
Copyright

by

Santiago Gonzalez

2020

The Dissertation Committee for Santiago Gonzalez
certifies that this is the approved version of the following dissertation:

Improving Deep Learning Through

Loss-Function Evolution

Committee:

Risto Miikkulainen, Supervisor

Wolfgang Banzhaf

Greg Durrett

Qixing Huang

Improving Deep Learning Through

Loss-Function Evolution

by

Santiago Gonzalez

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2020

Dedicated to the men and women of science.

Acknowledgments

I am grateful for all the people that have made this work possible.

First, I am thankful for Dr. Risto Miikkulainen for taking a chance on me, for

being a great source of wisdom, feedback, and expertise, and for teaching me

how to weave a story through even the most abstract material. I would also

like to thank Dr. Tracy Camp for having taught me how to conduct rigorous

scientific research and write academic papers.

My thanks also go out to the dissertation committee members, whose

feedback and thoughts helped shape certain directions of my work.

I would like to thank Karl Mutch and Sid Stuart for their help working

with Studio and infrastructure; Mohak Kant for his work integrating Taylor-

GLO into LEAF and running TaylorGLO GAN experiments; Babak Hodjat,

Hormoz Shahrzad, and Elliot Meyerson for their engaging conversations on

evolution; and the rest of the Cognizant Evolutionary AI team.

I am thankful to my parents and sister Andrea for always being there for

me throughout this eventful journey and for their moral support and guidance.

Thank you to Clayton Sanford for his conversations and thoughts around

learning theory and generalization and his pointers to insightful papers.

I would like to thank Katie Traughber Dahm and the rest of the ad-

ministrative staff at UT Austin for their kindness and help navigating univer-

v

sity processes. Finally, I am thankful for the United States National Security

Agency (NSA), through GFSD, and the University of Texas at Austin for their

generosity.

vi

Improving Deep Learning Through

Loss-Function Evolution

Santiago Gonzalez, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Risto Miikkulainen

As the complexity of neural network models has grown, it has become

increasingly important to optimize their design automatically through met-

alearning. Methods for discovering hyperparameters, topologies, and learning

rate schedules have lead to significant increases in performance. This disser-

tation tackles a new type of metalearning: loss-function optimization. Loss

functions define a model’s core training objective and thus present a clear op-

portunity. Two techniques, GLO and TaylorGLO, were developed to tackle

this metalearning problem using genetic programming and evolutionary strate-

gies. Experiments show that neural networks trained with metalearned loss

functions are more accurate, have higher data utilization, train faster, and are

more robust against adversarial attacks. A theoretical framework was devel-

oped to analyze how and why different loss functions bias training towards

different regions of the parameter space. Using this framework, their perfor-

mance gains are found to result from a regularizing effect that is tailored to

each domain. Overall, this dissertation demonstrates that new, metalearned

vii

loss functions can result in better trained models, and provides the next step-

ping stone towards fully automated machine learning.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xvi

Chapter 1. Introduction 1

1.1 Motivation . 2

1.2 Challenges . 4

1.3 Approach . 5

1.4 Guide to the Reader . 10

Chapter 2. Background 12

2.1 Deep Learning and Loss Functions 12

2.2 Generative Adversarial Networks 15

2.2.1 Overview . 16

2.2.2 Original Minimax and Non-Saturating GAN 17

2.2.3 Wasserstein GAN . 18

2.2.4 Least-Squares GAN . 20

2.2.5 InfoGAN . 21

2.2.6 Conditional GAN . 21

2.2.7 Opportunity: Optimizing Loss Functions 23

2.3 Evolutionary Computation . 23

2.4 Metalearning . 26

2.5 Regularization . 28

2.5.1 Implicit Biases in Optimizers 29

2.5.2 Regularization Approaches 30

ix

2.5.3 Auxiliary Classifiers . 31

2.6 Conclusion . 32

Chapter 3. Experimental Methodology 33

3.1 Datasets . 33

3.1.1 MNIST . 34

3.1.2 CIFAR-10 and CIFAR-100 34

3.1.3 Street View House Numbers (SVHN) 35

3.2 Evaluated Model Architectures 35

3.2.1 Basic CNNs . 36

3.2.2 AlexNet . 38

3.2.3 AllCNN . 38

3.2.4 ResNet . 39

3.2.5 Preactivation ResNet 41

3.2.6 Wide ResNet . 42

3.2.7 PyramidNet . 44

3.2.8 Architecture Comparisons 44

3.3 System Architecture . 46

3.3.1 Overview . 46

3.3.2 Lossferatu . 48

3.3.3 Fumanchu . 53

3.3.4 Hardware Specifications 55

3.4 Significance Testing . 56

Chapter 4. Genetic Loss-function Optimization (GLO) 61

4.1 Method . 61

4.1.1 Loss Function Discovery 62

4.1.2 Coefficient Optimization 65

4.1.3 Experiments . 66

4.2 Discovering Baikal . 67

4.2.1 Training Data Requirements 70

4.2.2 Loss Function Transfer to CIFAR-10 71

4.3 What makes Baikal work? . 72

x

4.4 Expanded Search Space . 76

4.5 Discussion . 77

4.6 Conclusion . 79

Chapter 5. TaylorGLO 80

5.1 Multivariate Taylor Expansions 81

5.2 Loss Functions as Multivariate Taylor Expansions 82

5.3 The TaylorGLO Approach . 86

5.4 Performance Experiments . 88

5.4.1 The TaylorGLO Discovery Process 88

5.4.2 Comparison to GLO . 91

5.4.3 Performance on Reduced Datasets 94

5.4.4 Results on Deep Networks 94

5.4.5 Learning Rate Sensitivity 95

5.4.6 Comparison to Cross-Entropy Loss Taylor Approximations 97

5.5 Experimental Analysis of TaylorGLO Models 98

5.5.1 Trained Model Surfaces 98

5.5.2 Biasing Optimization to a New Region 100

5.5.3 Loss Function Inputs Over Time 103

5.6 Discussion . 106

5.7 Conclusion . 108

Chapter 6. Understanding Regularization 110

6.1 Overview . 110

6.2 Learning Rule Decomposition 112

6.3 Zero Training Error Optimization Biases 116

6.3.1 Mean Squared Error (MSE) 116

6.3.2 Cross-Entropy Loss . 117

6.3.3 Baikal Loss . 118

6.3.4 Third-Order TaylorGLO Loss 119

6.4 Behavior at the Null Epoch . 121

6.5 TaylorGLO Parameters at the Null Epoch 123

6.6 Data Fitting and Regularization Processes 125

xi

6.6.1 Softmax Entropy Dynamics 125

6.6.2 Zero Training Error Attractors 129

6.7 Label Smoothing . 134

6.8 Discussion . 138

6.9 Conclusion . 139

Chapter 7. TaylorGLO Extensions 141

7.1 Auxiliary Classifier Loss Functions 141

7.1.1 AllCNN-C with Auxiliary Classifiers 142

7.1.2 Experiments . 143

7.2 Utilizing an Invariant to Guide Search 147

7.2.1 Integration with TaylorGLO 147

7.2.2 Experiments . 148

7.3 Optimizing Loss Functions Against Adversarial Attacks 149

7.3.1 Adversarial Attacks . 149

7.3.2 Experiments . 150

7.3.3 Comparing Accuracy Basins 152

7.4 Loss Functions for GANs . 153

7.4.1 TaylorGLO for GANs 153

7.4.2 Experimental Setup . 155

7.4.3 Experiments . 156

7.5 Conclusion . 159

Chapter 8. Discussion and Future Work 160

8.1 Loss-Function Metalearning 160

8.2 Loss-Function Regularization and Effects on Models 165

8.3 Interactions Between Different Regularization Methods 168

8.4 Architectural Dependence . 174

8.5 Prescription for AI Practitioners 175

8.6 Broader Impact . 175

8.6.1 Earth’s Climate . 176

8.6.2 Research Community Inequities 178

8.6.3 Fairness, Safety, and Robustness 178

xii

Chapter 9. Conclusion 180

9.1 Contributions . 180

9.2 Closing Remarks . 183

Bibliography 185

Vita 218

xiii

List of Tables

2.1 GAN Notation Decoder . 15

5.1 Test-set accuracy of loss functions discovered by Taylor-
GLO compared with that of the cross-entropy loss. The
TaylorGLO results are based on the loss function with the high-
est validation accuracy during evolution. All averages are from
ten separately trained models and p-values are from one-tailed
Welch’s t-Tests. Standard deviations are shown in parentheses.
TaylorGLO discovers loss functions that perform significantly
better than the cross-entropy loss in almost all cases, including
those that use Cutout. This suggests that it provides a differ-
ent form of regularization. Accuracies are indicated in bold if
statistically significantly higher. 89

5.2 Performance of Taylor approximations of the cross-entropy
loss function on AllCNN-C with CIFAR-10. Approxima-
tions of different orders, with a = 〈0.5, 0.5〉, are presented. Pre-
sented accuracies are the mean from ten runs. The baseline is
the standard cross-entropy loss. Higher-order approximations
are better, suggesting a potential (although computationally
expensive) opportunity for improvement in the future. 97

5.3 Weight characteristics for AllCNN-C models trained
on CIFAR-10. TaylorGLO results in models with higher L2

weight norms than the cross-entropy loss, even though all con-
figurations include weight decay during training. This finding
suggests that smaller weights do not necessarily imply better
generalization, as has been long believed [125, 191]. 102

xiv

7.1 Test-set performance of models with and without auxil-
iary classifiers. Loss functions discovered by TaylorGLO are
compared to the cross-entropy loss. The TaylorGLO results
are based on the loss function with the highest validation ac-
curacy during evolution. All averages are from ten separately
trained models and p-values are from one-tailed Welch’s t-Tests.
Standard deviations are shown in parentheses. Auxiliary clas-
sifiers improve accuracy over the cross-entropy baseline. This
improvement is further enhanced by TaylorGLO, where unique
loss functions are evolved for each auxiliary classifer. An abla-
tion study is also presented where the TaylorGLO loss function
for the main output is also used for the auxiliary classifiers,
weighted by 0.3. This study demonstrates the power of having
separate loss functions. On AllCNN-C, the top result comes
from the combination of Cutout regularization and TaylorGLO
with auxiliary classifiers, suggesting that they each provide a
different dimension of regularization. 144

7.2 Test-set accuracy of loss functions discovered by Tay-
lorGLO with and without an invariant constraint on λ.
Models were trained on the loss function that had the highest
validation accuracy during TaylorGLO evolution. All averages
are from ten separately trained models and p-values are from
one-tailed Welch’s t-Tests. Standard deviations are shown in
parentheses. The invariant allows focusing metalearning to vi-
able areas of the search space, resulting in better loss functions. 148

7.3 GLO interpretation of existing GAN formulations. These
three components are all that is needed to define the discrimina-
tor’s and generator’s loss functions (sans regularization terms).
Thus, TaylorGLO can discover and optimize new GAN formu-
lations by jointly evolving three separate functions. 154

8.1 Estimated total emissions resulting from individual Tay-
lorGLO experiments with different configurations. The
estimates assume a population size of 20 and 50 generation runs.
Values are upper bounds reported in equivalent kilograms of car-
bon dioxide, thus accounting for other gases of interest. Emis-
sion estimates show how the environmental impact of machine
learning can vary greatly depending on the chosen model ar-
chitecture. The impact is significant, and should be taken into
account when planning experiments. 177

xv

List of Figures

2.1 Neural network training by gradient descent in a clas-
sification setting. A training dataset is sampled into batches
that that may undergo data augmentation prior to being passed
through the model. The model’s outputs and labels are inputs
to a loss function, from which gradients are calculated to up-
date the model’s trainable parameters. Metalearning aims to
optimize parts of this process automatically to result in trained
models with better performance. 13

3.1 Basic CNN Architectures. Both architectures are standard,
relatively shallow CNNs with sequential layers. Samples flow
from left to right. These architectures were used to evaluate
the GLO technique. 36

3.2 AlexNet Model Architecture. AlexNet was a seminal CNN
architecture. Samples flow through the network, as tensors are
gradually downsampled, to arrive a final set of scaled classifi-
cation logits. AlexNet provides a fixed, basic CNN architecture
that is used to evaluate TaylorGLO. 38

3.3 AllCNN-C Model Architecture. Unlike many other archi-
tectures, AllCNNs only use convolution and dropout regular-
ization layers, along with a final average pooling layer in lieu of
a fully connected classifier. AllCNN-C provides a unique archi-
tecture that is used to evaluate TaylorGLO. 39

3.4 ResNet Model Architecture. Modules composed of sequences
of residual blocks make up the main structure of ResNet models.
Residual blocks contain skip connections that provide a more
direct path for gradients to propagate, allowing deeper networks
to be trained. 40

3.5 Preactivation ResNet Model Architecture. A small mod-
ification to traditional ResNets, Preactivation ResNets are able
to learn better by providing a clearer path for gradients to prop-
agate. This natural extension to the base ResNet architecture
is used to evaluate TaylorGLO. 41

3.6 Wide ResNet Model Architecture. Wide ResNets provide
a significant departure from the “deep and skinny” configura-
tion that is typical to ResNets. Wide ResNets are a good fit
evaluate TaylorGLO on wider networks. 42

xvi

3.7 PyramidNet Model Architecture. PyramidNets are a more
recent member of the ResNet lineage that has tuned various
aspects of the network to perform better. The PyramidNet
architecture provides a way to evaluate TaylorGLO on a recent,
highly tuned architecture. 43

3.8 Comparing architecture trainable parameters (a) and
training times (b). The number of trainable paramters in eval-
uated architectures span multiple orders of magnitude. While
there tends to be a correlation between the number of parame-
ters and training time, certain architectures have disproportion-
ately higher (e.g., PyramidNet) or lower (e.g., AlexNet) training
times. 45

3.9 System architecture for distributed experiment execu-
tion. A single experiment host, running Lossferatu, serves as
the central coordination point for experiments. Individual mod-
els are dispatched for training and evaluation on a cluster of
machines running Fumanchu. In this manner, evolution ex-
periments with long-running evaluations can be configured and
efficiently run. 47

3.10 Representative Lossferatu generational experiment di-
rectory structure. Lossferatu stores all state and command
scripts (shown in blue) in an intuitive directory structure on the
file system. This structure is initialized and managed by Loss-
feratu, while making manual user intervention possible. An
experiment directory contains all internal state, evaluated can-
didate results, analyses, and child experiments. 59

3.11 Quantile-quantile plot of 100 trained AllCNN-C net-
works’ testing accuracies against a normal distribution.
The highly-linear distribution of points demonstrates that test-
ing accuracies are normally distributed. 60

4.1 Genetic Loss Optimization (GLO) overview. A genetic
algorithm constructs candidate loss functions as trees. The best
loss function from this set then has its coefficients optimized
using CMA-ES. GLO loss functions are able to train models
more quickly and more accurately than the cross-entropy loss. 62

4.2 Mean testing accuracy on the MNIST image classifi-
cation benchmark, from ten independent runs each for
cross-entropy, Baikal, and BaikalCMA loss functions.
Both Baikal and BaikalCMA loss functions provide statistically
significant improvements to testing accuracy over the cross-
entropy loss. 68

xvii

4.3 Training curves for different loss functions on MNIST.
Baikal and BaikalCMA result in faster and smoother training
compared to the cross-entropy loss. 69

4.4 Sensitivity to different dataset sizes for different loss
functions on MNIST. For each size, five experiments were
run. Standard deviations are presented as error bands Baikal
and BaikalCMA increasingly outperform the cross-entropy loss
on small datasets, providing evidence of reduced overfitting. . 70

4.5 Testing accuracy across varying training steps on the
CIFAR-10 image classification benchmark. The Baikal
loss, which has been transferred from MNIST, outperforms the
cross-entropy loss on all training durations. This effect is more
pronounced early in training, suggesting that Baikal results in
faster training. 72

4.6 Binary classification loss functions plotted at x0 = 1.
Correct predictions lie on the right side of the graph, and incor-
rect ones on the left. The log loss decreases monotonically, while
Baikal and BaikalCMA present counterintuitive, sharp increases
in loss as predictions approach the true label. This phenomenon
provides regularization by preventing the model from being too
confident in its predictions. 73

4.7 Outputs of networks trained with cross-entropy loss and
BaikalCMA. With BaikalCMA, the peaks are shifted away
from extreme values and are more spread out, indicating im-
plicit regularization. The BaikalCMA histogram matches that
from a network trained with a confidence regularizer [133], sup-
porting the hypothesis that GLO can discover loss functions
that bias training in such a way that results in regularization. 74

4.8 Training curves for the FastLogit and Baikal loss func-
tions on MNIST. FastLogit results in faster training com-
pared to Baikal, with a comparable final accuracy. 77

5.1 The TaylorGLO approach. Loss functions are represented as
vectors that encode parameters to the TaylorGLO loss function
parameterization. Starting with an initial unbiased mean solu-
tion, CMA-ES iteratively maximizes the validation accuracy—
or any other non-differentiable fitness metric—that results from
training with TaylorGLO loss function candidates. CMA-ES
maintains a mean vector and corresponding covariance matrix
which are used to sample candidates at each generation. The
candidate with the highest fitness is chosen as the final, best
solution from TaylorGLO. 86

xviii

5.2 The process of TaylorGLO discovering loss functions in
MNIST. Red dots mark generations where new improved loss
functions were found. TaylorGLO discovers good functions in
very few generations. The best function had a 2000-step vali-
dation accuracy of 0.9948, compared to 0.9903 with the cross-
entropy loss, averaged over ten runs. This difference translates
to a similar improvement on the test set, as shown in Table 5.1. 90

5.3 The best loss functions (a) and their respective parame-
ters (b) from each generation of TaylorGLO on MNIST.
The functions are plotted in a binary classification modality,
showing loss for different values of the network output (y0 in
the horizontal axis) when the correct label is 1.0. The functions
are colored according to their generation from blue to red, and
vertically shifted such that their loss at y0 = 1 is zero (the raw
value of a loss function is not relevant; the derivative, however,
is). TaylorGLO explores varying shapes of solutions before nar-
rowing down on functions in the red band. This process can
also be seen in (b), where parameters become more consistent
over time, and in the population plot shown in Figure 5.2, where
fitness plateaus. The final functions decrease from left to right,
but have a significant increase in the end. This shape is likely to
prevent overfitting during learning, which leads to the observed
improved accuracy. 92

5.4 (a) Mean test accuracy across ten runs on MNIST. The Tay-
lorGLO loss function with the highest validation score signif-
icantly outperforms the cross-entropy loss (p = 2.95 × 10−15

in a one-tailed Welch’s t-test) and the BaikalCMA loss [53]
(p = 0.0313). (b) Required partial training evaluations for GLO
and TaylorGLO on MNIST. The TaylorGLO loss function was
discovered with 4% of the evaluations that GLO required to
discover BaikalCMA. 93

5.5 Accuracy with reduced portions of the MNIST dataset. Pro-
gressively smaller portions of the dataset were used to train the
models (averaging over ten runs). The TaylorGLO loss function
provides significantly better performance than the cross-entropy
loss on all training dataset sizes, and particularly on the smaller
datasets. Thus, its ability to discourage overfitting is particu-
larly useful in applications where only limited data is available. 93

xix

5.6 Effect of varying learning rates in AllCNN-C when trained
with the cross-entropy loss on CIFAR-10. For each learn-
ing rate, ten models were trained, with up to ten retries if train-
ing failed. The majority of training attempts failed for learning
rates larger than 0.01. The 0.01 learning rate used in the ex-
periments in this chapter results in best stable performance.
Overall, the small performance differences that can result from
adjusting the learning rate, regardless of stability, are much
smaller than those that result from training with TaylorGLO.
Thus, TaylorGLO provides a mechanism for improvement be-
yond implicit adjustments of the learning rate. 96

5.7 Accuracy basins for AllCNN-C models trained with
cross-entropy and TaylorGLO loss functions. Accuracies
are plotted along the vertical axis for perturbations along two
random basis vectors on the horizontal axes. Higher accuracies
are colored red. The TaylorGLO basin is both flatter and lower
than that for the cross-entropy loss, indicating that small per-
turbations have a less negative impact on performance. Thus,
networks trained with TaylorGLO loss functions are more ro-
bust and generalize better [90], which results in higher accuracy. 99

5.8 Weight distributions for AllCNN-C models trained with
cross-entropy and TaylorGLO loss functions on CIFAR-
10. The cross-entropy loss results in Laplace weight distribu-
tions, while TaylorGLO loss functions result in normally dis-
tributed weights. These different distributions show how Tay-
lorGLO guides training towards a fundamentally different re-
gion of the weight space, which empirically results in better
performance. 101

5.9 Target and non-target scaled logit histograms for Tay-
lorGLO and cross-entropy loss functions on AllCNN-C
with CIFAR-10. More frequent logit values are represented
by warmer, lighter colors. The two loss functions result in qual-
itatively different training dynamics. Namely the dense, white
bands on the right side of (a)-top and (b)-top are centered along
different logit values (the y-axis) and have different variances.
The TaylorGLO band, where most target predictions lie, par-
ticularly, has a higher variance and is spaced farther from the
histograms’ bottom border, showing how TaylorGLO penalizes
overly-confident predictions. 104

xx

5.10 Target and non-target scaled logit histograms on Wide
ResNet 28-5 with CIFAR-10. Both loss functions result in
qualitatively different training dynamics. Like on AllCNN-C,
the dense, white bands on the right of (a)-top and (b)-top are
centered along different logit values and have different entropy.
However, unlike on AllCNN-C, the specific values and sizes of
the bands in (b) differ. Thus, the TaylorGLO loss functions
for AllCNN-C and Wide ResNet 28-5 have different training
dynamics, indicating that TaylorGLO loss functions are cus-
tomized to each architecture. 107

6.1 Attraction towards zero training error curves with dif-
ferent loss functions. Each loss function has a characteristic
curve—plotted using Equation 6.51—that describes zero train-
ing error attraction dynamics for individual samples given their
current deviation from perfect memorization, ε. Plots (a) and
(b) only have the n = 10 case plotted, i.e. the 10-class classifi-
cation case for which they were evolved. Cross-entropy (a) and
MSE (c) loss functions have positive attraction for all values of
ε. In contrast, the TaylorGLO loss function for CIFAR-10 on
AllCNN-C (b) and the Baikal loss function (d) both have very
strong attraction for weakly learned samples (on the right side),
and repulsion for highly confidently learned samples (on the left
side. This provides a graphical intuition for regularization with
TaylorGLO and Baikal loss functions. 130

6.2 Per-training-sample attraction towards zero training er-
ror with cross-entropy and TaylorGLO loss functions for
CIFAR-10 AllCNN-C models. Each point represents an in-
dividual training sample (500 are randomly sampled per epoch);
its x-location indicates the training epoch, and y-location the
strength with which the loss functions pulls the output towards
the correct label, or pushes it away from it. With the cross-
entropy loss (a), these values are always positive, indicating a
constant pull towards the correct label for every single training
sample. Interestingly, the TaylorGLO values (b) span both the
positives and the negatives; at the beginning of training there
is a strong pull towards the correct label (seen as the dark area
on top left), which then changes to more prominent push away
from it in later epochs (seen as the dark band on the bottom).
This plot shows how TaylorGLO regularizes by preventing over-
confidence and biasing solutions towards different parts of the
weight space with higher performance. 131

xxi

6.3 Characteristic curves in zero training error attraction
phase space for different loss functions. A general phase
space for zero training error attraction can be constructed using
a loss function’s specific γT and γ¬T values and a network’s ε
value for a given sample. Each loss function has a character-
istic curve within this space. The values at each point in this
space (i.e., colors) are calculated using Equation 6.51 and can
be seen in Figure 6.1 for each loss function. While loss-function
metalearning indirectly finds optimal characteristic curves, per-
haps, in the future, these characteristic curves may be optimized
directly. 133

7.1 AllCNN-C with Auxiliary Classifiers. The AllCNN-C ar-
chitecture can be augmented with auxiliary classifiers after each
dropout layer to provide regularization [167] and allow gradients
to flow deeper into the model more directly. TaylorGLO can im-
prove the model’s performance by optimizing three separate loss
functions. 142

7.2 Best TaylorGLO loss functions for AllCNN-C with aux-
iliary classifiers. Loss functions are plotted for binary classifi-
cation at x0 = 1. Correct predictions lie on the right side of the
graphs, and incorrect ones on the left. There is a clear differ-
ence in what is optimal for each of the auxiliary classifiers and
the main loss function, both with and without Cutout. With
Cutout, the optimal functions for auxiliary classifiers are noti-
cably different, both in shape and range. Thus, what is optimal
is influenced by both architecture and complementary regular-
ization techniques. 145

