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As the complexity of neural network models has grown, it has become
increasingly important to optimize their design automatically through met-
alearning. Methods for discovering hyperparameters, topologies, and learning
rate schedules have lead to significant increases in performance. This disser-
tation tackles a new type of metalearning: loss-function optimization. Loss
functions define a model’s core training objective and thus present a clear op-
portunity. Two techniques, GLO and TaylorGLO, were developed to tackle
this metalearning problem using genetic programming and evolutionary strate-
gies. Experiments show that neural networks trained with metalearned loss
functions are more accurate, have higher data utilization, train faster, and are
more robust against adversarial attacks. A theoretical framework was devel-
oped to analyze how and why different loss functions bias training towards
different regions of the parameter space. Using this framework, their perfor-
mance gains are found to result from a regularizing effect that is tailored to

each domain. Overall, this dissertation demonstrates that new, metalearned

vil



loss functions can result in better trained models, and provides the next step-

ping stone towards fully automated machine learning.
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5.4

2.5

The process of TaylorGLO discovering loss functions in
MNIST. Red dots mark generations where new improved loss
functions were found. TaylorGLO discovers good functions in
very few generations. The best function had a 2000-step vali-
dation accuracy of 0.9948, compared to 0.9903 with the cross-
entropy loss, averaged over ten runs. This difference translates

to a similar improvement on the test set, as shown in Table 5.1.

The best loss functions (a) and their respective parame-
ters (b) from each generation of TaylorGLO on MNIST.
The functions are plotted in a binary classification modality,
showing loss for different values of the network output (yo in
the horizontal axis) when the correct label is 1.0. The functions
are colored according to their generation from blue to red, and
vertically shifted such that their loss at yo = 1 is zero (the raw
value of a loss function is not relevant; the derivative, however,
is). TaylorGLO explores varying shapes of solutions before nar-
rowing down on functions in the red band. This process can
also be seen in (b), where parameters become more consistent
over time, and in the population plot shown in Figure 5.2, where
fitness plateaus. The final functions decrease from left to right,
but have a significant increase in the end. This shape is likely to
prevent overfitting during learning, which leads to the observed
improved accuracy. . . . . ... ...

(a) Mean test accuracy across ten runs on MNIST. The Tay-
lorGLO loss function with the highest validation score signif-
icantly outperforms the cross-entropy loss (p = 2.95 x 1071
in a one-tailed Welch’s t-test) and the BaikalCMA loss [53]
(p = 0.0313). (b) Required partial training evaluations for GLO
and TaylorGLO on MNIST. The TaylorGLO loss function was
discovered with 4% of the evaluations that GLO required to
discover BaikalCMA. . . . . . . .. ... .. oo

Accuracy with reduced portions of the MNIST dataset. Pro-
gressively smaller portions of the dataset were used to train the
models (averaging over ten runs). The TaylorGLO loss function
provides significantly better performance than the cross-entropy
loss on all training dataset sizes, and particularly on the smaller
datasets. Thus, its ability to discourage overfitting is particu-
larly useful in applications where only limited data is available.
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5.6 Effect of varying learning rates in AIICNN-C when trained

5.7

2.8

2.9

with the cross-entropy loss on CIFAR-10. For each learn-
ing rate, ten models were trained, with up to ten retries if train-
ing failed. The majority of training attempts failed for learning
rates larger than 0.01. The 0.01 learning rate used in the ex-
periments in this chapter results in best stable performance.
Overall, the small performance differences that can result from
adjusting the learning rate, regardless of stability, are much
smaller than those that result from training with TaylorGLO.
Thus, TaylorGLO provides a mechanism for improvement be-
yond implicit adjustments of the learning rate. . . . . . . . . .

Accuracy basins for AIICNN-C models trained with
cross-entropy and TaylorGLO loss functions. Accuracies
are plotted along the vertical axis for perturbations along two
random basis vectors on the horizontal axes. Higher accuracies
are colored red. The TaylorGLO basin is both flatter and lower
than that for the cross-entropy loss, indicating that small per-
turbations have a less negative impact on performance. Thus,
networks trained with TaylorGLO loss functions are more ro-
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bust and generalize better [90], which results in higher accuracy. 99

Weight distributions for AIICNN-C models trained with
cross-entropy and TaylorGLO loss functions on CIFAR-
10. The cross-entropy loss results in Laplace weight distribu-
tions, while TaylorGLO loss functions result in normally dis-
tributed weights. These different distributions show how Tay-
lorGLO guides training towards a fundamentally different re-
gion of the weight space, which empirically results in better
performance. . . . . . . . ...

Target and non-target scaled logit histograms for Tay-
lorGLO and cross-entropy loss functions on AIICNN-C
with CIFAR-10. More frequent logit values are represented
by warmer, lighter colors. The two loss functions result in qual-
itatively different training dynamics. Namely the dense, white
bands on the right side of (a)-top and (b)-top are centered along
different logit values (the y-axis) and have different variances.
The TaylorGLO band, where most target predictions lie, par-
ticularly, has a higher variance and is spaced farther from the
histograms’ bottom border, showing how TaylorGLO penalizes
overly-confident predictions. . . . . . . . .. .. ... ... ..
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5.10 Target and non-target scaled logit histograms on Wide

6.1

6.2

ResNet 28-5 with CIFAR-10. Both loss functions result in
qualitatively different training dynamics. Like on AIICNN-C,
the dense, white bands on the right of (a)-top and (b)-top are
centered along different logit values and have different entropy.
However, unlike on AIICNN-C, the specific values and sizes of
the bands in (b) differ. Thus, the TaylorGLO loss functions
for AICNN-C and Wide ResNet 28-5 have different training
dynamics, indicating that TaylorGLO loss functions are cus-
tomized to each architecture.. . . . . . . . ... ...

Attraction towards zero training error curves with dif-
ferent loss functions. Each loss function has a characteristic
curve—plotted using Equation 6.51—that describes zero train-
ing error attraction dynamics for individual samples given their
current deviation from perfect memorization, €. Plots (a) and
(b) only have the n = 10 case plotted, i.e. the 10-class classifi-
cation case for which they were evolved. Cross-entropy (a) and
MSE (c) loss functions have positive attraction for all values of
€. In contrast, the TaylorGLO loss function for CIFAR-10 on
AIICNN-C (b) and the Baikal loss function (d) both have very
strong attraction for weakly learned samples (on the right side),
and repulsion for highly confidently learned samples (on the left
side. This provides a graphical intuition for regularization with
TaylorGLO and Baikal loss functions. . . . . . . .. ... ...

Per-training-sample attraction towards zero training er-
ror with cross-entropy and TaylorGLO loss functions for
CIFAR-10 AIICNN-C models. Each point represents an in-
dividual training sample (500 are randomly sampled per epoch);
its z-location indicates the training epoch, and y-location the
strength with which the loss functions pulls the output towards
the correct label, or pushes it away from it. With the cross-
entropy loss (a), these values are always positive, indicating a
constant pull towards the correct label for every single training
sample. Interestingly, the TaylorGLO values (b) span both the
positives and the negatives; at the beginning of training there
is a strong pull towards the correct label (seen as the dark area
on top left), which then changes to more prominent push away
from it in later epochs (seen as the dark band on the bottom).
This plot shows how TaylorGLO regularizes by preventing over-
confidence and biasing solutions towards different parts of the
weight space with higher performance. . . . . . . . ... ...
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6.3

7.1

7.2

7.3

Characteristic curves in zero training error attraction
phase space for different loss functions. A general phase
space for zero training error attraction can be constructed using
a loss function’s specific vy and ~-r values and a network’s €
value for a given sample. Each loss function has a character-
istic curve within this space. The values at each point in this
space (i.e., colors) are calculated using Equation 6.51 and can
be seen in Figure 6.1 for each loss function. While loss-function
metalearning indirectly finds optimal characteristic curves, per-
haps, in the future, these characteristic curves may be optimized
directly. . . . . . . .

AINICNN-C with Auxiliary Classifiers. The AIICNN-C ar-
chitecture can be augmented with auxiliary classifiers after each
dropout layer to provide regularization [167] and allow gradients
to flow deeper into the model more directly. TaylorGLO can im-
prove the model’s performance by optimizing three separate loss
functions. . . . ...

Best TaylorGLO loss functions for AIICNN-C with aux-
iliary classifiers. Loss functions are plotted for binary classifi-
cation at xg = 1. Correct predictions lie on the right side of the
graphs, and incorrect ones on the left. There is a clear differ-
ence in what is optimal for each of the auxiliary classifiers and
the main loss function, both with and without Cutout. With
Cutout, the optimal functions for auxiliary classifiers are noti-
cably different, both in shape and range. Thus, what is optimal
is influenced by both architecture and complementary regular-
ization techniques. . . . . . . . . ... ... ... ...

Attraction towards zero training error curves for Tay-
lorGLO loss functions for AIICNN-C with auxiliary clas-
sifiers. Each curve—plotted using Equation 6.51—describes
the zero training error attraction dynamics for individual sam-
ples given their current deviation from perfect memorization, e.
TaylorGLO is able to discover loss functions with fundamentally
different training dynamics for each setting, demonstrating how
TaylorGLO is able synergize with existing forms of regulariza-
tion to reach higher levels of performance. . . . . . . .. ...
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7.4

7.5

7.6

8.1

Robustness of TaylorGLO loss functions against FGSM
adversarial attacks on CIFAR-10. For each architecture,
the blue bars represent accuracy achieved through training with
the cross-entropy loss, green bars with a TaylorGLO loss, and
gray bars with a TaylorGLO loss specifically evolved in the ad-
versarial attack environment. The leftmost points on each plot
represent evaluations without adversarial attacks. TaylorGLO
regularization makes the networks more robust against adver-
sarial attacks, and this property can be further enhanced by
making it an explicit goal in evolution. . . . . . . . . ... ..

Comparing accuracy basins of AIICNN-C with cross-
entropy, TaylorGLO, and adversarially robust Taylor-
GLO loss functions on CIFAR-10. Basins are only plot-
ted along one perturbation direction for clarity, using the same
technique as in Section 5.5.1. While the adversarially robust
TaylorGLO loss function does not confer an increase in accu-
racy in the absence of adversarial attacks, it has a wider, flatter
accuracy basin. This is indicative of increased robustness as a
result of using a TaylorGLO loss function that has been selected
for against an adversarial robustness objective. . . . . . . . ..

Five random samples from the CMP Facade test dataset,
comparing Wasserstein and TaylorGLO loss functions.
The loss functions are used to train pix2pix-HD models that
take architectural element annotations (top row) and generate
corresponding photorealistic images similar to the ground-truth
second row). Images from the model trained with TaylorGLO
bottom row) have a higher quality than the baseline (third
row). TaylorGLO images have more realistic coloration and
finer details than the baseline. . . . . . . .. ... ... ....

Regularization interaction graph for AIICNN-C on CIFAR-

10. Each consecutive node away from the center node repre-
sents the addition of a single regularization technique. The
edges leading to these nodes are colored green if the technique
improves performance compared to the previous node, and red
if they are detrimental, and yellow (in Figure 8.3) if there is no
effect. On AIICNN-C, all techniques improve performance, with
the notable exception of Cutout and CutMix, which only im-
prove performance when coupled with TaylorGLO. This shows
how regularization techniques are not necessarily additive oper-
ations; interactions between regularization techniques are more
complex. . . . . ..
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8.2 Regularization interaction graph for AlexNet on CIFAR-

8.3

10. On AlexNet, all tested regularization techniques improves
performance, except for Cutout alone. However, it also ex-
hibits a constructive interaction with TaylorGLO, much like
on ANICNN-C. Unlike on AIICNN-C, CutMix improves perfor-
mance in the abscence of TaylorGLO. These differences show
that even superficially similar architectures are affected by reg-
ularization differently. . . . . . . ... o000

Regularization interaction graphs for Wide ResNets on
CIFAR-10. On wide and shallow networks (a), all regulariza-
tion techniques garner performance improvements, while com-
bining CutMix and TaylorGLO does not significantly alter per-
formance. Conversely, narrow and deep networks exhibit very
different interactions, in that TaylorGLO does not improve per-
formance significantly on its own. Ultimately, altering the depth
and width of a single type of architecture affects the way in
which regularization can happen. The similarities and differ-
ences in Figures 8.1 through 8.3 show how the interactions be-
tween different regularization techniques depend on the model
architecture. They show that regularization techniques are not
simply additive behaviors; their impacts on performance depend
on which other regularization techniques are present. . . . . .
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Chapter 1

Introduction

Machine learning and artificial intelligence have led to the moderniza-
tion of many industries and to the creation of novel systems that have the
potential to better humanity. Large increases in compute power have made
it possible to train models of increasing sophistication. However, such models
can be overwhelmingly complex: they have many nonintuitively interacting
components, and there is no rigourous theory on how they work. As a result,
the field is less scientific and methodical and depends more on human intu-
ition. The ability to reason about model complexity has exceeded the limits
of most humans, impeding progress, requiring special, hard-to-find expertise,

and increasing the cost of developing models.

Consider a better future: Models are able to automatically adapt to
best serve their target domain. The field of metalearning aims to reach this
future by optimizing various parts of machine learning automatically. This
dissertation explores a new avenue towards this goal: loss-function metalearn-
ing. By automatically and methodically searching the space of loss functions,
model performance can be improved without manual tuning. Metalearned

loss functions establish a form of regularization, biasing the training process



towards more robust configurations.

In this dissertation, two techniques are developed for this purpose: Ge-
netic Loss-function Optimization (GLO), an evolutionary approach that op-
timizes loss functions as trees with coefficients, maximizing creativity; and
Multivariate Taylor expansion-based genetic loss-function optimization (Tay-
lorGLO), an alternative technique that scales well to models with millions of

trainable parameters.

1.1 Motivation

Much of the power of modern neural networks originates from their
complexity, i.e., number of parameters, hyperparameters, and topology. This
complexity is often beyond human ability to optimize, and automated methods
are needed. An entire field of metalearning has emerged recently to address this
issue, based on various methods such as gradient descent, simulated annealing,

reinforcement learning, Bayesian optimization, and evolutionary computation

(EC) [38].

Metalearning has repeatedly demonstrated how various aspects of ma-
chine learning can be automatically tuned without human intervention. For ex-
ample, neural architecture search, i.e. metalearning of model architectures, has
resulted in models that outperform those designed by humans [115, 136, 164].
Many of these techniques use evolution and discover solutions with unique

architectural motifs.



While a wide repertoire of work now exists for optimizing many as-
pects of neural networks, the dynamics of training are still usually set manu-
ally without a concrete, scientific principle. It is important, however: train-
ing schedules, loss functions, and learning rates all affect the training and
final functionality of a neural network. Perhaps they could also be optimized
through metalearning? This dissertation verifies this hypothesis, focusing on

the optimization of loss functions.

Loss functions are the fundamental guide for the training process, serv-
ing as the root goal against which a model’s trainable parameters are opti-
mized. The choice of loss function implicitly biases the optimization process

[19], i.e. the way learning and generalization occur.

In modern machine learning, however, most practitioners rely on a
few standard loss functions. For example, in classification settings, the cross-
entropy loss is almost exclusively used. Considering that seemingly small dif-
ferences can have a great impact on a model’s performance (e.g., the ordering
of layers [72]), it is suprising that such a fundamental aspect of training is

usually not considered as part of model design.

Loss-function metalearning can thus serve as a way to find appropri-
ate regularization for neural networks automatically, resulting in models with

better performance.



1.2 Challenges

Theory has lagged behind practice in deep learning since its inception,
and the same is particularly true for regularization. While the past several
years have resulted in many theoretical findings on regularization, they tend
to focus on shallow multi-layer perceptrons and specific scenarios that are not

representative of real-world use-cases.

As a result, practitioners have used a handful of different loss functions,
such as the cross-entropy loss, across wide varieties of problems. Justifica-
tions for different loss functions have typically been speculative. For example,
probabilistic intuitions are sometimes used to justify the cross-entropy loss in
classification settings; however, modern neural network outputs should not be

interpreted as probabilities [45].

Since optimal loss functions cannot yet be designed from first princi-
ples, a search based method must be used. At first, gradient-based optimiza-
tion techniques may seem like an appropriate option, given their ubiquity in
modern machine learning. However, since many neural network objectives
(e.g., accuracy) are inherently non-differentiable, gradient-based approaches
are not always possible. This observation leads to evolutionary computation,
which can tackle problems with rugged fitness landscapes that need not be

differentiable.

Even if evolutionary computation is used for optimization, loss func-

tions need to be represented in a way that makes it possible to both encode



a variety of functions and evolve them effectively. This dissertation presents
two representations that lie at different points along the continuum between

representational flexibility and efficiency.

Search based approaches, including evolutionary computation, require
a way to evaluate the efficacy of candidates. That is, given a loss function,
how well does a model trained with it perform? Given the limited theoretical
understanding in deep learning, it can be challenging to predict the outcome
that a particular loss function will have on training. Thus, models must be
trained with each candidate. Since the dynamics of training are not con-
stant throughout the training process, evaluations based on partial training
are noisy. Significant amounts of compute is necessary, reducing the number

of candidates that can be evaluated.

Further, modern deep learning has been inadvertently designed and
optimized for a few loss functions, such as cross-entropy. If other aspects
of the model are kept fixed, the benefits of loss-function metalearning may
be underestimated. Nonetheless, the loss-function metalearning techniques in
this disssessrtation are able to train network that outperform those trained

with cross-entropy.

1.3 Approach

A general framework for loss function metalearning, covering both novel
loss function discovery and optimization, is developed and evaluated experi-

mentally. This framework, Genetic Loss-function Optimization (GLO), lever-



ages Genetic Programming to build loss functions represented as trees. These
functions are repeatedly recombined and mutated to find an optimal struc-
ture, and subsequently a Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) is used to optimize their coefficients.

EC methods were chosen because EC is arguably the most versatile of
the metalearning approaches. EC, being a type of population-based search
method, allows for extensive exploration, which often results in creative, novel
solutions [100]. EC has been successful in hyperparameter optimization and
architecture design in particular [108,115,136,164]. It has also been used
to discover mathematical formulas to explain experimental data [155]. It is,
therefore, likely to find creative solutions in the loss-function optimization

domain as well.

Networks trained with GLO loss functions are found to outperform the
cross-entropy loss on standard image classification tasks. Training with these
new loss functions requires fewer steps, results in lower test error, and allows
for smaller datasets to be used. Indeed, on the MNIST image classification
benchmark, GLO discovered a surprising new loss function, named Baikal for
its shape. This function performs very well, presumably by establishing an
implicit regularization effect. Baikal outperforms the standard cross-entropy
loss in terms of training speed, final accuracy, and data requirements. Fur-
thermore, Baikal was found to transfer these benefits to a more complicated

classification task, CIFAR-10.

At first glance, Baikal behaves rather unintuitively; loss does not de-



crease monotonically as a network’s predictions become more correct. Upon
further analysis, Baikal was found to perform implicit regularization. By pre-
venting the network from being too confident in its predictions, training with
Baikal produced a more robust model. This finding was surprising and encour-
aging, since it means that GLO is able to discover loss functions that train

networks that are more generalizable and overfit less.

While GLO’s tree-based representation gives it unbounded represen-
tational flexibility, this flexibility can make evolution a challenge—requiring
large populations evolved over many generations—since the vast majority of
functions in such a space are not, in fact, usable as loss functions. Addition-
ally, GLO’s two-phased approach to loss function discovery and optimization
can result in loss functions that are greedily, rather than mutually, optimized
for each phase. That is, a function’s structure may only be optimal with a

certain set of coefficients.

Aiming to resolve these shortcomings, another variation of GLO was
developed. The new technique, Multivariate Taylor expansion-based genetic
loss-function optimization (TaylorGLO), uses a new representation for loss
functions based upon multivariate function approximators, particularly Tay-
lor expansions. This parameterization helps combine the previously separate
discovery of structure and optimization of coefficients into one step, while si-
multaneously providing a well-behaved search space. While this representation
is more rigid than the tree-based representation, and may not result in solu-

tions that are as creative, they are often more practical, and can be applied



reliably to many real-world use cases.

TaylorGLO was used to evolve loss functions for a wide variety of mod-
ern architectures on four different benchmark datasets. Networks trained with
TaylorGLO loss functions consistently outperform those trained with cross-
entropy loss. TaylorGLO also improves performance of networks trained with
other regularization techniques, suggesting that it provides a complementary

form or regularization.

By fundamentally altering the training process, TaylorGLO loss func-
tions allow a model’s parameters to reach unique regions of the trainable pa-
rameter space. It results in models with flatter minima, i.e. models’ outputs
are less sensitive to small changes in the model’s trainable parameters, than
those trained with cross-entropy loss. As a result, TaylorGLO models are more

robust and generalize better.

In order to characterize this process, a new theoretical framework for
reasoning about the optimization biases and regularization effects imparted
by loss functions is developed. A decomposition process can be applied to
the standard stochastic gradient descent learning rule to get expressions that
describe a loss function’s behavior uniquely. These behaviors are analyzed in
different settings, showing how metalearned loss functions bias and regularize
training implicitly. A further analysis across the totality of training shows
how loss functions encourage or discourage fitting to individual samples. Two
specific metalearned loss functions, one evolved with GLO and one with Tay-

lorGLO, are found to encourage the model to fit misclassified samples and



those with moderately confident classifications, while penalizing overly con-
fident predictions. The cross-entropy and mean-squared-error loss functions,

conversely, encourage data fitting in all cases, resulting in overfitting.

TaylorGLO is further extended to four special settings, demonstrating
its ability to leverage previously gained insights in machine learning. First,
TaylorGLO is used to evolve multiple, separate loss functions for models with
auxiliary classifiers, impacting different parts of a model in different ways.
Second, the TaylorGLO search process is improved using an invariant on loss
function parameters that drives it towards more useful candidates more ef-
fectively. Third, TaylorGLO loss functions are found to make networks more
robust against adversarial attacks, and an additional adversarial objective fur-
ther increases this effect. Fourth, TaylorGLO is leveraged to discover new
formulations for conditional generative adversarial networks that are able to

generate higher quality images.

Thus, GLO and TaylorGLO together constitute a comprehensive first
foray into loss-function metalearning. GLO provides a high-level of flexibility
in evolving loss functions with many shapes and many inputs, while Taylor-
GLO evolves loss functions for deep neural networks effectively. They allow
practitioners to metalearn regularization that is customized to individual tasks
automatically, resulting in higher-performing models that are more robust.
This dissertation also takes first steps in theoretical analysis of regularization
and loss functions, providing a stepping stone towards further, more principled

work on metalearning.



1.4 Guide to the Reader

The disposition of chapters in this dissertation is as follows:

Chapter 2 reviews background concepts and relevant literature in the
field. Deep learning, evolution, loss functions, and regularization are detailed,
motivating the development of loss-function metalearning techniques, and in-

forming their design.

Chapter 3 describes the experimental setup and methodology for the
remainder of the dissertation. Described therein are the datasets and neu-
ral network architectures used to evaluate techniques, the novel experiment
management system called Lossferatu that was built for this purpose, and

statistical techniques that help illustrate results.

Chapter 4 introduces Genetic Loss-function Optimization (GLO), the
first, flexible technique for loss-function metalearning. The technique is eval-

uated experimentally and its merits and shortcomings are discussed.

Chapter 5 describes TaylorGLO, a more practical technqgiue for loss-
function metalearning. Building upon the lessons learned from GLO, Tay-
orGLO is evaluated empirically on a variety of deep learning settings. Its
loss functions result in fundamentally different trained networks, thanks to a

qualitatively different training process.

Chapter 6 develops a theoretical framework to characterize the regular-
ization processes that result in evolved loss functions. The theoretical insights

are connected back to empirical results.

10



Chapter 7 delves into four opportunities to extend: auxiliary classifier
loss functions, an invariant on TaylorGLO parameters, evolving loss functions
that are hardened against adversarial attacks, and evolving loss functions for

generative adversarial networks.

Chapter 8 summarizes the findings in this dissertation, discusses the
observed interactions between TaylorGLO and other regularization techniques,

proposes future work, and explores the broader impact of this work.

Chapter 9 closes with an overview of the impact of this dissertation
and its contributions to science. The ultimate conclusion is that loss-function
metalearning is a useful new subfield that can improve deep models through

learned regularization.
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Chapter 2

Background

This chapter reviews the key areas that motivate, provide a foundation,
and help shape the dissertation’s work. This review begins with deep learning
and the role of loss functions. Next, generative adversarial networks (GANs)—
a set of techniques that leverage deep learning for generation tasks—and their
loss functions are presented, highlighting key developments and challenges.
Subsequently, evolutionary computation, the foundation for the techniques
developed in this dissertation, is covered. This review leads to a discussion
of metalearning literature and how evolution fits into it, particularly in terms
of neural architecture search (NAS). Finally, regularization and optimization

biases in modern machine learning are evaluated.

2.1 Deep Learning and Loss Functions

Interest in machine learning and Al has recently risen thanks to mod-
ern deep learning [98]. While deep learning has varying meanings, within this
body of work, it is used to refer to neural networks of a higher depth and
complexity than traditional multilayer perceptrons [142]; i.e., networks that

learn internal data representations of increasing abstraction. As illustrated in
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Figure 2.1: Neural network training by gradient descent in a classi-
fication setting. A training dataset is sampled into batches that that may
undergo data augmentation prior to being passed through the model. The
model’s outputs and labels are inputs to a loss function, from which gradients
are calculated to update the model’s trainable parameters. Metalearning aims
to optimize parts of this process automatically to result in trained models with
better performance.

Figure 2.1, deep models, and neural networks overall, are traditionally trained
iteratively, whereby model parameters (i.e., weights and biases, at a minimum)
are updated using gradients that are propagated backwards through the net-

work, starting from an error given by a loss function [143]. Loss functions

represent the primary training objective of a neural network.

For many tasks, such as classification and language modeling, the cross-
entropy loss (also known as the log loss) is used almost exclusively. Note that
while regularization terms are sometimes added to this definition, the core
component is still the cross-entropy loss. Information-theoretic reasoning is
used to motivate the log loss: It aims to minimize the number of bits needed to
identify a message from the true distribution, using a code from the predicted

distribution. More specifically, within a classification task, the log loss is

13



defined as
1 n
LLog = _E Z T log(yz) ) (21)
i=0

where x is sampled from the true distribution, y is sampled from the pre-
dicted distribution, and n is the number of classes. This notation is used in

subsequent chapters to describe all loss functions.

While the variety in loss functions for classification is rather low, dif-
ferent types of tasks that do not fit neatly into a single-label classification
modality often have different loss functions. Data reconstruction tasks and
autoencoders often may use an Lo loss (also referred to in the literature as the
squared-difference similarity or mean-squared error) [47,51]. Kullback-Leibler
divergence can be used as a loss when comparing the similarity of two distri-
butions [91,200]. For building visual-semantic text embeddings, a pair-wise
ranking loss based on the cosine similarity between images and fragments of
text can be used [36]. Tasks that can be represented as binary classification
tasks, such as true/false question answering or paraphrase identification, often

use the binary case of the cross-entropy loss [200].

Every instance where a loss function is chosen for a task without a
specific justification is an opportunity to find a more optimal loss function
automatically. The choice of loss function can have a great impact on per-
formance, as will be seen in this dissertation. A particularly interesting case
is training generative adversarial networks, where loss functions play central

role, as will be reviewed next.
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2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANSs), initially conceived by Good-
fellow et al. [55], are a type of generative model consisting of a pair of networks,
a generator and discriminator, that are trained in tandem. GANSs are a modern
successor to Variational Autoencoders (VAEs) [91] and Boltzmann Machines
[74], including Restricted Boltzmann Machines [159] and Deep Boltzmann Ma-
chines [149].

