velocity (chosen from 10 preset velocities) and sen-
sor noise. The simulation lasts for 60,000 time steps
and Fl(pl) = 1/ log(X) where X is the sum of (1) the
cumulative deviation error of the helicopter from its
starting position and (2) a additional large penalty if
the helicopter exceeds certain bounds on its position
and crashes.

moid hidden units [15]. The following parameters are set
for each Ou: q = 1, fmax = 5, 000, and tmax = 15, 000, 000;
for BAPTM, K = 51. As seen in Fig. 8, the performance
improvement of MEA over SMEA becomes statistically sig-
nificant after roughly four million evaluations and both are
significantly better than BAPTM. Fig. 9 compares the per-
formance of representative examples (median performing in-
dividual for each wind velocity) of HNE8 and HNE when the
task is solved fully with fmax = 25, 000. In comparison to
HNE, HNE8 learns faster and achieves higher peak fitness,
demonstrating the value of bilevel optimization over hand-
design.

5. DISCUSSION AND FUTURE WORK
The results from the experiments show that MEA per-

forms better than SMEA and that both are much better
than BAPTM. The main cause of BAPTM’s poor perfor-
mance are the inaccurate approximations given by its re-
gression model. The relatively few number of individuals in
Z during the first generations and noise in evaluating Ol(pu)
cause the quadratic model to overfit initially. Furthermore,
the fitness landscape of Fu is irregular and not well described
by a quadratic approximation. For example, preliminary ex-
periments show that doubling the population size of PNE5

can result in Fu(pu) decreasing by an order of magnitude.
Surprisingly, running MEA with lower values of q results

in better performance and faster convergence to the optimal
fitness value. This result is counter-intuitive because there is
more evaluation noise with smaller values of q and some av-
eraging of evaluations should be useful. One explanation is
that as the number of generations increase, both the fitness
averaging and approximation mechanisms of MEA become
more accurate. They eventually help smooth out the evalua-
tion noise, retaining individuals with good fitness, and elim-

Figure 8: Similar plot as Fig. 3, but with HNE8 as
Ol. Ou is run with each of the 10 wind velocities 15
times, for a total of 150 runs. Because the helicopter
simulation is more computationally complex, data is
only collected after every fourth generation. Both
MEA and SMEA perform better than BAPTM by
a wide margin. MEA begins to overtake SMEA in
performance after roughly four million lower level
evaluations.

inating those with bad fitness. This conclusion is supported
by observations that the performance of MEA steadily be-
comes less noisy and more consistent over the generations.
As seen in Figs. 3, 5, and 8, MEA’s fitness approximation
mechanism also explains why its performance continues to
increase even SMEA, which does not use fitness approxima-
tion, is flattening out.

Interestingly, although PNE15 has three times as many
pu as PNE5, the performance of PNE15 is noticeably better.
A more complex parametrization of an optimization algo-
rithm allows it to adapt better to a problem, especially if it
is using parameters discovered through bilevel optimization.
With MEA, it might thus be possible to discover special-
ized optimization algorithms that excel in solving particular
problem domains.

There are several interesting directions of future work:
(1) Evolving a policy for an EA that, based on the cur-
rent state of the population, adaptively changes parameters
such as population size, mutation, and crossover rate. Pre-
liminary results on multimodal objective functions such as
Shekel’s foxholes show that an effective policy (parametrized
as weights of a neural network) can be discovered through
metaevolution. (2) Optimizing not only the parameters of
NE at the upper level, but also the topology of the neu-
ral network. (3) Combining various heuristics from existing
EAs, such as differential evolution and particle swarm opti-
mization, to create a general purpose lower level parametriza-
tion that performs well on a wide variety of optimization
problems.

Figure 9: The fitness of the best individual over
the number of evaluations of Fl by HNE and HNE8.
Results are averaged over 500 runs, with 50 runs for
each of the 10 wind velocities. HNE8 both learns
faster and achieves higher peak fitness than HNE.

6. CONCLUSION
In this paper, parameter adaptation for NE is cast as a

bilevel optimization problem. A novel upper level optimiza-
tion algorithm, MEA, is proposed and shown to be capa-
ble of achieving better results in optimizing parameters for
NE. The optimized parameters discovered by MEA result in
significantly better performance over hand-designed ones in
two difficult real-world control tasks. Remarkably, evolving
a more complex parametrization of the lower level optimiza-
tion algorithm results in better performance, even though
such a parametrization would be very difficult to manage by
hand. Bilevel optimization is thus a promising approach for
solving complex control tasks.

7. APPENDIX
For the double pole balancing task, the length and mass

of the longer pole is set to 0.5 meters and 0.1 kilogram. The
length and mass of the shorter pole is set to 0.05 meters and
0.01 kilogram. The mass of the cart itself is 1.0 kilogram.
The shorter pole is initialized in a vertical position while
the longer pole is initialized with one degree offset from the
shorter pole. Both poles and the cart have zero initial veloc-
ity. For the helicopter hovering task, the physical dynamics
of the helicopter simulator is described in more detail in [15].