7.3 Attraction towards zero training error curves for Tay-
lorGLO loss functions for AllCNN-C with auxiliary clas-
sifiers. Each curve—plotted using Equation 6.51—describes
the zero training error attraction dynamics for individual sam-
ples given their current deviation from perfect memorization, ε.
TaylorGLO is able to discover loss functions with fundamentally
different training dynamics for each setting, demonstrating how
TaylorGLO is able synergize with existing forms of regulariza-
tion to reach higher levels of performance. 146

xxii

7.4 Robustness of TaylorGLO loss functions against FGSM
adversarial attacks on CIFAR-10. For each architecture,
the blue bars represent accuracy achieved through training with
the cross-entropy loss, green bars with a TaylorGLO loss, and
gray bars with a TaylorGLO loss specifically evolved in the ad-
versarial attack environment. The leftmost points on each plot
represent evaluations without adversarial attacks. TaylorGLO
regularization makes the networks more robust against adver-
sarial attacks, and this property can be further enhanced by
making it an explicit goal in evolution. 151

7.5 Comparing accuracy basins of AllCNN-C with cross-
entropy, TaylorGLO, and adversarially robust Taylor-
GLO loss functions on CIFAR-10. Basins are only plot-
ted along one perturbation direction for clarity, using the same
technique as in Section 5.5.1. While the adversarially robust
TaylorGLO loss function does not confer an increase in accu-
racy in the absence of adversarial attacks, it has a wider, flatter
accuracy basin. This is indicative of increased robustness as a
result of using a TaylorGLO loss function that has been selected
for against an adversarial robustness objective. 152

7.6 Five random samples from the CMP Facade test dataset,
comparing Wasserstein and TaylorGLO loss functions.
The loss functions are used to train pix2pix-HD models that
take architectural element annotations (top row) and generate
corresponding photorealistic images similar to the ground-truth
(second row). Images from the model trained with TaylorGLO
(bottom row) have a higher quality than the baseline (third
row). TaylorGLO images have more realistic coloration and
finer details than the baseline. 157

8.1 Regularization interaction graph for AllCNN-C on CIFAR-
10. Each consecutive node away from the center node repre-
sents the addition of a single regularization technique. The
edges leading to these nodes are colored green if the technique
improves performance compared to the previous node, and red
if they are detrimental, and yellow (in Figure 8.3) if there is no
effect. On AllCNN-C, all techniques improve performance, with
the notable exception of Cutout and CutMix, which only im-
prove performance when coupled with TaylorGLO. This shows
how regularization techniques are not necessarily additive oper-
ations; interactions between regularization techniques are more
complex. 170

xxiii

8.2 Regularization interaction graph for AlexNet on CIFAR-
10. On AlexNet, all tested regularization techniques improves
performance, except for Cutout alone. However, it also ex-
hibits a constructive interaction with TaylorGLO, much like
on AllCNN-C. Unlike on AllCNN-C, CutMix improves perfor-
mance in the abscence of TaylorGLO. These differences show
that even superficially similar architectures are affected by reg-
ularization differently. 171

8.3 Regularization interaction graphs for Wide ResNets on
CIFAR-10. On wide and shallow networks (a), all regulariza-
tion techniques garner performance improvements, while com-
bining CutMix and TaylorGLO does not significantly alter per-
formance. Conversely, narrow and deep networks exhibit very
different interactions, in that TaylorGLO does not improve per-
formance significantly on its own. Ultimately, altering the depth
and width of a single type of architecture affects the way in
which regularization can happen. The similarities and differ-
ences in Figures 8.1 through 8.3 show how the interactions be-
tween different regularization techniques depend on the model
architecture. They show that regularization techniques are not
simply additive behaviors; their impacts on performance depend
on which other regularization techniques are present. 172

xxiv

Chapter 1

Introduction

Machine learning and artificial intelligence have led to the moderniza-

tion of many industries and to the creation of novel systems that have the

potential to better humanity. Large increases in compute power have made

it possible to train models of increasing sophistication. However, such models

can be overwhelmingly complex: they have many nonintuitively interacting

components, and there is no rigourous theory on how they work. As a result,

the field is less scientific and methodical and depends more on human intu-

ition. The ability to reason about model complexity has exceeded the limits

of most humans, impeding progress, requiring special, hard-to-find expertise,

and increasing the cost of developing models.

Consider a better future: Models are able to automatically adapt to

best serve their target domain. The field of metalearning aims to reach this

future by optimizing various parts of machine learning automatically. This

dissertation explores a new avenue towards this goal: loss-function metalearn-

ing. By automatically and methodically searching the space of loss functions,

model performance can be improved without manual tuning. Metalearned

loss functions establish a form of regularization, biasing the training process

1

towards more robust configurations.

In this dissertation, two techniques are developed for this purpose: Ge-

netic Loss-function Optimization (GLO), an evolutionary approach that op-

timizes loss functions as trees with coefficients, maximizing creativity; and

Multivariate Taylor expansion-based genetic loss-function optimization (Tay-

lorGLO), an alternative technique that scales well to models with millions of

trainable parameters.

1.1 Motivation

Much of the power of modern neural networks originates from their

complexity, i.e., number of parameters, hyperparameters, and topology. This

complexity is often beyond human ability to optimize, and automated methods

are needed. An entire field of metalearning has emerged recently to address this

issue, based on various methods such as gradient descent, simulated annealing,

reinforcement learning, Bayesian optimization, and evolutionary computation

(EC) [38].

Metalearning has repeatedly demonstrated how various aspects of ma-

chine learning can be automatically tuned without human intervention. For ex-

ample, neural architecture search, i.e. metalearning of model architectures, has

resulted in models that outperform those designed by humans [115, 136, 164].

Many of these techniques use evolution and discover solutions with unique

architectural motifs.

2

While a wide repertoire of work now exists for optimizing many as-

pects of neural networks, the dynamics of training are still usually set manu-

ally without a concrete, scientific principle. It is important, however: train-

ing schedules, loss functions, and learning rates all affect the training and

final functionality of a neural network. Perhaps they could also be optimized

through metalearning? This dissertation verifies this hypothesis, focusing on

the optimization of loss functions.

Loss functions are the fundamental guide for the training process, serv-

ing as the root goal against which a model’s trainable parameters are opti-

mized. The choice of loss function implicitly biases the optimization process

[19], i.e. the way learning and generalization occur.

In modern machine learning, however, most practitioners rely on a

few standard loss functions. For example, in classification settings, the cross-

entropy loss is almost exclusively used. Considering that seemingly small dif-

ferences can have a great impact on a model’s performance (e.g., the ordering

of layers [72]), it is suprising that such a fundamental aspect of training is

usually not considered as part of model design.

Loss-function metalearning can thus serve as a way to find appropri-

ate regularization for neural networks automatically, resulting in models with

better performance.

3

1.2 Challenges

Theory has lagged behind practice in deep learning since its inception,

and the same is particularly true for regularization. While the past several

years have resulted in many theoretical findings on regularization, they tend

to focus on shallow multi-layer perceptrons and specific scenarios that are not

representative of real-world use-cases.

As a result, practitioners have used a handful of different loss functions,

such as the cross-entropy loss, across wide varieties of problems. Justifica-

tions for different loss functions have typically been speculative. For example,

probabilistic intuitions are sometimes used to justify the cross-entropy loss in

classification settings; however, modern neural network outputs should not be

interpreted as probabilities [45].

Since optimal loss functions cannot yet be designed from first princi-

ples, a search based method must be used. At first, gradient-based optimiza-

tion techniques may seem like an appropriate option, given their ubiquity in

modern machine learning. However, since many neural network objectives

(e.g., accuracy) are inherently non-differentiable, gradient-based approaches

are not always possible. This observation leads to evolutionary computation,

which can tackle problems with rugged fitness landscapes that need not be

differentiable.

Even if evolutionary computation is used for optimization, loss func-

tions need to be represented in a way that makes it possible to both encode

4

a variety of functions and evolve them effectively. This dissertation presents

two representations that lie at different points along the continuum between

representational flexibility and efficiency.

Search based approaches, including evolutionary computation, require

a way to evaluate the efficacy of candidates. That is, given a loss function,

how well does a model trained with it perform? Given the limited theoretical

understanding in deep learning, it can be challenging to predict the outcome

that a particular loss function will have on training. Thus, models must be

trained with each candidate. Since the dynamics of training are not con-

stant throughout the training process, evaluations based on partial training

are noisy. Significant amounts of compute is necessary, reducing the number

of candidates that can be evaluated.

Further, modern deep learning has been inadvertently designed and

optimized for a few loss functions, such as cross-entropy. If other aspects

of the model are kept fixed, the benefits of loss-function metalearning may

be underestimated. Nonetheless, the loss-function metalearning techniques in

this disssessrtation are able to train network that outperform those trained

with cross-entropy.

1.3 Approach

A general framework for loss function metalearning, covering both novel

loss function discovery and optimization, is developed and evaluated experi-

mentally. This framework, Genetic Loss-function Optimization (GLO), lever-

5

ages Genetic Programming to build loss functions represented as trees. These

functions are repeatedly recombined and mutated to find an optimal struc-

ture, and subsequently a Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) is used to optimize their coefficients.

EC methods were chosen because EC is arguably the most versatile of

the metalearning approaches. EC, being a type of population-based search

method, allows for extensive exploration, which often results in creative, novel

solutions [100]. EC has been successful in hyperparameter optimization and

architecture design in particular [108, 115, 136, 164]. It has also been used

to discover mathematical formulas to explain experimental data [155]. It is,

therefore, likely to find creative solutions in the loss-function optimization

domain as well.

Networks trained with GLO loss functions are found to outperform the

cross-entropy loss on standard image classification tasks. Training with these

new loss functions requires fewer steps, results in lower test error, and allows

for smaller datasets to be used. Indeed, on the MNIST image classification

benchmark, GLO discovered a surprising new loss function, named Baikal for

its shape. This function performs very well, presumably by establishing an

implicit regularization effect. Baikal outperforms the standard cross-entropy

loss in terms of training speed, final accuracy, and data requirements. Fur-

thermore, Baikal was found to transfer these benefits to a more complicated

classification task, CIFAR-10.

At first glance, Baikal behaves rather unintuitively; loss does not de-

6

crease monotonically as a network’s predictions become more correct. Upon

further analysis, Baikal was found to perform implicit regularization. By pre-

venting the network from being too confident in its predictions, training with

Baikal produced a more robust model. This finding was surprising and encour-

aging, since it means that GLO is able to discover loss functions that train

networks that are more generalizable and overfit less.

While GLO’s tree-based representation gives it unbounded represen-

tational flexibility, this flexibility can make evolution a challenge—requiring

large populations evolved over many generations—since the vast majority of

functions in such a space are not, in fact, usable as loss functions. Addition-

ally, GLO’s two-phased approach to loss function discovery and optimization

can result in loss functions that are greedily, rather than mutually, optimized

for each phase. That is, a function’s structure may only be optimal with a

certain set of coefficients.

Aiming to resolve these shortcomings, another variation of GLO was

developed. The new technique, Multivariate Taylor expansion-based genetic

loss-function optimization (TaylorGLO), uses a new representation for loss

functions based upon multivariate function approximators, particularly Tay-

lor expansions. This parameterization helps combine the previously separate

discovery of structure and optimization of coefficients into one step, while si-

multaneously providing a well-behaved search space. While this representation

is more rigid than the tree-based representation, and may not result in solu-

tions that are as creative, they are often more practical, and can be applied

7

reliably to many real-world use cases.

TaylorGLO was used to evolve loss functions for a wide variety of mod-

ern architectures on four different benchmark datasets. Networks trained with

TaylorGLO loss functions consistently outperform those trained with cross-

entropy loss. TaylorGLO also improves performance of networks trained with

other regularization techniques, suggesting that it provides a complementary

form or regularization.

By fundamentally altering the training process, TaylorGLO loss func-

tions allow a model’s parameters to reach unique regions of the trainable pa-

rameter space. It results in models with flatter minima, i.e. models’ outputs

are less sensitive to small changes in the model’s trainable parameters, than

those trained with cross-entropy loss. As a result, TaylorGLO models are more

robust and generalize better.

In order to characterize this process, a new theoretical framework for

reasoning about the optimization biases and regularization effects imparted

by loss functions is developed. A decomposition process can be applied to

the standard stochastic gradient descent learning rule to get expressions that

describe a loss function’s behavior uniquely. These behaviors are analyzed in

different settings, showing how metalearned loss functions bias and regularize

training implicitly. A further analysis across the totality of training shows

how loss functions encourage or discourage fitting to individual samples. Two

specific metalearned loss functions, one evolved with GLO and one with Tay-

lorGLO, are found to encourage the model to fit misclassified samples and

8

those with moderately confident classifications, while penalizing overly con-

fident predictions. The cross-entropy and mean-squared-error loss functions,

conversely, encourage data fitting in all cases, resulting in overfitting.

TaylorGLO is further extended to four special settings, demonstrating

its ability to leverage previously gained insights in machine learning. First,

TaylorGLO is used to evolve multiple, separate loss functions for models with

auxiliary classifiers, impacting different parts of a model in different ways.

Second, the TaylorGLO search process is improved using an invariant on loss

function parameters that drives it towards more useful candidates more ef-

fectively. Third, TaylorGLO loss functions are found to make networks more

robust against adversarial attacks, and an additional adversarial objective fur-

ther increases this effect. Fourth, TaylorGLO is leveraged to discover new

formulations for conditional generative adversarial networks that are able to

generate higher quality images.

Thus, GLO and TaylorGLO together constitute a comprehensive first

foray into loss-function metalearning. GLO provides a high-level of flexibility

in evolving loss functions with many shapes and many inputs, while Taylor-

GLO evolves loss functions for deep neural networks effectively. They allow

practitioners to metalearn regularization that is customized to individual tasks

automatically, resulting in higher-performing models that are more robust.

This dissertation also takes first steps in theoretical analysis of regularization

and loss functions, providing a stepping stone towards further, more principled

work on metalearning.

9

1.4 Guide to the Reader

The disposition of chapters in this dissertation is as follows:

Chapter 2 reviews background concepts and relevant literature in the

field. Deep learning, evolution, loss functions, and regularization are detailed,

motivating the development of loss-function metalearning techniques, and in-

forming their design.

Chapter 3 describes the experimental setup and methodology for the

remainder of the dissertation. Described therein are the datasets and neu-

ral network architectures used to evaluate techniques, the novel experiment

management system called Lossferatu that was built for this purpose, and

statistical techniques that help illustrate results.

Chapter 4 introduces Genetic Loss-function Optimization (GLO), the

first, flexible technique for loss-function metalearning. The technique is eval-

uated experimentally and its merits and shortcomings are discussed.

Chapter 5 describes TaylorGLO, a more practical technqiue for loss-

function metalearning. Building upon the lessons learned from GLO, Tay-

orGLO is evaluated empirically on a variety of deep learning settings. Its

loss functions result in fundamentally different trained networks, thanks to a

qualitatively different training process.

Chapter 6 develops a theoretical framework to characterize the regular-

ization processes that result in evolved loss functions. The theoretical insights

are connected back to empirical results.

10

Chapter 7 delves into four opportunities to extend: auxiliary classifier

loss functions, an invariant on TaylorGLO parameters, evolving loss functions

that are hardened against adversarial attacks, and evolving loss functions for

generative adversarial networks.

Chapter 8 summarizes the findings in this dissertation, discusses the

observed interactions between TaylorGLO and other regularization techniques,

proposes future work, and explores the broader impact of this work.

Chapter 9 closes with an overview of the impact of this dissertation

and its contributions to science. The ultimate conclusion is that loss-function

metalearning is a useful new subfield that can improve deep models through

learned regularization.

11

Chapter 2

Background

This chapter reviews the key areas that motivate, provide a foundation,

and help shape the dissertation’s work. This review begins with deep learning

and the role of loss functions. Next, generative adversarial networks (GANs)—

a set of techniques that leverage deep learning for generation tasks—and their

loss functions are presented, highlighting key developments and challenges.

Subsequently, evolutionary computation, the foundation for the techniques

developed in this dissertation, is covered. This review leads to a discussion

of metalearning literature and how evolution fits into it, particularly in terms

of neural architecture search (NAS). Finally, regularization and optimization

biases in modern machine learning are evaluated.

2.1 Deep Learning and Loss Functions

Interest in machine learning and AI has recently risen thanks to mod-

ern deep learning [98]. While deep learning has varying meanings, within this

body of work, it is used to refer to neural networks of a higher depth and

complexity than traditional multilayer perceptrons [142]; i.e., networks that

learn internal data representations of increasing abstraction. As illustrated in

12

Loss
Function

Weights .

Batch Samples Softmax
ℒσData

Augmentation

Batch Labels

Training Batches ⃗θ η∇ ⃗θ

Trainable Model

⃗f(⃗x , ⃗θ) ⃗h (⃗x , ⃗θ)⃗y

–

Figure 2.1: Neural network training by gradient descent in a classi-
fication setting. A training dataset is sampled into batches that that may
undergo data augmentation prior to being passed through the model. The
model’s outputs and labels are inputs to a loss function, from which gradients
are calculated to update the model’s trainable parameters. Metalearning aims
to optimize parts of this process automatically to result in trained models with
better performance.

Figure 2.1, deep models, and neural networks overall, are traditionally trained

iteratively, whereby model parameters (i.e., weights and biases, at a minimum)

are updated using gradients that are propagated backwards through the net-

work, starting from an error given by a loss function [143]. Loss functions

represent the primary training objective of a neural network.

For many tasks, such as classification and language modeling, the cross-

entropy loss (also known as the log loss) is used almost exclusively. Note that

while regularization terms are sometimes added to this definition, the core

component is still the cross-entropy loss. Information-theoretic reasoning is

used to motivate the log loss: It aims to minimize the number of bits needed to

identify a message from the true distribution, using a code from the predicted

distribution. More specifically, within a classification task, the log loss is

13

defined as

LLog = − 1

n

n∑
i=0

xi log(yi) , (2.1)

where x is sampled from the true distribution, y is sampled from the pre-

dicted distribution, and n is the number of classes. This notation is used in

subsequent chapters to describe all loss functions.

While the variety in loss functions for classification is rather low, dif-

ferent types of tasks that do not fit neatly into a single-label classification

modality often have different loss functions. Data reconstruction tasks and

autoencoders often may use an L2 loss (also referred to in the literature as the

squared-difference similarity or mean-squared error) [47, 51]. Kullback-Leibler

divergence can be used as a loss when comparing the similarity of two distri-

butions [91, 200]. For building visual-semantic text embeddings, a pair-wise

ranking loss based on the cosine similarity between images and fragments of

text can be used [36]. Tasks that can be represented as binary classification

tasks, such as true/false question answering or paraphrase identification, often

use the binary case of the cross-entropy loss [200].

Every instance where a loss function is chosen for a task without a

specific justification is an opportunity to find a more optimal loss function

automatically. The choice of loss function can have a great impact on per-

formance, as will be seen in this dissertation. A particularly interesting case

is training generative adversarial networks, where loss functions play central

role, as will be reviewed next.

14

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs), initially conceived by Good-

fellow et al. [55], are a type of generative model consisting of a pair of networks,

a generator and discriminator, that are trained in tandem. GANs are a modern

successor to Variational Autoencoders (VAEs) [91] and Boltzmann Machines

[74], including Restricted Boltzmann Machines [159] and Deep Boltzmann Ma-

chines [149].

The following subsections review prominent GAN methods. Key GAN

formulations, and the relationships between them, are described. Consistent

notation (shown in Table 2.1) is used, consolidating the extensive variety of

notation in the field.

Table 2.1: GAN Notation Decoder

Symbol Description

G(x, θG) Generator function
D(z, θD) Discriminator function
Pdata Probability distribution of the original data
Pz Latent vector noise distribution
Pg Probability distribution of G(z)
x Data, where x ∼ Pdata

x̃ Generated data
z Latent vector, where z ∼ Pz
c Condition vector
λ Represents various types of weights / hyperparameters

15

2.2.1 Overview

A GAN’s generator and discriminator are set to compete with each

other in a minimax game, attempting to reach a Nash equilibrium [73, 123].

Throughout the training process, the generator aims to transform samples

from a prior noise distribution into data, such as an image, that tricks the dis-

criminator into thinking it has been sampled from the real data’s distribution.

Simultaneously, the discriminator aims to determine whether a given sample

came from the real data’s distribution, or was generated from noise.

Unfortunately, GANs are difficult to train, frequently exhibiting insta-

bility, i.e., mode collapse, where all modes of the target data distribution are

not fully represented by the generator [10, 61, 85, 111, 112, 114, 135]. GANs

that operate on image data often suffer from visual artifacts and blurring of

generated images [85, 130]. Additionally, datasets with low variability have

been found to degrade GAN performance [111].

GANs are also difficult to evaluate quantitatively, typically relying on

metrics that attempt to embody vague notions of quality. Popular GAN image

scoring metrics, for example, have been found to have many pitfalls, including

cases where two samples of clearly disparate quality may have similar values

[20].

16

2.2.2 Original Minimax and Non-Saturating GAN

Using the notation described in Table 2.1, the original minimax GAN

formulation from [55] can be defined as

min
θG

max
θD

Ex∼Pdata
[logD(x)] + Ez∼Pz [log (1−D(G(z)))] . (2.2)

This formulation can be broken down into two separate loss functions, one

each for the discriminator and generator:

LD = − 1

n

n∑
i=1

[logD(xi) + log(1−D(G(zi)))] , and (2.3)

LG =
1

n

n∑
i=1

log(1−D(G(zi))) . (2.4)

The discriminator’s loss function is equivalent to a sigmoid cross-entropy loss

when thought of as a binary classifier. Goodfellow et al. [55] proved that

training a GAN with this formulation is equivalent to minimizing the Jensen-

Shannon divergence between Pg and Pdata, i.e. a symmetric divergence metric

based on the Kullback-Leibler divergence.

In the above formulation the generator’s loss saturates quickly since

the discriminator learns to reject the novice generator’s samples early on in

training. To resolve this problem, Goodfellow et al. provided a second “non-

saturating” formulation with the same fixed-point dynamics, but better, more

intense gradients for the generator early on:

maxθD Ex∼Pdata
[logD(x)] + Ez∼Pz [log (1−D(G(z)))] , (2.5)

maxθG Ez∼Pz [logD(G(z))] . (2.6)

17

Each GAN training step consists of training the discriminator for k

steps, while sequentially training the generator for only one step. This differ-

ence in steps for both networks helps prevent the discriminator from learning

too quickly and overpowering the generator.

Alternatively, Unrolled GANs [114] aimed to prevent the discriminator

from overpowering the generator by using a discriminator which has been

unrolled for a certain number of steps in the generator’s loss, thus allowing

the generator to train against a more optimal discriminator. More recent GAN

work instead uses a two time-scale update rule (TTUR) [73], where the two

networks are trained under different learning rates for one step each. This

approach has proven to converge more reliably to more desirable solutions.

Unfortunately, with both minimax and non-saturating GANs the gen-

erator gradients vanish for samples that are on the correct side of the decision

boundary but far from the true data distribution [111, 112]. The Wasserstein

GAN, described next, is designed to solve this problem.

2.2.3 Wasserstein GAN

The Wasserstein GAN (WGAN) [10] is arguably one of the most im-

pactful developments in the GAN literature since the original formulation by

Goodfellow et al. [55]. WGANs minimize the Wasserstein-1 distance between

Pg and Pdata, rather than the Jensen-Shannon divergence, in an attempt to

avoid vanishing gradient and mode collapse issues. In the context of GANs,

18

the Wasserstein-1 distance can be defined as

W (Pg,Pdata) = inf
γ∈Π(Pg ,Pdata)

E(u,v)∼γ [‖u− v‖] , (2.7)

where, γ(u,v) represents the amount of mass that needs to move from u to

v for Pg to become Pdata. This formulation with the infimum is intractable,

but the Kantorovich-Rubinstein duality [182] with a supremum makes the

Wasserstein-1 distance tractable, while imposing a 1-Lipschitz smoothness con-

straint:

W (Pg,Pdata) = sup
‖f‖L≤1

Eu∼Pg [f(u)]− Eu∼Pdata
[f(u)] , (2.8)

which translates to the training objective

min
θG

max
θD∈ΘD

Ex∼Pdata
[D(x)]− Ez∼Pz [D(G(z))] , (2.9)

where ΘD is the set of all parameters for which D is a 1-Lipschitz function.

WGANs are an excellent example of how generator and discriminator

loss functions can profoundly impact the quality of generated samples and the

prevalence of mode collapse. However, the WGAN has a 1-Lipschitz constraint

that needs to be maintained throughout training for the formulation to work.