The following subsections review prominent GAN methods. Key GAN
formulations, and the relationships between them, are described. Consistent
notation (shown in Table 2.1) is used, consolidating the extensive variety of

notation in the field.

Table 2.1: GAN Notation Decoder

Symbol Description

G(x,0c) Generator function
D(z,0p) Discriminator function
Piata Probability distribution of the original data

P, Latent vector noise distribution

P, Probability distribution of G(z)

x Data, where & ~ Pgata

T Generated data

z Latent vector, where z ~ P,

c Condition vector

A Represents various types of weights / hyperparameters
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2.2.1 Overview

A GAN’s generator and discriminator are set to compete with each
other in a minimax game, attempting to reach a Nash equilibrium [73,123].
Throughout the training process, the generator aims to transform samples
from a prior noise distribution into data, such as an image, that tricks the dis-
criminator into thinking it has been sampled from the real data’s distribution.
Simultaneously, the discriminator aims to determine whether a given sample

came from the real data’s distribution, or was generated from noise.

Unfortunately, GANs are difficult to train, frequently exhibiting insta-
bility, i.e., mode collapse, where all modes of the target data distribution are
not fully represented by the generator [10,61,85,111,112,114,135]. GANs
that operate on image data often suffer from visual artifacts and blurring of
generated images [85,130]. Additionally, datasets with low variability have

been found to degrade GAN performance [111].

GANSs are also difficult to evaluate quantitatively, typically relying on
metrics that attempt to embody vague notions of quality. Popular GAN image
scoring metrics, for example, have been found to have many pitfalls, including
cases where two samples of clearly disparate quality may have similar values

120].
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2.2.2 Original Minimax and Non-Saturating GAN

Using the notation described in Table 2.1, the original minimax GAN

formulation from [55] can be defined as

min max E,p, . [log D(z)] +E, p, [log (1 — D(G(2)))] . (2.2)

b 6p
This formulation can be broken down into two separate loss functions, one

each for the discriminator and generator:

Ly = —%i[logp(xi>+1og(1—D(G<Zi)))] and (2.3)
Lo = =3 log(1= D(G(=)) (2.4)

The discriminator’s loss function is equivalent to a sigmoid cross-entropy loss
when thought of as a binary classifier. Goodfellow et al. [55] proved that
training a GAN with this formulation is equivalent to minimizing the Jensen-
Shannon divergence between Py and Pgata, i.e. a symmetric divergence metric

based on the Kullback-Leibler divergence.

In the above formulation the generator’s loss saturates quickly since
the discriminator learns to reject the novice generator’s samples early on in
training. To resolve this problem, Goodfellow et al. provided a second “non-
saturating” formulation with the same fixed-point dynamics, but better, more

intense gradients for the generator early on:

maxg, Egp,,, [log D(x)] + Ezwp. [log (1 - D(G(2)))] ,  (25)

maxg, E,.p, [log D(G(2))] . (2.6)
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Each GAN training step consists of training the discriminator for k
steps, while sequentially training the generator for only one step. This differ-
ence in steps for both networks helps prevent the discriminator from learning

too quickly and overpowering the generator.

Alternatively, Unrolled GANs [114] aimed to prevent the discriminator
from overpowering the generator by using a discriminator which has been
unrolled for a certain number of steps in the generator’s loss, thus allowing
the generator to train against a more optimal discriminator. More recent GAN
work instead uses a two time-scale update rule (TTUR) [73], where the two
networks are trained under different learning rates for one step each. This

approach has proven to converge more reliably to more desirable solutions.

Unfortunately, with both minimax and non-saturating GANs the gen-
erator gradients vanish for samples that are on the correct side of the decision
boundary but far from the true data distribution [111,112]. The Wasserstein

GAN, described next, is designed to solve this problem.

2.2.3 Wasserstein GAN

The Wasserstein GAN (WGAN) [10] is arguably one of the most im-
pactful developments in the GAN literature since the original formulation by
Goodfellow et al. [55]. WGANSs minimize the Wasserstein-1 distance between
P, and Pgata, rather than the Jensen-Shannon divergence, in an attempt to

avoid vanishing gradient and mode collapse issues. In the context of GANs,
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the Wasserstein-1 distance can be defined as

W (Py, Paata) = inf E(wv)ry [|u —v]]] , (2.7)

'YGH(ngIPdata)

where, y(u, v) represents the amount of mass that needs to move from u to
v for P, to become Pgua. This formulation with the infimum is intractable,
but the Kantorovich-Rubinstein duality [182] with a supremum makes the
Wasserstein-1 distance tractable, while imposing a 1-Lipschitz smoothness con-

straint:

W(Pga Pgata) = sup ]Eu~IP’g [f(u)] — EunPyoca [f(u)] | (2.8)

Ifll<1

which translates to the training objective

min max Eg.p,,,, [D(®)] - E.wp. [D(G(2))] (2.9)

g 0peEBOp
where Op is the set of all parameters for which D is a 1-Lipschitz function.

WGANS are an excellent example of how generator and discriminator
loss functions can profoundly impact the quality of generated samples and the
prevalence of mode collapse. However, the WGAN has a 1-Lipschitz constraint
that needs to be maintained throughout training for the formulation to work.
WGANSs enforce the constraint via gradient clipping, at the cost of requiring
an optimizer that does not use momentum, i.e., RMSProp [172] rather than

Adam [92].

To resolve the issues caused by gradient clipping, a subsequent formu-

lation, WGAN-GP [61], added a gradient penalty regularization term to the
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discriminator loss:
GP = AEsp, [(|VeD(#)]l2 — 1)*] | (2.10)

where P; samples uniformly along lines between Pga, and P,. The gradient
penalty enforces a soft Lipschitz smoothness constraint, leading to a more sta-
tionary loss surface than when gradient clipping is used, which in turn makes
it possible to use momentum-based optimizers. The gradient penalty term
has even been successfully used in non-Wasserstein GANs [39, 111]. However,

gradient penalties can increase memory and compute costs [111].

2.2.4 Least-Squares GAN

Another attempt to solve the issue of vanishing gradients is the Least-

Squares GAN (LSGAN) [112]. It defines the training objective as

ming,,

5 Beryn, [(D(@) D] + Eas, [(D(G(2) —a)?] , (21)

% E..r. [(D(G(2)) — ¢)*] , (2.12)

ming,,
where a is the label for generated data, b is the label for real data, and c is the
label that G wants to trick D into believing for generated data. In practice,
typically a = 0,b = 1,¢ = 1. However, subsequently, a = —1,b = —1,¢ =0
were found to result in faster convergence, making it the recommended param-
eter setting [61]. Training an LSGAN was shown to be equivalent to minimiz-
ing the Pearson y? divergence [132] between Pgata + P, and 2 x P;. Generated

data quality can oscillate throughout the training process [111], indicating a

disparity between data quality and loss.
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2.2.5 InfoGAN

InfoGAN [27], derived from information theory, attempts to learn a
disentangled representation for the latent space. This goal is accomplished
through a term that is subtracted from the training objective. With a coeffi-
cient A, it bounds the mutual information between elements in the latent space

and generated samples:

L1(d, G) = Egc(zaa),:~p. [Ea~ras (log Q(d|2)]] + H(d) < I(d;G(z @ d)) .

(2.13)
This term results in variational regularization of mutual information [12]. The
latent vector is broken into the traditional noise component z and a latent
code component d, which are concatenated. The latent code entropy, H(d) is

treated as a constant. The auxiliary posterior (), which aims to approximate

P(d|x), is based on D.

InfoGANSs can learn latent codes on several different image datasets
successfully. However, the size and sampling distribution of the latent code
must be defined a priori, thus requiring manual design. On the other hand,
it is thusu possible to steer the latent code conceptually. For example, if the
data’s sampling distribution is known a prior: to have ten modes, an element

of the latent code could be d; ~ Categorical(k = 10,p = 0.1).

2.2.6 Conditional GAN

Traditional GANs learn how to generate data from a latent space, i.e.

an embedded representation of the training data that the generator constructs.
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Typically, the elements of a latent space have no immediately intuitive meaning
[27,97]. Thus, GANs can generate novel data, but there is no way to steer
the generation process to generate particular types of data. For example,
a GAN that generates images of human faces cannot be explicitly told to
generate a face with a particular hair color or of a specific gender. While
techniques have been developed to analyze this latent space [103, 183], or build
more interpretable latent spaces during the training process [27], they do not
necessarily translate a human’s prior intuition correctly or make use of labels
when they are available. To tackle this problem, Conditional GANSs, first
proposed as future work in [55] and subsequently developed by Mirza and
Osindero [117], allow directly targetable features (i.e., conditions) to be an

integral part of the generator’s input.

The conditioned training objective for a minimax GAN can be defined,

without loss of generality, as

minmax Eg.p, . [logD(x @ c)] + E.p, [log(1 — D(G(z® )], (2.14)

0c  0p
where z @ ¢ is basic concatenation of vectors. During training, the condition
vector, ¢, arises from the sampling process that produces each x. This same
framework can be used to design conditioned variants of other GAN formula-

tions.

Conditional GANs have enjoyed great successes as a result of their
flexibility, even in the face of large, complex condition vectors, which may even

be whole images. They enable new applications for GANSs, including image
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to image translation [85], the generation of images given text [139], repairing
software vulnerabilities (framed as sequence to sequence translation) [69], and
integrated circuit mask design [9]. Notably, conditional GANs can increase
the quality of generated samples for labeled datasets, even when conditioned

generation is not needed [179)].

2.2.7 Opportunity: Optimizing Loss Functions

Overall, competing GAN formulations all have one property in com-
mon: the generator and discriminator loss functions have been arduously de-
rived by hand. GAN performance and stability is greatly impacted by the
choice of loss functions. Different regularization terms, such as the aforemen-
tioned gradient penalty can also affect a GAN’s training. The specific design
of these formulations is typically guided by the desire to minimize a specific
divergence. However, a GAN does not need to decrease a divergence at every
step in order to reach the Nash equilibrium [39]. In this situation, an auto-
matic loss-function optimization system may find novel GAN loss functions
with more desirable properties. Such a system is presented in Chapter 7 and

evaluated on conditional GANs.

2.3 Evolutionary Computation

Since the original theory of natural selection [32, 33], our understanding
of the mechanisms of evolution has grown. In the biological realm, evolution

has produced a vast array diverse species, proving its efficacy as a framework
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for optimization and open-ended discovery. Through the mid-to-late 20th
century, with the advent of increasingly sophisticated computers, simulations
of evolution were implemented [42]. Methods such as evolutionary strategies
[138] and genetic algorithms [76] were developed and found useful in many

engineering applications.

In numerous engineering applications, such as antenna design [107],
genetic algorithms have been able to find creative solutions that elude humans
[100]. Genetic algorithm can represent different search spaces through different
representations. This flexibility has made them a technique that is applicable

to many problems in unique domains.

Many problems can be framed as numerical optimization problems.
While gradient-based methods have been successful at tackling such problems,
not all search spaces have known derivatives or are even smooth. To solve
theses types of problems, evolutionary strategies implement stochastic, non-
convex optimization. In particular, covariance-matrix adaptation evolutionary
strategy (CMA-ES) [65] is a widely applicable method. In an iterative manner,
candidates are sampled from a multivariate Gaussian distribution, built from
a covariance matrix that is updated after each iteration. In this manner,
the area in the search space sampled at each step grows, shrinks, and moves

dynamically as needed to maximize sampled candidates’ fitnesses.

Within computer science itself, evolutionary computation has been used
to evolve programs, an idea first theorized by Turing in the mid 20th century

[174,175]. This discipline is known today as genetic programming. Genetic
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programming systems are often able to discover solutions to problems that

outperform human-built solutions [93].

Early work aimed at developing pattern recognition systems using rule-
sets represented as trees [40]. Recently, genetic programming succeeded in
discovering nontrivial mathematical formulas that underly physical systems
using noisy experimental data [155]. In this system, formulas are represented
by directed, acyclic graphs. Remarkably, the system was able to discover
Hamiltonian and Lagrangian equations of different mechanical systems, even
on a highly-chaotic double-pendulum domain. This work helped inspire the
development of GLO, described in Chapter 4.

Approaches to genetic programming that are not based on tree-like
structures also exist. Linear genetic programming [11], where programs are
represented as a sequence of instructions, and Cartesian genetic programming
[116], where programs can be represented by graphs, are two seminal such
approaches. Such systems often contain non-coding genes, which have been

found to yield more robust evolution [30].

Since evolutionary computation systems are programs themselves, they
can be evolved using genetic programming techniques; this idea is known as
autoconstructive evolution. A notable example is the Pushpop autoconstruc-
tive evolution system [160], where Push programs are evolved alongside the
system’s evolutionary mechanisms. Push is a general stack-based language

with types that was developed specifically for genetic programming.
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Evolutionary computation is thus successful at directly evolving com-
plex mathematical solutions to problems, and even at evolving the way in
solutions are found. This motivates the use of such techniques to evolve loss

functions, as is presented in this dissertation.

2.4 Metalearning

As deep learning systems have become more complex, their architec-
tures and hyperparameters have become increasingly difficult and time-consuming
to optimize by hand. In fact, many good designs may be overlooked entirely
by humans with prior biases. Metalearning has risen as a field that attempts
to tackle this problem from numerous different angles [101], using different ap-

proaches that range from Bayesian optimization to evolutionary computation.

Hyperparameter and algorithm selection were identified early on [141]
and continue to play an important role today. More advanced early met-
alearning literature took inspiration from educational psychology, where met-
alearning is defined as an awareness and subsequent adjustment of an agent’s
approach to learning [16]. A seminal exploration of metalearning leveraged
evolution to attempt to learn how to learn in self-referential, recurrent neu-
ral networks [153]; in fact, the author even suggests that meta-metalearning
could be advantageous. Subsequent work also attempted to learn how to find
learning rules for neural networks, using both gradient descent and genetic
algorithms [15]. However, many of these early ideas were infeasible with the

computational power that was available at the time.
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Neural architecture search has more recently become a key area in the
metalearning literature, as the structure of neural networks has been found
to be increasingly important to their functionality [38]. Numerous approaches
have been proposed, with search strategies drawn from areas such as rein-
forcement learning, Bayesian optimization, simulated annealing, and evolution
(often called neuroevolution in this context). A landmark technique in the lit-
erature, NeuroEvolution of Augmenting Topologies (NEAT') [165] has served
as the base for more sophisticated and robust architecture search techniques
[164]. One of them is CoDeepNEAT [115], which makes use of coevolution to
build structure hierarchically. Various neural architecture search techniques
have created networks with state-of-the-art performance in different domains
[26, 136, 203]. Recently, it was found that that networks that are agnostic to
the values of weights can be contructed, exemplifying the importance of struc-
ture [44]. Further, even randomly-structured networks with certain properties

can learn well [195].

In addition to hyperparameter optimization and neural architecture
search, new opportunities for metalearning have recently emerged. In partic-
ular, learning rate scheduling can have a significant impact on a model’s per-
formance. Such schedules determine how the learning rate changes as training
progresses. This functionality is employed by different gradient-descent opti-
mizers, such as AdaGrad [37] and Adam [92]. While monotonically decreasing
learning rates generally yield good results, new ideas, such as cyclical learning

rates [158], have shown to lead to better models in fewer epochs in some cases.

27



Metalearning methods have also recently been developed for data aug-
mentation. One such technique is AutoAugment [31], a reinforcement learn-
ing based approach to find new data augmentation policies. In reinforcement
learning tasks, EC has proven to be a successful approach. For instance, in
evolving policy gradients [77], the policy loss is not represented symbolically,
but rather as a neural network that convolves over a temporal sequence of con-
text vectors. In reward function search [129], the task is framed as a genetic

programming problem, leveraging PushGP [160].

Prior to this research, no existing work in the metalearning literature
focused on optimization of loss functions for neural networks. As shown in
this dissertation, evolutionary computation can be used in this role to im-
prove neural network performance, to gain a better understanding of the pro-
cesses behind learning, and to help reach the ultimate goal of fully automated

learning.

2.5 Regularization

Regularization has emerged as a central theme in the development of
modern neural networks. Traditionally, regularization refers to methods for
encouraging smooth mappings by adding a regularizing term to the objective
function, i.e., to the loss function in neural networks. Regularization can be
defined more broadly, however, as “any modification we make to a learning al-
gorithm that is intended to reduce its generalization error but not its training

error” [56]. To that end, many regularization techniques have been developed
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that aim to improve the training process in neural networks. These techniques
can be architectural in nature, such as Dropout [162] and Batch Normaliza-
tion [82], or they can alter a different aspect of the training process, such as
label smoothing [167] or the minimization of a weight norm [67]. These tech-
niques are briefly reviewed in this section, providing context for loss-function

metalearning, which provides a new, powerful form of regularization.

2.5.1 Implicit Biases in Optimizers

It may seem surprising that neural networks that are typically highly
overparameterized are able to generalize at all. They have the capacity to
memorize a training set perfectly, and in fact sometimes do (i.e., zero train-
ing error is reached). Different optimizers have different implicit biases that
determine which solutions are ultimately found. These biases are helpful in
providing implicit regularization to the optimization process [126]. Such reg-
ularization results from a network norm—a measure of complexity—that is
minimized as optimization progresses. This process is why models continue
to improve even after training set has been memorized (i.e., the training error

global optima is reached) [128].

For example, the process of stochastic gradient descent (SGD) itself
has been found to provide regularization implicitly when learning on data
with noisy labels [19]. In overparameterized networks, adaptive optimizers
find very different solutions than the basic SGD. These solutions tend to have

worse generalization properties, even though they have lower training errors
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[191].

2.5.2 Regularization Approaches

While optimizers may minimize a network norm implicitly, regulariza-
tion approaches supplement this process and make it explicit. For example,
a common way to restrict the parameter norm explicitly is through weight
decay. This approach discourages network complexity by placing a cost on

weights [67].

Generalization and regularization are often characterized at the end of
training, i.e. as a behavior that results from the optimization process. Several
findings have influenced work in regularization. For example, flat loss land-
scapes have better generalization properties [24,90,102]. In overparameterized
cases, the solutions at the center of these landscapes may have zero training
error (i.e., perfect memorization), and under certain conditions, zero training
error empirically leads to lower generalization error [14, 122]. However, in most
cases when a training loss of zero is reached, generalization suffers [83]. This
behavior can be thought of as overfitting, and techniques have been developed
to reduce it at the end of the training process, such as early stopping [119]

and flooding [83].

Both early stopping and flooding assume that overfitting happens at
the end of training, which is not always true [48]. In fact, the order in which
easy-to-generalize and hard-to-generalize concepts are learned is important the

network’s ultimate generalization. For instance, larger learning rates early in
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the training process often lead to better generalization in the final model [104].
Similarly, low-error solutions found by SGD in a relatively quick manner—such

as through high learning rates—often generalize better [196].

Other techniques tackle overfitting by making it more difficult. Dropout
[162] makes some connections disappear. Cutout [35], Mixup [199], and their
composition, CutMix [197], augment training data with a broader variation of

examples.

Notably, regularization is not a one-dimensional continuum. Different
techniques regularize in different ways that often interact. For example, flood-
ing sometimes cancels out generalization from early stopping [83]. However,
ultimately all regularization techniques alter the gradients that result from the
training loss. This observation suggests that loss-function optimization might

be an effective way to regularize the training process.

2.5.3 Auxiliary Classifiers

Auxiliary classifiers are small sub-networks within a deep model that
predict outputs given internal activations from the parent model. During train-
ing, losses are calculated for the main network and are summed with scaled
losses from one or more auxiliary classifiers. Training gradients propagate
through the network in an end-to-end manner, and auxiliary classifiers may

be discarded at inference-time.

Auxiliary classifiers were originally developed for the GoogLeNet archi-

tecture [166], where they were intended to help the network learn lower-level
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features, facilitate the propagation of gradients to early stages of the network,
and provide regularization. GooglLeNet used two auxiliary classifiers, resulting

in the end-to-end loss of Lrinal = Lnvain + 0.3 Lawxs + 0.3 Lawse.

In the subsequent Inception-v3 architecture [167], an extension of the
original GoogleNet, a single auxiliary classifier was used. The removal of
the early-stage auxiliary classifier did not degrade performance. Additionally,
there were no noticable benefits to auxiliary classifiers in early phases of train-
ing. These two observations prompted the authors to argue that regularization
was the primary benefit confered by auxiliary classifiers, rather than a way to

learn lower-level features more effectively.

2.6 Conclusion

The literature review in this chapter showed how design decisions can
impact on the performance of machine learning models. Designs are often very
complex and have non-intuitive interactions between components. Metalearn-
ing has tackled this from many angles, using technologies such as evolutionary
computation to automatically optimize different design elements. However,
metalearning has not yet been used to optimize loss functions. These func-
tions represent the primary training objective in neural networks and thus
present a unique opportunity for metalearning. By directly impacting the op-
timization process, loss-function metalearning can alter training dynamics in

useful ways.
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Chapter 3

Experimental Methodology

Deep learning is a very detail-sensitive discipline; the way that ex-
periments are conducted can lead to a different interpretation of subsequent
results. This chapter delves into the various aspects of the experimental setup
and methodologies that are used in this dissertation’s embodied work. First,
the image classification benchmark datasets that were used to evaluate GLO
and TaylorGLO are described, followed by an overview of the model archi-
tectures that were trained on these datasets. Lossferatu and Fumanchu, two
components of a novel distributed experiment management system are then
described. They provide experiment host and model training and evaluation
functionality, respectively. Finally, the statistical testing methodology used to

evaluate the significance of results is justified and compared with alternatives.

3.1 Datasets

The empirical analyses in this dissertation make use of standard bench-
mark datasets. The MNIST, CIFAR-10, CIFAR-100, and SVHN datasets, and
their training configurations, including data splits and processing and augmen-

tation pipelines, are described below.
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3.1.1 MNIST

The first domain used for evaluation was MNIST Handwritten Digits
[99], a widely used dataset where the goal is to classify 28 x 28 pixel images
as one of ten numerical digits. Fach image has a single channel. MNIST is
composed of 55,000 training samples, 5,000 validation samples, and 10,000

testing samples. The dataset is well understood and relatively quick to train.

3.1.2 CIFAR-10 and CIFAR-100

To validate GLO and TaylorGLO in a more challenging context, the
CIFAR-10 [94] dataset was used. It consists of small 32 x 32 pixel color pho-
tographs of objects in ten classes. CIFAR-10 traditionally consists of 50,000
training samples, and 10,000 testing samples; however 5,000 samples from the
training dataset were used for validation of candidates, resulting in 45,000

training samples.

Models were trained with their respective hyperparameters from the
literature. Inputs were normalized by subtracting their mean pixel value
and dividing by their pixel standard deviation. Standard data augmentation
techniques consisting of random horizontal flips and croppings with two pixel

padding were applied during training.

CIFAR-100 is a similar, though significantly more challenging, dataset
where a different set of 60,000 images is divided into 100 classes, instead of 10.
The same splits for training, validation, and testing were used for CIFAR-~100
as for CIFAR-10, and evaluate TaylorGLO further.
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3.1.3 Street View House Numbers (SVHN)

The Street View House Numbers (SVHN) [124] dataset is another im-
age classification, consisting of 32 x 32 pixel images of numerical digits from
Google Street View. It was used to further evaluate TaylorGLO in this disser-
tation. SVHN consists of 73,257 training samples, 26,032 testing samples, and
531,131 supplementary, easier training samples. To reduce computation costs,
supplementary examples were not used during training, which explains why
presented baselines are lower in the experiments contained in this dissertation
than other SVHN baselines in the literature. Since a validation set is not in
the standard splits, 26,032 samples from the training dataset were used for

validation of candidates, resulting in 47,225 training samples.

As with CIFAR-10 and CIFAR-100, models were trained with their
respective hyperparameters from the literature and with the same data aug-

mentation pipeline.

3.2 Evaluated Model Architectures

Neural networks come in many different morphologies, with varying
structural motifs, sizes, and design principles. The experiments in this dis-
sertation aim to cover a variety of architectures, including those with state-
of-the-art results. Notably, many of these architectures have been extensively
tuned to work well with the cross-entropy loss, providing a high-bar for met-
alearned loss functions. Specific architectures, and some of their noteworthy

properties, are described below. These architectures have all been designed
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Figure 3.1: Basic CNN Architectures. Both architectures are standard,
relatively shallow CNNs with sequential layers. Samples flow from left to right.
These architectures were used to evaluate the GLO technique.
to perform well when trained with the cross-entropy loss function. Following

these descriptions is a quantitative comparison of the architectures’ relative

sizes and training times.

3.2.1 Basic CNNs

Two simple, relatively shallow convolutional neural network (CNN) ar-
chitectures were used for initial analyses of the GLO technique, one each for

the MNIST and CIFAR-10 datasets (Figure 3.1).

MNIST A simple CNN architecture with the following layers was used: (1)
5 x 5 convolution with 32 filters and ReLU [121] activations, (2) 2 x 2 stride-2
max-pooling, (3) 5 x 5 convolution with 64 filters and ReLU activations, (4)
2 x 2 stride-2 max-pooling, (5) 1024-unit fully-connected layer with ReLU
activations, (6) a dropout layer [75] with 40% dropout probability, and (7) a
softmax layer. Training uses stochastic gradient descent (SGD) with a batch
size of 100, a learning rate of 0.01, and, unless otherwise specified, for 20,000

steps.
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CIFAR-10 A simple CNN architecture, taken from [51] (and itself inspired
by AlexNet [95], which is described in Section 3.2.2), with the following layers
was used: (1) 5 x 5 convolution with 64 filters and ReLU activations, (2)
3 % 3 max-pooling with a stride of 2, (3) local response normalization [95] with
k=1,a=0.001/9,5=0.75, (4) 5 x 5 convolution with 64 filters and ReL.LU
activations, (5) local response normalization with & = 1, = 0.001/9,5 =
0.75, (6) 3 x 3 max-pooling with a stride of 2, (7) 384-unit fully-connected
layer with ReLU activations, (8) 192-unit fully-connected, linear layer, and
(9) a softmax layer. This architecture contains components that are typical
in modern neural network architectures. As a result, this simple architecture

slightly outperforms AlexNet while being shallower.

Inputs to the network are sized 24 x 24 x 3, rather than 32 x 32 x 3
as provided in the dataset; this smaller input size enables more sophisticated
data augmentation. The data augmentation steps consist of: random 24 x 24
croppings selected from each full-size image—to force the network to learn
spatial invariance better—that are randomly flipped longitudinally, randomly
lightened or darkened, and their contrast randomly perturbed. Furthermore,
to attain quicker convergence, an image’s mean pixel value and variance were
subtracted and divided, respectively, from the whole image during training
and evaluation. CIFAR-10 networks were trained with SGD, L, regularization
with a weight decay of 0.004, a batch size of 1024, and an initial learning rate

of 0.05 that decays by a factor of 0.1 every 350 epochs.

37



3 3 1 1
o) ) 2 ©° ©
£ £ £ *
© ° ©° 5] o
c [= [= [=
g & § & § § § & |g E
o % 5 % 5 3 35 % 3 2
o ° ° ° °
L = > = > > > =
= [= (= (= (=
= S G 6 o
» (&) o o o

Figure 3.2: AlexNet Model Architecture. AlexNet was a seminal CNN
architecture. Samples flow through the network, as tensors are gradually down-
sampled, to arrive a final set of scaled classification logits. AlexNet provides
a fixed, basic CNN architecture that is used to evaluate TaylorGLO.