The table below lists the parameter names, constraints,
and default values for the pu of PNE5, PNE15, and HNE8.
At the beginning of every generation in PNE15, the proba-
bility a particular selection or crossover operator is chosen
to help generate next generation’s population is proportional
to the probability parameter assigned to that operator. In
HNE8, mutation replacement rate is the probability that
a randomly generated value replaces a particular gene in-
stead of being added to it. Crossover averaging rate is the
probability that corresponding genes in two individuals are
averaged together instead of being swapped. The meaning
of the other parameters should be clear from their names.

PNE5 Parameters Constraints Default

Mutation Rate [0,1] 0.40

Mutation Amount [0,1] 0.30

Replacement Fraction [0,1] 0.50

Initial Weight Range [0,12] 6.00

Population Size [0,400] 400

Extra PNE15 Parameters Constraints Default

Mutation Probability [0,1] 1.00

Crossover Probability [0,1] 1.00

Uniform Crossover Rate [0,1] 0.00

Tournament/Truncation Fraction [0,1] 0.25

Tournament Selection Probability [0,1] 0.00

Truncation Selection Probability [0,1] 1.00

Roulette Selection Probability [0,1] 0.00

1-pt Crossover Probability [0,1] 1.00

2-pt Crossover Probability [0,1] 0.00

Uniform Crossover Probability [0,1] 0.00

HNE8 Parameters Constraints Default

Mutation Probability [0,1] 0.75

Mutation Rate [0,1] 0.10

Mutation Amount [0,1] 0.80

Mutation Replacement Rate [0,1] 0.25

Replacement Fraction [0,1] 0.02

Population Size [0,200] 50

Crossover Probability [0,1] 0.50

Crossover Averaging Rate [0,1] 0.50

To illustrate how evolution improves upon the default val-
ues, the table below lists the final parameters evolved by the
median performing run of MEA.

PNE5 Parameters Values Found by MEA

Mutation Rate 0.46

Mutation Amount 0.59

Replacement Fraction 0.87

Initial Weight Range 6.53

Population Size 17

PNE15 Parameters Values Found by MEA

Mutation Rate 0.65

Mutation Amount 1.00

Replacement Fraction 1.00

Initial Weight Range 2.67

Population Size 32

Mutation Probability 1.00

Crossover Probability 0.85

Uniform Crossover Rate 0.18

Tournament/Truncation Fraction 0.57

Tournament Selection Probability 0.96

Truncation Selection Probability 0.01

Roulette Selection Probability 0.03

1-pt Crossover Probability 0.00

2-pt Crossover Probability 0.42

Uniform Crossover Probability 0.58

HNE8 Parameters Values Found by MEA

Mutation Probability 1.00

Mutation Rate 0.03

Mutation Amount 0.77

Mutation Replacement Rate 0.21

Replacement Fraction 0.04

Population Size 28

Crossover Probability 0.94

Crossover Averaging Rate 0.03

8. ACKNOWLEDGMENTS
This research was supported in part by NSF grants DBI-

0939454, IIS-0915038, and SBE-0914796, and by NIH grant
R01-GM105042.

9. REFERENCES
[1] Karl Johan Åström and Tore Hägglund. Advanced

PID control. ISA-The Instrumentation, Systems, and
Automation Society; Research Triangle Park, NC
27709, 2006.

[2] Faustino John Gomez and Risto Miikkulainen. Robust
non-linear control through neuroevolution. Computer
Science Department, University of Texas at Austin,
2003.

[3] Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 1998.

[4] Leemon Baird and Andrew W Moore. Gradient
descent for general reinforcement learning. Advances
in neural information processing systems, pages
968–974, 1999.

[5] J Andrew Bagnell and Jeff G Schneider. Autonomous
helicopter control using reinforcement learning policy
search methods. In Robotics and Automation, 2001.
Proceedings 2001 ICRA. IEEE International
Conference on, volume 2, pages 1615–1620. IEEE,
2001.

[6] Nate Kohl and Peter Stone. Policy gradient
reinforcement learning for fast quadrupedal
locomotion. In Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International
Conference on, volume 3, pages 2619–2624. IEEE,
2004.

[7] Faustino Gomez, Jürgen Schmidhuber, and Risto
Miikkulainen. Accelerated neural evolution through
cooperatively coevolved synapses. The Journal of
Machine Learning Research, 9:937–965, 2008.

[8] John J Grefenstette, David E Moriarty, and Alan C
Schultz. Evolutionary algorithms for reinforcement
learning. arXiv preprint arXiv:1106.0221, 2011.

[9] Xin Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423–1447, 1999.

[10] Dario Floreano, Peter Dürr, and Claudio Mattiussi.
Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1(1):47–62, 2008.

[11] Joel Lehman and Risto Miikkulainen. Neuroevolution.
Scholarpedia, 8(6):30977, 2013.

[12] Faustino J Gomez and Risto Miikkulainen. Active
guidance for a finless rocket using neuroevolution. In
Genetic and Evolutionary Computation-GECCO 2003,
pages 2084–2095. Springer, 2003.