WGANs enforce the constraint via gradient clipping, at the cost of requiring

an optimizer that does not use momentum, i.e., RMSProp [172] rather than

Adam [92].

To resolve the issues caused by gradient clipping, a subsequent formu-

lation, WGAN-GP [61], added a gradient penalty regularization term to the

19

discriminator loss:

GP = λ Ex̂∼Px̂
[
(‖∇x̂D(x̂)‖2 − 1)2] , (2.10)

where Px̂ samples uniformly along lines between Pdata and Pg. The gradient

penalty enforces a soft Lipschitz smoothness constraint, leading to a more sta-

tionary loss surface than when gradient clipping is used, which in turn makes

it possible to use momentum-based optimizers. The gradient penalty term

has even been successfully used in non-Wasserstein GANs [39, 111]. However,

gradient penalties can increase memory and compute costs [111].

2.2.4 Least-Squares GAN

Another attempt to solve the issue of vanishing gradients is the Least-

Squares GAN (LSGAN) [112]. It defines the training objective as

minθD
1

2
Ex∼Pdata

[
(D(x)− b)2]+ Ez∼Pz

[
(D(G(z))− a)2] , (2.11)

minθG
1

2
Ez∼Pz

[
(D(G(z))− c)2] , (2.12)

where a is the label for generated data, b is the label for real data, and c is the

label that G wants to trick D into believing for generated data. In practice,

typically a = 0, b = 1, c = 1. However, subsequently, a = −1, b = −1, c = 0

were found to result in faster convergence, making it the recommended param-

eter setting [61]. Training an LSGAN was shown to be equivalent to minimiz-

ing the Pearson χ2 divergence [132] between Pdata + Pg and 2 ∗ Pg. Generated

data quality can oscillate throughout the training process [111], indicating a

disparity between data quality and loss.

20

2.2.5 InfoGAN

InfoGAN [27], derived from information theory, attempts to learn a

disentangled representation for the latent space. This goal is accomplished

through a term that is subtracted from the training objective. With a coeffi-

cient λ, it bounds the mutual information between elements in the latent space

and generated samples:

LI(d, G) = Ex̃∼G(z⊕d),z∼Pz
[
Ed′∼P (d|x̃) [logQ(d′|x̃)]

]
+H(d) ≤ I(d;G(z⊕d)) .

(2.13)

This term results in variational regularization of mutual information [12]. The

latent vector is broken into the traditional noise component z and a latent

code component d, which are concatenated. The latent code entropy, H(d) is

treated as a constant. The auxiliary posterior Q, which aims to approximate

P (d|x), is based on D.

InfoGANs can learn latent codes on several different image datasets

successfully. However, the size and sampling distribution of the latent code

must be defined a priori, thus requiring manual design. On the other hand,

it is thusu possible to steer the latent code conceptually. For example, if the

data’s sampling distribution is known a priori to have ten modes, an element

of the latent code could be di ∼ Categorical(k = 10, p = 0.1).

2.2.6 Conditional GAN

Traditional GANs learn how to generate data from a latent space, i.e.

an embedded representation of the training data that the generator constructs.

21

Typically, the elements of a latent space have no immediately intuitive meaning

[27, 97]. Thus, GANs can generate novel data, but there is no way to steer

the generation process to generate particular types of data. For example,

a GAN that generates images of human faces cannot be explicitly told to

generate a face with a particular hair color or of a specific gender. While

techniques have been developed to analyze this latent space [103, 183], or build

more interpretable latent spaces during the training process [27], they do not

necessarily translate a human’s prior intuition correctly or make use of labels

when they are available. To tackle this problem, Conditional GANs, first

proposed as future work in [55] and subsequently developed by Mirza and

Osindero [117], allow directly targetable features (i.e., conditions) to be an

integral part of the generator’s input.

The conditioned training objective for a minimax GAN can be defined,

without loss of generality, as

min
θG

max
θD

Ex∼Pdata
[logD(x⊕ c)] + Ez∼Pz [log (1−D(G(z ⊕ c)))] , (2.14)

where z ⊕ c is basic concatenation of vectors. During training, the condition

vector, c, arises from the sampling process that produces each x. This same

framework can be used to design conditioned variants of other GAN formula-

tions.

Conditional GANs have enjoyed great successes as a result of their

flexibility, even in the face of large, complex condition vectors, which may even

be whole images. They enable new applications for GANs, including image

22

to image translation [85], the generation of images given text [139], repairing

software vulnerabilities (framed as sequence to sequence translation) [69], and

integrated circuit mask design [9]. Notably, conditional GANs can increase

the quality of generated samples for labeled datasets, even when conditioned

generation is not needed [179].

2.2.7 Opportunity: Optimizing Loss Functions

Overall, competing GAN formulations all have one property in com-

mon: the generator and discriminator loss functions have been arduously de-

rived by hand. GAN performance and stability is greatly impacted by the

choice of loss functions. Different regularization terms, such as the aforemen-

tioned gradient penalty can also affect a GAN’s training. The specific design

of these formulations is typically guided by the desire to minimize a specific

divergence. However, a GAN does not need to decrease a divergence at every

step in order to reach the Nash equilibrium [39]. In this situation, an auto-

matic loss-function optimization system may find novel GAN loss functions

with more desirable properties. Such a system is presented in Chapter 7 and

evaluated on conditional GANs.

2.3 Evolutionary Computation

Since the original theory of natural selection [32, 33], our understanding

of the mechanisms of evolution has grown. In the biological realm, evolution

has produced a vast array diverse species, proving its efficacy as a framework

23

for optimization and open-ended discovery. Through the mid-to-late 20th

century, with the advent of increasingly sophisticated computers, simulations

of evolution were implemented [42]. Methods such as evolutionary strategies

[138] and genetic algorithms [76] were developed and found useful in many

engineering applications.

In numerous engineering applications, such as antenna design [107],

genetic algorithms have been able to find creative solutions that elude humans

[100]. Genetic algorithm can represent different search spaces through different

representations. This flexibility has made them a technique that is applicable

to many problems in unique domains.

Many problems can be framed as numerical optimization problems.

While gradient-based methods have been successful at tackling such problems,

not all search spaces have known derivatives or are even smooth. To solve

theses types of problems, evolutionary strategies implement stochastic, non-

convex optimization. In particular, covariance-matrix adaptation evolutionary

strategy (CMA-ES) [65] is a widely applicable method. In an iterative manner,

candidates are sampled from a multivariate Gaussian distribution, built from

a covariance matrix that is updated after each iteration. In this manner,

the area in the search space sampled at each step grows, shrinks, and moves

dynamically as needed to maximize sampled candidates’ fitnesses.

Within computer science itself, evolutionary computation has been used

to evolve programs, an idea first theorized by Turing in the mid 20th century

[174, 175]. This discipline is known today as genetic programming. Genetic

24

programming systems are often able to discover solutions to problems that

outperform human-built solutions [93].

Early work aimed at developing pattern recognition systems using rule-

sets represented as trees [40]. Recently, genetic programming succeeded in

discovering nontrivial mathematical formulas that underly physical systems

using noisy experimental data [155]. In this system, formulas are represented

by directed, acyclic graphs. Remarkably, the system was able to discover

Hamiltonian and Lagrangian equations of different mechanical systems, even

on a highly-chaotic double-pendulum domain. This work helped inspire the

development of GLO, described in Chapter 4.

Approaches to genetic programming that are not based on tree-like

structures also exist. Linear genetic programming [11], where programs are

represented as a sequence of instructions, and Cartesian genetic programming

[116], where programs can be represented by graphs, are two seminal such

approaches. Such systems often contain non-coding genes, which have been

found to yield more robust evolution [30].

Since evolutionary computation systems are programs themselves, they

can be evolved using genetic programming techniques; this idea is known as

autoconstructive evolution. A notable example is the Pushpop autoconstruc-

tive evolution system [160], where Push programs are evolved alongside the

system’s evolutionary mechanisms. Push is a general stack-based language

with types that was developed specifically for genetic programming.

25

Evolutionary computation is thus successful at directly evolving com-

plex mathematical solutions to problems, and even at evolving the way in

solutions are found. This motivates the use of such techniques to evolve loss

functions, as is presented in this dissertation.

2.4 Metalearning

As deep learning systems have become more complex, their architec-

tures and hyperparameters have become increasingly difficult and time-consuming

to optimize by hand. In fact, many good designs may be overlooked entirely

by humans with prior biases. Metalearning has risen as a field that attempts

to tackle this problem from numerous different angles [101], using different ap-

proaches that range from Bayesian optimization to evolutionary computation.

Hyperparameter and algorithm selection were identified early on [141]

and continue to play an important role today. More advanced early met-

alearning literature took inspiration from educational psychology, where met-

alearning is defined as an awareness and subsequent adjustment of an agent’s

approach to learning [16]. A seminal exploration of metalearning leveraged

evolution to attempt to learn how to learn in self-referential, recurrent neu-

ral networks [153]; in fact, the author even suggests that meta-metalearning

could be advantageous. Subsequent work also attempted to learn how to find

learning rules for neural networks, using both gradient descent and genetic

algorithms [15]. However, many of these early ideas were infeasible with the

computational power that was available at the time.

26

Neural architecture search has more recently become a key area in the

metalearning literature, as the structure of neural networks has been found

to be increasingly important to their functionality [38]. Numerous approaches

have been proposed, with search strategies drawn from areas such as rein-

forcement learning, Bayesian optimization, simulated annealing, and evolution

(often called neuroevolution in this context). A landmark technique in the lit-

erature, NeuroEvolution of Augmenting Topologies (NEAT) [165] has served

as the base for more sophisticated and robust architecture search techniques

[164]. One of them is CoDeepNEAT [115], which makes use of coevolution to

build structure hierarchically. Various neural architecture search techniques

have created networks with state-of-the-art performance in different domains

[26, 136, 203]. Recently, it was found that that networks that are agnostic to

the values of weights can be contructed, exemplifying the importance of struc-

ture [44]. Further, even randomly-structured networks with certain properties

can learn well [195].

In addition to hyperparameter optimization and neural architecture

search, new opportunities for metalearning have recently emerged. In partic-

ular, learning rate scheduling can have a significant impact on a model’s per-

formance. Such schedules determine how the learning rate changes as training

progresses. This functionality is employed by different gradient-descent opti-

mizers, such as AdaGrad [37] and Adam [92]. While monotonically decreasing

learning rates generally yield good results, new ideas, such as cyclical learning

rates [158], have shown to lead to better models in fewer epochs in some cases.

27

Metalearning methods have also recently been developed for data aug-

mentation. One such technique is AutoAugment [31], a reinforcement learn-

ing based approach to find new data augmentation policies. In reinforcement

learning tasks, EC has proven to be a successful approach. For instance, in

evolving policy gradients [77], the policy loss is not represented symbolically,

but rather as a neural network that convolves over a temporal sequence of con-

text vectors. In reward function search [129], the task is framed as a genetic

programming problem, leveraging PushGP [160].

Prior to this research, no existing work in the metalearning literature

focused on optimization of loss functions for neural networks. As shown in

this dissertation, evolutionary computation can be used in this role to im-

prove neural network performance, to gain a better understanding of the pro-

cesses behind learning, and to help reach the ultimate goal of fully automated

learning.

2.5 Regularization

Regularization has emerged as a central theme in the development of

modern neural networks. Traditionally, regularization refers to methods for

encouraging smooth mappings by adding a regularizing term to the objective

function, i.e., to the loss function in neural networks. Regularization can be

defined more broadly, however, as “any modification we make to a learning al-

gorithm that is intended to reduce its generalization error but not its training

error” [56]. To that end, many regularization techniques have been developed

28

that aim to improve the training process in neural networks. These techniques

can be architectural in nature, such as Dropout [162] and Batch Normaliza-

tion [82], or they can alter a different aspect of the training process, such as

label smoothing [167] or the minimization of a weight norm [67]. These tech-

niques are briefly reviewed in this section, providing context for loss-function

metalearning, which provides a new, powerful form of regularization.

2.5.1 Implicit Biases in Optimizers

It may seem surprising that neural networks that are typically highly

overparameterized are able to generalize at all. They have the capacity to

memorize a training set perfectly, and in fact sometimes do (i.e., zero train-

ing error is reached). Different optimizers have different implicit biases that

determine which solutions are ultimately found. These biases are helpful in

providing implicit regularization to the optimization process [126]. Such reg-

ularization results from a network norm—a measure of complexity—that is

minimized as optimization progresses. This process is why models continue

to improve even after training set has been memorized (i.e., the training error

global optima is reached) [128].

For example, the process of stochastic gradient descent (SGD) itself

has been found to provide regularization implicitly when learning on data

with noisy labels [19]. In overparameterized networks, adaptive optimizers

find very different solutions than the basic SGD. These solutions tend to have

worse generalization properties, even though they have lower training errors

29

[191].

2.5.2 Regularization Approaches

While optimizers may minimize a network norm implicitly, regulariza-

tion approaches supplement this process and make it explicit. For example,

a common way to restrict the parameter norm explicitly is through weight

decay. This approach discourages network complexity by placing a cost on

weights [67].

Generalization and regularization are often characterized at the end of

training, i.e. as a behavior that results from the optimization process. Several

findings have influenced work in regularization. For example, flat loss land-

scapes have better generalization properties [24, 90, 102]. In overparameterized

cases, the solutions at the center of these landscapes may have zero training

error (i.e., perfect memorization), and under certain conditions, zero training

error empirically leads to lower generalization error [14, 122]. However, in most

cases when a training loss of zero is reached, generalization suffers [83]. This

behavior can be thought of as overfitting, and techniques have been developed

to reduce it at the end of the training process, such as early stopping [119]

and flooding [83].

Both early stopping and flooding assume that overfitting happens at

the end of training, which is not always true [48]. In fact, the order in which

easy-to-generalize and hard-to-generalize concepts are learned is important the

network’s ultimate generalization. For instance, larger learning rates early in

30

the training process often lead to better generalization in the final model [104].

Similarly, low-error solutions found by SGD in a relatively quick manner—such

as through high learning rates—often generalize better [196].

Other techniques tackle overfitting by making it more difficult. Dropout

[162] makes some connections disappear. Cutout [35], Mixup [199], and their

composition, CutMix [197], augment training data with a broader variation of

examples.

Notably, regularization is not a one-dimensional continuum. Different

techniques regularize in different ways that often interact. For example, flood-

ing sometimes cancels out generalization from early stopping [83]. However,

ultimately all regularization techniques alter the gradients that result from the

training loss. This observation suggests that loss-function optimization might

be an effective way to regularize the training process.

2.5.3 Auxiliary Classifiers

Auxiliary classifiers are small sub-networks within a deep model that

predict outputs given internal activations from the parent model. During train-

ing, losses are calculated for the main network and are summed with scaled

losses from one or more auxiliary classifiers. Training gradients propagate

through the network in an end-to-end manner, and auxiliary classifiers may

be discarded at inference-time.

Auxiliary classifiers were originally developed for the GoogLeNet archi-

tecture [166], where they were intended to help the network learn lower-level

31

features, facilitate the propagation of gradients to early stages of the network,

and provide regularization. GoogLeNet used two auxiliary classifiers, resulting

in the end-to-end loss of LFinal = LMain + 0.3 LAux1 + 0.3 LAux2.

In the subsequent Inception-v3 architecture [167], an extension of the

original GoogLeNet, a single auxiliary classifier was used. The removal of

the early-stage auxiliary classifier did not degrade performance. Additionally,

there were no noticable benefits to auxiliary classifiers in early phases of train-

ing. These two observations prompted the authors to argue that regularization

was the primary benefit confered by auxiliary classifiers, rather than a way to

learn lower-level features more effectively.

2.6 Conclusion

The literature review in this chapter showed how design decisions can

impact on the performance of machine learning models. Designs are often very

complex and have non-intuitive interactions between components. Metalearn-

ing has tackled this from many angles, using technologies such as evolutionary

computation to automatically optimize different design elements. However,

metalearning has not yet been used to optimize loss functions. These func-

tions represent the primary training objective in neural networks and thus

present a unique opportunity for metalearning. By directly impacting the op-

timization process, loss-function metalearning can alter training dynamics in

useful ways.

32

Chapter 3

Experimental Methodology

Deep learning is a very detail-sensitive discipline; the way that ex-

periments are conducted can lead to a different interpretation of subsequent

results. This chapter delves into the various aspects of the experimental setup

and methodologies that are used in this dissertation’s embodied work. First,

the image classification benchmark datasets that were used to evaluate GLO

and TaylorGLO are described, followed by an overview of the model archi-

tectures that were trained on these datasets. Lossferatu and Fumanchu, two

components of a novel distributed experiment management system are then

described. They provide experiment host and model training and evaluation

functionality, respectively. Finally, the statistical testing methodology used to

evaluate the significance of results is justified and compared with alternatives.

3.1 Datasets

The empirical analyses in this dissertation make use of standard bench-

mark datasets. The MNIST, CIFAR-10, CIFAR-100, and SVHN datasets, and

their training configurations, including data splits and processing and augmen-

tation pipelines, are described below.

33

3.1.1 MNIST

The first domain used for evaluation was MNIST Handwritten Digits

[99], a widely used dataset where the goal is to classify 28 × 28 pixel images

as one of ten numerical digits. Each image has a single channel. MNIST is

composed of 55,000 training samples, 5,000 validation samples, and 10,000

testing samples. The dataset is well understood and relatively quick to train.

3.1.2 CIFAR-10 and CIFAR-100

To validate GLO and TaylorGLO in a more challenging context, the

CIFAR-10 [94] dataset was used. It consists of small 32× 32 pixel color pho-

tographs of objects in ten classes. CIFAR-10 traditionally consists of 50,000

training samples, and 10,000 testing samples; however 5,000 samples from the

training dataset were used for validation of candidates, resulting in 45,000

training samples.

Models were trained with their respective hyperparameters from the

literature. Inputs were normalized by subtracting their mean pixel value

and dividing by their pixel standard deviation. Standard data augmentation

techniques consisting of random horizontal flips and croppings with two pixel

padding were applied during training.

CIFAR-100 is a similar, though significantly more challenging, dataset

where a different set of 60,000 images is divided into 100 classes, instead of 10.

The same splits for training, validation, and testing were used for CIFAR-100

as for CIFAR-10, and evaluate TaylorGLO further.

34

3.1.3 Street View House Numbers (SVHN)

The Street View House Numbers (SVHN) [124] dataset is another im-

age classification, consisting of 32 × 32 pixel images of numerical digits from

Google Street View. It was used to further evaluate TaylorGLO in this disser-

tation. SVHN consists of 73,257 training samples, 26,032 testing samples, and

531,131 supplementary, easier training samples. To reduce computation costs,

supplementary examples were not used during training, which explains why

presented baselines are lower in the experiments contained in this dissertation

than other SVHN baselines in the literature. Since a validation set is not in

the standard splits, 26,032 samples from the training dataset were used for

validation of candidates, resulting in 47,225 training samples.

As with CIFAR-10 and CIFAR-100, models were trained with their

respective hyperparameters from the literature and with the same data aug-

mentation pipeline.

3.2 Evaluated Model Architectures

Neural networks come in many different morphologies, with varying

structural motifs, sizes, and design principles. The experiments in this dis-

sertation aim to cover a variety of architectures, including those with state-

of-the-art results. Notably, many of these architectures have been extensively

tuned to work well with the cross-entropy loss, providing a high-bar for met-

alearned loss functions. Specific architectures, and some of their noteworthy

properties, are described below. These architectures have all been designed

35

St
rid

e
C

on
v

Re
LU

M
ax

 P
oo

lin
g

So
ftm

ax

C
on

vo
lu

tio
n

Re
LU

Li
ne

ar
Re

LU

M
ax

 P
oo

lin
g

D
ro

po
ut

(a) MNIST

C
on

vo
lu

tio
n

Re
LU

M
ax

 P
oo

lin
g

So
ftm

ax

C
on

vo
lu

tio
n

Re
LU

Li
ne

ar
Re

LU

LR
N

LR
N

M
ax

 P
oo

lin
g

Li
ne

ar

(b) CIFAR-10

Figure 3.1: Basic CNN Architectures. Both architectures are standard,
relatively shallow CNNs with sequential layers. Samples flow from left to right.
These architectures were used to evaluate the GLO technique.

to perform well when trained with the cross-entropy loss function. Following

these descriptions is a quantitative comparison of the architectures’ relative

sizes and training times.

3.2.1 Basic CNNs

Two simple, relatively shallow convolutional neural network (CNN) ar-

chitectures were used for initial analyses of the GLO technique, one each for

the MNIST and CIFAR-10 datasets (Figure 3.1).

MNIST A simple CNN architecture with the following layers was used: (1)

5×5 convolution with 32 filters and ReLU [121] activations, (2) 2×2 stride-2

max-pooling, (3) 5× 5 convolution with 64 filters and ReLU activations, (4)

2 × 2 stride-2 max-pooling, (5) 1024-unit fully-connected layer with ReLU

activations, (6) a dropout layer [75] with 40% dropout probability, and (7) a

softmax layer. Training uses stochastic gradient descent (SGD) with a batch

size of 100, a learning rate of 0.01, and, unless otherwise specified, for 20,000

steps.

36

CIFAR-10 A simple CNN architecture, taken from [51] (and itself inspired

by AlexNet [95], which is described in Section 3.2.2), with the following layers

was used: (1) 5 × 5 convolution with 64 filters and ReLU activations, (2)

3×3 max-pooling with a stride of 2, (3) local response normalization [95] with

k = 1, α = 0.001/9, β = 0.75, (4) 5× 5 convolution with 64 filters and ReLU

activations, (5) local response normalization with k = 1, α = 0.001/9, β =

0.75, (6) 3 × 3 max-pooling with a stride of 2, (7) 384-unit fully-connected

layer with ReLU activations, (8) 192-unit fully-connected, linear layer, and

(9) a softmax layer. This architecture contains components that are typical

in modern neural network architectures. As a result, this simple architecture

slightly outperforms AlexNet while being shallower.

Inputs to the network are sized 24 × 24 × 3, rather than 32 × 32 × 3

as provided in the dataset; this smaller input size enables more sophisticated

data augmentation. The data augmentation steps consist of: random 24× 24

croppings selected from each full-size image—to force the network to learn

spatial invariance better—that are randomly flipped longitudinally, randomly

lightened or darkened, and their contrast randomly perturbed. Furthermore,

to attain quicker convergence, an image’s mean pixel value and variance were

subtracted and divided, respectively, from the whole image during training

and evaluation. CIFAR-10 networks were trained with SGD, L2 regularization

with a weight decay of 0.004, a batch size of 1024, and an initial learning rate

of 0.05 that decays by a factor of 0.1 every 350 epochs.

37

St
rid

e
C

on
v

Re
LU

M
ax

 P
oo

lin
g

So
ftm

ax

Li
ne

ar

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

M
ax

 P
oo

lin
g

M
ax

 P
oo

lin
g

Figure 3.2: AlexNet Model Architecture. AlexNet was a seminal CNN
architecture. Samples flow through the network, as tensors are gradually down-
sampled, to arrive a final set of scaled classification logits. AlexNet provides
a fixed, basic CNN architecture that is used to evaluate TaylorGLO.

3.2.2 AlexNet

AlexNet [95] is a relatively early CNN with state-of-the-art results on

CIFAR-10 at its time. AlexNet is composed of a sequence of convolution,

ReLU, and max pooling layers, followed by a final linear classification layer

(reference Figure 3.2).

AlexNet is a seminal architecture with a conventional sequential design.

Additionally, its short training times make it a compelling architecture to

iterate on. This fixed architecture is used to evaluate TaylorGLO.

3.2.3 AllCNN

The All-Convolutional Neural Network (AllCNN) [161] is a unique type

of architecture in that it is entirely composed of convolutions, strided convo-

lutions, dropout layers, and one single average pooling layer at the end of the

network (reference Figure 3.3). Components that CNNs traditionally contain,

such as spatial pooling, fully-connected layers, and batch normalization [82],

are entirely absent from AllCNN models.

38

C
on

vo
lu

tio
n

Re
LU

D
ro

po
ut

Av
ge

ra
ge

 P
oo

lin
g

So
ftm

ax

D
ro

po
ut

C
on

vo
lu

tio
n

Re
LU

St
rid

e
C

on
v

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

St
rid

e
C

on
v

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

Figure 3.3: AllCNN-C Model Architecture. Unlike many other architec-
tures, AllCNNs only use convolution and dropout regularization layers, along
with a final average pooling layer in lieu of a fully connected classifier. AllCNN-
C provides a unique architecture that is used to evaluate TaylorGLO.