3.2.2 AlexNet

AlexNet [95] is a relatively early CNN with state-of-the-art results on
CIFAR-10 at its time. AlexNet is composed of a sequence of convolution,
ReLU, and max pooling layers, followed by a final linear classification layer

(reference Figure 3.2).

AlexNet is a seminal architecture with a conventional sequential design.
Additionally, its short training times make it a compelling architecture to

iterate on. This fixed architecture is used to evaluate TaylorGLO.

3.2.3 AIlCNN

The All-Convolutional Neural Network (AIICNN) [161] is a unique type
of architecture in that it is entirely composed of convolutions, strided convo-
lutions, dropout layers, and one single average pooling layer at the end of the
network (reference Figure 3.3). Components that CNNs traditionally contain,
such as spatial pooling, fully-connected layers, and batch normalization [82],

are entirely absent from AIICNN models.
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Figure 3.3: AIICNN-C Model Architecture. Unlike many other architec-
tures, AIICNNs only use convolution and dropout regularization layers, along
with a final average pooling layer in lieu of a fully connected classifier. AIICNN-
C provides a unique architecture that is used to evaluate TaylorGLO.

Specifically, the AIICNN-C variant of the AICNN architecture is used

to evaluate TaylorGLO. AIICNNs provide a unique architecture that achieves

high accuracy while forgoing the use of many typical network features.

3.2.4 ResNet

Residual Networks (ResNets) [71] were a novel network morphology
that allows extremely deep networks with up to hundreds of layers to be
trainable. It contains residual connections (a type of skip connection) that
alleviate the vanishing gradients problem (reference Figure 3.4). Residual
blocks—groups of layers with a residual skip connection—are arranged se-
quentially many times within each of three modules. Downsampling occurs
between modules (downsampling operations are omitted from Figure 3.4 for
brevity). ResNets are configured by a depth parameter from which the whole

architecture is built.

ResNets were used to evaluate TaylorGLO since they are a seminal net-

work that introduced architectural motifs that are common to many modern
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Softmax

Figure 3.4: ResNet Model Architecture. Modules composed of sequences
of residual blocks make up the main structure of ResNet models. Residual
blocks contain skip connections that provide a more direct path for gradients
to propagate, allowing deeper networks to be trained.
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Figure 3.5: Preactivation ResNet Model Architecture. A small modifi-
cation to traditional ResNets, Preactivation ResNets are able to learn better
by providing a clearer path for gradients to propagate. This natural extension
to the base ResNet architecture is used to evaluate TaylorGLO.
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neural networks.

3.2.5 Preactivation ResNet

Preactivation ResNets [72] emerged from an analysis of signal propa-
gation in traditional ResNets. By simply changing the order in which ReLLU
units are applied, Preactivation ResNets are able to achieve higher accuracy
and better generalization properties. As seen in Figure 3.5, there is a clearer
path for gradients to propagate, compared to traditional ResNets (reference

Figure 3.4), due to the lack of a ReLU layer between blocks.

Preactivation ResNets, in conjunction with ResNets, serve as a good
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Figure 3.6: Wide ResNet Model Architecture. Wide ResNets provide a
significant departure from the “deep and skinny” configuration that is typi-
cal to ResNets. Wide ResNets are a good fit evaluate TaylorGLO on wider
networks.
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way to evaluate how TaylorGLO performs on two similar, but slightly different,

types of networks with different gradient propagation characteristics.

3.2.6 Wide ResNet

Wide ResNets [198] tackle the marginal returns gained in performance
and large increases in training time associated with increasingly deep ResNets.
By utilizing a wider network with small modifications (reference Figure 3.6),
Wide ResNets are able to outperfom their narrow counterparts, while requiring
over an order of magnitude fewer layers. Wide ResNets have configurable depth

and width parameters. Notably, Wide ResNets include dropout layers between
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Figure 3.7: PyramidNet Model Architecture. PyramidNets are a more
recent member of the ResNet lineage that has tuned various aspects of the
network to perform better. The PyramidNet architecture provides a way to
evaluate TaylorGLO on a recent, highly tuned architecture.

RelLU

convolutions, a feature that improves performance on Wide ResNets but had

been found to be detrimental on previous ResNet architectures [72].

Wide ResNets are widely used in the literature, making them a must-
have architecture in any well-rounded evaluation. While the general flow of
gradients through Wide ResNets is very similar to other residual networks,
their width and depth can vary significantly, providing a direct point of com-

parison for the effects of width and depth on TaylorGLO.
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3.2.7 PyramidNet

Deep Pyramidal Residual Networks (PyramidNets) [63] are yet another
network with residual connections whereby channel dimensionality gradually
increases—as opposed to staying static—in between downsampling oppera-
tions. These increases may happen in either an additive or multiplicative

manner.

As another mature, modern ResNet variant, PyramidNets are used in
the TaylorGLO evaluation, namely on the CIFAR-100 dataset. PyramidNets
are an example of an architecture that has been extensively tuned for high
performance when training with the cross-entropy loss, providing a high bar

for TaylorGLO to exceed.

3.2.8 Architecture Comparisons

Overall, these architectures provide a test suite upon which the tech-
niques presented in this dissertation can be evaluated. The architectures de-
scribed above are varied in their components, approaches, and sizes, thus pro-

viding a representative sampling of modern deep neural networks.

Figure 3.8 provides a comparison of the number of trainable parameters
and training times across the evaluated architectures. The parameter counts
range across three orders of magnitude. Training times range from under ten
minutes for AlexNet, to over four hours for Wide ResNet 28-10. These values

exemplify one dimension of the variety in the evaluated architectures.
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Figure 3.8: Comparing architecture trainable parameters (a) and
training times (b). The number of trainable paramters in evaluated ar-
chitectures span multiple orders of magnitude. While there tends to be a
correlation between the number of parameters and training time, certain ar-
chitectures have disproportionately higher (e.g., PyramidNet) or lower (e.g.,
AlexNet) training times.

Training times are calculated by multiplying a per-batch training time
measurement by the number of batches per epoch and the number of epochs
per model. To ensure stability, these per-batch training time values are the
average batch training time from the second epoch of training (i.e., a warm
start). All values were calculated from training on a machine with a 10-
core Intel Xeon Gold 5215 processor running at a base frequency of 2.5GHz,
NVIDIA GeForce RTX 2080 Ti GPU, 96GB of memory, and a solid-state drive
connected through NVMe. No other work was running on the machine while

each profiling experiment took place.
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3.3 System Architecture

Loss function evolution typically requires hundreds of neural networks
to be evaluated. Thus, these evaluations happen in parallel for efficiency, re-
quiring a distributed system for running experiments on a cluster of machines
with dozens of GPUs. A custom system was built to such an end for this
body of work. This system was created since no comprehensive, extensible,
and usable system for managing and running evolution experiments with dis-
tributed candidate evaluations was found to exist. This dissertation presented

an opportunity to develop such a system.

3.3.1 Overview

The system is composed of two key components that interact with each

other:

Lossferatu: the parallelized experiment host that runs evolutionary processes,
manages results, and coordinates candidate evaluation. Lossferatu can
run for extended periods of time without human intervention, much like

its namesake Nosferatu [3].

Fumanchu: a generic, model-agnostic neural network training and evaluation
component with a unified interface. One experiment may involve hun-
dreds of unique invocations of Fumanchu. More informally, Fumanchu
treats models as cattle, rather than as pets; the inspiration for being

named after Fu Manchu the bull [113].
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Figure 3.9: System architecture for distributed experiment execution.
A single experiment host, running Lossferatu, serves as the central coordi-
nation point for experiments. Individual models are dispatched for training
and evaluation on a cluster of machines running Fumanchu. In this manner,
evolution experiments with long-running evaluations can be configured and
efficiently run.

Lossferatu uses the Studio [178] model management framework to dis-
patch atomic fragments of work, i.e. jobs. Each job corresponds to a single
candidate evaluation and consists of a run of Fumanchu. Studio jobs are ref-
erenced in a RabbitM(Q [177] message queue that conforms to the Advanced
Message Queuing Protocol (AMQP) [84]. Job code, datasets, results, and job
artifacts are stored in MinlO [2], a distributed object store that is accessible
with the AWS S3 API [4]. Jobs are consumed from the queue by Studio Go
Runners [120] as resources become available. Studio Go Runners are decen-

tralized entities that manage the execution of jobs and resource allocation.
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Studio Go Runners run as kubelets within a Kubernetes [1] cluster. Concur-
rently, Lossferatu monitors for completed jobs and processes their results as

needed.

The general architecture of this system is depicted in Figure 3.9. Both
Lossferatu and Fumanchu, their capabilities, and their interactions with the
components in the figure, are described in more detail in the following subsec-

tions.

3.3.2 Lossferatu

Lossferatu is a multithreaded program that runs on the host machine
and provides a centralized user interface and core functionality for experiments.

It was designed with the following desiderata in mind:

Safety and Continuity: Experiments should be able to handle malfunctions
gracefully throughout the software stack, and surface them to the user
if recovery is not possible. Additionally, experiments should be able to
be stopped, continued, or restarted at any point and must even be able

to gracefully handle manual state changes.

Extensibility: Lossferatu should support new types of experiments in a backwards-

compatible manner without significant changes.

Full State Persistence: During iterative experimentation or analysis, cer-

tain components of the experiment’s state may be useful to know. Which
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pieces of state are useful may not be known a priori, so all state should

be persisted in human-interpretable JSON files.

Unified Experiment Structure: All experiments should be stored in a con-
sistent manner on the file system, and have consistently formatted ex-

periment configuration files.

Simple User Interface: An easy-to-use command-line interface for core func-
tionality should be exposed, with more sophisticated behaviors abstracted

into shell scripts.

Automated Analysis Pipelines: Results should be easily processed and
collated automatically. Evolution experiments should be able to gen-
erate Mathematica [140] notebooks that summarize results and provide

publication-quality plots.

Lossferatu was designed such that atomic steps in an experiment each
correspond to a single, multi-threaded process. Such a philosophy yields a
system that is amenable to manual intervention and is naturally safe and
efficient. Consequently, a single evolution experiment may result in thousands
of small, fast-completing processes running over the course experiment. This
design also requires state to be maintained outside the confines of a process;

the file system is used for such an end.

Multigeneration Lossferatu experiments have a directory structure as

shown in Figure 3.10. Lossferatu automatically creates and manages this struc-
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ture from a given experiment configuration JSON file. Generations are seg-
regated into numbered directories where their respective state is maintained.
Since Lossferatu processes are stateless, these generation directories can be

manually altered in incomplete experiments.

For each experiment, Lossferatu can perform a holistic analysis: calcu-
lating per-generation metrics, creating experiment configuration files for final
evaluation of the best candidate at each generation, and creating a Mathe-
matica notebook that summarizes experiment results. Lossferatu creates the
Mathematica notebook without user involvement by generating Wolfram code
for the notebook and running it through the Mathematica front-end in the
background using the wolframscript tool. Several of the plots in this disser-
tation were directly exported from these generated notebooks. The generated
configuration files for each generation can then be used by the autogener-
ated experiment best_candidate one shot script to run child experiments,
typically for evaluating best candidates on a testing dataset. This capability

greatly reduces the amount of effort involved in evaluating specific candidates.

Generational (i.e., evolution) experiments are conveniently run through
repeated calls of the run_generation script. Since evaluations happen asyn-
chronously, on remote servers, each generation is split into two phases: a start
phase, where new candidates are generated and submitted to the queue for
evaluation, and a check phase, where MinlO is periodically polled to check

experiment progress and fetch and process results if needed.

However, not all experiments fall into a generational modality; such
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as baseline experiments and secondary candidate evaluations. Lossferatu in-
cludes support for these “one-shot” jobs as well. One-shot jobs share many
commonalities with generational jobs, such as the two-phase experiment exe-

cution system (i.e., submit a job and poll for results).

The generated Lossferatu scripts are simple contrivances that explic-
itly invoke Lossferatu with various parameters. Lossferatu’s command-line

interface is structured around the following commands:

init: Initializes a new experiment directory given an experiment configuration

JSON file.

start: Creates a new generation directory, creates new candidates, and sub-
mits them to the queue for evaluation. Queue submissions can be con-

figured to happen either sequentially or concurrently.

check: Polls MinlO for updated job output files. If any jobs have finished
running, their results are downloaded, processed, and persisted. The

command returns a unique exit code once all jobs have finished running.

analyze: Analyzes completed generations and creates a Mathematica note-

book with statistics, plots, and other details.

getinvocation: Prints the exact Fumanchu invocation that would be run for
a given one-shot experiment configuration file. This command makes it

effortless to rerun exact one-shot experiments on any machine that has
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Fumanchu and is not a part of the cluster to which Lossferatu dispatches

work.

studiolog: Downloads and prints the Studio output log for a given job iden-
tifier. Such a command is useful for manually monitoring the progress

of in-flight jobs, and seeing raw results.

ttest: Given two directories with equal numbers of one-shot jobs, various
statistical significance tests are run on their primary evaluation metrics

as defined in their experiment configurations.

collateoneshots: Takes a directory of one-shot experiments and collates their

results into a CSV file at the directory’s root.

resummarize: Creates a results summary CSV for a given directory of di-
rectories of one-shot experiments. In practice, this command allows for

baselines to be easily summarized.

resummarizegenerational: Creates a results summary CSV for a given di-
rectory of generational experiments. In practice, this command is used
to summarize the results for the best candidates from a set of evolution

experiments and cross-reference them with respective one-shot baselines.

test: Runs various unit-tests of Lossferatu.

Lossferatu is primarily written in the Swift programming language, leveraging
the Swift CMA [49] package for its CMA-ES implementation and the SwiftGe-

netics [50] package for building genetic algorithms. Multi-core concurrency in

52



Lossferatu is implemented atop libdispatch [81]. Lossferatu is able to run on
both macOS and Linux, and, notably, multiple experiment hosts running their
own instances of Lossferatu can be used concurrently for different experiments

on the same cluster.

Lossferatu is arguably the first comprehensive system for managing,
running, and analyzing evolution experiments with distributed candidate eval-
uations. Lossferatu provides extensible functionality and a user-friendly inter-

face that enables new experiments to be easily configured.

3.3.3 Fumanchu

Fumanchu is a highly configurable model training and evaluation frame-
work. Lossferatu runs Fumanchu to evaluate individual candidates. It was

designed to achieve the following goals:

Model and Dataset Agnosticism: Large components of Fumanchu should
function generically, regardless of the model or dataset that is config-
ured. Moreover, this property should hold true across different types of
tasks (e.g., classification, regression) when possible. This property makes
adding new model architectures and domains an easier, less error-prone

endeavor.

Command-Line Interface: Runs of Fumanchu should be configured en-
tirely through a command-line interface. This design decision facilitates

interaction with Fumanchu and simplifies manual invocation by users.
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Logging, Pretrained Models, and Analyses: Fumanchu should be able
to log relevant metrics and data during the training process, perform var-
ious analyses (e.g., loss surface analysis, adversarial attacks) and support

the use of pretrained models for training, inference, and analysis.

Fumanchu is resident on the same machine as Lossferatu. Whenever
Lossferatu dispatches a unit of work, Fumanchu’s code is duplicated to a tem-
porary directory and an invocation shell script with job-specific parameters is
created in this directory. Studio then encodes this directory into a tar file, up-
loads it to MinlO, and appends a new job to the queue. This per-job copying
of Fumanchu ensures that no node in the cluster will ever have a stale version

of Fumanchu.

Whenever enough resources are available (i.e., half a GPU) on a cluster
machine, a Studio Go Runner will consume a job from the queue and start
running it once its environment and dependencies are setup. In a startup
script that Lossferatu packages into each job, the correct training dataset and,
optionally, a pretrained model are copied from MinIO. Fumanchu is then in-
voked and sequentially performs model training, evaluation, and analysis. The
startup script may invoke Fumanchu more than once, as specified in the cur-
rent Lossferatu experiment configuration, if trained model performance does

not exceed a threshold.

Upon completion of its workload, Fumanchu saves trained model arti-

facts, and large results files from analyses, to MinlO through Studio’s model
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persistance mechanism. Results are written to a file descriptor that Studio
automatically packages into a per-job tar file that is persisted on MinlO. Fu-
manchu is written entirely in Python and leverages the PyTorch library [131]

for training neural networks.

Fumanchu is an important component that Lossferatu leverages for
candidate evaluation and analysis. Its independent nature allows it to be
manually invoked and used on any machine, outside of Lossferatu experiment
management system. Evolution experiments in Lossferatu whose candidate
evaluations do not necessarily involve training a neural network could use a

different, application-specific component in lieu of Fumanchu.

3.3.4 Hardware Specifications

Lossferatu ran on both (1) a 2016 MacBook Pro notebook computer
with a quad-core 2.9GHz Intel Core i7 processor and 16GB of memory and (2) a
2019 MacBook Pro notebook computer with a hexa-core 2.6 GHz Intel Core i7
processor and 16GB of memory. Both of these experiment hosts communicated

with the same cluster where candidate evaluations were run.

The cluster was composed of eight machines, with four in each of two

separate configurations:

biggpu: Servers with two 16-core Intel Xeon E5-2683 v4 processors running
at a base frequency of 2.1GHz, 264GB of memory, and eight NVIDIA
GeForce RTX 1080 Ti GPUs.

55



biggergpu: Servers with two 16-core Intel Xeon Silver 4216 processors run-
ning at a base frequency of 2.1GHz, 384GB of memory, and nine NVIDIA
GeForce RTX 2080 Ti GPUs.

3.4 Significance Testing

While statistical significance testing is unfortunately not a widespread,
standard practice in machine learning literature, it is an important part of any
rigorous data analysis. In this body of work, such tests are used frequently to
compare resultant performance metrics, such as testing accuracy, from models
trained with different techniques. Significance testing can assure that a given

technique actually is an improvement over others.

Significance tests define a null hypothesis and reject it if a p-value is
below a predefined significance level, typically 0.05. A p-value is the probabil-
ity of obtaining extreme results at the same level or greater than the results

observed given that the null hypothesis is true.

When comparing results in this dissertation, a one-tailed null hypoth-

esis is typically used:

Ho : = (p1 < p2) , (3.1)

where pq and o are mean values from two separate experiments. The rejec-
tion of this null hypothesis implies that u, is statistically significantly larger

than p;. A two-tailed null hypothesis—to test for the dissimilarity of two

56



distributions—can be similarly constructed as

HO D = M. (32)

The two main options that are available for performing significance
testing in this type of setting are Student’s ¢-Test [57] and Welch’s t-Test
[189]. Both of these tests assume that both groups of data are sampled from
populations that are normally distributed. In practice, this assumption holds
for trained network accuracies. Figure 3.11 demonstrates this property with
100 AIICNN-C networks trained on CIFAR-10. Student’s ¢t-Test asserts addi-
tional requirements, where both populations need to have equal numbers of
samples and equal variances (in contrast, Welch’s ¢-Test does not have these

requirements).

While certain sets of samples on which statistical tests are performed
may have equal variances, this is not necessarily known a priori. Checking
variances in order to decide between the usage of Student’s or Welch’s ¢-Test
is not recommended practice [202]. Additionally, even in cases where variances
and sample counts are known to be similar, it is reasonble to use Welch’s ¢-
Test since it is more robust and still has high-statistical power [146]. Thus
Welch’s t-Test is used exclusively in this dissertation when comparing sets of

performanc metrics from different techniques.

Welch’s t-Test functions by calculating a ¢-statistic and degrees of free-
dom, v, which are input into the cumulative distribution function (CDF) of

the ¢-distribution to get a level of significance (i.e., a p-value) that signifies the
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probability that the null hypothesis is true by random chance. The ¢-statistic
is calculated as follows:

==X (33)

where X; is the sample mean, s? is an unbiased variance estimator (i.e., sample
variance with Bessel’s correction), and N; is the number of samples for the
jth population of samples. The dataset’s degrees of freedom are approximately

calculated using the Welch-Satterthwaite equation [151]:

VR S (3.4)

where v; = N; —1. The cumulative probability of the t-distribution for a given

t-statistic value and v is:

CDF(f, () =1 — ~1_. (” 1) , (3.5)

2 ?w \ 272
where I,(a,b) is the regularized incomplete beta function. Such a p-value is

reported without modification for one-tailed t-tests, while it is multiplied by

two for two-tailed ¢-tests.

Throughout this dissertation, Welch’s ¢-Test is used to determine sta-
tistical significance when comparing sets of results. It is a better fit than
Student’s t-Test due to its higher robustness and statistical power. Graphical
figures indicate statsitical significance with standard notation: “ns” indicates
p > 0.05, “x” indicates p < 0.05, “xx” indicates p < 0.01, and “xx*x*” indicates

p < 0.001.
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Experiment Root

| _analyses/
results.csv
results.wl
experiment _best_candidate_one_shot
ExperimentConfig best_candidate. json
ExperimentConfig GenO_best_candidate. json
ExperimentConfig _GenValO_best_candidate. json
ExperimentConfig GenPretrainedO_best_candidate. json
ExperimentConfig GenPretrainedValO_best_candidate. json
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candidates. json
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| results.nb
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Figure 3.10: Representative Lossferatu generational experiment di-
rectory structure. Lossferatu stores all state and command scripts (shown
in blue) in an intuitive directory structure on the file system. This structure
is initialized and managed by Lossferatu, while making manual user interven-
tion possible. An experiment directory contains all internal state, evaluated
candidate results, analyses, and child experiments.
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Figure 3.11: Quantile-quantile plot of 100 trained AINCNN-C net-
works’ testing accuracies against a normal distribution. The highly-
linear distribution of points demonstrates that testing accuracies are normally
distributed.
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Chapter 4

Genetic Loss-function Optimization (GLO)

In this chapter!, a general framework for loss function metalearning,
covering both novel loss function discovery and optimization, is developed
and evaluated experimentally. This framework, Genetic Loss-function Op-
timization (GLO), leverages genetic programming to build loss functions by
representing them as trees, and subsequently a Covariance-Matrix Adaptation
Evolution Strategy (CMA-ES) to optimize their coefficients. On the MNIST
image classification benchmark, GLO discovered a surprising new loss function,
named Baikal for its shape, that outperforms the standard cross-entropy loss
in terms of training speed, final accuracy, and data requirements.GLO’s highly
flexible representation also provides ample opportunities for extensibility; one

such extension is explored in this chapter.

4.1 Method

The task of finding and optimizing loss functions can be framed as

a functional regression problem. GLO accomplishes this task through two

IThe work in this chapter was previously presented at the 2020 IEEE Congress on Evo-
lutionary Computation (CEC) [52]. Risto Miikkulainen provided guidance and feedback
through discussions.
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(1) Loss function discovery genetic algorithm (2) Coefficient optimization via CMA-ES
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Figure 4.1: Genetic Loss Optimization (GLO) overview. A genetic
algorithm constructs candidate loss functions as trees. The best loss function
from this set then has its coefficients optimized using CMA-ES. GLO loss
functions are able to train models more quickly and more accurately than the
cross-entropy loss.

high-level steps (shown in Figure 4.1): (1) loss function discovery: using
approaches from genetic programming, a genetic algorithm builds new candi-
date loss functions, and (2) coefficient optimization: to further optimize
a specific loss function, a covariance-matrix adaptation evolutionary strategy

(CMA-ES) is leveraged to optimize coefficients. Each of these steps is de-

scribed in detail below.

4.1.1 Loss Function Discovery

GLO uses a population-based search approach, inspired by genetic pro-
gramming, to discover new optimized loss-function candidates. Under this
framework, loss functions are represented as trees within a genetic algorithm—

a standard genetic programming approach. Trees are a logical choice to repre-
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sent functions due to their hierarchical nature. The loss-function search space

is defined by the following tree nodes:

Unary Operators: log(o),o? /o
Binary Operators: +, %, —, +

Leaf Nodes: z,y,1,—1, where = represents a true label, and y represents a

predicted label.

A loss function’s fitness within the genetic algorithm is the validation
performance of a network trained with that loss function. To expedite the
discovery process, and encourage the invention of loss functions that make
learning faster, training does not proceed to convergence. First, a fitness of
0 is automatically assigned to trees that do not contain both at least one x
and one y. Second, unstable training sessions that result in NaN values are
assigned a fitness of 0. Third, fitness values are cached to avoid the need to
retrain the same network twice. These cached values are each associated with
a canonicalized version of their corresponding tree, resulting in fewer required

evaluations.

The initial population is composed of randomly generated trees with
a maximum depth of two. Recursively starting from the root, nodes are ran-
domly chosen from the allowable operator and leaf nodes using a weighting
(where log(o),z,y are three times as likely and /o is two times as likely as

+,%,—,+,1,—1). This weighting can impart a bias and prevent, for example,
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the integer 1 from occurring too frequently. The genetic algorithm typically
has a population size of 80, incorporates elitism with six elites per generation,

and uses roulette sampling.

As is typical in genetic programming, recombination is accomplished by
randomly splicing two trees together. For a given pair of parent trees, a random
element is chosen in each as a crossover point. The two subtrees, whose roots
are the two crossover points, are then swapped with each other. Figure 4.1
presents an example of this method of recombination. Both resultant trees
become part of the next generation. Recombination occurs with a probability

of 80% for a pair of parent trees.

To introduce variation into the population, the genetic algorithm has
the following mutations, applied in a bottom-up fashion (i.e., deeper tree nodes

are mutated earlier):

e Integer scalar nodes are incremented or decremented with a 5% proba-

bility.

e Nodes are replaced with a weighted-random node with the same number

of children with a 5% probability.

e Nodes (and their children) are deleted and replaced with a weighted-
random leaf node with a 5% x 50% = 2.5% probability.

e Leaf nodes are deleted and replaced with a weighted-random element

(and weighted-random leaf children if necessary) with a 5%x50% = 2.5%

64



probability.

Mutations, as well as recombination, allow for trees of arbitrary depth to be
evolved. Thus, GLO can discover arbitrarily complex functions as needed.
GLO populations’ individuals do tend to grow in size as evolution progresses,

but this is not an issue in practice.

Combined, the iterative sampling, recombination, and mutation of trees
within the population leads to the discovery of new loss functions which max-

imize fitness.

4.1.2 Coefficient Optimization

Loss functions found by the above genetic algorithm can all be thought
of as having unit coefficients for each node in the tree. This set of coefficients
can be represented as a vector with dimensionality equal to the number of
nodes in a loss function’s tree. The number of coefficients can be reduced by
pruning away coefficients that can be absorbed by others (e.g., 3 (5x + 2y) =
15z + 6y). In GLO, the coefficient vector is optimized independently and
iteratively using a covariance-matrix adaptation evolutionary strategy (CMA-

ES) [65].

CMA-ES is a popular population-based, black-box optimization tech-
nique for rugged, continuous spaces. CMA-ES functions by maintaining a
covariance matrix around a mean point that represents a distribution of so-

lutions. At each generation, CMA-ES adapts the distribution to better fit
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evaluated objective values from sampled individuals. In this manner, the area
in the search space which is being sampled at each step dynamically grows,

shrinks, and moves as needed to maximize sampled candidates’ fitnesses.

The specific variant of CMA-ES that GLO uses is (p/p, A)-CMA-ES
[66], which incorporates weighted rank-p updates [64] to reduce the number of
objective function evaluations needed. The implementation of GLO presented
in this chapter uses an initial step size ¢ = 1.5. As in the discovery phase, the
objective function is the network’s performance on a validation dataset after

a shortened training period.