[13] Julian Togelius and Simon M Lucas. Evolving
controllers for simulated car racing. In Evolutionary
Computation, 2005. The 2005 IEEE Congress on,
volume 2, pages 1906–1913. IEEE, 2005.

[14] Brian F Allen and Petros Faloutsos. Evolved
controllers for simulated locomotion. In Motion in
Games, pages 219–230. Springer, 2009.

[15] Rogier Koppejan and Shimon Whiteson.
Neuroevolutionary reinforcement learning for
generalized control of simulated helicopters.
Evolutionary intelligence, 4(4):219–241, 2011.

[16] Richard Myers and Edwin R Hancock. Empirical
modelling of genetic algorithms. Evolutionary
computation, 9(4):461–493, 2001.

[17] Ankur Sinha, Pekka Malo, Peng Xu, and Kalyanmoy
Deb. A bilevel optimization approach to automated
parameter tuning. 2014.

[18] Agoston E Eiben and Selmar K Smit. Parameter
tuning for configuring and analyzing evolutionary
algorithms. Swarm and Evolutionary Computation,
1(1):19–31, 2011.

[19] Belarmino Adenso-Diaz and Manuel Laguna.
Fine-tuning of algorithms using fractional
experimental designs and local search. Operations
Research, 54(1):99–114, 2006.

[20] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash,
and Thomas Stützle. F-race and iterated f-race: An
overview. In Experimental methods for the analysis of
optimization algorithms, pages 311–336. Springer,
2010.

[21] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown,
and Thomas Stützle. Paramils: an automatic
algorithm configuration framework. Journal of
Artificial Intelligence Research, 36(1):267–306, 2009.

[22] John J Grefenstette. Optimization of control
parameters for genetic algorithms. Systems, Man and
Cybernetics, IEEE Transactions on, 16(1):122–128,
1986.

[23] Laura Silvia Diosan and Mihai Oltean. Evolving
evolutionary algorithms using evolutionary algorithms.
In Proceedings of the 2007 GECCO conference
companion on Genetic and evolutionary computation,
pages 2442–2449. ACM, 2007.

[24] Volker Nannen and Agoston E Eiben. Relevance
estimation and value calibration of evolutionary
algorithm parameters. In IJCAI, volume 7, pages
975–980, 2007.

[25] Carlos Ansótegui, Meinolf Sellmann, and Kevin
Tierney. A gender-based genetic algorithm for the
automatic configuration of algorithms. In Principles
and Practice of Constraint Programming-CP 2009,
pages 142–157. Springer, 2009.

[26] Oliver Kramer. Evolutionary self-adaptation: a survey
of operators and strategy parameters. Evolutionary
Intelligence, 3(2):51–65, 2010.

[27] Alain Ratle. Accelerating the convergence of
evolutionary algorithms by fitness landscape
approximation. In Parallel Problem Solving from
Nature-PPSN V, pages 87–96. Springer, 1998.

[28] Iloneide CO Ramos, Marco César Goldbarg,
Elizabeth G Goldbarg, and Adrião Duarte Dória Neto.
Logistic regression for parameter tuning on an
evolutionary algorithm. In Evolutionary Computation,
2005. The 2005 IEEE Congress on, volume 2, pages
1061–1068. IEEE, 2005.

[29] Yaochu Jin. A comprehensive survey of fitness
approximation in evolutionary computation. Soft
computing, 9(1):3–12, 2005.

[30] Frank Hutter, Holger H Hoos, and Kevin
Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Learning and
Intelligent Optimization, pages 507–523. Springer,
2011.

[31] Lawrence Davis et al. Handbook of genetic algorithms,
volume 115. Van Nostrand Reinhold New York, 1991.

[32] Leo Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[33] Marko Robnik-Šikonja. Improving random forests. In
Machine Learning: ECML 2004, pages 359–370.
Springer, 2004.

[34] Ankur Sinha, Aravind Srinivasan, and Kalyanmoy
Deb. A population-based, parent centric procedure for
constrained real-parameter optimization. In
Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, pages 239–245. IEEE, 2006.

[35] Gilbert Syswerda. Uniform crossover in genetic
algorithms. 1989.

[36] William M Spears and Kenneth D De Jong. On the
virtues of parameterized uniform crossover. Technical
report, DTIC Document, 1995.

[37] Alexis P Wieland. Evolving neural network controllers
for unstable systems. In Neural Networks, 1991.,
IJCNN-91-Seattle International Joint Conference on,
volume 2, pages 667–673. IEEE, 1991.

[38] Hamid R Berenji and Pratap Khedkar. Learning and
tuning fuzzy logic controllers through reinforcements.
Neural Networks, IEEE Transactions on,
3(5):724–740, 1992.

[39] Faustino Gomez, Jürgen Schmidhuber, and Risto
Miikkulainen. Efficient non-linear control through
neuroevolution. In Machine Learning: ECML 2006,
pages 654–662. Springer, 2006.