Specifically, the AllCNN-C variant of the AllCNN architecture is used

to evaluate TaylorGLO. AllCNNs provide a unique architecture that achieves

high accuracy while forgoing the use of many typical network features.

3.2.4 ResNet

Residual Networks (ResNets) [71] were a novel network morphology

that allows extremely deep networks with up to hundreds of layers to be

trainable. It contains residual connections (a type of skip connection) that

alleviate the vanishing gradients problem (reference Figure 3.4). Residual

blocks—groups of layers with a residual skip connection—are arranged se-

quentially many times within each of three modules. Downsampling occurs

between modules (downsampling operations are omitted from Figure 3.4 for

brevity). ResNets are configured by a depth parameter from which the whole

architecture is built.

ResNets were used to evaluate TaylorGLO since they are a seminal net-

work that introduced architectural motifs that are common to many modern

39

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

Av
er

ag
e

Po
ol

in
g

So
ftm

ax

M
od

ul
e

1

Re
LU

a

Li
ne

ar

M
od

ul
e

2

M
od

ul
e

3

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

Re
LU

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

Re
LU+

Block Block Block Block…

Figure 3.4: ResNet Model Architecture. Modules composed of sequences
of residual blocks make up the main structure of ResNet models. Residual
blocks contain skip connections that provide a more direct path for gradients
to propagate, allowing deeper networks to be trained.

40

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

Av
er

ag
e

Po
ol

in
g

So
ftm

ax

M
od

ul
e

1

Re
LU

Li
ne

ar

M
od

ul
e

2

M
od

ul
e

3

Block Block Block Block…

a
C

on
vo

lu
tio

n

Ba
tc

h
N

or
m

Re
LU

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

Re
LU +

Figure 3.5: Preactivation ResNet Model Architecture. A small modifi-
cation to traditional ResNets, Preactivation ResNets are able to learn better
by providing a clearer path for gradients to propagate. This natural extension
to the base ResNet architecture is used to evaluate TaylorGLO.

neural networks.

3.2.5 Preactivation ResNet

Preactivation ResNets [72] emerged from an analysis of signal propa-

gation in traditional ResNets. By simply changing the order in which ReLU

units are applied, Preactivation ResNets are able to achieve higher accuracy

and better generalization properties. As seen in Figure 3.5, there is a clearer

path for gradients to propagate, compared to traditional ResNets (reference

Figure 3.4), due to the lack of a ReLU layer between blocks.

Preactivation ResNets, in conjunction with ResNets, serve as a good

41

C
on

vo
lu

tio
n

Av
er

ag
e

Po
ol

in
g

So
ftm

ax

M
od

ul
e

1

Re
LU

Li
ne

ar

M
od

ul
e

2

M
od

ul
e

3

Block Block Block Block…

a

Re
LU

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

+

Wide ResNet

Re
LU

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

D
ro

po
ut

Figure 3.6: Wide ResNet Model Architecture. Wide ResNets provide a
significant departure from the “deep and skinny” configuration that is typi-
cal to ResNets. Wide ResNets are a good fit evaluate TaylorGLO on wider
networks.

way to evaluate how TaylorGLO performs on two similar, but slightly different,

types of networks with different gradient propagation characteristics.

3.2.6 Wide ResNet

Wide ResNets [198] tackle the marginal returns gained in performance

and large increases in training time associated with increasingly deep ResNets.

By utilizing a wider network with small modifications (reference Figure 3.6),

Wide ResNets are able to outperfom their narrow counterparts, while requiring

over an order of magnitude fewer layers. Wide ResNets have configurable depth

and width parameters. Notably, Wide ResNets include dropout layers between

42

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

Av
er

ag
e

Po
ol

in
g

So
ftm

ax

M
od

ul
e

1

Re
LU

Li
ne

ar

M
od

ul
e

2

M
od

ul
e

3

Block Block Block Block…

a

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

Re
LU +

PyramidNet

Ba
tc

h
N

or
m

Ba
tc

h
N

or
m

Figure 3.7: PyramidNet Model Architecture. PyramidNets are a more
recent member of the ResNet lineage that has tuned various aspects of the
network to perform better. The PyramidNet architecture provides a way to
evaluate TaylorGLO on a recent, highly tuned architecture.

convolutions, a feature that improves performance on Wide ResNets but had

been found to be detrimental on previous ResNet architectures [72].

Wide ResNets are widely used in the literature, making them a must-

have architecture in any well-rounded evaluation. While the general flow of

gradients through Wide ResNets is very similar to other residual networks,

their width and depth can vary significantly, providing a direct point of com-

parison for the effects of width and depth on TaylorGLO.

43

3.2.7 PyramidNet

Deep Pyramidal Residual Networks (PyramidNets) [63] are yet another

network with residual connections whereby channel dimensionality gradually

increases—as opposed to staying static—in between downsampling oppera-

tions. These increases may happen in either an additive or multiplicative

manner.

As another mature, modern ResNet variant, PyramidNets are used in

the TaylorGLO evaluation, namely on the CIFAR-100 dataset. PyramidNets

are an example of an architecture that has been extensively tuned for high

performance when training with the cross-entropy loss, providing a high bar

for TaylorGLO to exceed.

3.2.8 Architecture Comparisons

Overall, these architectures provide a test suite upon which the tech-

niques presented in this dissertation can be evaluated. The architectures de-

scribed above are varied in their components, approaches, and sizes, thus pro-

viding a representative sampling of modern deep neural networks.

Figure 3.8 provides a comparison of the number of trainable parameters

and training times across the evaluated architectures. The parameter counts

range across three orders of magnitude. Training times range from under ten

minutes for AlexNet, to over four hours for Wide ResNet 28-10. These values

exemplify one dimension of the variety in the evaluated architectures.

44

Pa
ra

m
et

er
s

(m
illi

on
s)

0

10

20

30

40

Re
sN

et
-2

0

Pr
e

Re
sN

et
-2

0

Al
lC

N
N

-C

Al
lC

N
N

-C
 +

 A
ux

. C
la

ss

Py
ra

m
id

N
et

 1
10

a4
8

Al
ex

N
et

W
RN

 2
8-

5

W
RN

 1
6-

8

W
RN

 2
8-

10

36.48

10.96
9.13

2.471.771.401.370.270.27

(a) Trainable Parameters
Tr

ai
ni

ng
 T

im
e

(s
ec

on
ds

)

0

3200

6400

9600

12800

16000

Re
sN

et
-2

0

Pr
e

Re
sN

et
-2

0

Al
lC

N
N

-C

Al
lC

N
N

-C
 +

 A
ux

. C
la

ss

Py
ra

m
id

N
et

 1
10

a4
8

Al
ex

N
et

W
RN

 2
8-

5

W
RN

 1
6-

8

W
RN

 2
8-

10

(b) Training Times

Figure 3.8: Comparing architecture trainable parameters (a) and
training times (b). The number of trainable paramters in evaluated ar-
chitectures span multiple orders of magnitude. While there tends to be a
correlation between the number of parameters and training time, certain ar-
chitectures have disproportionately higher (e.g., PyramidNet) or lower (e.g.,
AlexNet) training times.

Training times are calculated by multiplying a per-batch training time

measurement by the number of batches per epoch and the number of epochs

per model. To ensure stability, these per-batch training time values are the

average batch training time from the second epoch of training (i.e., a warm

start). All values were calculated from training on a machine with a 10-

core Intel Xeon Gold 5215 processor running at a base frequency of 2.5GHz,

NVIDIA GeForce RTX 2080 Ti GPU, 96GB of memory, and a solid-state drive

connected through NVMe. No other work was running on the machine while

each profiling experiment took place.

45

3.3 System Architecture

Loss function evolution typically requires hundreds of neural networks

to be evaluated. Thus, these evaluations happen in parallel for efficiency, re-

quiring a distributed system for running experiments on a cluster of machines

with dozens of GPUs. A custom system was built to such an end for this

body of work. This system was created since no comprehensive, extensible,

and usable system for managing and running evolution experiments with dis-

tributed candidate evaluations was found to exist. This dissertation presented

an opportunity to develop such a system.

3.3.1 Overview

The system is composed of two key components that interact with each

other:

Lossferatu: the parallelized experiment host that runs evolutionary processes,

manages results, and coordinates candidate evaluation. Lossferatu can

run for extended periods of time without human intervention, much like

its namesake Nosferatu [3].

Fumanchu: a generic, model-agnostic neural network training and evaluation

component with a unified interface. One experiment may involve hun-

dreds of unique invocations of Fumanchu. More informally, Fumanchu

treats models as cattle, rather than as pets; the inspiration for being

named after Fu Manchu the bull [113].

46

Process Tasks

Training
interface

Results
Manager

SwiftCMA SwiftGenetics

Init Start

Check Analyze

Collate Get Logs

t-Test Summarize

Lossferatu

Experiment
Configuration

JSON

Wolfram
Mathematica

Frontend

Fumanchu

St
ud

io
 C

lie
nt

Q
ue

ue
in

g
Se

rv
er

Studio Runner

Distributed
Storage

AMQPFork + Exec

GPU Cluster Node

AMQP

Job Artifacts

Experiment Host Datacenter

Config

Analyses

Generations
0 1 2 3

Dataset

GPU

Model Weights

Candidate

Results

S3 Protocol

Experiment State

4

5 6 7

S3 ProtocolWolfram
Language

CPU

Figure 3.9: System architecture for distributed experiment execution.
A single experiment host, running Lossferatu, serves as the central coordi-
nation point for experiments. Individual models are dispatched for training
and evaluation on a cluster of machines running Fumanchu. In this manner,
evolution experiments with long-running evaluations can be configured and
efficiently run.

Lossferatu uses the Studio [178] model management framework to dis-

patch atomic fragments of work, i.e. jobs. Each job corresponds to a single

candidate evaluation and consists of a run of Fumanchu. Studio jobs are ref-

erenced in a RabbitMQ [177] message queue that conforms to the Advanced

Message Queuing Protocol (AMQP) [84]. Job code, datasets, results, and job

artifacts are stored in MinIO [2], a distributed object store that is accessible

with the AWS S3 API [4]. Jobs are consumed from the queue by Studio Go

Runners [120] as resources become available. Studio Go Runners are decen-

tralized entities that manage the execution of jobs and resource allocation.

47

Studio Go Runners run as kubelets within a Kubernetes [1] cluster. Concur-

rently, Lossferatu monitors for completed jobs and processes their results as

needed.

The general architecture of this system is depicted in Figure 3.9. Both

Lossferatu and Fumanchu, their capabilities, and their interactions with the

components in the figure, are described in more detail in the following subsec-

tions.

3.3.2 Lossferatu

Lossferatu is a multithreaded program that runs on the host machine

and provides a centralized user interface and core functionality for experiments.

It was designed with the following desiderata in mind:

Safety and Continuity: Experiments should be able to handle malfunctions

gracefully throughout the software stack, and surface them to the user

if recovery is not possible. Additionally, experiments should be able to

be stopped, continued, or restarted at any point and must even be able

to gracefully handle manual state changes.

Extensibility: Lossferatu should support new types of experiments in a backwards-

compatible manner without significant changes.

Full State Persistence: During iterative experimentation or analysis, cer-

tain components of the experiment’s state may be useful to know. Which

48

pieces of state are useful may not be known a priori, so all state should

be persisted in human-interpretable JSON files.

Unified Experiment Structure: All experiments should be stored in a con-

sistent manner on the file system, and have consistently formatted ex-

periment configuration files.

Simple User Interface: An easy-to-use command-line interface for core func-

tionality should be exposed, with more sophisticated behaviors abstracted

into shell scripts.

Automated Analysis Pipelines: Results should be easily processed and

collated automatically. Evolution experiments should be able to gen-

erate Mathematica [140] notebooks that summarize results and provide

publication-quality plots.

Lossferatu was designed such that atomic steps in an experiment each

correspond to a single, multi-threaded process. Such a philosophy yields a

system that is amenable to manual intervention and is naturally safe and

efficient. Consequently, a single evolution experiment may result in thousands

of small, fast-completing processes running over the course experiment. This

design also requires state to be maintained outside the confines of a process;

the file system is used for such an end.

Multigeneration Lossferatu experiments have a directory structure as

shown in Figure 3.10. Lossferatu automatically creates and manages this struc-

49

ture from a given experiment configuration JSON file. Generations are seg-

regated into numbered directories where their respective state is maintained.

Since Lossferatu processes are stateless, these generation directories can be

manually altered in incomplete experiments.

For each experiment, Lossferatu can perform a holistic analysis: calcu-

lating per-generation metrics, creating experiment configuration files for final

evaluation of the best candidate at each generation, and creating a Mathe-

matica notebook that summarizes experiment results. Lossferatu creates the

Mathematica notebook without user involvement by generating Wolfram code

for the notebook and running it through the Mathematica front-end in the

background using the wolframscript tool. Several of the plots in this disser-

tation were directly exported from these generated notebooks. The generated

configuration files for each generation can then be used by the autogener-

ated experiment best candidate one shot script to run child experiments,

typically for evaluating best candidates on a testing dataset. This capability

greatly reduces the amount of effort involved in evaluating specific candidates.

Generational (i.e., evolution) experiments are conveniently run through

repeated calls of the run generation script. Since evaluations happen asyn-

chronously, on remote servers, each generation is split into two phases: a start

phase, where new candidates are generated and submitted to the queue for

evaluation, and a check phase, where MinIO is periodically polled to check

experiment progress and fetch and process results if needed.

However, not all experiments fall into a generational modality; such

50

as baseline experiments and secondary candidate evaluations. Lossferatu in-

cludes support for these “one-shot” jobs as well. One-shot jobs share many

commonalities with generational jobs, such as the two-phase experiment exe-

cution system (i.e., submit a job and poll for results).

The generated Lossferatu scripts are simple contrivances that explic-

itly invoke Lossferatu with various parameters. Lossferatu’s command-line

interface is structured around the following commands:

init: Initializes a new experiment directory given an experiment configuration

JSON file.

start: Creates a new generation directory, creates new candidates, and sub-

mits them to the queue for evaluation. Queue submissions can be con-

figured to happen either sequentially or concurrently.

check: Polls MinIO for updated job output files. If any jobs have finished

running, their results are downloaded, processed, and persisted. The

command returns a unique exit code once all jobs have finished running.

analyze: Analyzes completed generations and creates a Mathematica note-

book with statistics, plots, and other details.

getinvocation: Prints the exact Fumanchu invocation that would be run for

a given one-shot experiment configuration file. This command makes it

effortless to rerun exact one-shot experiments on any machine that has

51

Fumanchu and is not a part of the cluster to which Lossferatu dispatches

work.

studiolog: Downloads and prints the Studio output log for a given job iden-

tifier. Such a command is useful for manually monitoring the progress

of in-flight jobs, and seeing raw results.

ttest: Given two directories with equal numbers of one-shot jobs, various

statistical significance tests are run on their primary evaluation metrics

as defined in their experiment configurations.

collateoneshots: Takes a directory of one-shot experiments and collates their

results into a CSV file at the directory’s root.

resummarize: Creates a results summary CSV for a given directory of di-

rectories of one-shot experiments. In practice, this command allows for

baselines to be easily summarized.

resummarizegenerational: Creates a results summary CSV for a given di-

rectory of generational experiments. In practice, this command is used

to summarize the results for the best candidates from a set of evolution

experiments and cross-reference them with respective one-shot baselines.

test: Runs various unit-tests of Lossferatu.

Lossferatu is primarily written in the Swift programming language, leveraging

the SwiftCMA [49] package for its CMA-ES implementation and the SwiftGe-

netics [50] package for building genetic algorithms. Multi-core concurrency in

52

Lossferatu is implemented atop libdispatch [81]. Lossferatu is able to run on

both macOS and Linux, and, notably, multiple experiment hosts running their

own instances of Lossferatu can be used concurrently for different experiments

on the same cluster.

Lossferatu is arguably the first comprehensive system for managing,

running, and analyzing evolution experiments with distributed candidate eval-

uations. Lossferatu provides extensible functionality and a user-friendly inter-

face that enables new experiments to be easily configured.

3.3.3 Fumanchu

Fumanchu is a highly configurable model training and evaluation frame-

work. Lossferatu runs Fumanchu to evaluate individual candidates. It was

designed to achieve the following goals:

Model and Dataset Agnosticism: Large components of Fumanchu should

function generically, regardless of the model or dataset that is config-

ured. Moreover, this property should hold true across different types of

tasks (e.g., classification, regression) when possible. This property makes

adding new model architectures and domains an easier, less error-prone

endeavor.

Command-Line Interface: Runs of Fumanchu should be configured en-

tirely through a command-line interface. This design decision facilitates

interaction with Fumanchu and simplifies manual invocation by users.

53

Logging, Pretrained Models, and Analyses: Fumanchu should be able

to log relevant metrics and data during the training process, perform var-

ious analyses (e.g., loss surface analysis, adversarial attacks) and support

the use of pretrained models for training, inference, and analysis.

Fumanchu is resident on the same machine as Lossferatu. Whenever

Lossferatu dispatches a unit of work, Fumanchu’s code is duplicated to a tem-

porary directory and an invocation shell script with job-specific parameters is

created in this directory. Studio then encodes this directory into a tar file, up-

loads it to MinIO, and appends a new job to the queue. This per-job copying

of Fumanchu ensures that no node in the cluster will ever have a stale version

of Fumanchu.

Whenever enough resources are available (i.e., half a GPU) on a cluster

machine, a Studio Go Runner will consume a job from the queue and start

running it once its environment and dependencies are setup. In a startup

script that Lossferatu packages into each job, the correct training dataset and,

optionally, a pretrained model are copied from MinIO. Fumanchu is then in-

voked and sequentially performs model training, evaluation, and analysis. The

startup script may invoke Fumanchu more than once, as specified in the cur-

rent Lossferatu experiment configuration, if trained model performance does

not exceed a threshold.

Upon completion of its workload, Fumanchu saves trained model arti-

facts, and large results files from analyses, to MinIO through Studio’s model

54

persistance mechanism. Results are written to a file descriptor that Studio

automatically packages into a per-job tar file that is persisted on MinIO. Fu-

manchu is written entirely in Python and leverages the PyTorch library [131]

for training neural networks.

Fumanchu is an important component that Lossferatu leverages for

candidate evaluation and analysis. Its independent nature allows it to be

manually invoked and used on any machine, outside of Lossferatu experiment

management system. Evolution experiments in Lossferatu whose candidate

evaluations do not necessarily involve training a neural network could use a

different, application-specific component in lieu of Fumanchu.

3.3.4 Hardware Specifications

Lossferatu ran on both (1) a 2016 MacBook Pro notebook computer

with a quad-core 2.9GHz Intel Core i7 processor and 16GB of memory and (2) a

2019 MacBook Pro notebook computer with a hexa-core 2.6 GHz Intel Core i7

processor and 16GB of memory. Both of these experiment hosts communicated

with the same cluster where candidate evaluations were run.

The cluster was composed of eight machines, with four in each of two

separate configurations:

biggpu: Servers with two 16-core Intel Xeon E5-2683 v4 processors running

at a base frequency of 2.1GHz, 264GB of memory, and eight NVIDIA

GeForce RTX 1080 Ti GPUs.

55

biggergpu: Servers with two 16-core Intel Xeon Silver 4216 processors run-

ning at a base frequency of 2.1GHz, 384GB of memory, and nine NVIDIA

GeForce RTX 2080 Ti GPUs.

3.4 Significance Testing

While statistical significance testing is unfortunately not a widespread,

standard practice in machine learning literature, it is an important part of any

rigorous data analysis. In this body of work, such tests are used frequently to

compare resultant performance metrics, such as testing accuracy, from models

trained with different techniques. Significance testing can assure that a given

technique actually is an improvement over others.

Significance tests define a null hypothesis and reject it if a p-value is

below a predefined significance level, typically 0.05. A p-value is the probabil-

ity of obtaining extreme results at the same level or greater than the results

observed given that the null hypothesis is true.

When comparing results in this dissertation, a one-tailed null hypoth-

esis is typically used:

H0 : ¬ (µ1 < µ2) , (3.1)

where µ1 and µ2 are mean values from two separate experiments. The rejec-

tion of this null hypothesis implies that µ2 is statistically significantly larger

than µ1. A two-tailed null hypothesis—to test for the dissimilarity of two

56

distributions—can be similarly constructed as

H0 : µ1 = µ2. (3.2)

The two main options that are available for performing significance

testing in this type of setting are Student’s t-Test [57] and Welch’s t-Test

[189]. Both of these tests assume that both groups of data are sampled from

populations that are normally distributed. In practice, this assumption holds

for trained network accuracies. Figure 3.11 demonstrates this property with

100 AllCNN-C networks trained on CIFAR-10. Student’s t-Test asserts addi-

tional requirements, where both populations need to have equal numbers of

samples and equal variances (in contrast, Welch’s t-Test does not have these

requirements).

While certain sets of samples on which statistical tests are performed

may have equal variances, this is not necessarily known a priori. Checking

variances in order to decide between the usage of Student’s or Welch’s t-Test

is not recommended practice [202]. Additionally, even in cases where variances

and sample counts are known to be similar, it is reasonble to use Welch’s t-

Test since it is more robust and still has high-statistical power [146]. Thus

Welch’s t-Test is used exclusively in this dissertation when comparing sets of

performanc metrics from different techniques.

Welch’s t-Test functions by calculating a t-statistic and degrees of free-

dom, ν, which are input into the cumulative distribution function (CDF) of

the t-distribution to get a level of significance (i.e., a p-value) that signifies the

57

probability that the null hypothesis is true by random chance. The t-statistic

is calculated as follows:

t =
X̄1 − X̄2√
s21
N1

+
s22
N2

, (3.3)

where X̄j is the sample mean, s2
j is an unbiased variance estimator (i.e., sample

variance with Bessel’s correction), and Nj is the number of samples for the

jth population of samples. The dataset’s degrees of freedom are approximately

calculated using the Welch-Satterthwaite equation [151]:

ν ≈

(
s21
N1

+
s22
N2

)2

s41
N2

1 ν1
+

s42
N2

2 ν2

, (3.4)

where νj = Nj−1. The cumulative probability of the t-distribution for a given

t-statistic value and ν is:

CDF(fν(t)) = 1− 1

2
I ν
t2+ν

(
ν

2
,
1

2

)
, (3.5)

where Ix(a, b) is the regularized incomplete beta function. Such a p-value is

reported without modification for one-tailed t-tests, while it is multiplied by

two for two-tailed t-tests.

Throughout this dissertation, Welch’s t-Test is used to determine sta-

tistical significance when comparing sets of results. It is a better fit than

Student’s t-Test due to its higher robustness and statistical power. Graphical

figures indicate statsitical significance with standard notation: “ns” indicates

p > 0.05, “∗” indicates p ≤ 0.05, “∗∗” indicates p ≤ 0.01, and “∗∗∗” indicates

p ≤ 0.001.

58

Experiment Root

analyses/

results.csv

results.wl

experiment best candidate one shot

ExperimentConfig best candidate.json

ExperimentConfig Gen0 best candidate.json

ExperimentConfig GenVal0 best candidate.json

ExperimentConfig GenPretrained0 best candidate.json

ExperimentConfig GenPretrainedVal0 best candidate.json
...

children/
...

generations/

0/

candidates.json

generation checkpoint.json

job names.txt

results.csv
...

config.json

results.nb

analyze

run generation

Figure 3.10: Representative Lossferatu generational experiment di-
rectory structure. Lossferatu stores all state and command scripts (shown
in blue) in an intuitive directory structure on the file system. This structure
is initialized and managed by Lossferatu, while making manual user interven-
tion possible. An experiment directory contains all internal state, evaluated
candidate results, analyses, and child experiments.

59

0.890 0.892 0.894 0.896 0.898 0.900 0.902 0.904

0.895

0.900

0.905

Quantiles of Normal Distribution

A
llC
N
N
-
C
A
cc
ur
ac
y
Q
ua
nt
ile
s

Figure 3.11: Quantile-quantile plot of 100 trained AllCNN-C net-
works’ testing accuracies against a normal distribution. The highly-
linear distribution of points demonstrates that testing accuracies are normally
distributed.

60

Chapter 4

Genetic Loss-function Optimization (GLO)

In this chapter1, a general framework for loss function metalearning,

covering both novel loss function discovery and optimization, is developed

and evaluated experimentally. This framework, Genetic Loss-function Op-

timization (GLO), leverages genetic programming to build loss functions by

representing them as trees, and subsequently a Covariance-Matrix Adaptation

Evolution Strategy (CMA-ES) to optimize their coefficients. On the MNIST

image classification benchmark, GLO discovered a surprising new loss function,

named Baikal for its shape, that outperforms the standard cross-entropy loss

in terms of training speed, final accuracy, and data requirements.GLO’s highly

flexible representation also provides ample opportunities for extensibility; one

such extension is explored in this chapter.