4.1.3 Experiments

Since Lossferatu (described in Section 3.3) had not yet been developed
and candidate evaluation was a relatively fast process, GLO was implemented
in a bespoke system whereby training was distributed across the network to a
cluster of dedicated machines, using HTCondor [170] for scheduling. Each ma-
chine in this cluster had one NVIDIA GeForce GTX Titan Black GPU and two
quad-core Intel Xeon E5-2603 CPUs running at a base frequency of 1.80GHz
with 8GB of memory. Training itself wass implemented with TensorFlow [7]
in Python. The primary components of GLO (i.e., the genetic algorithm and
CMA-ES) were implemented in Swift. These components run centrally on one
machine and asynchronously dispatch work to the Condor cluster over SSH.
The SwiftCMA [49] and SwiftGenetics [50] were developed and open-sourced

as part of this implementation.

66



GLO experiments were run on the basic CNN architecture described
in Section 3.2.1, with the MNIST image classification benchmark dataset.
Such experiments were run for up to 100 generations, and stopped when
they qualitatively appeared to have converged, i.e. subsequent generations’
top-candidate performance plateaued. Models in candidate evaluations were

trained for 2,000 steps (i.e., 10% of full training duration).

4.2 Discovering Baikal

The best loss function that was discovered by a run of GLO with the
MNIST dataset is a novel function, the Baikal loss, named for its similarity
to the bathymetry of Lake Baikal when plotted (Section 4.3). Compared to
the cross-entropy loss, Baikal trained models more quickly while converging
to higher accuracies. Additionally, Baikal performs better than cross-entropy
when using few training samples. Baikal’s advantages also transfer to more

complex datasets, as will be shown below.

Baikal is defined as

1 — T;
Laia:——g | i——z, 4.1
Baikal n 4 083(3/) ” ( )

where x is a sample from the true distribution, y is a sample from the predicted
distribution, and n is the number of classes. Baikal was discovered from a single
run of GLO. Additionally, after coefficient optimization, GLO arrived at the

following version of the Baikal loss:.

n

1 Cq * Ty
LBaikalCMA = — ZCO (01 *log(co * y;) — ¢3 & ) ; (4.2)

n Cs X UY;
i=0 5 * Yi

67



1.0000

*kk *kk

[&]
$ 0.9950
3
(8]
Q
<
+ 0.9900
@
C
8 0.9850
=

0.9800

Log Loss Baikal BaikalCMA

Figure 4.2: Mean testing accuracy on the MNIST image classifica-
tion benchmark, from ten independent runs each for cross-entropy,
Baikal, and BaikalCMA loss functions. Both Baikal and Baikal CMA
loss functions provide statistically significant improvements to testing accu-
racy over the cross-entropy loss.

where ¢y = 2.7279,¢c; = 0.9863,c5 = 1.5352,¢c3 = —1.1135,¢4 = 1.3716,¢c5 =
—0.8411.

This loss function, Baikal CMA, was selected from the ninth generation
of a 35 generation run of CMA-ES for having the highest validation accuracy
out of the population. The Baikal and BaikalCMA loss functions had valida-
tion accuracies at 2,000 steps equal to 0.9838 and 0.9902, respectively. For
comparison, at 2,000 steps, the cross-entropy loss had a validation accuracy
of 0.9700. Models trained with the Baikal loss on MNIST and CIFAR-10 (to
test transfer) are the primary vehicle for validating GLO’s efficacy, as detailed

in subsequent sections.

Figure 4.2 shows the increase in testing accuracy that Baikal and BaikalCMA
provide on MNIST over models trained with the cross-entropy loss. Over 10

trained models each, the mean testing accuracies for cross-entropy loss, Baikal,
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Figure 4.3: Training curves for different loss functions on MNIST.
Baikal and Baikal CMA result in faster and smoother training compared to the
cross-entropy loss.

and BaikalCMA were 0.9899, 0.9933, and 0.9947, respectively. This increase
is statistically significant, with a p-value of 2.4 x 107!, in a Welch’s ¢-Test as
described in Section 3.4, with 10 samples from each distribution. With the
same significance test, the increase in accuracy from Baikal CMA over Baikal is
statistically significant as well, with a p-value of 8.5045 x 10~%. Therefore, loss-

function metalearning with GLO is shown to be an effective way to increase

model performance, with both evolution phases contributing.

Training curves for networks trained with the cross-entropy loss, Baikal,
and BaikalCMA are shown in Figure 4.3. Each curve represents 80 testing
dataset evaluations spread evenly (i.e., every 250 steps) throughout 20,000
steps of training on MNIST. Networks trained with Baikal and BaikalCMA
both learn significantly faster than the cross-entropy loss. These phenomena
make Baikal a compelling loss function for fixed time-budget training, where

the improvement in resultant accuracy over the cross-entropy loss becomes
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Figure 4.4: Sensitivity to different dataset sizes for different loss func-
tions on MINIST. For each size, five experiments were run. Standard devia-
tions are presented as error bands Baikal and BaikalCMA increasingly outper-
form the cross-entropy loss on small datasets, providing evidence of reduced
overfitting.

most evident.

4.2.1 Training Data Requirements

Figure 4.4 provides an overview of the effects of dataset size on net-
works trained with cross-entropy loss, Baikal, and BaikalCMA. For each train-
ing dataset portion size, five individual networks were trained for each loss
function. On the 0.05 dataset portion (i.e., the smallest, with only 2,750
training samples), the cross-entropy loss frequently exhibited numerical insta-
bility. Thus, these specific experiments had to be run many times to yield five
fully-trained networks. Notably, Baiikal and BaikalCMA did not yield unsta-
ble training runs and no other dataset portions exhibited instability with the
cross-entropy loss. As in previous experiments, MNIST networks were trained

for 20,000 steps.
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The degree by which Baikal and BaikalCMA outperform cross-entropy
loss increases as the training dataset becomes smaller. This observation pro-
vides evidence that networks overfit less when they are trained with Baikal or
Baikal CMA. As expected, Baikal CMA outperforms Baikal at all tested dataset
sizes. The size of this improvement in accuracy does not grow as significantly
as the improvement over cross-entropy loss, leading to the belief that the data

fitting characteristics of Baikal and Baikal CMA are similar.

Overall, these reduced data requirements allow small datasets to be
used more effectively. This finding has practical ramifications, as not many
datasets found in the world are large. Going forward, custom loss functions

could be evolved to target these small datasets specifically.

4.2.2 Loss Function Transfer to CIFAR-10

Figure 4.5 presents a collection of 18 separate tests of the cross-entropy
loss and Baikal applied to CIFAR-10. Baikal is found to outperform cross-
entropy across all training durations, with the difference being more prominent
in early training. These results present an interesting use case for GLO, where
a loss function that is found on a simpler dataset can be transferred to a more
complex dataset while still maintaining performance improvements. In effect,
Baikal allows for faster training, which supports that GLO loss functions could

be particularly useful in fixed time-budget scenarios.
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Figure 4.5: Testing accuracy across varying training steps on the
CIFAR-10 image classification benchmark. The Baikal loss, which has
been transferred from MNIST, outperforms the cross-entropy loss on all train-
ing durations. This effect is more pronounced early in training, suggesting
that Baikal results in faster training.

4.3 What makes Baikal work?

This section presents a conceptual analysis of the Baikal loss function,
followed by experiments to elucidate why Baikal works better than the cross-
entropy loss. The conclusion is that Baikal results in implicit regularization,

reducing overfitting.

Loss functions used on the MNIST dataset, a 10-dimensional classifica-
tion problem, are difficult to plot and visualize graphically. To simplify, they
are analyzed in this section in the context of binary classification, with n = 2,

the Baikal loss expands to

1 T T
L Baikal2D = b (log(yo) - = + log(y1> - —1) . (4-3)
Yo n

Since vectors x and y sum to 1, by consequence of being passed through a soft-

max function, for binary classification x = (z,1 — z) and y = (yo, 1 — yo).
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Figure 4.6: Binary classification loss functions plotted at x; = 1. Cor-
rect predictions lie on the right side of the graph, and incorrect ones on the left.
The log loss decreases monotonically, while Baikal and BaikalCMA present
counterintuitive, sharp increases in loss as predictions approach the true label.
This phenomenon provides regularization by preventing the model from being
too confident in its predictions.

This constraint simplifies the binary Baikal loss to a function of two variables
(zo and yy),

1—1‘0
1—yo

T
L Baikal2D X — log(yo) + y_o - log(l - ?JO) + (4'4)
]

This same methodology can be applied to the cross-entropy loss and BaikalCMA,

and plotted in Figure 4.6.

In practice, true labels are assumed to be correct with certainty, thus,
xo is equal to either 0 or 1. Figure 4.6 shows the specific case where xy =
1. The cross-entropy loss is monotonically decreasing, while the Baikal and
Baikal CMA loss functions counterintuitively show an increase in loss as the
predicted label, 39, approaches the true label xy. This unexpected increase

allows the loss functions to prevent the model from becoming too confident in
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Figure 4.7: Outputs of networks trained with cross-entropy loss and
Baikal CMA. With BaikalCMA, the peaks are shifted away from extreme
values and are more spread out, indicating implicit regularization. The
Baikal CMA histogram matches that from a network trained with a confidence
regularizer [133], supporting the hypothesis that GLO can discover loss func-
tions that bias training in such a way that results in regularization.

its output predictions, thus providing a form of regularization.

The Baikal and BaikalCMA loss functions are surprising in that they
incur a high loss when the output is very close to the correct value (as illus-
trated in Figure 4.6). Although at first glance this behavior is counterintuitive,
it may provide an important advantage. The outputs of a trained network will
not be exactly correct, although they are close, and therefore the network is
less likely to overfit. Thus, these loss functions provide an implicit form of

regularization, enabling better generalization.

This effect is similar to that of the confidence regularizer [133], which
penalizes low-entropy prediction distributions. The bimodal distribution of
outputs that results from confidence regularization is nearly identical to that

of a network trained with BaikalCMA. Note that while these outputs are
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typically referred to as probabilities in the literature, this is often an innacurate
interpretation [45], i.e. a model can produce highly-uncertain predictions while

having scaled target logits with values close to 1.

Histograms of these distributions on the test dataset for cross-entropy
and Baikal CMA networks, after 15,000 steps of training on MNIST, are shown
in Figure 4.7. The abscissae in Figures 4.6 and 4.7 match, making it clear how
the distribution for BaikalCMA has shifted away from extreme values. The
improved behavior under small-dataset conditions described in Section 4.2.1
provides further evidence for implicit regularization; less overfitting was ob-

served when using Baikal and Baikal CMA compared to the cross-entropy loss.

As also seen in Figure 4.6, the minimum for the Baikal loss lies near
Yo = 0.71, while the minimum for the BaikalCMA loss lies near yo = 0.77. This
minimum, along with the more pronounced slope around zo = 0.5, is likely
a reason why BaikalCMA performs better than Baikal. The greater slope
over a wider domain of the function implies that there are larger gradients
over a wider domain as well, a property which can lead to faster training. The
different minima can be thought of as a tuning of the point at which prediction

confidence is penalized.

As was detailed in Section 3.2.1, MNIST networks were trained with
dropout [75], and CIFAR-10 networks with Ly weight decay and local response
normalization [95]. Yet Baikal was able to improve performance further. Thus,
the implicit regularization provided by Baikal and BaikalCMA complements

the different types of regularization already present in the trained networks
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and they can be combined to achieve an increased effect.

4.4 Expanded Search Space

The search space for GLO can be extended to include a network’s un-
scaled logits (i.e., the output of a classification neural network before the
softmax layer) as a potential leaf node. The addition of unscaled logits ex-
tends the base implementation of GLO to support loss functions that take
three variables, rather than two (i.e., ground-truth labels and scaled logits).
Conceptually, the availability of more information should allow training to pro-
ceed in a more intelligent manner. Unscaled logits in particular can provide

information on the network’s raw, unnormalized outputs.

When running GLO with this expanded search space on MNIST, a new

loss function, referred to as the FastLogit loss was discovered:

X

i == 3=+ (-G -2) 69

Yi
where y are the network’s unscaled logits. Notably, this loss function is more
complex than Baikal or the log loss, showing how evolution can take advantage

of expanded search spaces.

True to its name, the FastLogit loss is able to learn more quickly than
Baikal, while converging to a comparable accuracy (shown in Figure 4.8).
This improvement over Baikal provides support for having search spaces that

include more types of data.
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Figure 4.8: Training curves for the FastLogit and Baikal loss functions
on MNIST. FastLogit results in faster training compared to Baikal, with a
comparable final accuracy.

4.5 Discussion

This chapter developed a first approach to loss function metalearning by
introducing an evolutionary computation approach to it. GLO was evaluated
experimentally on image classification domains, and discovered a surprising
new loss function, Baikal. Experiments showed substantial improvements in
accuracy, convergence speed, and data requirements when using Baikal. Fur-
ther analysis suggested that these improvements result from implicit regular-
ization that reduces overfitting to the data. This regularization complements
the existing regularization in trained networks. The reasons for this regular-
ization effect’s existence, and its specific behavior, are covered in more detail

in Chapter 6.

GLOs tree-based representation provides a unique amount of flexibility
that can represent any function given a set of operators and tokens. This was

leveraged by incorporating a new input into the loss-function search space:

7



unscaled logits. With this expanded search space, GLO discovered the Fast-
Logit loss function. This loss function was able to learn more quickly than the

Baikal loss function, while converging to a comparable level of performance.

Expanding this search space further, in the future, it may be advanta-
geous to include preexisting regularization terms, such as an Lo weight decay
term, as optional leaf nodes. An alternative embodiment to this idea may be to
forgo including regularization terms in GLO trees, and instead include them
by default, with a coefficient of 0, in all loss functions, letting their impor-
tance be determined during the coefficient optimization step. Forgoing more
freeform optimization of regularization terms as tree nodes would reduce the

difficulties associated with larger search spaces in evolution.

While the flexibility that tree-based representations provide makes it
possible to discover of unique loss functions, unbridled flexibility may be too
much in practice, for the majority of use cases. GLO operates on a space
where exploration is very favored, and exploitation is difficult; there is a lot of
serendipity involved in the search process. The majority of loss-function can-
didates, particularly in early generations, have degenerate characteristics and
are not even able to train neural networks. Furthermore, individual mutations
on the tree tend to have a large impact on the function (e.g., swapping a mul-
tiplication node with a division node), making the fitness landscape rugged.
To accommodate these deleterious properties, large populations and many
generations are required for evolution to function. In a world where there are

tangible costs associated with evaluating several thousands of neural networks,
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applying GLO to more sophisticated models may be out of reach.

This excess flexibility is further complicated by GLO’s two-phase ap-
proach to discovering and optimizing loss functions. An optimal loss function
with coefficients may not necessarily be a good loss function if those coeffi-
cients are set to unit values. More concisely: the structural evolution and
coefficient evolution steps may clash, and thus certain loss functions will re-

main out-of-reach to GLO.

A thoughtfully designed representation, with a smoother fitness land-
scape, and where efficacious loss functions are less sparsely scattered in the
search space, can more easily and expeditiously guide evolution towards good

candidates. This is the topic of the next chapter.

4.6 Conclusion

This chapter proposed Genetic Loss-function Optimization (GLO) as
a general framework for discovering and optimizing loss functions for a given
task. A surprising new loss function, Baikal, was discovered in the experiments,
and shown to outperform the cross-entropy loss on MNIST and CIFAR-10 in
terms of accuracy, training speed, and data requirements. Further analysis
suggested that Baikal’s improvements result from implicit regularization that
reduces overfitting to the data. While GLO’s search space provides immense
flexibility, perhaps a more refined search space and a single-phase search can
result in a more computationally efficient, practical technique. Such a tech-

nique, TaylorGLO, is presented in the next chapter.
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Chapter 5

TaylorGLO

In Chapter 4, loss-function discovery and optimization were tackled
as a new type of metalearning with the development of Genetic Loss-function
Optimization (GLO). Focusing on a neural network’s root training goal, it aims
to discover better ways to define what is being optimized. However, these loss
functions can be challenging to optimize because they have a discrete nested
structure as well as continuous coefficients. In an ideal case, loss functions
would be mapped into arbitrarily long, fixed-length vectors in a Hilbert space.
This mapping should be smooth, well-behaved, well-defined, incorporate both
a function’s structure and coefficients, and should by its very nature exclude

large classes of infeasible loss functions.

This chapter introduces such an approach: Multivariate Taylor expansion-
based genetic loss-function optimization (TaylorGLO). Loss functions discov-
ered by TaylorGLO outperform the standard cross-entropy loss (or log loss),
as well as the Baikal loss discovered by the original GLO technique, on a vari-
ety of datasets with several different network architectures. TaylorGLO thus
further establishes loss-function optimization as a promising new direction for

metalearning.
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5.1 Multivariate Taylor Expansions

Taylor expansions [169] are a well-known function approximator that
can represent differentiable functions within the neighborhood of a point using
a polynomial series. Below, the common univariate Taylor expansion formula-
tion is presented, followed by a natural extension to the multivariate case, i.e.
to arbitrarily-multivariate functions. Multivariate Taylor expansions provide

the basis for TaylorGLO’s loss function parameterization.

Consider a given real-valued function f(z) : R — R that is Chmex
smooth (i.e., first through ky,.y derivatives are continuous). A kth-order Taylor
approximation for this function, f(x), at point a € R, fk(x, a), where 0 < k <

kmax, can be constructed as

k

folz.a) =" %f(”)(a)(x —a)". (5.1)

n=0

Conventional, univariate Taylor expansions have a natural extension to ar-
bitrarily high-dimensional inputs of f. Given a C*max+1 smooth, real-valued
function f(x) : R® — R, a kth-order Taylor approximation at point a € R™,
fk(x, a), where 0 < k < kyay, can be constructed analogous to Equation 5.1.
The stricter smoothness constraint compared to the univariate case allows for
the application of Schwarz’s theorem on equality of mixed partials, obviating

the need to take the order of partial differentiation into account.

More specirically, let an nth-degree multi-index, o = (o, g, ..., )
be defined, where o; € Ny, |a| = >0 oy, ol =[]0, oyl x* =[], 2%, and

x € R™. Multivariate partial derivatives can be concisely written using the
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multi-index as

olal

aq Qg :
0z 0xy? - - - Qxon

OUf =005 -0 f =

(5.2)

Thus, discounting the remainder term, the multivariate Taylor expansion for
f(x) at ais

¢ 1 fel el

filxa)= 3 —0"f(a)(x—a)" (5.3)

Valal<k
The unique partial derivatives in fk and a are parameters for a kth order
Taylor expansion. Thus, a kth order Taylor expansion of a function in n
variables requires n parameters to define the center, a, and one parameter for

each unique multi-index «, where |a| < k. That is,

(5.4)

k nl k!

k k)!
#parameters(n, k?) =n-+ (n + ) =n-+ M

The multivariate Taylor expansion can be leveraged for a novel loss-
function parameterization. It enables TaylorGLO, a way to efficiently optimize

loss functions, as will be described in subsequent sections.

5.2 Loss Functions as Multivariate Taylor Expansions

Let an n-class classification loss function be defined as:
1 n
Ly(x,y) = _EZJC(%‘,Z/@')- (5.5)
i=1

The function f(z;,y;) can be replaced by its kth-order, bivariate Taylor ex-

pansion, fk(m, Yy, as, a,). More sophisticated loss functions can be supported
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by having more input variables, beyond z; and y;, such as a time variable
or unscaled logits. This approach can be useful, for example, to evolve loss

functions that change as training progresses.
For example, a loss function in x and y has the following 3rd-order
parameterization with parameters 6 (where a = (6, 61)):

1 n
L(x,y) = T Z [92 +63(y; — 61) + %94@/@' —01)% + %95(% —6,)°

i=1

+0s(x; — o) + O7(x; — o) (y: — 01) + 30s(zi — 00) (ys — 01)° + 309(x; — 6o)

+3010(zi — 00)*(yi — 61) + 5611 (i — 90)3]
(5.6)

Notably, the reciprocal-factorial coefficients can be integrated to be a part of

the parameter set by direct multiplication if desired.

As will be shown in this chapter, the representation technique makes
it possible to train neural networks that are more accurate and learn faster,
than those with tree-based loss function representations. This result is due to

several useful properties of this Taylor expansion approach:

e [t guarantees smooth functions;

e Functions do not have poles (i.e., discontinuities going to infinity or

negative infinity) within their relevant domain;

e It can be implemented purely as compositions of addition and multipli-

cation operations;

e [t can be trivially differentiated;
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e Nearby points in the search space yield similar results (i.e., the search

space is locally smooth), making the fitness landscape easier to search;

e Valid loss functions can be found in fewer generations and with higher

frequency, allowing for smaller population sizes to be used;

e Loss function discovery is consistent and not dependent on a specific

initial population; and

e The search space has a tunable complexity parameter, i.e. the order of

the expansion.

These properties are not necessarily held by alternative function ap-

proximators. For instance:

Fourier series are well suited for approximating periodic functions [41]. There-
fore, they are not as well suited for loss functions, whose local behavior
within a narrow domain is important. Being a composition of waves,
Fourier series tend to have many critical points within the domain of in-
terest. Gradients fluctuate around such points, making gradient descent
infeasible. Additionally, close approximations require a large number
of terms, which in itself can be injurious, causing large, high-frequency

fluctuations known as “ringing”, due to Gibb’s phenomenon [190].

Padé approximants can be more accurate approximations than Taylor ex-

pansions; indeed, Taylor expansions are thus a special case with M = 0
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[58]. However, unfortunately Padé approximants can model functions
with one or more poles, which valid loss functions typically should not
have. These problems still exist, and are exacerbated, for Chisholm ap-
proximants [28] (a bivariate extension of Padé approximants) and Can-
terbury approximants [59] (a multivariate generalization of Padé approx-

imants).

Laurent polynomials can represent functions with discontinuities, the sim-
plest being z~!. While Laurent polynomials provide a generalization of
Taylor expansions into negative exponents, the extension is not useful

because it leads to the same issues as Padé approximants.

Polyharmonic splines seem like an excellent fit since they can represent
continuous functions within a finite domain. However, the number of

parameters is prohibitive in the multivariate case.

Lagrange polynomials interpolate between a set of control points using a
weighted sum of basis polynomials [188]. While Runge’s phenomenon
[144] is minimized and a number of parameters can be elimited by re-
stricting control points to Chebyshev nodes (i.e., the roots of Chebyshev
polynomials [25]), the number of parameters may still be prohibitive in
the multivariate case, as with polyharmonic splines, and additionally

requires a discrete selection of Chebyshev nodes.

The multivariate Taylor expansion is therefore a better choice than
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the alternatives. It makes it possible to optimize loss functions efficiently in

TaylorGLO, as will be described next.

5.3 The TaylorGLO Approach

Initial Solution Mean Vector

[n n n n n n u n] Candidate Evaluation

* Build TaylorGLO
CMA-ES Loss Function

Mean Vector

: Partial Model
Covariance

Matrix

Training

Sampler (Few Epochs)
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Evaluation
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* 7= n 765 )
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Figure 5.1: The TaylorGLO approach. Loss functions are represented
as vectors that encode parameters to the TaylorGLO loss function parame-
terization. Starting with an initial unbiased mean solution, CMA-ES itera-
tively maximizes the validation accuracy—or any other non-differentiable fit-
ness metric—that results from training with TaylorGLO loss function candi-
dates. CMA-ES maintains a mean vector and corresponding covariance matrix
which are used to sample candidates at each generation. The candidate with
the highest fitness is chosen as the final, best solution from TaylorGLO.

TaylorGLO (Figure 5.1) aims to find the optimal parameters for a loss

function parameterized as a multivariate Taylor expansion, as described in
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Section 5.2. The parameters for a Taylor approximation (i.e., the center point
and partial derivatives) are referred to as 6 7, where 0; € ©, © = R#parameters
TaylorGLO strives to find the vector 9; € O that parameterizes the optimal
loss function for a task. Because the values are continuous, as opposed to dis-
crete graphs of the original GLO, it is possible to use continuous optimization

methods, such as CMA-ES.

Like in GLO, the specific variant of CMA-ES that TaylorGLO uses is
(1/p, A)-CMA-ES [66], which incorporates weighted rank-yz updates [64] to

reduce the number of objective function evaluations that are needed.

In contrast with GLO, in TaylorGLO, CMA-ES is used to find 0;‘3. At
each generation, CMA-ES samples points in © whose fitness is determined; this
fitness evaluation is accomplished by training a model with the corresponding
loss function and evaluating the model on a validation dataset. Fitness eval-
uations may be distributed across multiple machines in parallel and retried a
limited number of times upon failure (e.g., exploding gradients). An initial

vector of 9]; = 0 is chosen as a starting point in the search space to avoid bias.

Note that fully training a model can prove to be prohibitively expensive
in many problems. Fundamentally, there is a positive correlation between
performance near the beginning of training and at the end of training. In
order to identify the most promising candidates, it is enough to train the
models only partially. This type of approximate evaluation is widely done in
the field of evolutionary computation [60,87]. An additional positive effect is

that evaluation then favors loss functions that learn more quickly.
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For a loss function to be useful, it must have a derivative that de-
pends on the prediction. Therefore, internal terms that do not contribute to
%L 7(x,y) can be trimmed away. This property implies that any term ¢ within

f(x;,y;), where 8%“75 = 0, can be replaced with 0.

For example, this refinement simplifies Equation 5.6, providing a re-

duction in the number of parameters from twelve to eight:

n

1
L(X> Y) = _E Z [92(?/1 - 91) + %93(% - 91)2 + %94(%’ — 91)3

i=1
+95(I1 — 90)(% — 61) + %86(131 — 90)(% — 91)2 -+ %87(131 — 80)2<yi — 81)] .

(5.7)

Loss functions of this form are evolved with TaylorGLO and evaluated

in the following section.

5.4 Performance Experiments

This section illustrates the TaylorGLO process and demonstrates how
the evolved loss functions can improve performance over the standard cross-
entropy loss function, especially on reduced datasets. A summary of results

on four datasets across a variety of models is shown in Table 5.1.

5.4.1 The TaylorGLO Discovery Process

Figure 5.2 illustrates the evolution process over 60 generations, which
is sufficient to reach convergence on the MNIST dataset. TaylorGLO is able

to discover high-performing loss functions quickly, i.e. within 20 generations.
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Table 5.1: Test-set accuracy of loss functions discovered by Taylor-
GLO compared with that of the cross-entropy loss. The TaylorGLO
results are based on the loss function with the highest validation accuracy
during evolution. All averages are from ten separately trained models and
p-values are from one-tailed Welch’s t-Tests. Standard deviations are shown
in parentheses. TaylorGLO discovers loss functions that perform significantly
better than the cross-entropy loss in almost all cases, including those that
use Cutout. This suggests that it provides a different form of regularization.
Accuracies are indicated in bold if statistically significantly higher.

Task and Model TaylorGLO Acc. Baseline Acc. p-value
MNIST

Basic CNN 0.9951 (0.0005)  0.9899 (0.0003)  2.95x107'°
CIFAR-10

AlexNet 0.7901 (0.0026)  0.7638 (0.0046)  1.76x10~1'°
AlexNet + Cutout 0.7786 (0.0022)  0.7741 (0.0040) 0.0049
AlexNet + CutMix 0.7928 (0.0027)  0.7856 (0.0026)  8.13x1076
ResNet-20 0.9136 (0.0029) 0.9146 (0.0019) 0.2021
Pre ResNet-20 0.9169 (0.0014)  0.9153 (0.0021) 0.0400
AIICNN-C 0.9271 (0.0013)  0.8965 (0.0021)  0.42x10717
AIICNN-C + Cutout 0.9329 (0.0022)  0.8911 (0.0037)  1.60x10~*4
AIICNN-C + CutMix 0.9327 (0.0014)  0.8749 (0.0042)  1.89x107'3
Wide ResNet 16-8 0.9558 (0.0011)  0.9528 (0.0012)  1.77x107°
Wide ResNet 16-8 + Cutout  0.9618 (0.0010)  0.9582 (0.0011)  2.55x10~"
Wide ResNet 28-5 0.9548 (0.0015) 0.9556 (0.0011) 0.0984
Wide ResNet 28-5 + Cutout 0.9621 (0.0013) 0.9616 (0.0011) 0.1882
CIFAR-100

PyramidNet 110a48 0.7409 (0.0040)  0.7523 (0.0037) 3.87x10~¢
PyramidNet 110a48 + Cutout  0.7708 (0.0029)  0.7674 (0.0036) 0.0189
SVHN

Wide ResNet 16-8 0.9658 (0.0007)  0.9597 (0.0006)  1.94x107'3
Wide ResNet 16-8 + Cutout  0.9714 (0.0010)  0.9673 (0.0008)  9.10x107°
Wide ResNet 28-5 0.9657 (0.0009)  0.9634 (0.0006)  6.62x1076
Wide ResNet 28-5 + Cutout  0.9727 (0.0006)  0.9709 (0.0006)  2.96x1076
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Figure 5.2: The process of TaylorGLO discovering loss functions in
MNIST. Red dots mark generations where new improved loss functions were
found. TaylorGLO discovers good functions in very few generations. The best
function had a 2000-step validation accuracy of 0.9948, compared to 0.9903
with the cross-entropy loss, averaged over ten runs. This difference translates
to a similar improvement on the test set, as shown in Table 5.1.

Generations’ average validation accuracy approaches generations’ best accu-
racy as evolution progresses, indicating that the population as a whole is im-
proving. Whereas GLO’s unbounded search space often results in pathological
functions, every TaylorGLO training session completed successfully without

any instabilities.

Figure 5.3 shows the shapes and parameters of each generation’s highest-
scoring loss function. In Figure 5.3a the functions are plotted as if they were
being used for binary classification, i.e. the loss for an incorrect label on the
left and for a correct one on the right (as detailed in Section 4.3). The func-
tions have a distinct pattern through the evolution process. Early generations

include a wide variety of shapes, which later converge towards curves with a
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shallow minimum around y, = 0.8. In other words, the loss increases near
the correct output—as it was with the Baikal loss function. Like Baikal, this
shape is strikingly different from the cross-entropy loss, which decreases mono-
tonically from left to right, as one might expect all loss functions to do. The
evolved shape is effective most likely for the same reason as Baikal. It provides
an implicit regularization effect: It discourages the model from outputting un-
necessarily extreme values for the correct class, and therefore makes overfitting
less likely. This finding again demonstrates the power of machine learning to

create innovations beyond human design.

5.4.2 Comparison to GLO

Over 10 fully-trained models, the best TaylorGLO loss function achieved
a mean testing accuracy of 0.9951 (stddev 0.0005) in MNIST. In comparison,
the cross-entropy loss only reached 0.9899 (stddev 0.0003), and the Baikal CMA
loss function discovered by GLO, 0.9947 (stddev 0.0003); both differences are
statistically significant (Figure 5.4). Notably, TaylorGLO achieved this result
with significantly fewer generations and smaller populations. GLO required
11,120 partial evaluations (i.e., 100 individuals over 100 GP generations plus
32 individuals over 35 CMA-ES generations), while the top TaylorGLO loss
function only required 448 partial evaluations, i.e. 4.03% as many. Thus, Tay-

lorGLO achieves improved results with significantly fewer evaluations than

GLO.
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Figure 5.3: The best loss functions (a) and their respective parameters
(b) from each generation of TaylorGLO on MNIST. The functions are
plotted in a binary classification modality, showing loss for different values of
the network output (yo in the horizontal axis) when the correct label is 1.0.
The functions are colored according to their generation from blue to red, and
vertically shifted such that their loss at yo = 1 is zero (the raw value of a
loss function is not relevant; the derivative, however, is). TaylorGLO explores
varying shapes of solutions before narrowing down on functions in the red
band. This process can also be seen in (b), where parameters become more
consistent over time, and in the population plot shown in Figure 5.2, where
fitness plateaus. The final functions decrease from left to right, but have
a significant increase in the end. This shape is likely to prevent overfitting
during learning, which leads to the observed improved accuracy.
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Figure 5.4: (a) Mean test accuracy across ten runs on MNIST. The TaylorGLO
loss function with the highest validation score significantly outperforms the
cross-entropy loss (p = 2.95 x 1071% in a one-tailed Welch’s t-test) and the
BaikalCMA loss [53] (p = 0.0313). (b) Required partial training evaluations for
GLO and TaylorGLO on MNIST. The TaylorGLO loss function was discovered
with 4% of the evaluations that GLO required to discover Baikal CMA.
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Figure 5.5: Accuracy with reduced portions of the MNIST dataset. Progres-
sively smaller portions of the dataset were used to train the models (averaging
over ten runs). The TaylorGLO loss function provides significantly better
performance than the cross-entropy loss on all training dataset sizes, and par-
ticularly on the smaller datasets. Thus, its ability to discourage overfitting is
particularly useful in applications where only limited data is available.
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5.4.3 Performance on Reduced Datasets

The performance improvements that TaylorGLO provides are especially
pronounced with reduced datasets. For example, Figure 5.5 compares accu-
racies of models trained for 20,000 steps on different portions of the MNIST
dataset (similar results were obtained with other datasets and architectures).
Overall, TaylorGLO significantly outperforms the cross-entropy loss. When
evolving a TaylorGLO loss function and training against 10% of the training
dataset, with 225 epoch evaluations, TaylorGLO reached an average accuracy
across ten models of 0.7595 (stddev 0.0062). In contrast, only four out of
ten cross-entropy loss models trained successfully, with those reaching a lower
average accuracy of 0.6521. Thus, customized loss functions can be especially
useful in applications where only limited data is available to train the mod-
els, presumably because they are less likely to overfit to the small number of

examples.

5.4.4 Results on Deep Networks

Such a large reduction in evaluations during evolution over GLO allows
TaylorGLO to tackle harder problems, including models that have millions
of parameters. On the CIFAR-10, CIFAR-100, and SVHN datasets, Taylor-
GLO was able to outperform cross-entropy baselines consistently on a variety
models, as shown in Table 5.1. These increases in accuracy are greater than
what is possible through implicit learning rate adjustment alone (detailed in

Section 5.4.5). TaylorGLO also provides further improvement on architectures
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that use Cutout [35] or CutMix [197].

The models vary in structure, regularization techniques, and trainable
parameter counts. For example, the AIICNN-C model has a basic, sequential
layer structure and dropout regularization, while PyramidNet models have a
branching structure with skip connections and batch normalization. Notably,
these architectures were all manually designed and tuned against the cross-
entropy loss. It is conceivable that small architectural modifications that are
deleterious when training with the cross-entropy loss may be beneficial with
TaylorGLO loss functions. This opens the door to the discovery of combina-
tions of new architectures and loss functions that mutually benefit each other

in the future.

It is also interesting that TaylorGLO improves upon architectures with
several different regularization techniques already implemented. This result
suggests that TaylorGLO’s mechanism of avoiding overfitting is different from
other regularization techniques. Thus, TaylorGLO can be a complementary
form of regularization, and emphasize other regularization techniques’ effects

further.

5.4.5 Learning Rate Sensitivity

Loss functions can embody different learning rates implicitly. This
section shows that TaylorGLO loss functions’ benefits come from more than
just metalearning such learning rates. Increases in performance that result

from altering the base learning rate with cross-entropy loss are significantly
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Figure 5.6: Effect of varying learning rates in AIICNN-C when trained
with the cross-entropy loss on CIFAR-10. For each learning rate, ten
models were trained, with up to ten retries if training failed. The majority of
training attempts failed for learning rates larger than 0.01. The 0.01 learning
rate used in the experiments in this chapter results in best stable performance.
Overall, the small performance differences that can result from adjusting the
learning rate, regardless of stability, are much smaller than those that result
from training with TaylorGLO. Thus, TaylorGLO provides a mechanism for
improvement beyond implicit adjustments of the learning rate.

smaller than those that TaylorGLO provides.

More specifically, Figure 5.6 quantifies the effect of varying learning
rates on the final testing accuracy of AIICNN-C models trained on CIFAR-10.
AIICNN-C was chosen for this analysis since it exhibits the largest variations
in performance, making this effect more clear. While learning rates larger
than 0.01 (the standard learning rate for AIICNN-C) reach slightly higher
accuracies, this effect comes at the cost of less stable training. The majority
of models trained with these higher learning rates failed to train. Thus, the
standard choice of learning rate for AIICNN-C is appropriate for the cross-

entropy loss, and TaylorGLO loss functions are able to improve upon it.

96



Table 5.2: Performance of Taylor approximations of the cross-entropy
loss function on AIICNN-C with CIFAR-10. Approximations of different
orders, with a = (0.5,0.5), are presented. Presented accuracies are the mean
from ten runs. The baseline is the standard cross-entropy loss. Higher-order
approximations are better, suggesting a potential (although computationally
expensive) opportunity for improvement in the future.

Loss Function Mean Accuracy (stddev)

k=2 0.1034 (0.0101)
k=3 0.8451 (0.0043)
k=4 0.8592 (0.0032)
k=5 0.8649 (0.0042)

Cross-Entropy 0.8965 (0.0021)

5.4.6 Comparison to Cross-Entropy Loss Taylor Approximations

While TaylorGLO’s performance originates primarily from discovering
better loss functions, it is informative to analyze what role the accuracy of
the Taylor approximation plays in it. One way to characterize this effect is to
analyze the performance of various Taylor approximations of the cross-entropy

loss.

Table 5.2 provides results from such a study. Bivariate approximations
to the cross-entropy loss, centered at a = (0.5,0.5), with different orders k
were used to train AICNN-C models on CIFAR-10. Third-order approxima-
tions and above are trainable. Approximations’ performance is within a few
percentage points of the cross-entropy loss, with higher-order approximations

yielding progressively better accuracies, as expected.

The results thus show that third-order TaylorGLO loss functions can-
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not represent the cross-entropy baseline loss accurately. One possibility for im-
proving TaylorGLO is thus to utilize higher order approximations. However,
it is remarkable that TaylorGLO can still find loss functions that outperform
the cross-entropy loss. Also, the increase in the number of parameters—and
the corresponding increase in computational requirements—may in practice
outweigh the benefits from a finer-grained representation. This effect was seen
in preliminary experiments, and the third-order approximations (used in this

chapter) deemed to strike a good balance.

5.5 Experimental Analysis of TaylorGLO Models

The previous section evaluated TaylorGLO’s performance on a variety
of models and datasets, demonstrating that customized loss functions result
in significant improvements in accuracy. This section analyzes the specific
differences in models trained with TaylorGLO loss functions compared to those

without.

5.5.1 Trained Model Surfaces

Not only does TaylorGLO train more accurate models, but its loss
functions result in more robust models. Robustness is an important charac-
teristic in networks. It is closely related to generalization: They both emerge
in networks whose performance is not highly sensitive to the specific values of
trained weights. Such models also tend to maintain their performance better

following quantization, noise, loss of input or internal elements, etc.
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Figure 5.7: Accuracy basins for AIICNN-C models trained with cross-
entropy and TaylorGLO loss functions. Accuracies are plotted along the
vertical axis for perturbations along two random basis vectors on the horizon-
tal axes. Higher accuracies are colored red. The TaylorGLO basin is both
flatter and lower than that for the cross-entropy loss, indicating that small
perturbations have a less negative impact on performance. Thus, networks
trained with TaylorGLO loss functions are more robust and generalize better
[90], which results in higher accuracy.

Robustness can be observed by evaluating a trained model and see-
ing how performance changes as weights are perturbed. In Figure 5.7, ac-
curacy basins for two AIICNN-C models—one trained with the TaylorGLO
loss function and another with the cross-entropy loss—are plotted along a
two-dimensional slice [—1, 1] of the weight space using a prior loss surface vi-
sualization technique [102]. At the core of the technique, two random unit
vectors are chosen from the parameter space. The two vectors form a basis
upon which a slice of the trainable parameter space is analyzed. These vec-
tors are normalized in a filter-wise manner to accommodate network weights’
scale invariance, thus ensuring that visualizations for two separate models can
be compared. In sufficiently high-dimensional spaces, these vectors are guar-

anteed to be nearly orthogonal, thus the basis is nearly orthogonal. As a
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result of the randomness, this parameter space slice is unbiased and should
take all parameters into account to some degree. It can therefore be used to

systematically perturb trainable parameters.

Using the random, filter-normalized basis, a two-dimensional grid can
be formed, with the trained network at the center. Fach non-center point
in the grid represents a slightly perturbed variant of the trained network.
Each of these networks is evaluated on the testing dataset, where accuracy is
measured. These values on the grid form an accuracy basin. The fact that

trained networks lie at network minima contributes to the basin shape.

The TaylorGLO loss function results in trained networks with flatter,
lower basins. This result suggests that the model is more robust, i.e. its perfor-
mance is less sensitive to small perturbations in the weight space, and it also
generalizes better [90]. A particular manifestation of this robustness—that is,

robustness against adversarial attacks—is anayzed in Section 7.3.

5.5.2 Biasing Optimization to a New Region

Optimization methods in general are biased in they are more likely to
reach parameter vectors that lie in a distinct region of the parameter space.
Ideally, this different region has better generalization properties. One way to
observe this behavior empirically is to plot histograms of the weights. If the
histograms noticeably differ, one can conclude that the compared solutions
are in considerably different types of regions (the inverse, however, is not

necessarily true).
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Figure 5.8: Weight distributions for AIICNN-C models trained with
cross-entropy and TaylorGLO loss functions on CIFAR-10. The cross-
entropy loss results in Laplace weight distributions, while TaylorGLO loss
functions result in normally distributed weights. These different distributions
show how TaylorGLO guides training towards a fundamentally different region
of the weight space, which empirically results in better performance.
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Table 5.3: Weight characteristics for AIICNN-C models trained on
CIFAR-10. TaylorGLO results in models with higher L, weight norms than
the cross-entropy loss, even though all configurations include weight decay
during training. This finding suggests that smaller weights do not necessarily
imply better generalization, as has been long believed [125,191].

Training Configuration Lo Norm  Mean Value Distribution
Cross-Entropy Loss 23.4278 0.0001 Laplace
Cross-Entropy Loss + Cutout — 23.2174 0.0000 Laplace
TaylorGLO Loss 37.2540 -0.0019 Gaussian
TaylorGLO Loss + Cutout 40.8651 -0.0021 Gaussian

Figure 5.8 shows such a comparison of histograms trained under the
cross-entropy loss and a TaylorGLO loss function. Each histogram has 51
bins to which each trainable parameter is assigned. Notably, weights from
all networks trained with the cross-entropy loss follow a Laplace distribution,
while those trained with a TaylorGLO loss function are normally distributed.
These very different distributions show how TaylorGLO trains networks fun-
damentally differently from the cross-entropy loss. The addition of Cutout

regularization does not significantly change the distribution of weights.

Table 5.3 presents weight statistics for each of the four configurations
in Figure 5.8. Networks trained with TaylorGLO have significantly higher L,
weight norms than those trained with the cross-entropy loss, even though they
have the same level of weight decay. This observation concurs with past find-
ings [48] that experimentally contradicted the long-held belief that networks

with smaller weight norms generalize better [125, 191].

A mathematical justification for why different loss functions bias train-
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ing towards different regions of the weight space is provided in Chapter 6.

5.5.3 Loss Function Inputs Over Time

While TaylorGLO loss functions result in trained models that are dif-
ferent from those trained with the cross-entropy loss, the process by which
they arive at these models is also substantially different. The training process
can be empirically analyzed by observing how the distribution of a network’s

scaled logits changes over the training process.

Figure 5.9 presents scaled logit histograms for every epoch of train-
ing AIICNN-C networks on CIFAR-10 with both the cross-entropy loss and
TaylorGLO. Histogram bin values are presented linearly through a color map,
where “hotter” colors represent higher densities. These values are clipped to
a maximum of 400 and 300 samples per bin for scaled target and non-target
logits, respectively. This clipping shows more detail outside the main distri-
bution modes since the vast majority of samples’ logits are concentrated in
relatively few bins. Clipped values are colored white in the scaled logit his-
tograms. Overall, these histograms give insight into how model predictions
for target and non-target labels change throughout the training process with

different loss functions.

Since both TaylorGLO and cross-entropy models are initialized simi-
larly, target and non-target logits start out near 0.1, since this is a ten-class
classification problem, i.e. 1/n = 0.1). This property can be seen as a concen-

tration of values near the 0.1 level on the y-axis in the far left of each plot in
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(b) TaylorGLO Scaled Logits on AIICNN-C

Figure 5.9: Target and non-target scaled logit histograms for Taylor-
GLO and cross-entropy loss functions on AIICNN-C with CIFAR-10.
More frequent logit values are represented by warmer, lighter colors. The two
loss functions result in qualitatively different training dynamics. Namely the
dense, white bands on the right side of (a)-top and (b)-top are centered along
different logit values (the y-axis) and have different variances. The TaylorGLO
band, where most target predictions lie, particularly, has a higher variance and
is spaced farther from the histograms’ bottom border, showing how Taylor-
GLO penalizes overly-confident predictions.
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Figure 5.9. Both models learn quickly in the first few dozen epochs, and target
and non-target logits spread away from each other as the network learns. That
is, the average distance between target and non-target logits grows over time
(from left to right). Over the duration of the training process, the white bands
that contain most scaled logits increasingly contain more scaled logits, indi-
cating the correct classification of more samples. The sharp transitions at 200
and 300 epochs are due to a scheduled learning rate decay. Smaller weight up-
dates result in smoother distribution changes between adjacent epochs. This

can be seen as a seeming reduction in noise along the x-axis in plots.

There are many visible differences between the cross-entropy loss and
TaylorGLO. Most significantly, the main mode for scaled target logits on Tay-
lorGLO (Figure 5.9 (b)-top) is wider—that is, the prominent white band is
taller along the y-axis—than that for the cross-entropy loss (Figure 5.9 (a)-
top) and is centered farther away from 1.0. This shows how TaylorGLO pe-
nalizes logits that are overly confident. On networks trained with TaylorGLO,
predictions have more nuance (i.e., they have a larger vertical spread in the

figures) and are less overtly categorical.

The cross-entropy loss also results in a second mode in the scaled target
logit distributions (Figure 5.9 (a)-top). This mode, visible as a horizontal or-
ange line near 0.0, indicates a population of misclassifications that is relatively
consistent through the training process (i.e., left to right). These are misclas-
sifications since target logit values less than 0.1 imply that all non-target logits

would be larger than the target logit, since this is a ten-class domain. Notably,
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this band does not exist for TaylorGLO (Figure 5.9 (b)-top). On TaylorGLO,
there is only a single major band in the latter parts of training (i.e., the right
side of the Figure 5.9 (b)-top), and the values of the target logits in this band

are greater than 0.1.

On the Wide ResNet 28-5 architecture (Figure 5.10), TaylorGLO results
in generally similar behavior. As on AIICNN-C, the main target logit mode is
wider and centered away from 1.0, i.e. away from the plots’ bottom border.
However, it is even more distanced than on AIICNN-C. These completely dif-
ferent training dynamics, demonstrate how TaylorGLO discovers different loss

functions that are customized to individual architectures.

5.6 Discussion

TaylorGLO was shown to more efficiently and effectively find customized
loss functions than GLO. The constrained search space and single-phase evolu-
tion that TaylorGLO use require many fewer time-consuming candidate eval-
uations. These efficiency improvements allow TaylorGLO to be applied to
larger deep neural networks, where it finds loss functions that outperform the

cross-entropy loss.

TaylorGLO achieves its performance gains by training networks whose
trainable weights reach a different point in weight space than if the cross-
entropy loss were used. These new solutions are shown to wider and flatter,
a strong indicator of robustness and generalization. An analysis of the distri-

bution of weights shows that TaylorGLO results in distinctly different trained
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(a) Cross-Entropy Scaled Logits on Wide ResNet 28-5
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(b) TaylorGLO Scaled Logits on Wide ResNet 28-5

Figure 5.10: Target and non-target scaled logit histograms on Wide
ResNet 28-5 with CIFAR-10. Both loss functions result in qualitatively
different training dynamics. Like on AIICNN-C, the dense, white bands on the
right of (a)-top and (b)-top are centered along different logit values and have
different entropy. However, unlike on AIICNN-C, the specific values and sizes
of the bands in (b) differ. Thus, the TaylorGLO loss functions for AIICNN-
C and Wide ResNet 28-5 have different training dynamics, indicating that
TaylorGLO loss functions are customized to each architecture.
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networks. These networks’ training have completely different dynamics that
further demonstrate how TaylorGLO can provide a type of regularization.
However, what is still lacking is a comprehensive theoretical understanding
that demonstrates why and how TaylorGLO loss functions have these effects.

The next chapter provides such a framework.

The level of improvement on trained model performance that Taylor-
GLO loss functions are able to confer varies for different types of architectures,
and even varying scales—depth and/or width—of a particular architecture.
There is no clear relationship between TaylorGLO efficacy and general archi-
tecture morphologies. Even seemingly small changes—such as those between
ResNet-20 and Pre ResNet-20—can have an impact on how much TaylorGLO
can improve over the baseline. Many architecture characteristics affect the
performance of TaylorGLO loss functions. Thus, understanding these effects

and leveraging them is an important direction for future work.

While TaylorGLO outperforms the original GLO technique, GLO is
far from obsolete. In cases where a loss function may have several different
inputs, GLO scales far better than TaylorGLO, which would require a very
large increase in the number of paramters (as described in Equation 5.4).

There are many opportunities to leverage this flexibility in future work.

5.7 Conclusion

This chapter presented TaylorGLO, a new technique for loss-function

metalearning that embodies a practical refinement of the core ideas behind
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the GLO technique. TaylorGLO leverages a novel parameterization for loss
functions, allowing the use of continuous optimization rather than genetic
programming for the search, thus making it more efficient and more reliable.
TaylorGLO loss functions serve to regularize the learning task, outperforming
the standard cross-entropy loss significantly on MNIST, CIFAR-10, and SVHN
benchmark tasks with a variety of network architectures. They also outperform
loss functions discovered by GLO, while requiring many fewer candidates to be
evaluated during search. Thus, TaylorGLO results in higher testing accuracies,
better data utilization, and more robust models, and is a promising avenue
for metalearning. Further analyses of the TaylorGLO technique show how
TaylorGLO loss functions result in fundamentally different training processes
that guide models towards quantitatively different parts of the trainable weight
space with flatter minima. The underlying reasons for these differences are

analyzed theoretically in Chapter 6.
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Chapter 6

Understanding Regularization

Regularization is a key concept in deep learning: it guides learning
towards configurations that are likely to perform robustly on unseen data.
Different regularization approaches originate from intuitive understanding of
the learning process and have been shown to be effective empirically. However,
the understanding of the underlying mechanisms, the different types of regu-
larization, and their interactions, is limited. Experiments in previous chapters
suggest that metalearned loss functions serve as regularizers in a surprising
but transparent way: they prevent the network from learning overly-confident
predictions. While it may be too early to develop a comprehensive theory of
deep network regularization, given the relatively nascent state of this area, it
is possible to make progress in understanding regularization of this specific

type, as is done in this chapter.

6.1 Overview

Since metalearned loss functions are customized to a given architecture-
task pair, there needs to be a shared framework under which loss functions can

be analyzed and compared. In the framework developed in this chapter, the
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stochastic gradient descent (SGD) learning rule is decomposed to coefficient
expressions that can be defined for a wide range of loss functions. These
expressions provide an intuitive understanding of the training dynamics in

specific contexts.

Using this framework, mean squared error (MSE), cross-entropy, Baikal,
and third-order TaylorGLO loss functions are analyzed at the null epoch, when
network weights are similarly distributed, and in a zero training error regime,
where the training samples’ labels have been perfectly memorized. These sce-
narios show the implicit biases that different loss functions impart. For any
intermediate point in the training process, the strength of the zero training
error regime as an attractor is analyzed and a constraint on this property is
derived on TaylorGLO parameters by characterizing how the output distribu-
tion’s entropy changes. In a concrete TaylorGLO loss function that has been
metalearned, these attraction dynamics are calculated for individual samples
at every epoch in a real training run, and contrasted with those for the cross-
entropy loss. This comparison provides clarity on how TaylorGLO avoids
becoming overly confident in its predictions. Further, the analysis shows how
label smoothing [167], a traditional type of regularization, can be implicitly
encoded by TaylorGLO loss functions: Any representable loss function has
label-smoothed variants that are also representable by the parameterization,
meaning that TaylorGLO is able to take advantage of it and automatically
learn optimal levels of label smoothing that synergize with other forms of

regularization.
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6.2 Learning Rule Decomposition

This section develops the framework for the analysis in this chapter.

By decomposing the learning rules under different loss functions, comparisons

can be drawn at different stages of the training process. Consider the standard
SGD update rule:

060 —nVe(L(xi,y;,0)), (6.1)

where 7 is the learning rate, £(x;, y;, 0) is the loss function applied to the net-
work h(x;, ), x; is an input data sample, y; is the ith sample’s corresponding
label, and @ is the set of trainable parameters in the model. The update for a
single weight 6; is

0 .

s—0

where 7 is a basis vector for the jth weight.

The remainder of this section illustrates decompositions of this general
learning rule in a classification context for a variety of loss functions: mean
squared error (MSE), the cross-entropy loss function, the general third-order
TaylorGLO loss function, and the Baikal loss function. Each decomposition
results in a learning rule of the form

1 n
O < 0j+n- > (@i, yi, 0)Dj (hi(s, 0))], (6.3)
k=1
where v (x;, y;, 0) is an expression that is specific to each loss function. This
expression dictates how individual logits’ gradients affect weight updates. Spe-

cific instance of ;. (;, y;, @) can thus be used to analyze and compare the be-
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havior of their corresponding loss functions, as will be shown in the following

sections.