4.1 Method

The task of finding and optimizing loss functions can be framed as

a functional regression problem. GLO accomplishes this task through two

1The work in this chapter was previously presented at the 2020 IEEE Congress on Evo-
lutionary Computation (CEC) [52]. Risto Miikkulainen provided guidance and feedback
through discussions.

61

×
×

-1

log

xi

yi

}×
×

-1
xi

1
÷

ex

log yi

xi

ex

(1) Loss function discovery genetic algorithm (2) Coefficient optimization via CMA-ES

×
×

-1

log

xi

yi
1

1

1

1

1

1

1 1 11 1 1[]

ℒ = − 1
n

n−1
∑
i=0

xi log(yi) ℒ = − 1
n

n−1
∑
i=0

c1(c2xi * c3 log(c4yi))

1.1 0.8 1.41.2 1 1.2[]

Figure 4.1: Genetic Loss Optimization (GLO) overview. A genetic
algorithm constructs candidate loss functions as trees. The best loss function
from this set then has its coefficients optimized using CMA-ES. GLO loss
functions are able to train models more quickly and more accurately than the
cross-entropy loss.

high-level steps (shown in Figure 4.1): (1) loss function discovery: using

approaches from genetic programming, a genetic algorithm builds new candi-

date loss functions, and (2) coefficient optimization: to further optimize

a specific loss function, a covariance-matrix adaptation evolutionary strategy

(CMA-ES) is leveraged to optimize coefficients. Each of these steps is de-

scribed in detail below.

4.1.1 Loss Function Discovery

GLO uses a population-based search approach, inspired by genetic pro-

gramming, to discover new optimized loss-function candidates. Under this

framework, loss functions are represented as trees within a genetic algorithm—

a standard genetic programming approach. Trees are a logical choice to repre-

62

sent functions due to their hierarchical nature. The loss-function search space

is defined by the following tree nodes:

Unary Operators: log(◦), ◦2,
√
◦

Binary Operators: +, ∗,−,÷

Leaf Nodes: x, y, 1,−1, where x represents a true label, and y represents a

predicted label.

A loss function’s fitness within the genetic algorithm is the validation

performance of a network trained with that loss function. To expedite the

discovery process, and encourage the invention of loss functions that make

learning faster, training does not proceed to convergence. First, a fitness of

0 is automatically assigned to trees that do not contain both at least one x

and one y. Second, unstable training sessions that result in NaN values are

assigned a fitness of 0. Third, fitness values are cached to avoid the need to

retrain the same network twice. These cached values are each associated with

a canonicalized version of their corresponding tree, resulting in fewer required

evaluations.

The initial population is composed of randomly generated trees with

a maximum depth of two. Recursively starting from the root, nodes are ran-

domly chosen from the allowable operator and leaf nodes using a weighting

(where log(◦), x, y are three times as likely and
√
◦ is two times as likely as

+, ∗,−,÷, 1,−1). This weighting can impart a bias and prevent, for example,

63

the integer 1 from occurring too frequently. The genetic algorithm typically

has a population size of 80, incorporates elitism with six elites per generation,

and uses roulette sampling.

As is typical in genetic programming, recombination is accomplished by

randomly splicing two trees together. For a given pair of parent trees, a random

element is chosen in each as a crossover point. The two subtrees, whose roots

are the two crossover points, are then swapped with each other. Figure 4.1

presents an example of this method of recombination. Both resultant trees

become part of the next generation. Recombination occurs with a probability

of 80% for a pair of parent trees.

To introduce variation into the population, the genetic algorithm has

the following mutations, applied in a bottom-up fashion (i.e., deeper tree nodes

are mutated earlier):

• Integer scalar nodes are incremented or decremented with a 5% proba-

bility.

• Nodes are replaced with a weighted-random node with the same number

of children with a 5% probability.

• Nodes (and their children) are deleted and replaced with a weighted-

random leaf node with a 5% ∗ 50% = 2.5% probability.

• Leaf nodes are deleted and replaced with a weighted-random element

(and weighted-random leaf children if necessary) with a 5%∗50% = 2.5%

64

probability.

Mutations, as well as recombination, allow for trees of arbitrary depth to be

evolved. Thus, GLO can discover arbitrarily complex functions as needed.

GLO populations’ individuals do tend to grow in size as evolution progresses,

but this is not an issue in practice.

Combined, the iterative sampling, recombination, and mutation of trees

within the population leads to the discovery of new loss functions which max-

imize fitness.

4.1.2 Coefficient Optimization

Loss functions found by the above genetic algorithm can all be thought

of as having unit coefficients for each node in the tree. This set of coefficients

can be represented as a vector with dimensionality equal to the number of

nodes in a loss function’s tree. The number of coefficients can be reduced by

pruning away coefficients that can be absorbed by others (e.g., 3 (5x+ 2y) =

15x + 6y). In GLO, the coefficient vector is optimized independently and

iteratively using a covariance-matrix adaptation evolutionary strategy (CMA-

ES) [65].

CMA-ES is a popular population-based, black-box optimization tech-

nique for rugged, continuous spaces. CMA-ES functions by maintaining a

covariance matrix around a mean point that represents a distribution of so-

lutions. At each generation, CMA-ES adapts the distribution to better fit

65

evaluated objective values from sampled individuals. In this manner, the area

in the search space which is being sampled at each step dynamically grows,

shrinks, and moves as needed to maximize sampled candidates’ fitnesses.

The specific variant of CMA-ES that GLO uses is (µ/µ, λ)-CMA-ES

[66], which incorporates weighted rank-µ updates [64] to reduce the number of

objective function evaluations needed. The implementation of GLO presented

in this chapter uses an initial step size σ = 1.5. As in the discovery phase, the

objective function is the network’s performance on a validation dataset after

a shortened training period.

4.1.3 Experiments

Since Lossferatu (described in Section 3.3) had not yet been developed

and candidate evaluation was a relatively fast process, GLO was implemented

in a bespoke system whereby training was distributed across the network to a

cluster of dedicated machines, using HTCondor [170] for scheduling. Each ma-

chine in this cluster had one NVIDIA GeForce GTX Titan Black GPU and two

quad-core Intel Xeon E5-2603 CPUs running at a base frequency of 1.80GHz

with 8GB of memory. Training itself wass implemented with TensorFlow [7]

in Python. The primary components of GLO (i.e., the genetic algorithm and

CMA-ES) were implemented in Swift. These components run centrally on one

machine and asynchronously dispatch work to the Condor cluster over SSH.

The SwiftCMA [49] and SwiftGenetics [50] were developed and open-sourced

as part of this implementation.

66

GLO experiments were run on the basic CNN architecture described

in Section 3.2.1, with the MNIST image classification benchmark dataset.

Such experiments were run for up to 100 generations, and stopped when

they qualitatively appeared to have converged, i.e. subsequent generations’

top-candidate performance plateaued. Models in candidate evaluations were

trained for 2,000 steps (i.e., 10% of full training duration).

4.2 Discovering Baikal

The best loss function that was discovered by a run of GLO with the

MNIST dataset is a novel function, the Baikal loss, named for its similarity

to the bathymetry of Lake Baikal when plotted (Section 4.3). Compared to

the cross-entropy loss, Baikal trained models more quickly while converging

to higher accuracies. Additionally, Baikal performs better than cross-entropy

when using few training samples. Baikal’s advantages also transfer to more

complex datasets, as will be shown below.

Baikal is defined as

LBaikal = − 1

n

n∑
i=0

log(yi)−
xi
yi
, (4.1)

where x is a sample from the true distribution, y is a sample from the predicted

distribution, and n is the number of classes. Baikal was discovered from a single

run of GLO. Additionally, after coefficient optimization, GLO arrived at the

following version of the Baikal loss:.

LBaikalCMA = − 1

n

n∑
i=0

c0

(
c1 ∗ log(c2 ∗ yi)− c3

c4 ∗ xi
c5 ∗ yi

)
, (4.2)

67

Data

Test Accuracy Log Loss Baikal BaikalCMA

0.9898 0.9941 0.9945

0.9898 0.9937 0.9941

0.9902 0.9925 0.9949

0.9894 0.9932 0.995

0.9895 0.9935 0.9952

0.9905 0.9924 0.9956

0.9902 0.9937 0.9944

0.9896 0.9934 0.9944

0.9898 0.993 0.9944

0.9899 0.9935 0.9944

Mean Test Accuracy 0.9899 0.9933 0.9947

Standard Deviation 0.0003 0.0005 0.0005

T-Test Baikal vs Log
Loss

2-Tailed 1-Tailed

Paired 0.000000185917 0.000000092958

Homoscedastic 0.000000000002 0.000000000001

Heteroscedastic 0.000000000024 0.000000000012

0.9800

0.9850

0.9900

0.9950

1.0000

Log Loss Baikal

Mean Test Accuracy

p = 0.000

M
ea

n
Te

st
 A

cc
ur

ac
y

0.9800

0.9850

0.9900

0.9950

1.0000

Log Loss Baikal BaikalCMA

*** ***

T-Test BaikalCMA vs
Baikal

2-Tailed 1-Tailed

Paired

Homoscedastic

Heteroscedastic 0.000008504450

�2

Figure 4.2: Mean testing accuracy on the MNIST image classifica-
tion benchmark, from ten independent runs each for cross-entropy,
Baikal, and BaikalCMA loss functions. Both Baikal and BaikalCMA
loss functions provide statistically significant improvements to testing accu-
racy over the cross-entropy loss.

where c0 = 2.7279, c1 = 0.9863, c2 = 1.5352, c3 = −1.1135, c4 = 1.3716, c5 =

−0.8411.

This loss function, BaikalCMA, was selected from the ninth generation

of a 35 generation run of CMA-ES for having the highest validation accuracy

out of the population. The Baikal and BaikalCMA loss functions had valida-

tion accuracies at 2, 000 steps equal to 0.9838 and 0.9902, respectively. For

comparison, at 2, 000 steps, the cross-entropy loss had a validation accuracy

of 0.9700. Models trained with the Baikal loss on MNIST and CIFAR-10 (to

test transfer) are the primary vehicle for validating GLO’s efficacy, as detailed

in subsequent sections.

Figure 4.2 shows the increase in testing accuracy that Baikal and BaikalCMA

provide on MNIST over models trained with the cross-entropy loss. Over 10

trained models each, the mean testing accuracies for cross-entropy loss, Baikal,

68

Te
st

in
g

Ac
cu

ra
cy

0.8500

0.8875

0.9250

0.9625

1.0000

Training Step

250 3000 5750 8500 11250 14000 16750 19500

Log Loss
Baikal Loss
BaikalCMA Loss

Figure 4.3: Training curves for different loss functions on MNIST.
Baikal and BaikalCMA result in faster and smoother training compared to the
cross-entropy loss.

and BaikalCMA were 0.9899, 0.9933, and 0.9947, respectively. This increase

is statistically significant, with a p-value of 2.4× 10−11, in a Welch’s t-Test as

described in Section 3.4, with 10 samples from each distribution. With the

same significance test, the increase in accuracy from BaikalCMA over Baikal is

statistically significant as well, with a p-value of 8.5045×10−6. Therefore, loss-

function metalearning with GLO is shown to be an effective way to increase

model performance, with both evolution phases contributing.

Training curves for networks trained with the cross-entropy loss, Baikal,

and BaikalCMA are shown in Figure 4.3. Each curve represents 80 testing

dataset evaluations spread evenly (i.e., every 250 steps) throughout 20,000

steps of training on MNIST. Networks trained with Baikal and BaikalCMA

both learn significantly faster than the cross-entropy loss. These phenomena

make Baikal a compelling loss function for fixed time-budget training, where

the improvement in resultant accuracy over the cross-entropy loss becomes

69

1.0 0.5 0.2 0.1 0.02 0.005

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Training Dataset Portion

T
es
tin
g
A
cc
ur
ac
y

Log Loss

Baikal Loss

BaikalCMA Loss

Figure 4.4: Sensitivity to different dataset sizes for different loss func-
tions on MNIST. For each size, five experiments were run. Standard devia-
tions are presented as error bands Baikal and BaikalCMA increasingly outper-
form the cross-entropy loss on small datasets, providing evidence of reduced
overfitting.

most evident.

4.2.1 Training Data Requirements

Figure 4.4 provides an overview of the effects of dataset size on net-

works trained with cross-entropy loss, Baikal, and BaikalCMA. For each train-

ing dataset portion size, five individual networks were trained for each loss

function. On the 0.05 dataset portion (i.e., the smallest, with only 2, 750

training samples), the cross-entropy loss frequently exhibited numerical insta-

bility. Thus, these specific experiments had to be run many times to yield five

fully-trained networks. Notably, Baiikal and BaikalCMA did not yield unsta-

ble training runs and no other dataset portions exhibited instability with the

cross-entropy loss. As in previous experiments, MNIST networks were trained

for 20,000 steps.

70

The degree by which Baikal and BaikalCMA outperform cross-entropy

loss increases as the training dataset becomes smaller. This observation pro-

vides evidence that networks overfit less when they are trained with Baikal or

BaikalCMA. As expected, BaikalCMA outperforms Baikal at all tested dataset

sizes. The size of this improvement in accuracy does not grow as significantly

as the improvement over cross-entropy loss, leading to the belief that the data

fitting characteristics of Baikal and BaikalCMA are similar.

Overall, these reduced data requirements allow small datasets to be

used more effectively. This finding has practical ramifications, as not many

datasets found in the world are large. Going forward, custom loss functions

could be evolved to target these small datasets specifically.

4.2.2 Loss Function Transfer to CIFAR-10

Figure 4.5 presents a collection of 18 separate tests of the cross-entropy

loss and Baikal applied to CIFAR-10. Baikal is found to outperform cross-

entropy across all training durations, with the difference being more prominent

in early training. These results present an interesting use case for GLO, where

a loss function that is found on a simpler dataset can be transferred to a more

complex dataset while still maintaining performance improvements. In effect,

Baikal allows for faster training, which supports that GLO loss functions could

be particularly useful in fixed time-budget scenarios.

71

Figure 4.5: Testing accuracy across varying training steps on the
CIFAR-10 image classification benchmark. The Baikal loss, which has
been transferred from MNIST, outperforms the cross-entropy loss on all train-
ing durations. This effect is more pronounced early in training, suggesting
that Baikal results in faster training.

4.3 What makes Baikal work?

This section presents a conceptual analysis of the Baikal loss function,

followed by experiments to elucidate why Baikal works better than the cross-

entropy loss. The conclusion is that Baikal results in implicit regularization,

reducing overfitting.

Loss functions used on the MNIST dataset, a 10-dimensional classifica-

tion problem, are difficult to plot and visualize graphically. To simplify, they

are analyzed in this section in the context of binary classification, with n = 2,

the Baikal loss expands to

LBaikal2D = −1

2

(
log(y0)− x0

y0

+ log(y1)− x1

y1

)
. (4.3)

Since vectors x and y sum to 1, by consequence of being passed through a soft-

max function, for binary classification x = 〈x0, 1− x0〉 and y = 〈y0, 1− y0〉.

72

Figure 4.6: Binary classification loss functions plotted at x0 = 1. Cor-
rect predictions lie on the right side of the graph, and incorrect ones on the left.
The log loss decreases monotonically, while Baikal and BaikalCMA present
counterintuitive, sharp increases in loss as predictions approach the true label.
This phenomenon provides regularization by preventing the model from being
too confident in its predictions.

This constraint simplifies the binary Baikal loss to a function of two variables

(x0 and y0),

LBaikal2D ∝ − log(y0) +
x0

y0

− log(1− y0) +
1− x0

1− y0

. (4.4)

This same methodology can be applied to the cross-entropy loss and BaikalCMA,

and plotted in Figure 4.6.

In practice, true labels are assumed to be correct with certainty, thus,

x0 is equal to either 0 or 1. Figure 4.6 shows the specific case where x0 =

1. The cross-entropy loss is monotonically decreasing, while the Baikal and

BaikalCMA loss functions counterintuitively show an increase in loss as the

predicted label, y0, approaches the true label x0. This unexpected increase

allows the loss functions to prevent the model from becoming too confident in

73

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Log Loss Network Output Probabilities

Q
ua
nt
ity

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

BaikalCMA Network Output Probabilities

Q
ua
nt
ity

Figure 4.7: Outputs of networks trained with cross-entropy loss and
BaikalCMA. With BaikalCMA, the peaks are shifted away from extreme
values and are more spread out, indicating implicit regularization. The
BaikalCMA histogram matches that from a network trained with a confidence
regularizer [133], supporting the hypothesis that GLO can discover loss func-
tions that bias training in such a way that results in regularization.

its output predictions, thus providing a form of regularization.

The Baikal and BaikalCMA loss functions are surprising in that they

incur a high loss when the output is very close to the correct value (as illus-

trated in Figure 4.6). Although at first glance this behavior is counterintuitive,

it may provide an important advantage. The outputs of a trained network will

not be exactly correct, although they are close, and therefore the network is

less likely to overfit. Thus, these loss functions provide an implicit form of

regularization, enabling better generalization.

This effect is similar to that of the confidence regularizer [133], which

penalizes low-entropy prediction distributions. The bimodal distribution of

outputs that results from confidence regularization is nearly identical to that

of a network trained with BaikalCMA. Note that while these outputs are

74

typically referred to as probabilities in the literature, this is often an innacurate

interpretation [45], i.e. a model can produce highly-uncertain predictions while

having scaled target logits with values close to 1.

Histograms of these distributions on the test dataset for cross-entropy

and BaikalCMA networks, after 15,000 steps of training on MNIST, are shown

in Figure 4.7. The abscissae in Figures 4.6 and 4.7 match, making it clear how

the distribution for BaikalCMA has shifted away from extreme values. The

improved behavior under small-dataset conditions described in Section 4.2.1

provides further evidence for implicit regularization; less overfitting was ob-

served when using Baikal and BaikalCMA compared to the cross-entropy loss.

As also seen in Figure 4.6, the minimum for the Baikal loss lies near

y0 = 0.71, while the minimum for the BaikalCMA loss lies near y0 = 0.77. This

minimum, along with the more pronounced slope around x0 = 0.5, is likely

a reason why BaikalCMA performs better than Baikal. The greater slope

over a wider domain of the function implies that there are larger gradients

over a wider domain as well, a property which can lead to faster training. The

different minima can be thought of as a tuning of the point at which prediction

confidence is penalized.

As was detailed in Section 3.2.1, MNIST networks were trained with

dropout [75], and CIFAR-10 networks with L2 weight decay and local response

normalization [95]. Yet Baikal was able to improve performance further. Thus,

the implicit regularization provided by Baikal and BaikalCMA complements

the different types of regularization already present in the trained networks

75

and they can be combined to achieve an increased effect.

4.4 Expanded Search Space

The search space for GLO can be extended to include a network’s un-

scaled logits (i.e., the output of a classification neural network before the

softmax layer) as a potential leaf node. The addition of unscaled logits ex-

tends the base implementation of GLO to support loss functions that take

three variables, rather than two (i.e., ground-truth labels and scaled logits).

Conceptually, the availability of more information should allow training to pro-

ceed in a more intelligent manner. Unscaled logits in particular can provide

information on the network’s raw, unnormalized outputs.

When running GLO with this expanded search space on MNIST, a new

loss function, referred to as the FastLogit loss was discovered:

LFastLogit = − 1

n

n∑
i=0

(ỹi − xi) ∗
(
xi
yi
− (ỹi − (−2))

)
, (4.5)

where ỹ are the network’s unscaled logits. Notably, this loss function is more

complex than Baikal or the log loss, showing how evolution can take advantage

of expanded search spaces.

True to its name, the FastLogit loss is able to learn more quickly than

Baikal, while converging to a comparable accuracy (shown in Figure 4.8).

This improvement over Baikal provides support for having search spaces that

include more types of data.

76

Te
st

in
g

Ac
cu

ra
cy

0.9500

0.9625

0.9750

0.9875

1.0000

Training Step

250 3000 5750 8500 11250 14000 16750 19500

Baikal Loss
Fast Logit Loss

Figure 4.8: Training curves for the FastLogit and Baikal loss functions
on MNIST. FastLogit results in faster training compared to Baikal, with a
comparable final accuracy.

4.5 Discussion

This chapter developed a first approach to loss function metalearning by

introducing an evolutionary computation approach to it. GLO was evaluated

experimentally on image classification domains, and discovered a surprising

new loss function, Baikal. Experiments showed substantial improvements in

accuracy, convergence speed, and data requirements when using Baikal. Fur-

ther analysis suggested that these improvements result from implicit regular-

ization that reduces overfitting to the data. This regularization complements

the existing regularization in trained networks. The reasons for this regular-

ization effect’s existence, and its specific behavior, are covered in more detail

in Chapter 6.

GLOs tree-based representation provides a unique amount of flexibility

that can represent any function given a set of operators and tokens. This was

leveraged by incorporating a new input into the loss-function search space:

77

unscaled logits. With this expanded search space, GLO discovered the Fast-

Logit loss function. This loss function was able to learn more quickly than the

Baikal loss function, while converging to a comparable level of performance.

Expanding this search space further, in the future, it may be advanta-

geous to include preexisting regularization terms, such as an L2 weight decay

term, as optional leaf nodes. An alternative embodiment to this idea may be to

forgo including regularization terms in GLO trees, and instead include them

by default, with a coefficient of 0, in all loss functions, letting their impor-

tance be determined during the coefficient optimization step. Forgoing more

freeform optimization of regularization terms as tree nodes would reduce the

difficulties associated with larger search spaces in evolution.

While the flexibility that tree-based representations provide makes it

possible to discover of unique loss functions, unbridled flexibility may be too

much in practice, for the majority of use cases. GLO operates on a space

where exploration is very favored, and exploitation is difficult; there is a lot of

serendipity involved in the search process. The majority of loss-function can-

didates, particularly in early generations, have degenerate characteristics and

are not even able to train neural networks. Furthermore, individual mutations

on the tree tend to have a large impact on the function (e.g., swapping a mul-

tiplication node with a division node), making the fitness landscape rugged.

To accommodate these deleterious properties, large populations and many

generations are required for evolution to function. In a world where there are

tangible costs associated with evaluating several thousands of neural networks,

78

applying GLO to more sophisticated models may be out of reach.

This excess flexibility is further complicated by GLO’s two-phase ap-

proach to discovering and optimizing loss functions. An optimal loss function

with coefficients may not necessarily be a good loss function if those coeffi-

cients are set to unit values. More concisely: the structural evolution and

coefficient evolution steps may clash, and thus certain loss functions will re-

main out-of-reach to GLO.

A thoughtfully designed representation, with a smoother fitness land-

scape, and where efficacious loss functions are less sparsely scattered in the

search space, can more easily and expeditiously guide evolution towards good

candidates. This is the topic of the next chapter.

4.6 Conclusion

This chapter proposed Genetic Loss-function Optimization (GLO) as

a general framework for discovering and optimizing loss functions for a given

task. A surprising new loss function, Baikal, was discovered in the experiments,

and shown to outperform the cross-entropy loss on MNIST and CIFAR-10 in

terms of accuracy, training speed, and data requirements. Further analysis

suggested that Baikal’s improvements result from implicit regularization that

reduces overfitting to the data. While GLO’s search space provides immense

flexibility, perhaps a more refined search space and a single-phase search can

result in a more computationally efficient, practical technique. Such a tech-

nique, TaylorGLO, is presented in the next chapter.

79

Chapter 5

TaylorGLO

In Chapter 4, loss-function discovery and optimization were tackled

as a new type of metalearning with the development of Genetic Loss-function

Optimization (GLO). Focusing on a neural network’s root training goal, it aims

to discover better ways to define what is being optimized. However, these loss

functions can be challenging to optimize because they have a discrete nested

structure as well as continuous coefficients. In an ideal case, loss functions

would be mapped into arbitrarily long, fixed-length vectors in a Hilbert space.

This mapping should be smooth, well-behaved, well-defined, incorporate both

a function’s structure and coefficients, and should by its very nature exclude

large classes of infeasible loss functions.

This chapter introduces such an approach: Multivariate Taylor expansion-

based genetic loss-function optimization (TaylorGLO). Loss functions discov-

ered by TaylorGLO outperform the standard cross-entropy loss (or log loss),

as well as the Baikal loss discovered by the original GLO technique, on a vari-

ety of datasets with several different network architectures. TaylorGLO thus

further establishes loss-function optimization as a promising new direction for

metalearning.