Substituting the Mean squared error (MSE) loss into Equation 6.2,

0 .
—n— Z [ (hi(xi, 0 4 s7) — Yir) %hk(wiye + 3])] (6.4)

s—0

0 .
=0;+n— Z[ Yir — hi( wz,e))ghk(wi,e—ksg)

HJ . (65)

and breaking up the coefficient expressions into 7g(x;, y;, @) results in the

weight update step

Substituting the Cross-entropy loss into Equation 6.2,

1 < 1 9
0; — 0. + —Ej e —hi(x;, 0 _
T {y’“hm,ew)a @ ”")} o 7
1 ¢ Yik 0 .
=0+ 0= > |7 -l : .
’Mn;[hk(%e)ash’“@ i Ho} (0

and breaking up the coefficient expressions into yi(x;, y;, @) results in the

weight update step
Yik

%(wi,yiﬁ) = m

(6.9)
Substituting the Baikal loss into Equation 6.2,

Yik a
9 <_9 A Z |:(hk wz70+33> ” Iy (11“0—1—5.]) )a " (wl’0+5-7):| s—0
(6.10)

_}0}, (6.11)

Ly 1 Yik 0 .
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and breaking up the coefficient expressions into g (x;, y;, @) results in the

weight update step

1 Yik
79 i70 - .
(@Y 0) = 5 T (. 07

(6.12)

Substituting the Third-order TaylorGLO loss with parameters A into

Equation 6.2,

1 n
6j<—0j+?752[
k=1

0 . : 0 .
)\Q_h/k(wz‘, 0 + 8]) + )\32 (hk(wz, 0 + S]) — )\1) —hk(ill'z, 0 + S])

0s 0s
) 0 ) 0 .
—|—/\43 (hk(:vz, 7] + S_]) — /\1)2 ahk(ml, 0 + S]) + )\5(ka - Ao)%hk(ml, 0 + SJ)
) 0 )
+ ()\G(yik: —20)2 (hi(xi, @ 4 55) — A1) + A (yir — /\0)2) %hk(mi, 0+ S])}
s—0
(6.13)
1 & . 9] .
=0; + U ; {(A?) + X6 (Yix — Xo)) 2 (hi(i, 0 + 55) — A1) ghk(ﬂ% 0+ sj) .
— ) ‘
—+ ()\2 -+ )\5<yzk — )\0) + )\7(ylk — )\0)2) gh}&ﬂ)l, 0 + S]) 0
0
+>\43 (hk(wz, 0) - )\1)2 %hk(wza 0 + 5.7) 0:| )
(6.14)

and breaking up the coefficient expressions into 7i(x;, y;, @) results in the

weight update step
(@i, Yi, 0) = (A3 + A6 (Yar — Ao)) 2 (i, 0) — A1) 15
A2 + As (i — Ao) + Ar(yik — Ao)® + a3 (h(4,0) — M) .
= 2X3hi (i, 0) — 2\ A3 + 2X6hi (i, 0) (yir — Ao) — 2M1 A6 (Yir — Ao) + A2 + Asyin
—AsAo + Arys — 2A7 A0¥ik + ArAE + 3\hg (i, 0)? — 6X M\shy (x4, 0) +(3)\4§\f
6.16
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= 2)\3hk(wz, 9) — 2)\1)\3 + 2)\6hk(w2, B)yzk — 2)\6)\0hk<wi7 0)
—2XM1 A6Yik + 2M1 0600 + A2 + Asyie — AsAo + Aty — 2A7 \ovik (6.17)

FAAE + 3Nk (i, 0)? — 6A A ghi (x5, 0) + 3AAT.
To simplify analysis, vx(;, y;, @) can be decomposed into a linear combina-
tion of (1, hy(x;, 0), hy(x;, 0)%, hy.(x;, 0)yir, yir, Y ) With respective coefficients

(€1, Ch, Chiys Chy, Cy, Cyy) Whose values are implicitly functions of A:

Ye(Ti, Yi, ) = 1 + cphg(x;, 0) + cpphy(x;, 9)2 + chyhi (i, 0)yir + cyyir + nyy?k

(6.18)
where

¢ = —2XMA3 + 2000 A6 + A — AsAo + Az NS + 3] (6.19)

cn = 2X3 —2X6Ao — 6A4 )\ (6.20)

chn = 3\ (6.21)

Chy = 2X¢ (6.22)

cy = —2MAs+ A5 — 2A7 N (6.23)

Cyy = A1 (6.24)

This linear combination abstracts away complexity and results in simpler math

when analyzing TaylorGLO.

Using the decomposition framework above, it is possible to characterize
and compare training dynamics under different loss functions. In Section 6.3,
the decompositions are first analyzed under a zero training error regime to

identify optimization biases that lead to implicit regularization. In Section 6.4,
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the opposite end of the training process is then analyzed, i.e. the null epoch. In
Section 6.6, generalizing to the entire training process, a theoretical constraint
is derived on the entropy of a network’s outputs. Combined with experimental
data, this constraint characterizes the data fitting and regularization processes

that result from TaylorGLO training.

6.3 Zero Training Error Optimization Biases

Certain biases in optimization imposed by a loss function can be best
observed in the case where there is nothing new to learn from the training data.
Consider the case where there is zero training error, that is, hy(x;, @) — vy = 0.
In this case, all hg(x;, @) can be substituted with y; in ¢ (x;, yi, 0), as is done

below for the different loss functions.

6.3.1 Mean Squared Error (MSE)
In this case,
Ve(i, Yi, 0) = 2yir, — 2hg(x;,0) = 0. (6.25)

Thus, there are no changes to the weights of the model once error reaches
zero. This observation contrasts with the earlier findings that discovered an
implicit regularization effect when training with MSE loss and label noise [19].
Notably, this null behavior is representable in a non-degenerate TaylorGLO
parameterization, since MSE is itself representable by TaylorGLO with A =
(0,0,0,—1,0,2,0,0). Thus, this behavior can be leveraged in evolved loss

functions.
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6.3.2 Cross-Entropy Loss

Since hy(x;, @) = 0 for non-target logits in a zero training error regime,
Ye(xi, v, 0) = (9), i.e. an indeterminate form. Thus, an arbitrarily-close-to-
zero training error regime is analyzed instead, such that hg(x;, 0) = € for
non-target logits for an arbitrarily small €. Since all scaled logits sum to 1,
hi(x;,0) = 1 — (n — 1)e for the target logit. Let us analyze the learning rule

as € tends towards 0:

<0, + limn— Yi '

Ly 0 Yir = 0
=0t 6.27
’ nn ;{ Dj (hy,(;,0)) Yir = 1. ( )

Intuitively, this learning rule aims to increase the value of the target scaled
logits. Since logits are scaled by a softmax function, increasing the value of
one logit decreases the values of other logits. Thus, the fixed point of this bias
will be to force non-target scaled logits to zero, and target scaled logits to one.
In other words, this behavior aims to minimize the divergence between the

predicted distribution and the training data’s distribution.

TaylorGLO can represent this behavior, and can thus be leveraged in
evolved loss functions, through any case where a = 0 and b+ ¢ > 0. Any A
where Ay = 2X1 A3+ AsA0 — 2A1 A Ao — A7 A2 — 3\, \? represents such a satisfying
family of cases. Additionally, TaylorGLO allows for the strength of this bias

to be tuned independently from 7 by adjusting the magnitude of b+ c.
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6.3.3 Baikal Loss

Notably, the Baikal loss function results in infinite gradients at zero
training error, rendering it unstable, even if using it to fine-tune from a pre-
viously trained network that already reached zero training error. However,
the zero-error regime is irrelevant with Baikal because it cannot be reached in

practice:

Theorem 6.3.1. Zero training error regions of the weight space are not at-

tractors for the Baikal loss function.

The reason is that if a network reaches a training error that is arbitrarily
close to zero, there is a repulsive effect that biases the model’s weights away

from zero training error.

Proof. Given that Baikal does tend to minimize training error to a large
degree—otherwise it would be useless as a loss function since training data is
assumed to be in-distribution— what happens as the learning rule approaches
a point in parameter space that is arbitrarily-close to zero training error can
be observed. Assume, without loss of generality, that all non-target scaled
logits have the same value. Then,

lim vz, yi, 0)Dj (hp(xi, 0)) Yy =0

hio(@i,0)— 55 (6.28)

lim V(i Yi, 0)Dj (hi(xi,0))  ya =1

hk(miﬂ)—ﬂ—e

1 n
9]‘ < 9]+775 kz_;
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n—1

= ! ; Yi =
I

1 0
li D; (hy(;, 0
R (hkm,e)*hk(mi,ey) i (i (1, 9))

f= I D (.0
1 hk(:ci,ler)nal—e :132-70) - hk(wi,G)Q J ( k(-'B ))
Yie = 1
(6.29)
n—1

I . Dj (hg(x;,0)) vy =0
=0t > 1 1 (6.30)

= Dj(h i70 i =1

1 (1—e+(1_€>2) i (hi(xi,0)) ik
n—1

1 & Dj (hi(x;,0)) Yir = 0
=Oi+nd 8, S (6.31)
k=t Dj (hy(x;, 0)) Yie = 1.

& —2+1
The behavior in the ;. = 0 case will dominate for small values of €. Both
cases have a positive range for small values of e, ultimately resulting in non-
target scaled logits becoming maximized, and subsequently the non-target logit
becoming minimized. This assertion is equivalent, in expectation, to saying
that € will become larger after applying the learning rule. A larger € implies a

move away from a zero training error area of the parameter space. Thus, zero

training error is not an attractor for the Baikal loss function. ]

6.3.4 Third-Order TaylorGLO Loss

According to Equation 6.18, in the zero-error regime i (x;, y;, @) can

be written as a linear combination of (1, y, y%) and (a, b, ¢):

Yi(Ti, Yi, 0) = a + by, + Cyi2k:? (6.32)
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where

a = X —2XMA3 — AsAo + 2M1 A6 X0 + ArAD + 3AAT (6.33)
b - 2)\3 - 2>\6)\0 - 2)‘1/\6 + )\5 - 2)\7)\0 - 6)\4)\1 (634)
cC = 2)\6 + /\7 + 3)\4 (635)

Notably, in the basic classification case, Vw € Ny : y;, = vy}, since
yir. € {0,1}. This observation provides an intuition for why higher-order Tay-
lorGLO loss functions are not able to provide fundamentally different behavior
(beyond a more overparameterized search space), and thus no improvements

in performance over third-order loss functions. The learning rule thus becomes

aD; (hp(2:,0))  yaw =0
0 < 0;+n— Z{ 0+ b+ c)D; (hu(:, 0)) Zikzl. (6.36)

As a concrete example, consider the loss function TaylorGLO discovered for
the AIICNN-C model on CIFAR-10. It had a = —373.917, b = —129.928, ¢ =
—11.3145. Notably, all three coefficients are negative, i.e. all changes to 6; are
negatively scaled values of D; (hy(x;,0)), as can be seen from Equation 6.36.
Thus, there are two competing processes in this learning rule: one that aims to
minimize all non-target scaled logits (increasing the scaled logit distribution’s
entropy), and one that aims to minimize the target scaled logit (decreasing
the scaled logit distribution’s entropy). The processes conflict with each other
since logits are scaled through a softmax function. These processes can shift
weights in a particular way while maintaining zero training error, which results

in implicit regularization. If, however, such shifts in this zero training error
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regime do lead to misclassifications on the training data, hg(x;, @) would no
longer equal y;;, and a non-zero error regime’s learning rule would come into

effect. It would strive to get back to zero training error with a different 6.

Similarly to Baikal loss, a training error of exactly zero is not an attrac-
tor for some third-order TaylorGLO loss functions (this property can be seen
through an analysis similar to that of Theorem 6.3.1). The zero-error case
would occur in practice only if this loss function were to be used to fine tune
a network that truly has a zero training error. It is, however, a useful step in

characterizing the behavior of TaylorGLO, as will be seen in Section 6.6.

6.4 Behavior at the Null Epoch

Consider the null epoch, i.e., the first epoch of training. Assume all

weights are randomly initialized:
1
Vk € [1,n],wheren > 2: E [hi(x;,0)] = —. (6.37)
i n

That is, logits are distributed with high entropy. Behavior at the null epoch
can then be defined piecewise for target vs. non-target logits for each loss

function.

In the case of Mean squared error (MSE),

2t yp =0

(i, yi, 0) = { S Y (6.38)

Since n > 2, the y; = 1 case will always be negative, while the y; = 0
case will always be positive. Thus, target scaled logits will be maximized and

non-target scaled logits minimized.
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In the case of Cross-entropy loss,

0 Yir = 0

n ol (6.39)

’Yk(f%yi,e) = {

Target scaled logits are maximized and, consequently, non-target scaled logits

minimized as a result of the softmax function.

Similarly in the case of Baikal loss,

n Yir = 0

n+n?*  yx=1 (6.40)

/yk(wia Yi, 0) = {

Target scaled logits are minimized and, consequently, non-target scaled logits
minimized as a result of the softmax function (since the y;, = 1 case domi-

nates).

In the case of Third-order TaylorGLO loss, since behavior is highly

dependent on A, consider the concrete loss function used above:

—373.9170 — 130.2640 hy(x;, 0)
(@i ¥1,0) =4 379 4707 — 131.4700 hy (s, )
—11.2188 hy(x;,0)*  yu = 1.

(6.41)

Note that Equation 6.36 is a special case of this behavior where hy(x;, 0) = yix.

Let us substitute hy(x;, 0) = % (i.e., the expected value of a logit at the null

epoch):

(... 0) — —373.9170 — 130.2640 n~* — 11.2188 n™2 g3 =0
AL YY) = 3724707 — 131.4700 n7t — 11.2188 2y = 1.
(6.42)

Since this loss function was found on CIFAR-10, a 10-class image classification

task, n = 10:

| —386.9546 Yir =0
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Since both cases of v (x;, y;,0) are negative, this behavior implies that all
scaled logits will be minimized. However, since the scaled logits are the output
of a softmax function, and the y;, = 0 case is more strongly negative, the
non-target scaled logits will be minimized more than the target scaled logits,

resulting in a maximization of the target scaled logits.

The desired behavior at the null epoch is clear, and the above evaluated
loss functions all exhibit it. However, certain settings for A in TaylorGLO loss
functions may have wholly behavior that is detrimental. Thus, a constraint
on A can be derived. Such a constraint is derived in Section 6.5 and used to

improve the TaylorGLO search process in Section 7.2.

6.5 TaylorGLO Parameters at the Null Epoch

There are many different instances of A for which models are untrain-
able. One such case, albeit a degenerate one, is A = 0, i.e. a function with
zero gradients everywhere. Given the training dynamics at the null epoch

(characterized in Section 6.4), more general constraints on A

Theorem 6.5.1. A third-order TaylorGLO loss function is not trainable if the
following constraints on A are satisfied:

ch + Chy Chh
—  —

1+ cy +cyy + 2

Ch, Chh
< (n—1 ( Cn —) 6.44
(n ) c1 + 0 + n2 ( )

Chy Ch | Chh
Cy + Cyy + 7 < (n — 2) <Cl + E + F) . (645)
Proof. At the null epoch, a valid loss function aims to, in expectation, minimize

non-target scaled logits while maximizing target scaled logits. Thus, specific

123



cases can of A can be found for which these behaviors occur. Considering the

representation for v (x;, y;, 0) in Equation 6.18:

1 (c1 + cnhi(2i, 0) + chnhy(x;, 0)%) Dj (hi(2:,0)) i, =0
Hj — Qj—i-nﬁ Z (Cl + Chhk(mia 0) + Chhhk’(mi’ 0)2
h=1 +cnyhi(xi, 0) + ¢y + ny)DJ' WACHD) yir = 1.

(6.46)

Substituting hy(x;, 0) = % (i.e., the expected value of a logit at the null epoch),

cn c
1 (01 + 24 L;) Dj (hi(x:,0))  yi =0
0; < 0,4+n— Z nen
J J n Cp, —|—Chy Chh
k=1 C1+ Cy + Cyy + n + 2 Dj (hi(x:, 0)) Yk = 1.

(6.47)
For the degenerate behavior to appear, the directional derivative’s coefficient

in the y;z = 1 case must be less than zero:

Ch + Chy n Chh

1+ Cy +cyy + 2

< 0. (6.48)

This finding can be made more general by asserting that the directional deriva-
tive’s coefficient in the y;; = 1 case be less than (n — 1) times the coefficient

in the y;; = 0 case, thus arriving at the following constraint on A:

Ch + Chy n Chh

ch | C
c1+cy+ ey + < (n—1) (01+Eh+ hh) (6.49)

n? n?

cy+cyy+c—:;/ < (n—2) <01+%+ZL—;> (6.50)

]

These constraints restrict loss functions to pass through the regions at

¢ = 1 — 1 in Figure 6.3 where the entropy is increasing (colored red). The
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inverse of these constraints may be used as invariants during loss function

evolution, as will be described in Section 7.2.

6.6 Data Fitting and Regularization Processes

Under what gradient conditions does a network’s softmax function tran-

sition from increasing the entropy in the output distribution to decreasing it?

€

Let us analyze the case where all non-target logits have the same value, —,

and the target logit has the value 1 — e. That is, all non-target classes have

equal probabilities.

6.6.1 Softmax Entropy Dynamics

Theorem 6.6.1. The strength of entropy reduction is proportional to

ele=1)rp(n—1)+ev_(e(n—3)+n—1)
6(6 — 1) ee(efl)(’YﬂT*'YT) —e (n—1)2

(6.51)

e(e=1)yp(n—D+ey_r(e(n—3)+n—1)
(6 — ].) 65(5_1)(7ﬁT_'7T) —€e (n—1)2

Thus, values less than zero imply that entropy is increased, values
greater than zero that it is decreased, and values equal to zero imply that

there is no change.

Proof. Let us analyze the case where all non-target logits have the same value,

€
n—17

and the target logit has the value 1 — €. That is, all non-target classes

have equal probabilities.
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A model’s scaled logit for an input x; can be represented as

i

where fi(x;, 0) is a raw output logit from the model.

The (k,7)th entry of the Jacobian matrix for h(x;, @) can be easily

derived through application of the chain rule:

~ 0fi(=:,6) ~hj(x;,0) hi(@:, 0) fu(wi.0)  k#j.
(6.53)
Consider an SGD learning rule of the form:
1 n
0 05+ 0> (s, i, 0) D (hi(:, 0))] (6.54)

k=1
Let us freeze a network at any specific point during the training process for
any specific sample. Now, treat all f;(x;,0),j € [1,n] as free parameters with
unit derivatives, rather than as functions; that is, 8; = f;(x;, ). Updates are
now §
Af; x ;”Yj { hy(mr}?(g’ ;)hgiz}fe)g z ;i | (6.55)
For downstream analysis, we can consider, as substitutions for ; above, -7

to be the value for non-target logits, and ~p for the target logit.

This sum can be expanded and conceptually simplified by considering
j indices and —j indices. The —j indices, of which there are n — 1, are either
all non-target logits, or one is the target logit in the case where j is not the

target logit. Let us consider both cases, while substituting the scaled logit
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values defined above:
Vo1 Jr=jh (i, 0) + (n — 2)y-7 Jpzih(;, 0)
Afj +vyr Jrzih(x;, 0) non-target j
Y1 Jpeih(@i,0) + (0 — 1)y-r Jyzjh(x;,0)  target j .

(6.56)
( V-rh-r(w;,0) (1 = hr(z;,0))
+(n = 2)y-7 (=h-r(x4,0) hor (x4, 0))
Af] x +7T (_h—\T(mi7 0) hT(mia 0)) non_target J (657)
Yrhr(w;, 0) (1 — hy(x;,0))
| +(n— 1)y (h-r(x;,0) hp(x;,0))  target j
where (2, 0)=1—¢, hp(z,0) = — 1 (6.58)
N —
( e (1__c¢
T n—1
vt (n = ) (e — 1) target j
Afjox § (= 2) e (e = 1)——  non-target j
yre — yr€? + y-r(n — 1) (e — 1)n ¢ target j
\ _

(6.59)
At this point, closed-form solutions for the changes to softmax inputs have been
derived. To characterize entropy, solutions must be derived for the changes to

softmax outputs given such changes to the inputs. That is:

eli(@i,0)+Af;
Aoj(f(xi,0)) = ST P (6.60)

Due to the two cases in Af;, Ao;(f(x;,0)) is thus also split into two cases for

target and non-target logits:

ef-r(@: 0)+Afor

(
J+AS~r 4 efr(wi,0)+AfT
(
)

non-target j

Aoy(f(xi,0)) = (n — 1)e/-r(:0

efr(@i,0)+Afr

(n — 1)el-r@i0)+Af-r 4 efr(@:i0)+Afr target j

(6.61)
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Now, the observation can be made that scaled logits have a lower entropy
distribution when Aor(f(x;,0)) > 0 and Ao_r(f(x;,0)) < 0. Essentially,
the target and non-target scaled logits are being repelled from each other.
Either of these inequalities can be ignored, if one is satisfied then both are
satisfied, in part because |o(f(x;,0))]; = 1. The target-case constraint (i.e.,
the target scaled logit must grow) can be represented as

efr(®i,0)+Afr

(n — 1)ef-r@i.0)+Af-r 4 ofr(xi0)+Afr

>1—¢ (6.62)

Consider the target logit case prior to changes:

efT (:1:1 70)

(n _ 1)ef—\T(937;70) + efT(mi79)

=1—¢. (6.63)
Let us solve for efT(@i.0).

ofr(@i ) _ (n _ 1)efﬁT(mi79) + ofr(@i6) _ e(n _ 1)efﬁT(iti79) — ecefr(@i,0) (6.64)

-1
= (” —n+ 1) ef-r(@i6) (6.65)

€

Substituting this definition into Equation 6.62:

oA fr (" . 1) of-1(@:.0)

€

— >1—¢c (6.66)

€

(n— 1)efﬁT(mi70)+AfﬁT + eAfr (n —n+ 1) ef-r(x:,0)

Coalescing exponents,

eAfr+f-r(i,0) (n —1 —n+ 1)

€

+e—1>0 (6.67)

(n — 1)ef-r@i.0)+Af-r 4 eAfr+fr(®i ) (n — 1 —n+4+ 1)
€
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Substituting in definitions for A fr and A f_r and greatly simplifying the left-
hand side expression in a computer algebra system results in the removal of

instances of f_r:

ele—1)yr(n—1)+ ey=r(e(n —3) +n —1)

e(e — 1) | ece=DO-r—m) _ ¢ (n—1)2
>0
e(e—1)yr(n—1)+ ey-r(e(n —3) +n—1)
(€ — 1)ecle—D(-r=17) — eq (n—1)2
(6.68)
0

6.6.2 Zero Training Error Attractors

The strength of the entropy reduction in Theorem 6.6.1 can also be
thought of as a measure of the strength of the attraction towards zero training
error regions of the parameter space. For any given n, a value for this zero
training error attraction strength at different e values can be plotted using
the corresponding vz and -7 values from a particular loss function. These

characteristic curves for four specific loss functions are plotted in Figure 6.1.

This strength can thus be calculated for individual training samples
during any part of the training process, leading to the insight that the pro-
cess results from competing “push” and “pull” forces. This theoretical insight,
combined with empirical data from actual training sessions, explains how dif-

ferent loss functions balance data fitting and regularization.

Figure 6.2 provides one such example on AIICNN-C [161] models trained
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Figure 6.1: Attraction towards zero training error curves with differ-
ent loss functions. Each loss function has a characteristic curve—plotted
using Equation 6.51—that describes zero training error attraction dynamics
for individual samples given their current deviation from perfect memoriza-
tion, €. Plots (a) and (b) only have the n = 10 case plotted, i.e. the 10-class
classification case for which they were evolved. Cross-entropy (a) and MSE
(c) loss functions have positive attraction for all values of €. In contrast, the
TaylorGLO loss function for CIFAR-10 on AIICNN-C (b) and the Baikal loss
function (d) both have very strong attraction for weakly learned samples (on
the right side), and repulsion for highly confidently learned samples (on the left
side. This provides a graphical intuition for regularization with TaylorGLO
and Baikal loss functions.
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Figure 6.2: Per-training-sample attraction towards zero training er-
ror with cross-entropy and TaylorGLO loss functions for CIFAR-10
AlICNN-C models. Each point represents an individual training sample
(500 are randomly sampled per epoch); its x-location indicates the training
epoch, and y-location the strength with which the loss functions pulls the
output towards the correct label, or pushes it away from it. With the cross-
entropy loss (a), these values are always positive, indicating a constant pull
towards the correct label for every single training sample. Interestingly, the
TaylorGLO values (b) span both the positives and the negatives; at the be-
ginning of training there is a strong pull towards the correct label (seen as
the dark area on top left), which then changes to more prominent push away
from it in later epochs (seen as the dark band on the bottom). This plot
shows how TaylorGLO regularizes by preventing overconfidence and biasing
solutions towards different parts of the weight space with higher performance.
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on CIFAR-10 [94] with cross-entropy and custom TaylorGLO loss functions.
Scaled target and non-target logit values were logged for every sample at every
epoch and used to calculate respective vy and v values. These values were
then substituted into Equation 6.51 to get the strength of bias towards zero

training error.

The cross-entropy loss exhibits a tendency towards zero training error
for every single sample, as expected. The TaylorGLO loss, however, has a
much different behavior. Initially, there is a much stronger pull towards zero
training error for all samples—which leads to better generalization [104, 196]—
after which a stratification occurs, where the majority of samples are repelled,
and thus biased towards a different region of the weight space that happens to
have better performance characteristics empirically. This, for the first time,

explains theoretically why loss functions like Baikal serve as regularizers.

This measure of attraction can be seen as providing a value for every
point in a phase space consisting of v, v-r, €, and n. For a given loss function,
~vr and -7 are implicit functions of the loss function at a certain e deviation
from memorization. Thus, each loss function encodes a characteristic, one-
dimensional curve through this space, for a specific number of classes n. A
visualization of these curves for four loss functions is provided in Figure 6.3.
Note that the values at each point in each curve correspond to the plots in

Figure 6.1.

Both GLO and TaylorGLO loss-function metalearning approaches op-

timize the loss function directly, and thus optimize the characteristic curve
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in zero training error attraction

phase space for different loss functions. A general phase space for zero
training error attraction can be constructed using a loss function’s specific vyp
and -7 values and a network’s € value for a given sample. Each loss func-
tion has a characteristic curve within this space. The values at each point in
this space (i.e., colors) are calculated using Equation 6.51 and can be seen in
Figure 6.1 for each loss function. While loss-function metalearning indirectly
finds optimal characteristic curves, perhaps, in the future, these characteristic

curves may be optimized directly.
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through the attraction phase space indirectly. Perhaps, in future work, the
process may be inverted, whereby these characteristic curves are optimized
directly, and the loss function subsequently derived from it. This new method
may serve as a way to more effectively discover different training behaviors,

rather than a complex encoding of them, i.e. through a loss function.

Given that the values traced by each curve vary depending on the n for
a given task, a given loss function can exhibit different behaviors for different
numbers of classes. It should be possible to define a transformation on a loss
function between any two values of n, such that it provides the same behavior
at different e values. This transformation can be thought of as a way to
adapt metalearned loss functions to behave as intended in tasks with different
numbers of classes as the task upon which the loss function was metalearned,
assuming that the disparate tasks train similarly and have similarly distributed

training samples.

6.7 Label Smoothing

TaylorGLO loss functions have been shown in the above sections to
provide regularization through dynamic biases that are imparted throughout
the training process. However, this behavior is not the only way that Taylor-
GLO can regularize. This section shows how the regularization imparted by

label smoothing [167] can be implicitly represented by TaylorGLO.

Theorem 6.7.1. For any third-order TaylorGLO loss function with X param-

eters, there exists a TaylorGLO loss function defined by X that is equivalent
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in behavior to the original X loss function when label smoothing is applied, for

any label smoothing strength.

Proof. Consider a basic setup with standard label smoothing, controlled by a

hyperparameter o € (0, 1), such that the target value in any y; is 1 — 04”7_1,

rather than 1, and non-target values are =, rather than 0. The learning rule

changes in the general case as follows:
(
c1 + Chhk<$i> 0) -+ Chhhk(ici, 0)2

2
a a a
+cpyhi (2, O)g + cyE + cyyﬁ Yir = 0

’Yk(wiv Yi, 0) =
c1 + Chhk<33@'7 0) + chhhk(wi, 0)2

-1
—f-Chyhk(CBi, 9) (1 — an )

n

n—1 n—1\2
\—i—cy 11—« - +ey |1 —a - Yie = 1.

(6.69)

Let C1, Ch,y Chiy Chy, Cy, Cyy Tepresent settings for ci, ¢y, Cun, Chy, ¢y, Cyy in the non-
label-smoothed case that apply label smoothing implicitly within the Tay-
lorGLO parameterization. Given the two cases in the label-smoothed and
non-label-smoothed definitions of ~.(x;, y;, @), there are two equations that
must be satisfiable by settings of ¢ constants for any c¢ constants, with shared

terms highlighted in blue and red:
2
(e} e} o
c1 + chhk(wi, 9) + chhhk(a:i, 0)2 + chyhk(:ci, 9)5 + Cyg + nyﬁ (67())
= 61 + (Aihhk(wi, 0) + (Aihhhk(wi, 9)2
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-1
c + chhk(:ci, 0) + chhhk(a:,;, 0)2 + chyhk(:ci, 9) <1 — Oén )

n

n—1 n—1\ (6.71)
—l—cy(l—a - )+cyy(1—a - )

= (A;'] -+ (A:hhk(mi, 0) + (A'thhk(ajj, 0)2 + éhyhk(wi, 0) + éy + éyy-
Let us then factor the left-hand side of Equation 6.70 in terms of different

powers of hy(x;, 0):

a a? a
C1 —f-Cy——f-ny— + Ch—I—Chy— hk(:z:z,e)—l— Chh hk(wi,O)Q,
n n? n ~—~

(.

(6.72)

~~ A Chh
é1 h

resulting in definitions for ¢4, ¢y, ¢éxn. Let us then add the following form of

zero to the left-hand side of Equation 6.71:

« 2 o 2

(67 « « «
(Chyhk(mz‘, 0)5 + Cyg —+ nyﬁ) — <Chyhk(wi, 0)5 + Cyﬁ + nyﬁ) . (673)

This operation allows the definitions for ¢y, ¢, ¢, from Equation 6.72 to be

substituted into Equation 6.71:
A . ) o a 2
(&1 + chhk(mi, 0) + chhhk(a:i, 0) — chyhk(a:i, O)E + Cyg + ny—

-1 n—1 n—1\2
+eoy |1 -« - +eoy |1 —a -

= ¢y + (i, 0) + Cunhi (i, 0)° + Cryhi (i, 0) + &, + Cyy-
(6.74)

+cpyhi(z;, 6) <1 —al

Simplifying into

—1 —1 —1\?
Chyhi (i, 0) (1—ann )—l—cy (1—ann )—l—cyy (1—ann )
(6]
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Finally, factor the left-hand side of Equation 6.75 in terms of, hy(x;, ), 1, and

n—1 «
(Chy (1 — n ) — Chyﬁ) hk(mz,e)

12

Eny
6.76
n—1 o n—1\2 o? (6.76)
+ley|l—a - —cyg +leyw|l—a - _nyﬁ

Thus, the in-parameterization constants with implicit label smoothing

can be defined for any desired, label-smoothed constants as follows:

2

. o a

cT = + Cyg + nyﬁ (677)
éh = ¢+ Chyg (678)

n
éhh = Chpp (679)
—1

Gy = Cny <1 —al - ) - chy% (6.80)
. n—1 «

Cy = ¢y (1 —a— ) —o (6.81)
. n—1\2 o?

Cyy = Cyy (1 —a— ) ~ s (6.82)

(]

So for any A and any « € (0, 1), there exists a X such that the behav-
ior imposed by X without explicit label smoothing is identical to the behav-
ior imposed by A with explicit label smoothing. That is, any degree of label
smoothing can be implicitly represented for any TaylorGLO loss function. Fur-

thermore, the presented methodology can be inverted and used to decompose
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a given TaylorGLO loss function into a non-label-smoothed variant and a cor-
responding «. Thus, TaylorGLO may discover and utilize label smoothing as

part of discovering loss functions, increasing their ability to regularize further.

6.8 Discussion

Based on a decomposition of the SGD learning rule, this chapter devel-
oped a unified theoretical framework that illustrates how loss function regular-
ization can be better understood. Analysis of their behavior at different stages
of the training process helped characterize different loss functions. At the null
epoch, all analyzed loss functions reduce training error, albeit with varying
strengths. At zero training error—that is, when training labels are memorized
perfectly—different loss functions have significantly different behaviors. When
there is no longer anything left to learn, the optimization biases of each loss
function become clear, demonstrating how they result in implicit regulariza-

tion.

Extending to the general case—optimization at any epoch for any train-
able parameter configuration—a constraint was developed on the proportional
strength with which the network output distribution’s entropy increase or de-
crease (Equation 6.51). This quantity can be thought of as a measure of
repulsion or attraction towards regions of the parameter space with zero train-
ing error. Each loss function has a characteristic curve for this value at varying
levels of memorization (Figure 6.1). When calculated for individual samples

during real training runs with different loss functions (Figure 6.2), TaylorGLO
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loss functions exhibit remarkably different behavior from the cross-entropy
loss. TaylorGLO loss functions initially force training towards reduced error
much more strongly than the cross-entropy loss, and after a number of epochs
change to a different training regime where the majority of training samples
are repel from zero training error regions. Since these characteristic curves
all lie in the same phase space, future work could tackle metalearning these
curves themselves rather than loss function, thus providing a more direct rep-

resentation of loss function behavior.

There are many opportunities for further theoretical work in this area.
Certain key questions remain unanswered, such as the relationship between
model architecture and regularization, and will likely require theoreticians to
develop a comprehensive theory of regularization and generalization in deep
neural networks. However, the framework and analyses presented in this chap-
ter provide a compelling first step, and have already shed light on the effec-

tiveness of metalearned loss functions.

6.9 Conclusion

Regularization has long been a crucial aspect of training deep neural
networks, with many different flavors. This chapter contributed an under-
standing of regularization resulting from loss-function metalearning. A theo-
retical framework for representing different loss functions was first developed
in order to analyze their training dynamics in various contexts. The results

demonstrate that TaylorGLO loss functions implement a guard against overfit-
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ting, resulting in automatic regularization. The results thus extend the scope
of metalearning, focusing it not just on finding optimal model configurations,
but also on improving regularization, learning efficiency, and robustness di-
rectly. In Chapter 7, two practical opportunities emerge from these analyses:
filtering based on an invariant derived at the null epoch will be shown to im-
prove the search process, and the robustness against overfitting will be shown

to make networks also more robust against adversarial attacks.
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Chapter 7

TaylorGLO Extensions

TaylorGLO is formulated in a general manner and it can therefore be
extended to address several different challenges and opportunities in machine
learning. This chapter presents four such extensions: utilizing auxiliary loss
functions, focussing the search process through an invariant, guard against

adversarial attacks, and coevolving loss functions for GANs.

7.1 Auxiliary Classifier Loss Functions

As described in Section 2.5.3, auxiliary classifiers provide a unique form
form of regularization [167] through architectural changes, while also alleviat-
ing the vanishing gradients problem and providing a way to more effectively
learn lower-level features than in standard networks. This section characterizes
the behavior of TaylorGLO on networks with auxiliary classifiers, focussing on
a modified AIICNN-C network with two auxiliary classifiers. Three seperate
loss functions are jointly evolved, which are able to take advantage of the three

sets of network outputs.
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Figure 7.1: AIICNN-C with Auxiliary Classifiers. The AIICNN-C archi-
tecture can be augmented with auxiliary classifiers after each dropout layer to
provide regularization [167] and allow gradients to flow deeper into the model
more directly. TaylorGLO can improve the model’s performance by optimizing
three separate loss functions.

7.1.1 AIlICNN-C with Auxiliary Classifiers

ANICNN-C provides two natural points where auxiliary classifiers may
be grafted onto the architecture: it is possible to do so after each of the
two dropout layers. Each auxiliary classifier is nearly identical to the final
five layers of AIICNN-C, albeit with half as many filters. Specifically, both
auxiliary classifier have the following layers: (1) 1 x 1 convolution with 96
filters and ReLU activations, (2) 1 x 1 convolution with 10 filters and RelLU
activations, (3) average pooling, and (4) a softmax layer. The modified

architecture is illustrated in Figure 7.1.

Auxiliary losses are scaled by 0.3 and summed with the main loss,

resulting in the final training loss. The 0.3 scaling factor is appropriate
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for the Inception-v3 architecture [167], and was confirmed to be appropri-

ate for AIICNN-C in a hyperparameter sweep with varying scaling values in

(0.15,0.3,1,2).

ANICNN-C is the only architecture that was evaluated with auxiliary
classifiers since it is simple and does not have skip connections, so that the
effects of auxiliary classifiers can be seen more clearly. Auxiliary classifiers
tend to be useful in deep networks without skip-connections, which provide a
different way for gradients to propagate more deeply. In fact, in an experiment
where auxiliary classifiers with the cross-entropy loss were added to a Pre
ResNet-20, training failed in nearly half of all training attempts and resulted

in slightly lower accuracy than the baseline when training did converge.

7.1.2 Experiments

Compared to the baseline, auxiliary classifiers provide an increase in
accuracy greater than one percentage point (Table 7.1). Notably, this perfor-
mance increase is not simply the result of a substantial increase in the number
of parameters; the AIICNN-C variant with auxiliary classifiers has only 1.40
million parameters, compared to the conventional AIICNN-C’s 1.37 million.
The addition of Cutout has a similar effect on the modified network as on
the baseline. There is a slight drop in performance, however the drop has a

slightly smaller magnitude in the auxiliary classifier case.

Integration with TaylorGLO is fairly straightforward: the three loss

functions’ parameter sets are concatenated and jointly optimized as if they
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Table 7.1: Test-set performance of models with and without auxil-
iary classifiers. Loss functions discovered by TaylorGLO are compared to
the cross-entropy loss. The TaylorGLO results are based on the loss func-
tion with the highest validation accuracy during evolution. All averages are
from ten separately trained models and p-values are from one-tailed Welch’s
t-Tests. Standard deviations are shown in parentheses. Auxiliary classifiers
improve accuracy over the cross-entropy baseline. This improvement is further
enhanced by TaylorGLO, where unique loss functions are evolved for each aux-
iliary classifer. An ablation study is also presented where the TaylorGLO loss
function for the main output is also used for the auxiliary classifiers, weighted
by 0.3. This study demonstrates the power of having separate loss functions.
On ANICNN-C, the top result comes from the combination of Cutout regular-
ization and TaylorGLO with auxiliary classifiers, suggesting that they each
provide a different dimension of regularization.

Task and Model Avg. TaylorGLO Acc.  Baseline Acc. p-value
CIFAR-10

AIICNN-C 0.9271 (0.0013) 0.8965 (0.0021) 0.42x1017
AIICNN-C + Cutout 0.9329 (0.0022) 0.8911 (0.0037) 1.60x10~*4
AIICNN-C + Aux (Ablation) 0.9255 (0.0011) 0.9112 (0.0022) 9.67x10~*!
AIICNN-C + Aux 0.9307 (0.0021) 0.9112 (0.0022) 1.03x10713
AIICNN-C + Aux + Cutout 0.9369 (0.0010) 0.9078 (0.0012) 5.36x10~2!
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Figure 7.2: Best TaylorGLO loss functions for AIICNN-C with auxil-
iary classifiers. Loss functions are plotted for binary classification at xy = 1.
Correct predictions lie on the right side of the graphs, and incorrect ones on
the left. There is a clear difference in what is optimal for each of the aux-
iliary classifiers and the main loss function, both with and without Cutout.
With Cutout, the optimal functions for auxiliary classifiers are noticably dif-
ferent, both in shape and range. Thus, what is optimal is influenced by both
architecture and complementary regularization techniques.

were from a single loss function. To accommodate the larger search space, the
population size is doubled from 20 to 40. The auxiliary loss functions’ scaling

factors are both set to one, with the intention that the proper scaling would

be metalearned implicitly as part of TaylorGLO.

In every case in Table 7.1, TaylorGLO provides a statistically signifi-
cant improvement in performance. TaylorGLO works harmoniously with other
regularization techniques; the best result on AIICNN-C includes auxiliary clas-

sifiers, Cutout, and TaylorGLO.

The best set of discoverd loss functions is illustrated in Figure 7.2.
The three loss functions are very different in terms of both shape and range,

suggesting that they are specialized to each auxiliary classifier.
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Figure 7.3: Attraction towards zero training error curves for Taylor-
GLO loss functions for AIICNN-C with auxiliary classifiers. Each
curve—plotted using Equation 6.51—describes the zero training error attrac-
tion dynamics for individual samples given their current deviation from perfect
memorization, €. TaylorGLO is able to discover loss functions with fundamen-
tally different training dynamics for each setting, demonstrating how Taylor-
GLO is able synergize with existing forms of regularization to reach higher
levels of performance.

The set of three loss functions is also different when Cutout regulariza-
tion is included; for example, they cover a larger range. The specific differences
in behavior can be analyzed by looking at each loss function’s characteristic
zero training error attraction curve (Figure 7.3). Without Cutout, the main
loss function only provides a force towards zero training error for sufficiently
low levels of memorization, while the first auxiliary loss function always pro-
vides a repulsive effect away from zero training error, and the second auxiliary
loss function always provides a force towards zero training error—like the cross-
entropy loss does. Conversely, with Cutout, the main loss function and first

auxiliary loss function always tends towards zero training error, and the second

auxiliary loss function only provides an attracive force towards zero training
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error for low levels of memorization—similar to the TaylorGLO loss function.
The two sets of loss functions thus have fundamentally different training dy-
namics. This result shows how TaylorGLO adapts loss functions to specific

settings, i.e. the inclusion or lack of Cutout regularization.

This application to auxiliary classifiers provides a practical example of
how the TaylorGLO technique can be extended to evolve multiple mutually-
optimized loss functions simultaneously. TaylorGLO can thus be used to am-

plify the beneficial effects of auxiliary classifiers.

7.2 Utilizing an Invariant to Guide Search

There are many different instances of A for which models are untrain-
able. Given the training dynamics at the null epoch (characterized in Sec-

tion 6.4), general constraints on A were derived in Section 6.5).

The inverse of these constraints may be used as an invariant during
loss function evolution. That is, they can be used to identify entire families
of loss function parameters that are not usable, rule them out during search,

and thereby make the search more effective.

7.2.1 Integration with TaylorGLO

Before each candidate A is evaluated, it is checked for conformance to
the invariant. If the invariant is violated, the algorithm can skip that candi-
date’s validation training and simply assign a fitness of zero. However, due to

the added complexity that the invariant imposes on the fitness landscape, a
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Table 7.2: Test-set accuracy of loss functions discovered by Taylor-
GLO with and without an invariant constraint on A. Models were
trained on the loss function that had the highest validation accuracy during
TaylorGLO evolution. All averages are from ten separately trained models and
p-values are from one-tailed Welch’s t-Tests. Standard deviations are shown
in parentheses. The invariant allows focusing metalearning to viable areas of
the search space, resulting in better loss functions.

Task and Model TaylorGLO + Invariant p-value
CIFAR-10

AlexNet 0.7901 (0.0026) 0.7933 (0.0026) 0.0092
PreResNet-20 0.9169 (0.0014)  0.9164 (0.0019)  0.2827
AIICNN-C 0.9271 (0.0013) 0.9290 (0.0014) 0.0004
AIICNN-C + Cutout 0.9329 (0.0022) 0.9350 (0.0014) 0.0124
Wide ResNet 28-5 0.9548 (0.0015)  0.9540 (0.0016)  0.1323

larger population size is needed for evolution within TaylorGLO to be more

stable. Practically, a doubling of the population size from 20 to 40 works well.

7.2.2 Experiments

Table 7.2 presents results from TaylorGLO runs with and without the
invariant on the CIFAR-10 image classification benchmark dataset [94] with
various architectures. Networks with Cutout [35] were also evaluated to show
that TaylorGLO provides a different approach to regularization. Standard
training hyperparameters from the references were used for each architecture.
Notably, the invariant allows TaylorGLO to discover loss functions that have
statistically significantly better performance in many cases, and never a detri-

mental effect. These results demonstrate that the theoretical invariant is useful
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in practice, and should become a standard in TaylorGLO applications.

7.3 Optimizing Loss Functions Against Adversarial At-
tacks
As was described in Section 5.5.3, TaylorGLO loss functions discourage
overconfidence, i.e. the resulting activations are less extreme and vary more
smoothly with input. Such encodings are likely to be more robust against noise,
damage, and other imperfections in the data and in the network execution. In
the extreme case, they may also be more robust against adversarial attacks.

This hypothesis will be tested experimentally in this section.

7.3.1 Adversarial Attacks

Adversarial attacks elicit incorrect predictions from a trained model by
changing input samples in small ways that can even be imperceptible. They
are generally classified as “white-box” or “black-box” attacks, depending on
whether the attacker has access to the underlying model or not. Naturally,

white-box attacks are more powerful at overwhelming a model.

One such white-box attack is the Fixed Gradient Sign Method (FGSM)
[56]. Tt is very simple to conduct; following evaluation of a dataset, input gra-
dients are taken from the network following a backward pass. The individual
gradients have their sign calculated in an element-wise fashion, and are added
to future network inputs with an e scaling factor (note that this is a different

¢ than in Chapter 6) that determines the attack strength. Specifically, inputs
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are modified as

x; < x; + e sign (Vy, L(xi,y:,0)) . (7.1)

Experiments were designed to evaluate how well networks trained with
TaylorGLO loss functions are able to handle FGSM attacks compared to those
trained with the cross-entropy loss. Additionally, given that TaylorGLO can
optimize loss functions against any objective, adversarially-hardened loss func-

tions were evolved against an adversarial attack accuracy metric.

7.3.2 Experiments

Figure 7.4 shows how robust networks with different loss functions
are to FGSM attacks of various strengths. In this experiment, AIICNN-C,
AIICNN-C with Cutout, Wide ResNet 16-8, and Wide ResNet 28-5 networks
were trained on CIFAR-10 with TaylorGLO and cross-entropy loss. Indeed,
TaylorGLO outperforms the cross-entropy loss models significantly at all at-

tack strengths.

Note that in this case loss functions were evolved simply to perform
well, and adversarial robustness emerged as a side benefit. However, it is also
possible to take adversarial attacks into account as an explicit objective in
loss function evolution. Since TaylorGLO can uses non-differentiable metrics
as objectives in its search process, the traditional validation accuracy objective

can be replaced with validation accuracy at a particular FGSM attack strength.

Remarkably, loss functions found with this objective outperform both

the previous TaylorGLO loss functions and the cross-entropy loss. These re-
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Figure 7.4: Robustness of TaylorGLO loss functions against FGSM
adversarial attacks on CIFAR-10. For each architecture, the blue bars
represent accuracy achieved through training with the cross-entropy loss, green
bars with a TaylorGLO loss, and gray bars with a TaylorGLO loss specifically
evolved in the adversarial attack environment. The leftmost points on each
plot represent evaluations without adversarial attacks. TaylorGLO regular-
ization makes the networks more robust against adversarial attacks, and this
property can be further enhanced by making it an explicit goal in evolution.
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Figure 7.5: Comparing accuracy basins of AIICNN-C with cross-
entropy, TaylorGLO, and adversarially robust TaylorGLO loss func-
tions on CIFAR-10. Basins are only plotted along one perturbation di-
rection for clarity, using the same technique as in Section 5.5.1. While the
adversarially robust TaylorGLO loss function does not confer an increase in
accuracy in the absence of adversarial attacks, it has a wider, flatter accuracy
basin. This is indicative of increased robustness as a result of using a Taylor-
GLO loss function that has been selected for against an adversarial robustness
objective.

sults demonstrate that the TaylorGLO regularization leads to robust encoding,
and such robustness can be further improved by making it an explicit goal in

loss-function optimization.

7.3.3 Comparing Accuracy Basins

As described in Section 5.5.1, models trained with TaylorGLO loss
functions have flatter accuracy basins—a characteristic associated with robust
networks. Indeed, as was shown above, they are robust even against adversarial

attacks, presumably because of the flatter basins.

Since TaylorGLO loss functions that were discovered against an ad-

versarial performance objective were even more robust, what do their basins
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look like? On AINICNN-C, while the absolute accuracy on the testing set is not
statistically significantly different when training with an adversarially robust
versus a standard TaylorGLO loss function, the resultant accuracy basin is
wider and flatter (Figure 7.5). This result suggests that it may be advanta-
geous for TaylorGLO to evaluate against an adversarial performance metric,

even in the absence of adversarial attacks in the target application.

7.4 Loss Functions for GANs

As GANs have grown in popularity, the difficulties involved in train-
ing them have become increasingly evident. The loss functions used to train
a GAN’s generator and discriminator networks greatly impact performance.
Thus, optimizing these loss functions jointly can result in better GANs. This
section presents an extension of TaylorGLO to evolve loss functions for GANs.
Images generated in this way improve both visually and quantitatively, as the

experiments in this section show.

7.4.1 TaylorGLO for GANs

In TaylorGLO for GANs, there are three functions that need to be

jointly optimized (using the notation described in Table 2.1):

1. The component of the discriminator’s loss that is a function of D(x),

the discriminator’s output for a real sample from the dataset,

2. The synthetic / fake component of the discriminator’s loss that is a
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function of D(G(z)), the discriminator’s output from the generator that

samples z from the latent distribution), and

3. The generator’s loss, a function of D(G(2)).

The discriminator’s full loss is simply the sum of components (1) and (2).
Table 7.3 shows how existing GAN formulations can be broken down into this

tripartite loss.

Table 7.3: GLO interpretation of existing GAN formulations. These
three components are all that is needed to define the discriminator’s and gen-
erator’s loss functions (sans regularization terms). Thus, TaylorGLO can dis-
cover and optimize new GAN formulations by jointly evolving three separate
functions.

Formulation Loss D (real) Loss D (fake) Loss G (fake)
EonPyar E. p. Ezvp.
GAN (minimax) [55] —log D(x) —log(1 — D(G(z))) log(l — D(G(z)))
GAN (non-saturating) [55] —log D(x) —log(1 — D(G(2))) —log D(G(z))
WGAN [10] —D(x) D(G(z)) —D(G(=))
LSGAN [112] 3(D(x) —1)° 3(D(G(2)))? 3(D(G(2)) — 1)

These three functions can be jointly evolved in a similar manner to that
for auxiliary classifiers (Section 7.1). However, unlike classifier loss functions,
GAN loss functions have a single input, i.e. D(x) or D(G(z)). Thus, a
set of three third-order TaylorGLO loss functions for GANs requires only 12

parameters to be optimized, making the technique quite efficient.

Fitness for each set of three functions requires a different interpretation

than in regular TaylorGLO. Since GANs cannot be thought of as having an
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accuracy, a different metric needs to be used. The choice of fitness metric
depends on the type of problem and target application. In the uncommon
case where the training data’s sampling distribution is known, the clear choice
is the divergence between such a distribution and the distribution of samples

from the generator. This approach will be used in the experiments below.

7.4.2 Experimental Setup

Rather than extending Lossferatu to support GANs, TaylorGLO for
GANs was integrated into the LEAF evolutionary AutoML framework [105].
TaylorGLO parameters were evolved by the LEAF genetic algorithm as if they
were hyperparameters. The implementation of CoDeepNEAT [115] for neural

architecture search in LEAF was not used.

TaylorGLO for GANs was evaluated on the CMP Facade [176] dataset
with a pix2pix-HD model [185]. The dataset consists of only 606 perspective-
corrected 256 x 256 pixel images of building facades. Each image has a corre-
sponding annotation image that segments facades into twelve different compo-
nents, such as windows and doors. The objective is for the model to take an
arbitrary annotation image as an input, and generate a photorealistic facade
as output. The dataset was split into a training set with 80% of the images,

and validation and testing sets, each with a disjoint 10% of the images.

Since individual image quality metrics can be exploited by adversarially
constructed, lesser-quality images [20], two metrics were used to evaluate loss

function candidates: (1) structural similarity index measure (SSIM) [186] be-
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tween generated and ground-truth images, and (2) perceptual distance, imple-
mented as the Ly distance between VGG-16 [157] ImageNet [145] embeddings
for generated and ground-truth images. During evolution, a composite objec-
tive [156] of these two metrics was used to evaluate candidates. The metrics
were normalized (i.e., SSIM was multiplied by 17 and perceptual distance by

—1) to have a similar impact on evolution.

The target GAN model, pix2pix-HD, is a refinement of the seminal
pix2pix model [85]. Both models generate images conditioned upon an in-
put image. Thus, they are trained with paired images. The baseline was
trained with the Wasserstein loss [10] and spectral normalization [118] to en-
force the Lipschitz constraint on the discriminator. The pix2pix-HD model is
also trained with additive perceptual distance and discriminator feature losses.
Both additive losses are multiplied by ten in the baseline. Models were trained

for 60 epochs.

When running TaylorGLO experiments, each of the twleve TaylorGLO
parameters was evolved within [—10,10]. The learning rate and weights for
both additive losses were also evolved since the baseline values, which are op-
timal for the Wasserstein loss, may not necessarily be optimal for TaylorGLO

loss functions.

7.4.3 Experiments

TaylorGLO found a set of loss functions that outperformed the original

Wasserstein loss with spectral normalization. After 49 generations of evolu-
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Figure 7.6: Five random samples from the CMP Facade test dataset,
comparing Wasserstein and TaylorGLO loss functions. The loss func-
tions are used to train pix2pix-HD models that take architectural element
annotations (top row) and generate corresponding photorealistic images sim-
ilar to the ground-truth (second row). Images from the model trained with
TaylorGLO (bottom row) have a higher quality than the baseline (third row).
TaylorGLO images have more realistic coloration and finer details than the
baseline.
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tion, it discovered the loss functions
Lp.. = 56484 (D(x) — 8.3399) + 9.4935 (D(x) — 8.3399)*
48.2695 (D() — 8.3399) 2
Lp,.. = 6.7549 (D(G(z)) — 8.6177) + 2.4328 (D(G(z)) — 8.6177)*
+8.0006 (D(G(z)) — 8.6177)3

LG = 0.0000 (D(G(2)) — 5.2232) + 5.2849 (D(G(z)) — 5.2232)?
7.4
+0.0000 (D(G(z)) — 5.2232). Y

A learning rate of 0.0001, discriminator feature loss weight of 4.0877, and

perceptual distance loss weight of 10.3155 evolved for this candidate.

Figure 7.6 compares images for five random test samples that were gen-
erated with both the Wasserstein baseline and metalearned TaylorGLO loss
functions. Visually, the TaylorGLO samples have more realistic coloration and
details than the baseline. Baseline images all have an orange tint, while Tay-
lorGLO images more closely match ground-truth images’ typical coloration.
Note that color information is not included in the model’s input, so per-sample
color matching is not possible. Additionally, TaylorGLO images tend to have
higher-quality fine-grained details. For example, facade textures are unnatu-

rally smooth and clean in the baseline, almost appearing to be made of plastic.

Quantitatively, the TaylorGLO model also outperforms the Wasserstein
baseline. Across ten Wasserstein baseline runs, the average test-set SSIM was
9.4359 and the average test-set perceptual distance was 2129.5069. The Tay-
lorGLO model improved both metrics, with a SSIM of 11.6615 and perceptual
distance of 2040.2561.

158



Notably, the training set is very small, with fewer than 500 image
pairs, showing how loss-function metalearning’s benefits on small classifica-
tion datasets also extend to GANs. Thus, metalearned loss functions are an
effective way to train better GAN models, extending the types of problems to
which TaylorGLO can be applied.