80

5.1 Multivariate Taylor Expansions

Taylor expansions [169] are a well-known function approximator that

can represent differentiable functions within the neighborhood of a point using

a polynomial series. Below, the common univariate Taylor expansion formula-

tion is presented, followed by a natural extension to the multivariate case, i.e.

to arbitrarily-multivariate functions. Multivariate Taylor expansions provide

the basis for TaylorGLO’s loss function parameterization.

Consider a given real-valued function f(x) : R → R that is Ckmax

smooth (i.e., first through kmax derivatives are continuous). A kth-order Taylor

approximation for this function, f(x), at point a ∈ R, f̂k(x, a), where 0 ≤ k ≤

kmax, can be constructed as

f̂k(x, a) =
k∑

n=0

1

n!
f (n)(a)(x− a)n. (5.1)

Conventional, univariate Taylor expansions have a natural extension to ar-

bitrarily high-dimensional inputs of f . Given a Ckmax+1 smooth, real-valued

function f(x) : Rn → R, a kth-order Taylor approximation at point a ∈ Rn,

f̂k(x, a), where 0 ≤ k ≤ kmax, can be constructed analogous to Equation 5.1.

The stricter smoothness constraint compared to the univariate case allows for

the application of Schwarz’s theorem on equality of mixed partials, obviating

the need to take the order of partial differentiation into account.

More specirically, let an nth-degree multi-index, α = (α1, α2, . . . , αn)

be defined, where αi ∈ N0, |α| =
∑n

i=1 αi, α! =
∏n

i=1 αi!. xα =
∏n

i=1 x
αi
i , and

x ∈ Rn. Multivariate partial derivatives can be concisely written using the

81

multi-index as

∂αf = ∂α1
1 ∂α2

2 · · · ∂αnn f =
∂|α|

∂xα1
1 ∂x

α2
2 · · · ∂xαnn

. (5.2)

Thus, discounting the remainder term, the multivariate Taylor expansion for

f(x) at a is

f̂k(x, a) =
∑
∀α,|α|≤k

1

α!
∂αf(a)(x− a)α. (5.3)

The unique partial derivatives in f̂k and a are parameters for a kth order

Taylor expansion. Thus, a kth order Taylor expansion of a function in n

variables requires n parameters to define the center, a, and one parameter for

each unique multi-index α, where |α| ≤ k. That is,

#parameters(n, k) = n+

(
n+ k

k

)
= n+

(n+ k)!

n! k!
. (5.4)

The multivariate Taylor expansion can be leveraged for a novel loss-

function parameterization. It enables TaylorGLO, a way to efficiently optimize

loss functions, as will be described in subsequent sections.

5.2 Loss Functions as Multivariate Taylor Expansions

Let an n-class classification loss function be defined as:

Lf (x,y) = − 1

n

n∑
i=1

f(xi, yi). (5.5)

The function f(xi, yi) can be replaced by its kth-order, bivariate Taylor ex-

pansion, f̂k(x, y, ax, ay). More sophisticated loss functions can be supported

82

by having more input variables, beyond xi and yi, such as a time variable

or unscaled logits. This approach can be useful, for example, to evolve loss

functions that change as training progresses.

For example, a loss function in x and y has the following 3rd-order

parameterization with parameters θ (where a = 〈θ0, θ1〉):

L(x,y) = − 1

n

n∑
i=1

[
θ2 + θ3(yi − θ1) + 1

2
θ4(yi − θ1)2 + 1

6
θ5(yi − θ1)3

+θ6(xi − θ0) + θ7(xi − θ0)(yi − θ1) + 1
2
θ8(xi − θ0)(yi − θ1)2 + 1

2
θ9(xi − θ0)2

+1
2
θ10(xi − θ0)2(yi − θ1) + 1

6
θ11(xi − θ0)3

]
(5.6)

Notably, the reciprocal-factorial coefficients can be integrated to be a part of

the parameter set by direct multiplication if desired.

As will be shown in this chapter, the representation technique makes

it possible to train neural networks that are more accurate and learn faster,

than those with tree-based loss function representations. This result is due to

several useful properties of this Taylor expansion approach:

• It guarantees smooth functions;

• Functions do not have poles (i.e., discontinuities going to infinity or

negative infinity) within their relevant domain;

• It can be implemented purely as compositions of addition and multipli-

cation operations;

• It can be trivially differentiated;

83

• Nearby points in the search space yield similar results (i.e., the search

space is locally smooth), making the fitness landscape easier to search;

• Valid loss functions can be found in fewer generations and with higher

frequency, allowing for smaller population sizes to be used;

• Loss function discovery is consistent and not dependent on a specific

initial population; and

• The search space has a tunable complexity parameter, i.e. the order of

the expansion.

These properties are not necessarily held by alternative function ap-

proximators. For instance:

Fourier series are well suited for approximating periodic functions [41]. There-

fore, they are not as well suited for loss functions, whose local behavior

within a narrow domain is important. Being a composition of waves,

Fourier series tend to have many critical points within the domain of in-

terest. Gradients fluctuate around such points, making gradient descent

infeasible. Additionally, close approximations require a large number

of terms, which in itself can be injurious, causing large, high-frequency

fluctuations known as “ringing”, due to Gibb’s phenomenon [190].

Padé approximants can be more accurate approximations than Taylor ex-

pansions; indeed, Taylor expansions are thus a special case with M = 0

84

[58]. However, unfortunately Padé approximants can model functions

with one or more poles, which valid loss functions typically should not

have. These problems still exist, and are exacerbated, for Chisholm ap-

proximants [28] (a bivariate extension of Padé approximants) and Can-

terbury approximants [59] (a multivariate generalization of Padé approx-

imants).

Laurent polynomials can represent functions with discontinuities, the sim-

plest being x−1. While Laurent polynomials provide a generalization of

Taylor expansions into negative exponents, the extension is not useful

because it leads to the same issues as Padé approximants.

Polyharmonic splines seem like an excellent fit since they can represent

continuous functions within a finite domain. However, the number of

parameters is prohibitive in the multivariate case.

Lagrange polynomials interpolate between a set of control points using a

weighted sum of basis polynomials [188]. While Runge’s phenomenon

[144] is minimized and a number of parameters can be elimited by re-

stricting control points to Chebyshev nodes (i.e., the roots of Chebyshev

polynomials [25]), the number of parameters may still be prohibitive in

the multivariate case, as with polyharmonic splines, and additionally

requires a discrete selection of Chebyshev nodes.

The multivariate Taylor expansion is therefore a better choice than

85

the alternatives. It makes it possible to optimize loss functions efficiently in

TaylorGLO, as will be described next.

5.3 The TaylorGLO Approach

Candidate Evaluation0 0 00 0 0[]0 0

Build TaylorGLO
Loss FunctionCMA-ES

Mean Vector
Covariance

Matrix
Sampler

Partial Model
Training

(Few Epochs)

ℒ = − 1
n

n

∑
i=1

f(xi, yi)

1.1 0.8 1.41.2 1 1.2[]1.4 0.8

Build TaylorGLO
Loss Function

Initial Solution Mean Vector

Best Solution Validation Set
Evaluation

Figure 5.1: The TaylorGLO approach. Loss functions are represented
as vectors that encode parameters to the TaylorGLO loss function parame-
terization. Starting with an initial unbiased mean solution, CMA-ES itera-
tively maximizes the validation accuracy—or any other non-differentiable fit-
ness metric—that results from training with TaylorGLO loss function candi-
dates. CMA-ES maintains a mean vector and corresponding covariance matrix
which are used to sample candidates at each generation. The candidate with
the highest fitness is chosen as the final, best solution from TaylorGLO.

TaylorGLO (Figure 5.1) aims to find the optimal parameters for a loss

function parameterized as a multivariate Taylor expansion, as described in

86

Section 5.2. The parameters for a Taylor approximation (i.e., the center point

and partial derivatives) are referred to as θf̂ , where θf̂ ∈ Θ, Θ = R#parameters .

TaylorGLO strives to find the vector θ∗
f̂
∈ Θ that parameterizes the optimal

loss function for a task. Because the values are continuous, as opposed to dis-

crete graphs of the original GLO, it is possible to use continuous optimization

methods, such as CMA-ES.

Like in GLO, the specific variant of CMA-ES that TaylorGLO uses is

(µ/µ, λ)-CMA-ES [66], which incorporates weighted rank-µ updates [64] to

reduce the number of objective function evaluations that are needed.

In contrast with GLO, in TaylorGLO, CMA-ES is used to find θ∗
f̂
. At

each generation, CMA-ES samples points in Θ whose fitness is determined; this

fitness evaluation is accomplished by training a model with the corresponding

loss function and evaluating the model on a validation dataset. Fitness eval-

uations may be distributed across multiple machines in parallel and retried a

limited number of times upon failure (e.g., exploding gradients). An initial

vector of θf̂ = 0 is chosen as a starting point in the search space to avoid bias.

Note that fully training a model can prove to be prohibitively expensive

in many problems. Fundamentally, there is a positive correlation between

performance near the beginning of training and at the end of training. In

order to identify the most promising candidates, it is enough to train the

models only partially. This type of approximate evaluation is widely done in

the field of evolutionary computation [60, 87]. An additional positive effect is

that evaluation then favors loss functions that learn more quickly.

87

For a loss function to be useful, it must have a derivative that de-

pends on the prediction. Therefore, internal terms that do not contribute to

∂
∂y
Lf (x,y) can be trimmed away. This property implies that any term t within

f(xi, yi), where ∂
∂yi
t = 0, can be replaced with 0.

For example, this refinement simplifies Equation 5.6, providing a re-

duction in the number of parameters from twelve to eight:

L(x,y) = − 1

n

n∑
i=1

[
θ2(yi − θ1) + 1

2
θ3(yi − θ1)2 + 1

6
θ4(yi − θ1)3

+θ5(xi − θ0)(yi − θ1) + 1
2
θ6(xi − θ0)(yi − θ1)2 + 1

2
θ7(xi − θ0)2(yi − θ1)

]
.

(5.7)

Loss functions of this form are evolved with TaylorGLO and evaluated

in the following section.

5.4 Performance Experiments

This section illustrates the TaylorGLO process and demonstrates how

the evolved loss functions can improve performance over the standard cross-

entropy loss function, especially on reduced datasets. A summary of results

on four datasets across a variety of models is shown in Table 5.1.

5.4.1 The TaylorGLO Discovery Process

Figure 5.2 illustrates the evolution process over 60 generations, which

is sufficient to reach convergence on the MNIST dataset. TaylorGLO is able

to discover high-performing loss functions quickly, i.e. within 20 generations.

88

Table 5.1: Test-set accuracy of loss functions discovered by Taylor-
GLO compared with that of the cross-entropy loss. The TaylorGLO
results are based on the loss function with the highest validation accuracy
during evolution. All averages are from ten separately trained models and
p-values are from one-tailed Welch’s t-Tests. Standard deviations are shown
in parentheses. TaylorGLO discovers loss functions that perform significantly
better than the cross-entropy loss in almost all cases, including those that
use Cutout. This suggests that it provides a different form of regularization.
Accuracies are indicated in bold if statistically significantly higher.

Task and Model TaylorGLO Acc. Baseline Acc. p-value

MNIST
Basic CNN 0.9951 (0.0005) 0.9899 (0.0003) 2.95×10−15

CIFAR-10
AlexNet 0.7901 (0.0026) 0.7638 (0.0046) 1.76×10−10

AlexNet + Cutout 0.7786 (0.0022) 0.7741 (0.0040) 0.0049
AlexNet + CutMix 0.7928 (0.0027) 0.7856 (0.0026) 8.13×10−6

ResNet-20 0.9136 (0.0029) 0.9146 (0.0019) 0.2021
Pre ResNet-20 0.9169 (0.0014) 0.9153 (0.0021) 0.0400
AllCNN-C 0.9271 (0.0013) 0.8965 (0.0021) 0.42×10−17

AllCNN-C + Cutout 0.9329 (0.0022) 0.8911 (0.0037) 1.60×10−14

AllCNN-C + CutMix 0.9327 (0.0014) 0.8749 (0.0042) 1.89×10−13

Wide ResNet 16-8 0.9558 (0.0011) 0.9528 (0.0012) 1.77×10−5

Wide ResNet 16-8 + Cutout 0.9618 (0.0010) 0.9582 (0.0011) 2.55×10−7

Wide ResNet 28-5 0.9548 (0.0015) 0.9556 (0.0011) 0.0984
Wide ResNet 28-5 + Cutout 0.9621 (0.0013) 0.9616 (0.0011) 0.1882

CIFAR-100
PyramidNet 110a48 0.7409 (0.0040) 0.7523 (0.0037) 3.87×10−6

PyramidNet 110a48 + Cutout 0.7708 (0.0029) 0.7674 (0.0036) 0.0189

SVHN
Wide ResNet 16-8 0.9658 (0.0007) 0.9597 (0.0006) 1.94×10−13

Wide ResNet 16-8 + Cutout 0.9714 (0.0010) 0.9673 (0.0008) 9.10×10−9

Wide ResNet 28-5 0.9657 (0.0009) 0.9634 (0.0006) 6.62×10−6

Wide ResNet 28-5 + Cutout 0.9727 (0.0006) 0.9709 (0.0006) 2.96×10−6

89

New Best

All-Time Best

Generation Best

Generation Average

0 10 20 30 40 50 60
0.2

0.4

0.6

0.8

0.99

0.995

1

Generation

2
k-
st
ep
V
al
id
at
io
n
A
cc
ur
ac
y

Figure 5.2: The process of TaylorGLO discovering loss functions in
MNIST. Red dots mark generations where new improved loss functions were
found. TaylorGLO discovers good functions in very few generations. The best
function had a 2000-step validation accuracy of 0.9948, compared to 0.9903
with the cross-entropy loss, averaged over ten runs. This difference translates
to a similar improvement on the test set, as shown in Table 5.1.

Generations’ average validation accuracy approaches generations’ best accu-

racy as evolution progresses, indicating that the population as a whole is im-

proving. Whereas GLO’s unbounded search space often results in pathological

functions, every TaylorGLO training session completed successfully without

any instabilities.

Figure 5.3 shows the shapes and parameters of each generation’s highest-

scoring loss function. In Figure 5.3a the functions are plotted as if they were

being used for binary classification, i.e. the loss for an incorrect label on the

left and for a correct one on the right (as detailed in Section 4.3). The func-

tions have a distinct pattern through the evolution process. Early generations

include a wide variety of shapes, which later converge towards curves with a

90

shallow minimum around y0 = 0.8. In other words, the loss increases near

the correct output—as it was with the Baikal loss function. Like Baikal, this

shape is strikingly different from the cross-entropy loss, which decreases mono-

tonically from left to right, as one might expect all loss functions to do. The

evolved shape is effective most likely for the same reason as Baikal. It provides

an implicit regularization effect: It discourages the model from outputting un-

necessarily extreme values for the correct class, and therefore makes overfitting

less likely. This finding again demonstrates the power of machine learning to

create innovations beyond human design.

5.4.2 Comparison to GLO

Over 10 fully-trained models, the best TaylorGLO loss function achieved

a mean testing accuracy of 0.9951 (stddev 0.0005) in MNIST. In comparison,

the cross-entropy loss only reached 0.9899 (stddev 0.0003), and the BaikalCMA

loss function discovered by GLO, 0.9947 (stddev 0.0003); both differences are

statistically significant (Figure 5.4). Notably, TaylorGLO achieved this result

with significantly fewer generations and smaller populations. GLO required

11,120 partial evaluations (i.e., 100 individuals over 100 GP generations plus

32 individuals over 35 CMA-ES generations), while the top TaylorGLO loss

function only required 448 partial evaluations, i.e. 4.03% as many. Thus, Tay-

lorGLO achieves improved results with significantly fewer evaluations than

GLO.

91

(a) Best discovered functions over time

0 20 40 60

-10

-5

0

5

10

15

Generation
P
ar
am
et
er
V
al
ue

θ2

θ3

θ4

θ5

θ6

θ7

θ0

θ1

(b) Best function parameters over time

Figure 5.3: The best loss functions (a) and their respective parameters
(b) from each generation of TaylorGLO on MNIST. The functions are
plotted in a binary classification modality, showing loss for different values of
the network output (y0 in the horizontal axis) when the correct label is 1.0.
The functions are colored according to their generation from blue to red, and
vertically shifted such that their loss at y0 = 1 is zero (the raw value of a
loss function is not relevant; the derivative, however, is). TaylorGLO explores
varying shapes of solutions before narrowing down on functions in the red
band. This process can also be seen in (b), where parameters become more
consistent over time, and in the population plot shown in Figure 5.2, where
fitness plateaus. The final functions decrease from left to right, but have
a significant increase in the end. This shape is likely to prevent overfitting
during learning, which leads to the observed improved accuracy.

92

(a) Accuracy (b) Evaluations

Figure 5.4: (a) Mean test accuracy across ten runs on MNIST. The TaylorGLO
loss function with the highest validation score significantly outperforms the
cross-entropy loss (p = 2.95 × 10−15 in a one-tailed Welch’s t-test) and the
BaikalCMA loss [53] (p = 0.0313). (b) Required partial training evaluations for
GLO and TaylorGLO on MNIST. The TaylorGLO loss function was discovered
with 4% of the evaluations that GLO required to discover BaikalCMA.

1.0 0.5 0.2 0.1 0.02 0.005

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Training Dataset Portion

T
es
tin
g
A
cc
ur
ac
y

Cross-Entropy

TaylorGLO

Figure 5.5: Accuracy with reduced portions of the MNIST dataset. Progres-
sively smaller portions of the dataset were used to train the models (averaging
over ten runs). The TaylorGLO loss function provides significantly better
performance than the cross-entropy loss on all training dataset sizes, and par-
ticularly on the smaller datasets. Thus, its ability to discourage overfitting is
particularly useful in applications where only limited data is available.

93

5.4.3 Performance on Reduced Datasets

The performance improvements that TaylorGLO provides are especially

pronounced with reduced datasets. For example, Figure 5.5 compares accu-

racies of models trained for 20,000 steps on different portions of the MNIST

dataset (similar results were obtained with other datasets and architectures).

Overall, TaylorGLO significantly outperforms the cross-entropy loss. When

evolving a TaylorGLO loss function and training against 10% of the training

dataset, with 225 epoch evaluations, TaylorGLO reached an average accuracy

across ten models of 0.7595 (stddev 0.0062). In contrast, only four out of

ten cross-entropy loss models trained successfully, with those reaching a lower

average accuracy of 0.6521. Thus, customized loss functions can be especially

useful in applications where only limited data is available to train the mod-

els, presumably because they are less likely to overfit to the small number of

examples.

5.4.4 Results on Deep Networks

Such a large reduction in evaluations during evolution over GLO allows

TaylorGLO to tackle harder problems, including models that have millions

of parameters. On the CIFAR-10, CIFAR-100, and SVHN datasets, Taylor-

GLO was able to outperform cross-entropy baselines consistently on a variety

models, as shown in Table 5.1. These increases in accuracy are greater than

what is possible through implicit learning rate adjustment alone (detailed in

Section 5.4.5). TaylorGLO also provides further improvement on architectures

94

that use Cutout [35] or CutMix [197].

The models vary in structure, regularization techniques, and trainable

parameter counts. For example, the AllCNN-C model has a basic, sequential

layer structure and dropout regularization, while PyramidNet models have a

branching structure with skip connections and batch normalization. Notably,

these architectures were all manually designed and tuned against the cross-

entropy loss. It is conceivable that small architectural modifications that are

deleterious when training with the cross-entropy loss may be beneficial with

TaylorGLO loss functions. This opens the door to the discovery of combina-

tions of new architectures and loss functions that mutually benefit each other

in the future.

It is also interesting that TaylorGLO improves upon architectures with

several different regularization techniques already implemented. This result

suggests that TaylorGLO’s mechanism of avoiding overfitting is different from

other regularization techniques. Thus, TaylorGLO can be a complementary

form of regularization, and emphasize other regularization techniques’ effects

further.

5.4.5 Learning Rate Sensitivity

Loss functions can embody different learning rates implicitly. This

section shows that TaylorGLO loss functions’ benefits come from more than

just metalearning such learning rates. Increases in performance that result

from altering the base learning rate with cross-entropy loss are significantly

95

0.001 0.005 0.01 0.05 0.1

0.75

0.80

0.85

0.90

Initial Learning Rate

C
IF
A
R
-
10
T
es
tin
g
A
cc
ur
ac
y

Figure 5.6: Effect of varying learning rates in AllCNN-C when trained
with the cross-entropy loss on CIFAR-10. For each learning rate, ten
models were trained, with up to ten retries if training failed. The majority of
training attempts failed for learning rates larger than 0.01. The 0.01 learning
rate used in the experiments in this chapter results in best stable performance.
Overall, the small performance differences that can result from adjusting the
learning rate, regardless of stability, are much smaller than those that result
from training with TaylorGLO. Thus, TaylorGLO provides a mechanism for
improvement beyond implicit adjustments of the learning rate.

smaller than those that TaylorGLO provides.

More specifically, Figure 5.6 quantifies the effect of varying learning

rates on the final testing accuracy of AllCNN-C models trained on CIFAR-10.

AllCNN-C was chosen for this analysis since it exhibits the largest variations

in performance, making this effect more clear. While learning rates larger

than 0.01 (the standard learning rate for AllCNN-C) reach slightly higher

accuracies, this effect comes at the cost of less stable training. The majority

of models trained with these higher learning rates failed to train. Thus, the

standard choice of learning rate for AllCNN-C is appropriate for the cross-

entropy loss, and TaylorGLO loss functions are able to improve upon it.

96

Table 5.2: Performance of Taylor approximations of the cross-entropy
loss function on AllCNN-C with CIFAR-10. Approximations of different
orders, with a = 〈0.5, 0.5〉, are presented. Presented accuracies are the mean
from ten runs. The baseline is the standard cross-entropy loss. Higher-order
approximations are better, suggesting a potential (although computationally
expensive) opportunity for improvement in the future.

Loss Function Mean Accuracy (stddev)

k = 2 0.1034 (0.0101)
k = 3 0.8451 (0.0043)
k = 4 0.8592 (0.0032)
k = 5 0.8649 (0.0042)
Cross-Entropy 0.8965 (0.0021)

5.4.6 Comparison to Cross-Entropy Loss Taylor Approximations

While TaylorGLO’s performance originates primarily from discovering

better loss functions, it is informative to analyze what role the accuracy of

the Taylor approximation plays in it. One way to characterize this effect is to

analyze the performance of various Taylor approximations of the cross-entropy

loss.

Table 5.2 provides results from such a study. Bivariate approximations

to the cross-entropy loss, centered at a = 〈0.5, 0.5〉, with different orders k

were used to train AllCNN-C models on CIFAR-10. Third-order approxima-

tions and above are trainable. Approximations’ performance is within a few

percentage points of the cross-entropy loss, with higher-order approximations

yielding progressively better accuracies, as expected.

The results thus show that third-order TaylorGLO loss functions can-

97

not represent the cross-entropy baseline loss accurately. One possibility for im-

proving TaylorGLO is thus to utilize higher order approximations. However,

it is remarkable that TaylorGLO can still find loss functions that outperform

the cross-entropy loss. Also, the increase in the number of parameters—and

the corresponding increase in computational requirements—may in practice

outweigh the benefits from a finer-grained representation. This effect was seen

in preliminary experiments, and the third-order approximations (used in this

chapter) deemed to strike a good balance.

5.5 Experimental Analysis of TaylorGLO Models

The previous section evaluated TaylorGLO’s performance on a variety

of models and datasets, demonstrating that customized loss functions result

in significant improvements in accuracy. This section analyzes the specific

differences in models trained with TaylorGLO loss functions compared to those

without.

5.5.1 Trained Model Surfaces

Not only does TaylorGLO train more accurate models, but its loss

functions result in more robust models. Robustness is an important charac-

teristic in networks. It is closely related to generalization: They both emerge

in networks whose performance is not highly sensitive to the specific values of

trained weights. Such models also tend to maintain their performance better

following quantization, noise, loss of input or internal elements, etc.

98

Figure 5.7: Accuracy basins for AllCNN-C models trained with cross-
entropy and TaylorGLO loss functions. Accuracies are plotted along the
vertical axis for perturbations along two random basis vectors on the horizon-
tal axes. Higher accuracies are colored red. The TaylorGLO basin is both
flatter and lower than that for the cross-entropy loss, indicating that small
perturbations have a less negative impact on performance. Thus, networks
trained with TaylorGLO loss functions are more robust and generalize better
[90], which results in higher accuracy.