7.5 Conclusion

The TaylorGLO approach to evolving loss functions provides a practical
foundation that can be extended to take advantage of various opportunities
and to meet various challenges in machine learning. On model architectures
with auxiliary classifiers, TaylorGLO can evolve unique loss functions for each
classifier, allowing regularization to be tuned for different parts of the network.
Leveraging the theoretical work in Chapter 6, an invariant on TaylorGLO
parameters can be used to guide the evolutionary search process towards better
regions of the loss function parameter landscape. Networks can be hardened
against adversarial attacks by using metalearned loss functions; a property
that can be amplified by using an adversarial fitness metric in the TaylorGLO
search process. Finally, TaylorGLO is extended to evolve new formulations
for conditional generative adversarial networks that provide higher quality
image reconstructions. Altogether, these techniques provide a taste of what is

possible with TaylorGLO, and loss-function metalearning more broadly.
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Chapter 8

Discussion and Future Work

This dissertation introduced loss-function metalearning—a new type of
metalearning that aims to optimize a given model’s core training objective to
improve performance along a variety of dimensions. This chapter provides a
retrospective and discussion of the techniques, results, and analyses that have
been presented. A prescription for Al practitioners is given, detailing how two
new techniques, GLO and TaylorGLO, can be used in practice. Finally, the

broader impacts of this research are discussed.

8.1 Loss-Function Metalearning

The research in this dissertation started from a basic hypothesis: Loss
functions can be optimized automatically to find customized functions that
perform better than those designed by hand. Verifying this hypothesis re-
quired the development of a technique to search a large space of loss functions
effectively and methodically. Evolutionary computation was leveraged and
ultimately this hypothesis was found valid with Genetic Loss-function Opti-

mization (GLO), a general technique for loss-function metalearning.

GLO performed well on image classification models. Models trained
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with a newly discovered loss function, Baikal, reached higher accuracies than
those trained with cross-entropy loss more quickly. Additionally, Baikal func-
tioned more effectively on small datasets. When training with increasingly
small subsets of the training dataset, accuracy degraded less with Baikal than

with cross-entropy loss.

Baikal was found to have a unique shape with an unintuitive property:
loss values increase with increasingly confident predictions. This property
may seem detrimental to proper training, but a distributional analysis of the
network predictions showed that overly confident predictions are penalized,

providing a form of regularization.

GLO discovered Baikal, and other performant loss functions, through
a two-phase approach to loss-function metalearning: (1) new loss functions
are evolved by having their structure represented as trees, allowing optimiza-
tion through Genetic Programming (GP); and (2) loss function coefficients
are optimized using a Covariance-Matrix Adaptation Evolutionary Strategy
(CMA-ES). A variety of loss functions can be represented in this manner,
since the GP search space can be augmented with new operators and loss

function input nodes.

While the approach was successful, the separation of the two phases
makes it challenging to find a mutually optimal structure and coefficients.
Furthermore, small changes in the tree-based search space do not always result
in small changes in the phenotype, and can easily make a function invalid,

making the search process ineffective. To make loss-function metalearning
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more practical, an alternative technique was developed: Multivariate Taylor
expansion-based genetic loss-function optimization (TaylorGLO). TaylorGLO
was designed with the intention of being a single-phase approach that finds
performant loss functions with fewer candidate evaluations than GLO. By
designing a more focused search space that sacrifices a degree of flexibility,

evolution can optimize loss-functions more effectively in practice.

TaylorGLO evolves fixed-length vectors of values that define a loss func-
tion. With a novel parameterization for loss functions based on multivariate
Taylor polynomials, the key pieces of information that affect a loss function’s
behavior are represented in these vectors compactly. Such vectors are then op-
timized for a specific task using CMA-ES. This optimization process is effective
since the parameterization provides a smooth, well-behaved fitness landscape.
This smoothness is in contrast to the fitness landscape in the structural evo-
lution phase of GLO, where seemingly small changes to a function’s structure

can have disproportionate effects on fitness.

Because TaylorGLO is computationally more efficient, it can be applied
to much larger models, with up to millions of trainable parameters. Several
modern deep architectures were evaluated on three image classification bench-
mark datasets. Loss functions discovered by TaylorGLO for these tasks tend to
outperform the cross-entropy loss statistically significantly. TaylorGLO finds
loss functions that are customized to each setting, beating the “one size fits
all” approach taken with the cross-entropy loss. They also outperform the

Baikal loss, discovered by the original GLO technique, and do it with signifi-
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cantly fewer function evaluations. As with Baikal, the reason for the improved
performance is that evolved functions discourage overfitting to the class labels,

thereby resulting in automatic regularization.

The power of TaylorGLO was demonstrated in a number of specialized
settings. First, it was applied to models with auxiliary classifiers, where three
separate loss functions were evolved. TaylorGLO took advantage of the dif-
ferences between the different classifiers to evolve loss functions with unique
behaviors. Overall, models with auxiliary classifiers trained with TaylorGLO

had higher performance.

In a second special setting, TaylorGLO was adapted to evolve tripartite
loss functions for conditional generative adversarial networks (GANs). On
a facade generation dataset, TaylorGLO loss functions trained GANs that
generated images that were quantitatively better than those produced from a
GAN trained with a Wasserstein loss. This unique application showcases the

power and flexibility of loss-function metalearning.

While TaylorGLO outperforms the original GLO technique in many
practical applications, GLO is still useful on its own. In cases where a loss
function may have several different inputs, GLO scales better than TaylorGLO,
which would require a very large increase in the number of parameters (as
described in Equation 5.4). Loss functions that include many different inputs,
such as batch statistics, can represent richer behaviors during training by
taking more data into account when optimizing a model. In such cases, GLO

provides a possible approach that can find such loss functions by expanding its
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search space. Thus, both GLO and TaylorGLO contribute unique capabilities
to the field.

Notably, loss-function metalearning improves performance on networks
that have already been tuned extensively by hand to perform well with cross-
entropy loss. Thus, these designs may be overfit against the cross-entropy loss,
potentially eclipsing some of the benefits that TaylorGLO loss functions can
offer. Finding mutually beneficial architectures and loss functions is thus a
promising direction for future work. One way this mutual optimization could
be accomplished is by integrating TaylorGLO loss-function metalearning into

a technique such as CoDeepNEAT [115].

Another important direction of future work is to apply loss-function
metalearning to different types of problems. For example, the techniques can
be easily applied to simple regression tasks, where different loss functions,
such as the Huber loss [80], have been beneficial. On the other extreme,
transformer models, such as BERT [34], which have been used to build state-
of-the language models, are often fine-tuned to specific tasks with the cross-
entropy loss. GLO and TaylorGLO can offer a way to evolve loss functions
that are customized to each individual transformer architecture and target

task, thus increasing their performance.

Overall, this dissertation presented results that validate loss-function
metalearning as a technique to improve model performance. However, develop-
ing an understanding of the principles behind loss-function metalearning—that

is, altered training dynamic and regularization—is also important.
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8.2 Loss-Function Regularization and Effects on Models

In addition to showing that loss-funcion metalearning works from an
empirical perspective, this dissertation provided a conceptual and theoretical
understanding of the regularizing effects that loss functions impart on the

training process.

To characterize networks trained with TaylorGLO loss functions, the
minima they reach were analyzed. Using a prior loss landscape visualization
technique that plots network performance through a random, filter-normalized
slice of trainable parameter space [102], TaylorGLO loss functions were ob-
served to result in flatter, lower minima. This finding indicates increased

robustness and better generalization [90] compared to the cross-entropy loss.

While these minima had different performance characteristics, they
were also in different parts of the trainable parameter space. This was demon-
strated by analyzing the distribution of weights in networks trained with a
TaylorGLO loss function and with the cross-entropy loss. Models trained with
TaylorGLO had normally distributed weights, while the cross-entropy loss re-
sulted in a Laplace distribution. Thus, the two loss functions reach entirely
different regions of the parameter space. TaylorGLO models also had a signif-
icantly higher L, parameter norm than cross-entropy loss models. This find-
ing helps further disprove [48] the common belief that networks with smaller
parameter norms perform better [125,191]. Additionally, these observed dis-
tributions and parameter norms were not greatly affected by the addition of

Cutout regularization, indicating a different mechanism of regularization.
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To understand how TaylorGLO loss functions reach different minima
than the cross-entropy loss, networks’ scaled logits were plotted in histograms
throughout the training process. These visualizations showed qualitatively dif-
ferent training behavior between TaylorGLO and cross-entropy loss functions.
Furthermore, the TaylorGLO loss functions that vary between architectures
have very distinct behaviors, showing how TaylorGLO can customize and op-

timize training for each setting.

Following these empirical findings, a theoretical framework was devel-
oped to understand conceptually the specific behaviors that different loss func-
tions effect. A novel decomposition of the stochastic gradient descent learning
rule allows any loss function to be decomposed into two expressions that define
the optimization process’s behavior for any given sample. Using this frame-
work, loss functions were characterized in a zero training error regime. In this
case, where there is nothing left to learn from training data, the implicit biases
that loss functions place on the optimization process become the only visible
behavior. Metalearned loss functions represent a wide variety of implicit bi-

ases, showing one aspect of metalearned loss function regularization.

Subsequently, loss functions were characterized at the opposite end of
the training process, i.e. at the null epoch. In this scenario, all loss functions
fit the training data, with TaylorGLO loss functions offering flexibility in how
strongly the data is fit. However, TaylorGLO is also able to represent undesired
behaviors at the null epoch. These degenerate behaviors were characterized,

and an invariant on TaylorGLO loss function parameters was developed using
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the theoretical framework by setting a constraint on optimization behavior at
the null epoch. This invariant was integrated into TaylorGLO, where it was
used to avoid unnecessary candidate evaluations and guide evolution towards
more fruitful areas of the search space. In this process, TaylorGLO found

better loss functions that further improve performance in most cases.

The null epoch and zero training error represent the two extrema of
the training process: no data fitting and perfect data fitting. To analyze
training between these extrema, the way that a model’s output distribution’s
entropy changed was characterized. A constraint was developed to determine
the proportional strength of entropy growth or reduction for any given sample.
Practically, the way entropy changes indicates whether a model’s trainable
parameters are being attracted or repelled from regions with zero training
error. For each loss function, this value can be calculated for varying degrees of
sample memorization. These values form a characteristic curve that represents

the core data-fitting dynamics for a given loss function.

It turned out that the cross-entropy and mean-squared-error loss func-
tions are always attracted towards zero training error, while TaylorGLO and
Baikal loss functions are repelled for sufficiently well-memorized samples. This
property explains how these metalearned loss functions regularize by prevent-

ing overconfidence.

The strength of attraction towards zero training error was then cal-
culated for individual training samples during a real training processes. The

cross-enropy loss, as expected, biased the model towards zero training error
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for every sample, with a strength that decreased as training progressed. Con-
versely, the analyzed TaylorGLO loss function had a very strong bias towards
zero training error in early training. As training progressed, well-fit samples
were repelled from zero training error, while misclassified and poorly-fit sam-

ples were still strongly biased towards zero training error.

In the future, these entropy behavior characteristic curves can be evolved
directly. Such curves represent a loss function’s attraction or repulsion towards
zero training error for varying levels of sample memorization. Thus, these
behaviors can thus be directly metalearned—rather than being implicitly en-

coded in a loss function—by optimizing the characteristic curves directly.

Overall, these analyses provide a unique way to observe different loss
functions’ behavior. Different loss functions are seen to work in slightly differ-
ent ways, customizing regularization to each domain. As such, the interaction
between loss function regularization and other regularization technique may

vary between models. These interactions are explored next.

8.3 Interactions Between Different Regularization Meth-
ods

This dissertation evaluated loss-function metalearning in many different
settings with different types of regularization techniques. The conclusion is
that metalearned loss functions provide regularizing effects in a way that is

different from other regularization techniques.

Different regularization techniques interact in different ways and with
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metalearned loss functions and the target model architecture. These differ-
ences provide evidence that regularization is not necessarily a continuum.
Thus, value judgements on quantities of regularization, such as the assertion
that “a model has more or less regularization than another model,” are over-
simplifications. Individual regularization techniques must instead be thought

of as different processes that need to be compared comprehensively.

Many types of regularization can be viewed as operations that are added
to a base network, each with a unique set of performance characteristics. Dif-
ferences between different combinations of operations can be compared using
interaction graphs. The base architecture lies at the center of the graph. Fol-
lowing each edge away from the center adds a specific type of regularization.
The color of each edge characterizes the change in performance that results
from the addition: green is a statistically significant, positive improvement,
red is a statistically significant, negative improvement, and yellow indicates
a statistically insignificant difference. A particularly useful characteristic of
these graphs is that there are multiple instances of nodes for a given set of
operations, one for each possible ordering the addition of these operations.
These multiple paths provides insights into the interactions between different

regularization techniques.

Figure 8.1 shows such an interaction graph for the AIICNN-C archi-
tecture. To construct this graph, experiments were run with ten repetitions
each to collect performance statistics. Several interesting observations can be

made on the graph. For example, on the AIICNN-C architecture (Figure 8.1),
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Figure 8.1: Regularization interaction graph for AIICNN-C on
CIFAR-10. Each consecutive node away from the center node represents
the addition of a single regularization technique. The edges leading to these
nodes are colored green if the technique improves performance compared to
the previous node, and red if they are detrimental, and yellow (in Figure 8.3)
if there is no effect. On AIICNN-C, all techniques improve performance, with
the notable exception of Cutout and CutMix, which only improve performance
when coupled with TaylorGLO. This shows how regularization techniques are
not necessarily additive operations; interactions between regularization tech-
niques are more complex.
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Figure 8.2: Regularization interaction graph for AlexNet on CIFAR-
10. On AlexNet, all tested regularization techniques improves performance,
except for Cutout alone. However, it also exhibits a constructive interaction
with TaylorGLO, much like on AIICNN-C. Unlike on AIICNN-C, CutMix im-
proves performance in the abscence of TaylorGLO. These differences show
that even superficially similar architectures are affected by regularization dif-
ferently.

the addition of Cutout always results in a performance drop unless it follows
the addition of TaylorGLO. This property indicates a constructive relation-
ship between TaylorGLO and Cutout. Such a relationship can be intuited
from the snowflake plots by observing patterns in the paths leading to Cutout

nodes. The same can be seen for CutMix. All other evaluated regularization

techniques exhibit additive effects.

On the AlexNet architecture (Figure 8.2), Cutout alone is detrimental,
but exhibits the same constructive interaction behavior with TaylorGLO, as

on AIICNN-C.

On Wide ResNets (Figure 8.3), a modern family of architectures with

skip connections, CutMix and TaylorGLO have a complex relationship. On
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Figure 8.3: Regularization interaction graphs for Wide ResNets on
CIFAR-10. On wide and shallow networks (a), all regularization techniques
garner performance improvements, while combining CutMix and TaylorGLO
does not significantly alter performance. Conversely, narrow and deep net-
works exhibit very different interactions, in that TaylorGLO does not improve
performance significantly on its own. Ultimately, altering the depth and width
of a single type of architecture affects the way in which regularization can hap-
pen. The similarities and differences in Figures 8.1 through 8.3 show how the
interactions between different regularization techniques depend on the model
architecture. They show that regularization techniques are not simply additive
behaviors; their impacts on performance depend on which other regularization
techniques are present.
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Wide ResNet 16-8, TaylorGLO and CutMix, individually, improve the trained
model’s performance significantly. However, combining both does not result in
any additional performance improvements. Additionally, unlike on AIICNN-C
and AlexNet, Cutout always improves performance. However, on Wide ResNet
28-5, a variant that is more deep and narrow, the regularization interactions are

quite different, in that TaylorGLO ceases to improve performance significantly.

A deeper understanding of these interferences, and why certain regu-
larization techniques function on certain architectures but not on others, is a
compelling direction for future work. While developing a comprehensive theo-
retical framework for regularization would be very challenging—due to the
varied ways in which different regularization techniques function—perhaps
understanding specific interferences yields insights that lead towards such a

framework.

From a practical perspective, the interactions between different regu-
larization techniques can be leveraged by future metalearning techniques to
find optimal combinations for a given scenario. On the other hand, practition-
ers should not assume that regularization techniques will always be beneficial.
This further demonstrates the importance of a model’s architecture, and en-
courages the combination of loss-function metalearning and neural architecture

search.
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8.4 Architectural Dependence

Experiments in the dissertation showed that some specific architectures
work better with loss-function metalearning than others. Small changes, such
as the different ordering of layers between ResNet and Preactivation ResNet
architectures, can make TaylorGLO work better. Even changes to the depth

and width of a particular architecture can affect TaylorGLO’s performance.

Conceivably, different architectures have weight manifolds that are more
amenable to regularization by loss functions. That is, loss functions can ef-
fect different spaces of changes to the manifold. These spaces of changes can
have varying degrees of compatibility with the manifolds for different architec-
tures, in a similar vein to how different architectures are more or less trainable

themselves.

This hypothesis provides compelling motivation to coevolve loss func-
tions and mutually beneficial architectures together, as discussed in Section 8.1.
The analyses in Chapters 4, 5, and 7 were done on architectures that were de-
signed with the cross-entropy loss, but perhaps there are other architectures

that work better only with a different loss function.

Developing an understanding of how differences between architectures
affect what performance improvements are attainable through loss-function
metalearning is important future work. Such an understanding will allow

better models to be trained and theoretical insights to be developed.
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8.5 Prescription for AI Practitioners

The research presented in this dissertation opens up an exciting op-
portunity for Al researchers and engineers to enhance their models through
loss-function evolution. Customized loss functions can improve a particular

model’s performance without humans needing to make hand-designed changes.

For most cases, TaylorGLO provides a practical approach that can be
applied to existing deep neural networks with minimal changes. A TaylorGLO
loss function can replace an existing loss function directly. The parameters to

this loss function can then be evolved in situ for the task at hand.

Even if trained networks have comparable testing accuracies with Tay-
lorGLO and the cross-entropy loss, networks trained with TaylorGLO loss
functions are more robust against adversarial attacks. Similarly, any end-
application objective—which does not need to be differentiable—can be used
by TaylorGLO to evolve tailor-made loss functions that are customized to the

needs of any particular application.

8.6 Broader Impact

While the main goal of the research in this dissertation is to improve
deep learning, it is important to be cognizant that machine learning is a dual-
use technology. Much as with other historically important fields and inven-
tions, machine learning, and artificial intelligence more broadly, can usher pos-

itive societal impacts, but they can also make it possible for nefarious actors
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to misappropriate it to harm humanity and the rights and liberties of individ-
uals. Additionally, AI systems that are not properly supervised can result in
unwanted outcomes. There is a natural tendency to trust such systems at face
value if their perceived benefits are great enough. However, such trust can
lead to scenarios where an Al system behaves in a counterintuitive manner,
in a fashion that contradicts the wishes of humans, or in a domain in which it
was not designed to function. There are also more indirect, negative impacts
on climate, inequities, and fairness. It is important to take such concerns into

account in the training, deployment, and use of Al systems.

8.6.1 Earth’s Climate

As Al systems become larger and more complex, their power usage—
which is correlated with compute usage—increases. In a world where a signifi-
cant fraction of energy is still produced with polluting energy sources, there is
a release of carbon dioxide associated with trained and deployed models that

should not simply be ignored.

California, where the infrastructure that ran the experiments in this
dissertation is located, is estimated to have had an estimated carbon dioxide
equivalent total output emission rate of 226.21 kgCOseq/kWh in 2018 [6].
This quantity can be used to calculate the climate impact of compute-intensive

experiments.

Table 8.1 provides estimates of total emissions for various TaylorGLO

experiments. They were calculated using the Machine Learning Impact cal-
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Table 8.1: Estimated total emissions resulting from individual Taylor-
GLO experiments with different configurations. The estimates assume
a population size of 20 and 50 generation runs. Values are upper bounds re-
ported in equivalent kilograms of carbon dioxide, thus accounting for other
gases of interest. Emission estimates show how the environmental impact of
machine learning can vary greatly depending on the chosen model architecture.
The impact is significant, and should be taken into account when planning ex-
periments.

TaylorGLO Experiment Total Emissions (kgCOseq)
AlexNet on CIFAR-10 4.07

ResNet-20 on CIFAR-10 11.58

Pre ResNet-20 on CIFAR-10 10.48
AlICNN-C on CIFAR-10 19.30
AlICNN-C + Aux. Classifiers on CIFAR-10 22.20
PyramidNet 110a48 on CIFAR-10 83.53

Wide ResNet 28-5 on CIFAR-10 48.52

Wide ResNet 16-8 on CIFAR-10 40.80

Wide ResNet 28-10 on CIFAR-10 119.10

culator [96], assuming that experiments were evenly distributed across both
hardware configurations specified in Section 3.3.4, and that no candidates
failed evaluation (which would result in slightly lower estimates). Presented

values can be thought of as being an upper bound.

Machine learning research is not cheap: many of these estimates are
on the same order-of-magnitude as the full-life-cycle carbon footprint of an
iPhone 12 (i.e., 70 kgCOseq) [5]. Therefore, experiments should minimize
compute usage, not only because it is costly, but because of its impact on the

environment as well.
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8.6.2 Research Community Inequities

Over the past decade, many key developments in deep learning in par-
ticular have risen out of large institutions with vast computational resources.
Larger, more compute-intensive models tend to outperform smaller models.
This trend has made it challenging for smaller groups to make contributions
to the field. Evolution-based machine learning techniques, such as those em-
bodied in this dissertation, inherently require large amounts of compute power.
These techniques subsequently confer greater advantages to larger organiza-
tions than smaller ones. However, computers continually become more pow-
erful, and thus many of these techniques will eventually be within reach of all
researchers, in the same vein that the automobile or the smartphone were once
exclusively used by those with greater economic means but are now accessible

to more people.

8.6.3 Fairness, Safety, and Robustness

Fairness, safety, and robustness are becoming increasingly important
as Al systems get deployed in the world, particularly when personal data is
involved. Such systems have to operate in the real world, where data is not
always as meticulously crafted as in a laboratory setting. Al systems impact
people’s lives directly, whether is in the form of a biased credit decision or an
injury caused by an autonomous vehicle that misclassified a street sign. Thus,
ATl practitioners must be mindful of fairness, safety, and robustness throughout

a system’s development and deployment.
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While fairness in training data is an entire issue in and of itself, the
way in which a dataset is consumed can also affect whether the system is fair.
Metalearned loss functions reduce overfitting in models, leading to models that
tend to learn patterns rather than memorize individual samples. TaylorGLO,
which was shown specifically to help guide learning away from overconfident

memorization, could be a useful tool to help train fairer models.

TaylorGLO has also been shown to result in significantly more robust
models, particularly in the face of adversarial attacks. This robustness has im-
portant implications for safety, where TaylorGLO models will less susceptible

to out-of-distribution data and attacks by bad actors.

Therefore, while it is not a full solution, TaylorGLO can be used to

make Al systems more fair, safe, and robust.
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Chapter 9

Conclusion

This dissertation described the scientific journey that developed loss-
function metalearning. This chapter closes this journey by reviewing the key
contributions in this work. Closing remarks then reflect on how these contri-
butions pushed the front line of knowledge further and how they can serve as

a step in the further development of machine learning.

9.1 Contributions

This dissertation makes the following contributions to science:

Loss-Function Metalearning with GLO: Prior to this work, practition-
ers typically selected from a small number of loss functions for training their
models. The metalearning of loss functions was first tackled in Chapter 4 with
GLO, a novel technique to automatically discover new loss functions using
evolution with a tree-based representation. Loss function trees can be further
optimized through continuous coefficient evolution. The resulting loss func-
tions were shown to outperform existing loss functions while training faster

and performing well in low-data settings. Overall, GLO provides a flexible
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approach that can be naturally extended, especially to domains where the loss

function has a large number of inputs.

Efficient Loss-Function Metalearning with TaylorGLO: While the
GLO approach provided unparalleled flexibility, it comes with a cost and
is oftentimes unnecessary. TaylorGLO was introduced in Chapter 5 as an
alternative technique with a more practical loss-function parameterization.
Performance gains were demonstrated on many architectures across a variety
of image classification benchmark datasets. Models trained with TaylorGLO
loss functions were found to have very different training dynamics from those
trained with the cross-entropy loss. These customized training dynamics al-
lowed them to reach different parts of the trainable parameter space with
flatter minima than standard loss functions, and thus better robutsness and

generalization properties.

Theoretical Framework for Understanding Regularization: To un-
derstand how and why metalearned loss functions can train more performant
networks, a theoretical framework for explaining loss-function regularization
was developed in Chapter 6. A novel stochastic gradient descent learning rule
decomposition allows any loss function to be decomposed into two expressions
that describe their behavior. These behaviors were analyzed at the beginning
of training and in a zero training error regime to elucidate the implicit biases

that different loss functions impart. TaylorGLO loss functions are also found
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to implicitly represent arbitrary degrees of label smoothing, another type of
regularization, for any metalearned loss function, thus showing another dimen-
sion through metalearned loss functions can regularize networks. The entropy
of the model’s output distribution changes throughout the training process,
illustrating how individual samples are treated by different loss functions, and

demonstrating a key aspect of the regularizing behavior.

Inspiring Applications: The flexibility of loss-function metalearning with
TaylorGLO was demonstrated in Chapter 7 through four unique applications.
First, TaylorGLO was leveraged to evolve separate loss functions for models
with auxiliary classifiers. TaylorGLO is able to take advantage of the dif-
ferent training dynamics associated with each auxiliary classifier to provide
appropriate training signals at each point in the network. Second, using the
theoretical framework in Chapter 6, an invariant on TaylorGLO parameters
was integrated into the evolutionary search, resulting in further performance
improvements. Third, TaylorGLO loss functions’ robustness was leveraged to
develop an approach to guard against adversarial attacks. TaylorGLO loss
functions are already more resilient against such attacks compared to the
cross-entropy loss; however an adversarial performance objective allowed it
to discover new loss functions that improved robustness against adversarial
attacks further. Fourth, TaylorGLO was applied to a unique type of model,
conditional generative adversarial networks (GANs), where it discovered loss

functions that lead to higher-quality generated images.
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Practical Experimentation Platform: Chapter 3 introduced Lossferatu
and Fumanchu, two components of a comprehensive distributed system that
can manage, run, and analyze evolution-based experiments, such as those pre-
sented in this dissertation. The development of such a system was necessary
to make extensive experiments possible. Lossferatu and Fumanchu were able
to greatly speed up the pace of iteration and scientific discovery by removing
much of the tedium, inefficiency, and manual effort that are typically found
in roughly built research systems. Additionally, two libraries written in Swift,
SwiftCMA and SwiftGenetics—which were used by Lossferatu—were open-
sourced. SwiftCMA provides an implementation of CMA-ES, while SwiftGe-
netics is a representation-agnostic toolset that is used to build genetic algo-

rithms through protocol-oriented programming.

9.2 Closing Remarks

Loss functions represent the fundamental objective that neural net-
works use to learn and thus greatly affect the performance of resulting mod-
els. In the abscense of a comprehensive theory for deep learning, optimal loss
functions cannot be built from first principles; a search-based approach must

be used.

Loss-function metalearning provides a new way to improve deep learn-
ing. By providing an automated way to improve neural network training, two
new techniques—GLO and TaylorGLO-—Ilet practitioners train more robust

models with better performance characteristics. These techniques discover
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new loss functions that regularize by dynamically biasing the training process.
The TaylorGLO technique in particular can be readily applied to modern deep

neural network architectures with practically no manual tuning necessary.

The ability to optimize loss functions may make it possible to develop
new classes of architectures that have been overlooked because they do not
train well with traditional loss functions. Overall, loss-function metalearning
is an important step in the journey towards models that are able to completely
and automatically adapt to their target domain, resulting in the best possible

performance.
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