Robustness can be observed by evaluating a trained model and see-

ing how performance changes as weights are perturbed. In Figure 5.7, ac-

curacy basins for two AllCNN-C models—one trained with the TaylorGLO

loss function and another with the cross-entropy loss—are plotted along a

two-dimensional slice [−1, 1] of the weight space using a prior loss surface vi-

sualization technique [102]. At the core of the technique, two random unit

vectors are chosen from the parameter space. The two vectors form a basis

upon which a slice of the trainable parameter space is analyzed. These vec-

tors are normalized in a filter-wise manner to accommodate network weights’

scale invariance, thus ensuring that visualizations for two separate models can

be compared. In sufficiently high-dimensional spaces, these vectors are guar-

anteed to be nearly orthogonal, thus the basis is nearly orthogonal. As a

99

result of the randomness, this parameter space slice is unbiased and should

take all parameters into account to some degree. It can therefore be used to

systematically perturb trainable parameters.

Using the random, filter-normalized basis, a two-dimensional grid can

be formed, with the trained network at the center. Each non-center point

in the grid represents a slightly perturbed variant of the trained network.

Each of these networks is evaluated on the testing dataset, where accuracy is

measured. These values on the grid form an accuracy basin. The fact that

trained networks lie at network minima contributes to the basin shape.

The TaylorGLO loss function results in trained networks with flatter,

lower basins. This result suggests that the model is more robust, i.e. its perfor-

mance is less sensitive to small perturbations in the weight space, and it also

generalizes better [90]. A particular manifestation of this robustness—that is,

robustness against adversarial attacks—is anayzed in Section 7.3.

5.5.2 Biasing Optimization to a New Region

Optimization methods in general are biased in they are more likely to

reach parameter vectors that lie in a distinct region of the parameter space.

Ideally, this different region has better generalization properties. One way to

observe this behavior empirically is to plot histograms of the weights. If the

histograms noticeably differ, one can conclude that the compared solutions

are in considerably different types of regions (the inverse, however, is not

necessarily true).

100

Figure 5.8: Weight distributions for AllCNN-C models trained with
cross-entropy and TaylorGLO loss functions on CIFAR-10. The cross-
entropy loss results in Laplace weight distributions, while TaylorGLO loss
functions result in normally distributed weights. These different distributions
show how TaylorGLO guides training towards a fundamentally different region
of the weight space, which empirically results in better performance.

101

Table 5.3: Weight characteristics for AllCNN-C models trained on
CIFAR-10. TaylorGLO results in models with higher L2 weight norms than
the cross-entropy loss, even though all configurations include weight decay
during training. This finding suggests that smaller weights do not necessarily
imply better generalization, as has been long believed [125, 191].

Training Configuration L2 Norm Mean Value Distribution

Cross-Entropy Loss 23.4278 0.0001 Laplace
Cross-Entropy Loss + Cutout 23.2174 0.0000 Laplace
TaylorGLO Loss 37.2540 -0.0019 Gaussian
TaylorGLO Loss + Cutout 40.8651 -0.0021 Gaussian

Figure 5.8 shows such a comparison of histograms trained under the

cross-entropy loss and a TaylorGLO loss function. Each histogram has 51

bins to which each trainable parameter is assigned. Notably, weights from

all networks trained with the cross-entropy loss follow a Laplace distribution,

while those trained with a TaylorGLO loss function are normally distributed.

These very different distributions show how TaylorGLO trains networks fun-

damentally differently from the cross-entropy loss. The addition of Cutout

regularization does not significantly change the distribution of weights.

Table 5.3 presents weight statistics for each of the four configurations

in Figure 5.8. Networks trained with TaylorGLO have significantly higher L2

weight norms than those trained with the cross-entropy loss, even though they

have the same level of weight decay. This observation concurs with past find-

ings [48] that experimentally contradicted the long-held belief that networks

with smaller weight norms generalize better [125, 191].

A mathematical justification for why different loss functions bias train-

102

ing towards different regions of the weight space is provided in Chapter 6.

5.5.3 Loss Function Inputs Over Time

While TaylorGLO loss functions result in trained models that are dif-

ferent from those trained with the cross-entropy loss, the process by which

they arive at these models is also substantially different. The training process

can be empirically analyzed by observing how the distribution of a network’s

scaled logits changes over the training process.

Figure 5.9 presents scaled logit histograms for every epoch of train-

ing AllCNN-C networks on CIFAR-10 with both the cross-entropy loss and

TaylorGLO. Histogram bin values are presented linearly through a color map,

where “hotter” colors represent higher densities. These values are clipped to

a maximum of 400 and 300 samples per bin for scaled target and non-target

logits, respectively. This clipping shows more detail outside the main distri-

bution modes since the vast majority of samples’ logits are concentrated in

relatively few bins. Clipped values are colored white in the scaled logit his-

tograms. Overall, these histograms give insight into how model predictions

for target and non-target labels change throughout the training process with

different loss functions.

Since both TaylorGLO and cross-entropy models are initialized simi-

larly, target and non-target logits start out near 0.1, since this is a ten-class

classification problem, i.e. 1/n = 0.1). This property can be seen as a concen-

tration of values near the 0.1 level on the y-axis in the far left of each plot in

103

(a) Cross-Entropy Scaled Logits on AllCNN-C

(b) TaylorGLO Scaled Logits on AllCNN-C

Figure 5.9: Target and non-target scaled logit histograms for Taylor-
GLO and cross-entropy loss functions on AllCNN-C with CIFAR-10.
More frequent logit values are represented by warmer, lighter colors. The two
loss functions result in qualitatively different training dynamics. Namely the
dense, white bands on the right side of (a)-top and (b)-top are centered along
different logit values (the y-axis) and have different variances. The TaylorGLO
band, where most target predictions lie, particularly, has a higher variance and
is spaced farther from the histograms’ bottom border, showing how Taylor-
GLO penalizes overly-confident predictions.

104

Figure 5.9. Both models learn quickly in the first few dozen epochs, and target

and non-target logits spread away from each other as the network learns. That

is, the average distance between target and non-target logits grows over time

(from left to right). Over the duration of the training process, the white bands

that contain most scaled logits increasingly contain more scaled logits, indi-

cating the correct classification of more samples. The sharp transitions at 200

and 300 epochs are due to a scheduled learning rate decay. Smaller weight up-

dates result in smoother distribution changes between adjacent epochs. This

can be seen as a seeming reduction in noise along the x-axis in plots.

There are many visible differences between the cross-entropy loss and

TaylorGLO. Most significantly, the main mode for scaled target logits on Tay-

lorGLO (Figure 5.9 (b)-top) is wider—that is, the prominent white band is

taller along the y-axis—than that for the cross-entropy loss (Figure 5.9 (a)-

top) and is centered farther away from 1.0. This shows how TaylorGLO pe-

nalizes logits that are overly confident. On networks trained with TaylorGLO,

predictions have more nuance (i.e., they have a larger vertical spread in the

figures) and are less overtly categorical.

The cross-entropy loss also results in a second mode in the scaled target

logit distributions (Figure 5.9 (a)-top). This mode, visible as a horizontal or-

ange line near 0.0, indicates a population of misclassifications that is relatively

consistent through the training process (i.e., left to right). These are misclas-

sifications since target logit values less than 0.1 imply that all non-target logits

would be larger than the target logit, since this is a ten-class domain. Notably,

105

this band does not exist for TaylorGLO (Figure 5.9 (b)-top). On TaylorGLO,

there is only a single major band in the latter parts of training (i.e., the right

side of the Figure 5.9 (b)-top), and the values of the target logits in this band

are greater than 0.1.

On the Wide ResNet 28-5 architecture (Figure 5.10), TaylorGLO results

in generally similar behavior. As on AllCNN-C, the main target logit mode is

wider and centered away from 1.0, i.e. away from the plots’ bottom border.

However, it is even more distanced than on AllCNN-C. These completely dif-

ferent training dynamics, demonstrate how TaylorGLO discovers different loss

functions that are customized to individual architectures.

5.6 Discussion

TaylorGLO was shown to more efficiently and effectively find customized

loss functions than GLO. The constrained search space and single-phase evolu-

tion that TaylorGLO use require many fewer time-consuming candidate eval-

uations. These efficiency improvements allow TaylorGLO to be applied to

larger deep neural networks, where it finds loss functions that outperform the

cross-entropy loss.

TaylorGLO achieves its performance gains by training networks whose

trainable weights reach a different point in weight space than if the cross-

entropy loss were used. These new solutions are shown to wider and flatter,

a strong indicator of robustness and generalization. An analysis of the distri-

bution of weights shows that TaylorGLO results in distinctly different trained

106

(a) Cross-Entropy Scaled Logits on Wide ResNet 28-5

(b) TaylorGLO Scaled Logits on Wide ResNet 28-5

Figure 5.10: Target and non-target scaled logit histograms on Wide
ResNet 28-5 with CIFAR-10. Both loss functions result in qualitatively
different training dynamics. Like on AllCNN-C, the dense, white bands on the
right of (a)-top and (b)-top are centered along different logit values and have
different entropy. However, unlike on AllCNN-C, the specific values and sizes
of the bands in (b) differ. Thus, the TaylorGLO loss functions for AllCNN-
C and Wide ResNet 28-5 have different training dynamics, indicating that
TaylorGLO loss functions are customized to each architecture.

107

networks. These networks’ training have completely different dynamics that

further demonstrate how TaylorGLO can provide a type of regularization.

However, what is still lacking is a comprehensive theoretical understanding

that demonstrates why and how TaylorGLO loss functions have these effects.

The next chapter provides such a framework.

The level of improvement on trained model performance that Taylor-

GLO loss functions are able to confer varies for different types of architectures,

and even varying scales—depth and/or width—of a particular architecture.

There is no clear relationship between TaylorGLO efficacy and general archi-

tecture morphologies. Even seemingly small changes—such as those between

ResNet-20 and Pre ResNet-20—can have an impact on how much TaylorGLO

can improve over the baseline. Many architecture characteristics affect the

performance of TaylorGLO loss functions. Thus, understanding these effects

and leveraging them is an important direction for future work.

While TaylorGLO outperforms the original GLO technique, GLO is

far from obsolete. In cases where a loss function may have several different

inputs, GLO scales far better than TaylorGLO, which would require a very

large increase in the number of paramters (as described in Equation 5.4).

There are many opportunities to leverage this flexibility in future work.

5.7 Conclusion

This chapter presented TaylorGLO, a new technique for loss-function

metalearning that embodies a practical refinement of the core ideas behind

108

the GLO technique. TaylorGLO leverages a novel parameterization for loss

functions, allowing the use of continuous optimization rather than genetic

programming for the search, thus making it more efficient and more reliable.

TaylorGLO loss functions serve to regularize the learning task, outperforming

the standard cross-entropy loss significantly on MNIST, CIFAR-10, and SVHN

benchmark tasks with a variety of network architectures. They also outperform

loss functions discovered by GLO, while requiring many fewer candidates to be

evaluated during search. Thus, TaylorGLO results in higher testing accuracies,

better data utilization, and more robust models, and is a promising avenue

for metalearning. Further analyses of the TaylorGLO technique show how

TaylorGLO loss functions result in fundamentally different training processes

that guide models towards quantitatively different parts of the trainable weight

space with flatter minima. The underlying reasons for these differences are

analyzed theoretically in Chapter 6.

109

Chapter 6

Understanding Regularization

Regularization is a key concept in deep learning: it guides learning

towards configurations that are likely to perform robustly on unseen data.

Different regularization approaches originate from intuitive understanding of

the learning process and have been shown to be effective empirically. However,

the understanding of the underlying mechanisms, the different types of regu-

larization, and their interactions, is limited. Experiments in previous chapters

suggest that metalearned loss functions serve as regularizers in a surprising

but transparent way: they prevent the network from learning overly-confident

predictions. While it may be too early to develop a comprehensive theory of

deep network regularization, given the relatively nascent state of this area, it

is possible to make progress in understanding regularization of this specific

type, as is done in this chapter.

6.1 Overview

Since metalearned loss functions are customized to a given architecture-

task pair, there needs to be a shared framework under which loss functions can

be analyzed and compared. In the framework developed in this chapter, the

110

stochastic gradient descent (SGD) learning rule is decomposed to coefficient

expressions that can be defined for a wide range of loss functions. These

expressions provide an intuitive understanding of the training dynamics in

specific contexts.

Using this framework, mean squared error (MSE), cross-entropy, Baikal,

and third-order TaylorGLO loss functions are analyzed at the null epoch, when

network weights are similarly distributed, and in a zero training error regime,

where the training samples’ labels have been perfectly memorized. These sce-

narios show the implicit biases that different loss functions impart. For any

intermediate point in the training process, the strength of the zero training

error regime as an attractor is analyzed and a constraint on this property is

derived on TaylorGLO parameters by characterizing how the output distribu-

tion’s entropy changes. In a concrete TaylorGLO loss function that has been

metalearned, these attraction dynamics are calculated for individual samples

at every epoch in a real training run, and contrasted with those for the cross-

entropy loss. This comparison provides clarity on how TaylorGLO avoids

becoming overly confident in its predictions. Further, the analysis shows how

label smoothing [167], a traditional type of regularization, can be implicitly

encoded by TaylorGLO loss functions: Any representable loss function has

label-smoothed variants that are also representable by the parameterization,

meaning that TaylorGLO is able to take advantage of it and automatically

learn optimal levels of label smoothing that synergize with other forms of

regularization.

111

6.2 Learning Rule Decomposition

This section develops the framework for the analysis in this chapter.

By decomposing the learning rules under different loss functions, comparisons

can be drawn at different stages of the training process. Consider the standard

SGD update rule:

θ ← θ − η∇θ (L(xi,yi,θ)) , (6.1)

where η is the learning rate, L(xi,yi,θ) is the loss function applied to the net-

work h(xi,θ), xi is an input data sample, yi is the ith sample’s corresponding

label, and θ is the set of trainable parameters in the model. The update for a

single weight θj is

θj ← θj − ηDj (L(xi,yi,θ)) = θj − η
∂

∂s
L(xi,yi,θ + sj)

∣∣∣∣
s→0

, (6.2)

where j is a basis vector for the jth weight.

The remainder of this section illustrates decompositions of this general

learning rule in a classification context for a variety of loss functions: mean

squared error (MSE), the cross-entropy loss function, the general third-order

TaylorGLO loss function, and the Baikal loss function. Each decomposition

results in a learning rule of the form

θj ← θj + η
1

n

n∑
k=1

[γk(xi,yi,θ)Dj (hk(xi,θ))] , (6.3)

where γk(xi,yi,θ) is an expression that is specific to each loss function. This

expression dictates how individual logits’ gradients affect weight updates. Spe-

cific instance of γk(xi,yi,θ) can thus be used to analyze and compare the be-

112

havior of their corresponding loss functions, as will be shown in the following

sections.

Substituting the Mean squared error (MSE) loss into Equation 6.2,

θj ← θj − η
1

n

n∑
k=1

[
2 (hk(xi,θ + sj)− yik)

∂

∂s
hk(xi,θ + sj)

] ∣∣∣∣
s→0

(6.4)

= θj + η
1

n

n∑
k=1

[
2 (yik − hk(xi,θ))

∂

∂s
hk(xi,θ + sj)

∣∣∣
s→0

]
, (6.5)

and breaking up the coefficient expressions into γk(xi,yi,θ) results in the

weight update step

γk(xi,yi,θ) = 2yik − 2hk(xi,θ). (6.6)

Substituting the Cross-entropy loss into Equation 6.2,

θj ← θj + η
1

n

n∑
k=1

[
yik

1

hk(xi,θ + sj)

∂

∂s
hk(xi,θ + sj)

] ∣∣∣∣
s→0

(6.7)

= θj + η
1

n

n∑
k=1

[
yik

hk(xi,θ)

∂

∂s
hk(xi,θ + sj)

∣∣∣
s→0

]
, (6.8)

and breaking up the coefficient expressions into γk(xi,yi,θ) results in the

weight update step

γk(xi,yi,θ) =
yik

hk(xi,θ)
. (6.9)

Substituting the Baikal loss into Equation 6.2,

θj ← θj + η
1

n

n∑
k=1

[(
1

hk(xi,θ + sj)
+

yik
hk(xi,θ + sj)2

)
∂

∂s
hk(xi,θ + sj)

] ∣∣∣∣
s→0

(6.10)

= θj + η
1

n

n∑
k=1

[(
1

hk(xi,θ)
+

yik
hk(xi,θ)2

)
∂

∂s
hk(xi,θ + sj)

∣∣∣
s→0

]
, (6.11)

113

and breaking up the coefficient expressions into γk(xi,yi,θ) results in the

weight update step

γk(xi,yi,θ) =
1

hk(xi,θ)
+

yik
hk(xi,θ)2

. (6.12)

Substituting the Third-order TaylorGLO loss with parameters λ into

Equation 6.2,

θj ← θj + η
1

n

n∑
k=1

[
λ2

∂

∂s
hk(xi,θ + sj) + λ32 (hk(xi,θ + sj)− λ1)

∂

∂s
hk(xi,θ + sj)

+λ43 (hk(xi,θ + sj)− λ1)2 ∂

∂s
hk(xi,θ + sj) + λ5(yik − λ0)

∂

∂s
hk(xi,θ + sj)

+
(
λ6(yik − λ0)2 (hk(xi,θ + sj)− λ1) + λ7(yik − λ0)2

) ∂
∂s
hk(xi,θ + sj)

] ∣∣∣∣
s→0

(6.13)

= θj + η
1

n

n∑
k=1

[
(λ3 + λ6(yik − λ0)) 2 (hk(xi,θ + sj)− λ1)

∂

∂s
hk(xi,θ + sj)

∣∣∣
s→0

+
(
λ2 + λ5(yik − λ0) + λ7(yik − λ0)2

) ∂
∂s
hk(xi,θ + sj)

∣∣∣
s→0

+λ43 (hk(xi,θ)− λ1)2 ∂

∂s
hk(xi,θ + sj)

∣∣∣
s→0

]
,

(6.14)

and breaking up the coefficient expressions into γk(xi,yi,θ) results in the

weight update step

γk(xi,yi,θ) = (λ3 + λ6(yik − λ0)) 2 (hk(xi,θ)− λ1)

+λ2 + λ5(yik − λ0) + λ7(yik − λ0)2 + λ43 (hk(xi,θ)− λ1)2
(6.15)

= 2λ3hk(xi,θ)− 2λ1λ3 + 2λ6hk(xi,θ)(yik − λ0)− 2λ1λ6(yik − λ0) + λ2 + λ5yik

−λ5λ0 + λ7y
2
ik − 2λ7λ0yik + λ7λ

2
0 + 3λ4hk(xi,θ)2 − 6λ1λ4hk(xi,θ) + 3λ4λ

2
1

(6.16)

114

= 2λ3hk(xi,θ)− 2λ1λ3 + 2λ6hk(xi,θ)yik − 2λ6λ0hk(xi,θ)

−2λ1λ6yik + 2λ1λ6λ0 + λ2 + λ5yik − λ5λ0 + λ7y
2
ik − 2λ7λ0yik

+λ7λ
2
0 + 3λ4hk(xi,θ)2 − 6λ1λ4hk(xi,θ) + 3λ4λ

2
1.

(6.17)

To simplify analysis, γk(xi,yi,θ) can be decomposed into a linear combina-

tion of 〈1, hk(xi,θ), hk(xi,θ)2, hk(xi,θ)yik, yik, y
2
ik〉 with respective coefficients

〈c1, ch, chh, chy, cy, cyy〉 whose values are implicitly functions of λ:

γk(xi,yi,θ) = c1 + chhk(xi,θ) + chhhk(xi,θ)2 + chyhk(xi,θ)yik + cyyik + cyyy
2
ik

(6.18)

where

c1 = −2λ1λ3 + 2λ0λ1λ6 + λ2 − λ5λ0 + λ7λ
2
0 + 3λ4λ

2
1 (6.19)

ch = 2λ3 − 2λ6λ0 − 6λ4λ1 (6.20)

chh = 3λ4 (6.21)

chy = 2λ6 (6.22)

cy = −2λ1λ6 + λ5 − 2λ7λ0 (6.23)

cyy = λ7. (6.24)

This linear combination abstracts away complexity and results in simpler math

when analyzing TaylorGLO.

Using the decomposition framework above, it is possible to characterize

and compare training dynamics under different loss functions. In Section 6.3,

the decompositions are first analyzed under a zero training error regime to

identify optimization biases that lead to implicit regularization. In Section 6.4,

115

the opposite end of the training process is then analyzed, i.e. the null epoch. In

Section 6.6, generalizing to the entire training process, a theoretical constraint

is derived on the entropy of a network’s outputs. Combined with experimental

data, this constraint characterizes the data fitting and regularization processes

that result from TaylorGLO training.

6.3 Zero Training Error Optimization Biases

Certain biases in optimization imposed by a loss function can be best

observed in the case where there is nothing new to learn from the training data.

Consider the case where there is zero training error, that is, hk(xi,θ)−yik = 0.

In this case, all hk(xi,θ) can be substituted with yik in γk(xi,yi,θ), as is done

below for the different loss functions.

6.3.1 Mean Squared Error (MSE)

In this case,

γk(xi,yi,θ) = 2yik − 2hk(xi,θ) = 0. (6.25)

Thus, there are no changes to the weights of the model once error reaches

zero. This observation contrasts with the earlier findings that discovered an

implicit regularization effect when training with MSE loss and label noise [19].

Notably, this null behavior is representable in a non-degenerate TaylorGLO

parameterization, since MSE is itself representable by TaylorGLO with λ =

〈0, 0, 0,−1, 0, 2, 0, 0〉. Thus, this behavior can be leveraged in evolved loss

functions.

116

6.3.2 Cross-Entropy Loss

Since hk(xi,θ) = 0 for non-target logits in a zero training error regime,

γk(xi,yi,θ) = 0
0
, i.e. an indeterminate form. Thus, an arbitrarily-close-to-

zero training error regime is analyzed instead, such that hk(xi,θ) = ε for

non-target logits for an arbitrarily small ε. Since all scaled logits sum to 1,

hk(xi,θ) = 1 − (n − 1)ε for the target logit. Let us analyze the learning rule

as ε tends towards 0:

θj ← θj + lim
ε→0

η
1

n

n∑
k=1

yik
ε
Dj (hk(xi,θ)) yik = 0

yik
1− (n− 1)ε

Dj (hk(xi,θ)) yik = 1
(6.26)

= θj + η
1

n

n∑
k=1

{
0 yik = 0

Dj (hk(xi,θ)) yik = 1.
(6.27)

Intuitively, this learning rule aims to increase the value of the target scaled

logits. Since logits are scaled by a softmax function, increasing the value of

one logit decreases the values of other logits. Thus, the fixed point of this bias

will be to force non-target scaled logits to zero, and target scaled logits to one.

In other words, this behavior aims to minimize the divergence between the

predicted distribution and the training data’s distribution.

TaylorGLO can represent this behavior, and can thus be leveraged in

evolved loss functions, through any case where a = 0 and b + c > 0. Any λ

where λ2 = 2λ1λ3 +λ5λ0−2λ1λ6λ0−λ7λ
2
0−3λ4λ

2
1 represents such a satisfying

family of cases. Additionally, TaylorGLO allows for the strength of this bias

to be tuned independently from η by adjusting the magnitude of b+ c.

117

6.3.3 Baikal Loss

Notably, the Baikal loss function results in infinite gradients at zero

training error, rendering it unstable, even if using it to fine-tune from a pre-

viously trained network that already reached zero training error. However,

the zero-error regime is irrelevant with Baikal because it cannot be reached in

practice:

Theorem 6.3.1. Zero training error regions of the weight space are not at-

tractors for the Baikal loss function.

The reason is that if a network reaches a training error that is arbitrarily

close to zero, there is a repulsive effect that biases the model’s weights away

from zero training error.

Proof. Given that Baikal does tend to minimize training error to a large

degree—otherwise it would be useless as a loss function since training data is

assumed to be in-distribution— what happens as the learning rule approaches

a point in parameter space that is arbitrarily-close to zero training error can

be observed. Assume, without loss of generality, that all non-target scaled

logits have the same value. Then,

θj ← θj+η
1

n

n∑
k=1

lim

hk(xi,θ)→ ε
n−1

γk(xi,yi,θ)Dj (hk(xi,θ)) yik = 0

lim
hk(xi,θ)→1−ε

γk(xi,yi,θ)Dj (hk(xi,θ)) yik = 1

(6.28)

118

= θj + η
1

n

n∑
k=1

lim

hk(xi,θ)→ ε
n−1

(
1

hk(xi,θ)
+

0

hk(xi,θ)2

)
Dj (hk(xi,θ))

yik = 0

lim
hk(xi,θ)→1−ε

(
1

hk(xi,θ)
+

1

hk(xi,θ)2

)
Dj (hk(xi,θ))

yik = 1
(6.29)

= θj + η
1

n

n∑
k=1

n− 1

ε
Dj (hk(xi,θ)) yik = 0(

1

1− ε
+

1

(1− ε)2

)
Dj (hk(xi,θ)) yik = 1

(6.30)

= θj + η
1

n

n∑
k=1

n− 1

ε
Dj (hk(xi,θ)) yik = 0

2− ε
ε2 − 2ε+ 1

Dj (hk(xi,θ)) yik = 1 .

(6.31)

The behavior in the yik = 0 case will dominate for small values of ε. Both

cases have a positive range for small values of ε, ultimately resulting in non-

target scaled logits becoming maximized, and subsequently the non-target logit

becoming minimized. This assertion is equivalent, in expectation, to saying

that ε will become larger after applying the learning rule. A larger ε implies a

move away from a zero training error area of the parameter space. Thus, zero

training error is not an attractor for the Baikal loss function.

6.3.4 Third-Order TaylorGLO Loss

According to Equation 6.18, in the zero-error regime γk(xi,yi,θ) can

be written as a linear combination of 〈1, yik, y2
ik〉 and 〈a, b, c〉:

γk(xi,yi,θ) = a+ byik + cy2
ik, (6.32)

119

where

a = λ2 − 2λ1λ3 − λ5λ0 + 2λ1λ6λ0 + λ7λ
2
0 + 3λ4λ

2
1 (6.33)

b = 2λ3 − 2λ6λ0 − 2λ1λ6 + λ5 − 2λ7λ0 − 6λ4λ1 (6.34)

c = 2λ6 + λ7 + 3λ4. (6.35)

Notably, in the basic classification case, ∀w ∈ N1 : yik = ywik, since

yik ∈ {0, 1}. This observation provides an intuition for why higher-order Tay-

lorGLO loss functions are not able to provide fundamentally different behavior

(beyond a more overparameterized search space), and thus no improvements

in performance over third-order loss functions. The learning rule thus becomes

θj ← θj + η
1

n

n∑
k=1

{
aDj (hk(xi,θ)) yik = 0

(a+ b+ c)Dj (hk(xi,θ)) yik = 1.
(6.36)

As a concrete example, consider the loss function TaylorGLO discovered for

the AllCNN-C model on CIFAR-10. It had a = −373.917, b = −129.928, c =

−11.3145. Notably, all three coefficients are negative, i.e. all changes to θj are

negatively scaled values of Dj (hk(xi,θ)), as can be seen from Equation 6.36.

Thus, there are two competing processes in this learning rule: one that aims to

minimize all non-target scaled logits (increasing the scaled logit distribution’s

entropy), and one that aims to minimize the target scaled logit (decreasing

the scaled logit distribution’s entropy). The processes conflict with each other

since logits are scaled through a softmax function. These processes can shift

weights in a particular way while maintaining zero training error, which results

in implicit regularization. If, however, such shifts in this zero training error

120

regime do lead to misclassifications on the training data, hk(xi,θ) would no

longer equal yik, and a non-zero error regime’s learning rule would come into

effect. It would strive to get back to zero training error with a different θ.

Similarly to Baikal loss, a training error of exactly zero is not an attrac-

tor for some third-order TaylorGLO loss functions (this property can be seen

through an analysis similar to that of Theorem 6.3.1). The zero-error case

would occur in practice only if this loss function were to be used to fine tune

a network that truly has a zero training error. It is, however, a useful step in

characterizing the behavior of TaylorGLO, as will be seen in Section 6.6.

6.4 Behavior at the Null Epoch

Consider the null epoch, i.e., the first epoch of training. Assume all

weights are randomly initialized:

∀k ∈ [1, n],where n ≥ 2 : E
i

[hk(xi,θ)] =
1

n
. (6.37)

That is, logits are distributed with high entropy. Behavior at the null epoch

can then be defined piecewise for target vs. non-target logits for each loss

function.

In the case of Mean squared error (MSE),

γk(xi,yi,θ) =

{
2n−1 yik = 0

2n−1 − 2 yik = 1.
(6.38)

Since n ≥ 2, the yik = 1 case will always be negative, while the yik = 0

case will always be positive. Thus, target scaled logits will be maximized and

non-target scaled logits minimized.

121

In the case of Cross-entropy loss,

γk(xi,yi,θ) =

{
0 yik = 0
n yik = 1.

(6.39)

Target scaled logits are maximized and, consequently, non-target scaled logits

minimized as a result of the softmax function.

Similarly in the case of Baikal loss,

γk(xi,yi,θ) =

{
n yik = 0

n+ n2 yik = 1.
(6.40)

Target scaled logits are minimized and, consequently, non-target scaled logits

minimized as a result of the softmax function (since the yik = 1 case domi-

nates).

In the case of Third-order TaylorGLO loss, since behavior is highly

dependent on λ, consider the concrete loss function used above:

γk(xi,yi,θ) =

−373.9170− 130.2640 hk(xi,θ)

−11.2188 hk(xi,θ)2 yik = 0
−372.4707− 131.4700 hk(xi,θ)

−11.2188 hk(xi,θ)2 yik = 1.

(6.41)

Note that Equation 6.36 is a special case of this behavior where hk(xi,θ) = yik.

Let us substitute hk(xi,θ) = 1
n

(i.e., the expected value of a logit at the null

epoch):

γk(xi,yi,θ) =

{
−373.9170− 130.2640 n−1 − 11.2188 n−2 yik = 0
−372.4707− 131.4700 n−1 − 11.2188 n−2 yik = 1.

(6.42)

Since this loss function was found on CIFAR-10, a 10-class image classification

task, n = 10:

γk(xi,yi,θ) =

{
−386.9546 yik = 0
−385.7299 yik = 1.

(6.43)

122

Since both cases of γk(xi,yi,θ) are negative, this behavior implies that all

scaled logits will be minimized. However, since the scaled logits are the output

of a softmax function, and the yik = 0 case is more strongly negative, the

non-target scaled logits will be minimized more than the target scaled logits,

resulting in a maximization of the target scaled logits.

The desired behavior at the null epoch is clear, and the above evaluated

loss functions all exhibit it. However, certain settings for λ in TaylorGLO loss

functions may have wholly behavior that is detrimental. Thus, a constraint

on λ can be derived. Such a constraint is derived in Section 6.5 and used to

improve the TaylorGLO search process in Section 7.2.

6.5 TaylorGLO Parameters at the Null Epoch

There are many different instances of λ for which models are untrain-

able. One such case, albeit a degenerate one, is λ = 0, i.e. a function with

zero gradients everywhere. Given the training dynamics at the null epoch

(characterized in Section 6.4), more general constraints on λ

Theorem 6.5.1. A third-order TaylorGLO loss function is not trainable if the

following constraints on λ are satisfied:

c1 + cy + cyy +
ch + chy

n
+
chh
n2

< (n− 1)
(
c1 +

ch
n

+
chh
n2

)
(6.44)

cy + cyy +
chy
n

< (n− 2)
(
c1 +

ch
n

+
chh
n2

)
. (6.45)

Proof. At the null epoch, a valid loss function aims to, in expectation, minimize

non-target scaled logits while maximizing target scaled logits. Thus, specific

123

cases can of λ can be found for which these behaviors occur. Considering the

representation for γk(xi,yi,θ) in Equation 6.18:

θj ← θj+η
1

n

n∑
k=1

(c1 + chhk(xi,θ) + chhhk(xi,θ)2)Dj (hk(xi,θ)) yik = 0(

c1 + chhk(xi,θ) + chhhk(xi,θ)2

+chyhk(xi,θ) + cy + cyy
)
Dj (hk(xi,θ)) yik = 1 .

(6.46)

Substituting hk(xi,θ) = 1
n

(i.e., the expected value of a logit at the null epoch),

θj ← θj+η
1

n

n∑
k=1

(
c1 +

ch
n

+
chh
n2

)
Dj (hk(xi,θ)) yik = 0(

c1 + cy + cyy +
ch + chy

n
+
chh
n2

)
Dj (hk(xi,θ)) yik = 1 .

(6.47)

For the degenerate behavior to appear, the directional derivative’s coefficient

in the yik = 1 case must be less than zero:

c1 + cy + cyy +
ch + chy

n
+
chh
n2

< 0. (6.48)

This finding can be made more general by asserting that the directional deriva-

tive’s coefficient in the yik = 1 case be less than (n − 1) times the coefficient

in the yik = 0 case, thus arriving at the following constraint on λ:

c1 + cy + cyy +
ch + chy

n
+
chh
n2

< (n− 1)
(
c1 +

ch
n

+
chh
n2

)
(6.49)

cy + cyy +
chy
n

< (n− 2)
(
c1 +

ch
n

+
chh
n2

)
(6.50)

These constraints restrict loss functions to pass through the regions at

ε = 1 − 1
n

in Figure 6.3 where the entropy is increasing (colored red). The

124

inverse of these constraints may be used as invariants during loss function

evolution, as will be described in Section 7.2.

6.6 Data Fitting and Regularization Processes

Under what gradient conditions does a network’s softmax function tran-

sition from increasing the entropy in the output distribution to decreasing it?

Let us analyze the case where all non-target logits have the same value, ε
n−1

,

and the target logit has the value 1 − ε. That is, all non-target classes have

equal probabilities.

6.6.1 Softmax Entropy Dynamics

Theorem 6.6.1. The strength of entropy reduction is proportional to

ε(ε− 1)

(
eε(ε−1)(γ¬T−γT) − e

ε(ε−1)γT (n−1)+εγ¬T (ε(n−3)+n−1)

(n−1)2

)
(ε− 1) eε(ε−1)(γ¬T−γT) − ε e

ε(ε−1)γT (n−1)+εγ¬T (ε(n−3)+n−1)

(n−1)2

. (6.51)

Thus, values less than zero imply that entropy is increased, values

greater than zero that it is decreased, and values equal to zero imply that

there is no change.

Proof. Let us analyze the case where all non-target logits have the same value,

ε
n−1

, and the target logit has the value 1 − ε. That is, all non-target classes

have equal probabilities.

125

A model’s scaled logit for an input xi can be represented as

hk(xi,θ) = σk(f(xi,θ)) =
efk(xi,θ)∑n
j=1 efj(xi,θ)

, (6.52)

where fk(xi,θ) is a raw output logit from the model.

The (k, j)th entry of the Jacobian matrix for h(xi,θ) can be easily

derived through application of the chain rule:

Jkjh(xi,θ) =
∂hk(xi,θ)

∂fj(xi,θ)
=

{
hj(xi,θ) (1− hk(xi,θ)) fk(xi,θ) k = j
−hj(xi,θ) hk(xi,θ) fk(xi,θ) k 6= j .

(6.53)

Consider an SGD learning rule of the form:

θj ← θj + η
1

n

n∑
k=1

[γk(xi,yi,θ)Dj (hk(xi,θ))] . (6.54)

Let us freeze a network at any specific point during the training process for

any specific sample. Now, treat all fj(xi,θ), j ∈ [1, n] as free parameters with

unit derivatives, rather than as functions; that is, θj = fj(xi,θ). Updates are

now

∆fj ∝
n∑
k=1

γj

{
hj(xi,θ) (1− hk(xi,θ)) k = j
−hj(xi,θ) hk(xi,θ) k 6= j .

(6.55)

For downstream analysis, we can consider, as substitutions for γj above, γ¬T

to be the value for non-target logits, and γT for the target logit.

This sum can be expanded and conceptually simplified by considering

j indices and ¬j indices. The ¬j indices, of which there are n− 1, are either

all non-target logits, or one is the target logit in the case where j is not the

target logit. Let us consider both cases, while substituting the scaled logit

126

values defined above:

∆fj ∝

γ¬T Jk=jh(xi,θ) + (n− 2)γ¬T Jk 6=jh(xi,θ)

+γT Jk 6=jh(xi,θ) non-target j
γT Jk=jh(xi,θ) + (n− 1)γ¬T Jk 6=jh(xi,θ) target j .

(6.56)

∆fj ∝

γ¬Th¬T (xi,θ) (1− h¬T (xi,θ))
+(n− 2)γ¬T (−h¬T (xi,θ) h¬T (xi,θ))

+γT (−h¬T (xi,θ) hT (xi,θ)) non-target j

γThT (xi,θ) (1− hT (xi,θ))
+(n− 1)γ¬T (−h¬T (xi,θ) hT (xi,θ)) target j

(6.57)

where hT (xi,θ) = 1− ε, h¬T (xi,θ) =
ε

n− 1
(6.58)

∆fj ∝

γ¬T
ε

n− 1

(
1− ε

n− 1

)
+γ¬T (n− 2)

ε2

n2 − 2n+ 1
+ γT (ε− 1)

ε

n− 1
non-target j

γT ε− γT ε2 + γ¬T (n− 1)(ε− 1)
ε

n− 1
target j

(6.59)

At this point, closed-form solutions for the changes to softmax inputs have been

derived. To characterize entropy, solutions must be derived for the changes to

softmax outputs given such changes to the inputs. That is:

∆σj(f(xi,θ)) =
efj(xi,θ)+∆fj∑n
k=1 efk(xi,θ)+∆fk

. (6.60)

Due to the two cases in ∆fj, ∆σj(f(xi,θ)) is thus also split into two cases for

target and non-target logits:

∆σj(f(xi,θ)) =

ef¬T (xi,θ)+∆f¬T

(n− 1)ef¬T (xi,θ)+∆f¬T + efT (xi,θ)+∆fT
non-target j

efT (xi,θ)+∆fT

(n− 1)ef¬T (xi,θ)+∆f¬T + efT (xi,θ)+∆fT
target j

(6.61)

127

Now, the observation can be made that scaled logits have a lower entropy

distribution when ∆σT (f(xi,θ)) > 0 and ∆σ¬T (f(xi,θ)) < 0. Essentially,

the target and non-target scaled logits are being repelled from each other.

Either of these inequalities can be ignored, if one is satisfied then both are

satisfied, in part because |σ(f(xi,θ))|1 = 1. The target-case constraint (i.e.,

the target scaled logit must grow) can be represented as

efT (xi,θ)+∆fT

(n− 1)ef¬T (xi,θ)+∆f¬T + efT (xi,θ)+∆fT
> 1− ε. (6.62)

Consider the target logit case prior to changes:

efT (xi,θ)

(n− 1)ef¬T (xi,θ) + efT (xi,θ)
= 1− ε. (6.63)

Let us solve for efT (xi,θ):

efT (xi,θ) = (n− 1)ef¬T (xi,θ) + efT (xi,θ) − ε(n− 1)ef¬T (xi,θ) − εefT (xi,θ) (6.64)

=

(
n− 1

ε
− n+ 1

)
ef¬T (xi,θ). (6.65)

Substituting this definition into Equation 6.62:

e∆fT

(
n− 1

ε
− n+ 1

)
ef¬T (xi,θ)

(n− 1)ef¬T (xi,θ)+∆f¬T + e∆fT

(
n− 1

ε
− n+ 1

)
ef¬T (xi,θ)

> 1− ε. (6.66)

Coalescing exponents,

e∆fT+f¬T (xi,θ)

(
n− 1

ε
− n+ 1

)
(n− 1)ef¬T (xi,θ)+∆f¬T + e∆fT+f¬T (xi,θ)

(
n− 1

ε
− n+ 1

) + ε− 1 > 0 (6.67)

128

Substituting in definitions for ∆fT and ∆f¬T and greatly simplifying the left-

hand side expression in a computer algebra system results in the removal of

instances of f¬T :

ε(ε− 1)

eε(ε−1)(γ¬T−γT) − e

ε(ε− 1)γT (n− 1) + εγ¬T (ε(n− 3) + n− 1)

(n− 1)2

(ε− 1)eε(ε−1)(γ¬T−γT) − εe

ε(ε− 1)γT (n− 1) + εγ¬T (ε(n− 3) + n− 1)

(n− 1)2

> 0

(6.68)

6.6.2 Zero Training Error Attractors

The strength of the entropy reduction in Theorem 6.6.1 can also be

thought of as a measure of the strength of the attraction towards zero training

error regions of the parameter space. For any given n, a value for this zero

training error attraction strength at different ε values can be plotted using

the corresponding γT and γ¬T values from a particular loss function. These

characteristic curves for four specific loss functions are plotted in Figure 6.1.

This strength can thus be calculated for individual training samples

during any part of the training process, leading to the insight that the pro-

cess results from competing “push” and “pull” forces. This theoretical insight,

combined with empirical data from actual training sessions, explains how dif-

ferent loss functions balance data fitting and regularization.

Figure 6.2 provides one such example on AllCNN-C [161] models trained

129

n = 2

n = 4

n = 6

n = 8

n = 10

0.0 0.2 0.4 0.6 0.8
-1.0

-0.5

0.0

0.5

1.0

Deviation from Memorization (ϵ)

A
ttr
ac
tio
n
T
ow
ar
ds
Z
er
o
T
ra
in
in
g

(a) Cross-Entropy Loss

0.0 0.2 0.4 0.6 0.8
-1.0

-0.5

0.0

0.5

1.0

Deviation from Memorization (ϵ)

A
ttr
ac
tio
n
T
ow
ar
ds
Z
er
o
T
ra
in
in
g

(b) TaylorGLO Loss

n = 2

n = 4

n = 6

n = 8

n = 10

0.0 0.2 0.4 0.6 0.8
-1.0

-0.5

0.0

0.5

1.0

Deviation from Memorization (ϵ)

A
ttr
ac
tio
n
T
ow
ar
ds
Z
er
o
T
ra
in
in
g

(c) MSE Loss

0.0 0.2 0.4 0.6 0.8
-1.0

-0.5

0.0

0.5

1.0

Deviation from Memorization (ϵ)

A
ttr
ac
tio
n
T
ow
ar
ds
Z
er
o
T
ra
in
in
g

(d) Baikal Loss

Figure 6.1: Attraction towards zero training error curves with differ-
ent loss functions. Each loss function has a characteristic curve—plotted
using Equation 6.51—that describes zero training error attraction dynamics
for individual samples given their current deviation from perfect memoriza-
tion, ε. Plots (a) and (b) only have the n = 10 case plotted, i.e. the 10-class
classification case for which they were evolved. Cross-entropy (a) and MSE
(c) loss functions have positive attraction for all values of ε. In contrast, the
TaylorGLO loss function for CIFAR-10 on AllCNN-C (b) and the Baikal loss
function (d) both have very strong attraction for weakly learned samples (on
the right side), and repulsion for highly confidently learned samples (on the left
side. This provides a graphical intuition for regularization with TaylorGLO
and Baikal loss functions.

130

(a) Cross-Entropy Loss (b) TaylorGLO Loss

Figure 6.2: Per-training-sample attraction towards zero training er-
ror with cross-entropy and TaylorGLO loss functions for CIFAR-10
AllCNN-C models. Each point represents an individual training sample
(500 are randomly sampled per epoch); its x-location indicates the training
epoch, and y-location the strength with which the loss functions pulls the
output towards the correct label, or pushes it away from it. With the cross-
entropy loss (a), these values are always positive, indicating a constant pull
towards the correct label for every single training sample. Interestingly, the
TaylorGLO values (b) span both the positives and the negatives; at the be-
ginning of training there is a strong pull towards the correct label (seen as
the dark area on top left), which then changes to more prominent push away
from it in later epochs (seen as the dark band on the bottom). This plot
shows how TaylorGLO regularizes by preventing overconfidence and biasing
solutions towards different parts of the weight space with higher performance.

131

on CIFAR-10 [94] with cross-entropy and custom TaylorGLO loss functions.

Scaled target and non-target logit values were logged for every sample at every

epoch and used to calculate respective γT and γ¬T values. These values were

then substituted into Equation 6.51 to get the strength of bias towards zero

training error.

The cross-entropy loss exhibits a tendency towards zero training error

for every single sample, as expected. The TaylorGLO loss, however, has a

much different behavior. Initially, there is a much stronger pull towards zero

training error for all samples—which leads to better generalization [104, 196]—

after which a stratification occurs, where the majority of samples are repelled,

and thus biased towards a different region of the weight space that happens to

have better performance characteristics empirically. This, for the first time,

explains theoretically why loss functions like Baikal serve as regularizers.

This measure of attraction can be seen as providing a value for every

point in a phase space consisting of γT , γ¬T , ε, and n. For a given loss function,

γT and γ¬T are implicit functions of the loss function at a certain ε deviation

from memorization. Thus, each loss function encodes a characteristic, one-

dimensional curve through this space, for a specific number of classes n. A

visualization of these curves for four loss functions is provided in Figure 6.3.

Note that the values at each point in each curve correspond to the plots in

Figure 6.1.

Both GLO and TaylorGLO loss-function metalearning approaches op-

timize the loss function directly, and thus optimize the characteristic curve

132

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

(a) Cross-Entropy Loss

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

(b) TaylorGLO Loss

0

0.05

0.10

0.15

(c) MSE Loss

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

(d) Baikal Loss

Figure 6.3: Characteristic curves in zero training error attraction
phase space for different loss functions. A general phase space for zero
training error attraction can be constructed using a loss function’s specific γT
and γ¬T values and a network’s ε value for a given sample. Each loss func-
tion has a characteristic curve within this space. The values at each point in
this space (i.e., colors) are calculated using Equation 6.51 and can be seen in
Figure 6.1 for each loss function. While loss-function metalearning indirectly
finds optimal characteristic curves, perhaps, in the future, these characteristic
curves may be optimized directly.

133

through the attraction phase space indirectly. Perhaps, in future work, the

process may be inverted, whereby these characteristic curves are optimized

directly, and the loss function subsequently derived from it. This new method

may serve as a way to more effectively discover different training behaviors,

rather than a complex encoding of them, i.e. through a loss function.

Given that the values traced by each curve vary depending on the n for

a given task, a given loss function can exhibit different behaviors for different

numbers of classes. It should be possible to define a transformation on a loss

function between any two values of n, such that it provides the same behavior

at different ε values. This transformation can be thought of as a way to

adapt metalearned loss functions to behave as intended in tasks with different

numbers of classes as the task upon which the loss function was metalearned,

assuming that the disparate tasks train similarly and have similarly distributed

training samples.

6.7 Label Smoothing

TaylorGLO loss functions have been shown in the above sections to

provide regularization through dynamic biases that are imparted throughout

the training process. However, this behavior is not the only way that Taylor-

GLO can regularize. This section shows how the regularization imparted by

label smoothing [167] can be implicitly represented by TaylorGLO.

Theorem 6.7.1. For any third-order TaylorGLO loss function with λ param-

eters, there exists a TaylorGLO loss function defined by λ̂ that is equivalent

134

in behavior to the original λ loss function when label smoothing is applied, for

any label smoothing strength.

Proof. Consider a basic setup with standard label smoothing, controlled by a

hyperparameter α ∈ (0, 1), such that the target value in any yi is 1 − αn−1
n

,

rather than 1, and non-target values are α
n
, rather than 0. The learning rule

changes in the general case as follows:

γk(xi,yi,θ) =

c1 + chhk(xi,θ) + chhhk(xi,θ)2

+chyhk(xi,θ)
α

n
+ cy

α

n
+ cyy

α2

n2
yik = 0

c1 + chhk(xi,θ) + chhhk(xi,θ)2

+chyhk(xi,θ)

(
1− αn− 1

n

)
+cy

(
1− αn− 1

n

)
+ cyy

(
1− αn− 1

n

)2

yik = 1 .

(6.69)

Let ĉ1, ĉh, ĉhh, ĉhy, ĉy, ĉyy represent settings for c1, ch, chh, chy, cy, cyy in the non-

label-smoothed case that apply label smoothing implicitly within the Tay-

lorGLO parameterization. Given the two cases in the label-smoothed and

non-label-smoothed definitions of γk(xi,yi,θ), there are two equations that

must be satisfiable by settings of ĉ constants for any c constants, with shared

terms highlighted in blue and red:

c1 + chhk(xi,θ) + chhhk(xi,θ)2 + chyhk(xi,θ)
α

n
+ cy

α

n
+ cyy

α2

n2

= ĉ1 + ĉhhk(xi,θ) + ĉhhhk(xi,θ)2

(6.70)

135

c1 + chhk(xi,θ) + chhhk(xi,θ)2 + chyhk(xi,θ)

(
1− αn− 1

n

)
+cy

(
1− αn− 1

n

)
+ cyy

(
1− αn− 1

n

)2

= ĉ1 + ĉhhk(xi,θ) + ĉhhhk(xi,θ)2 + ĉhyhk(xi,θ) + ĉy + ĉyy.

(6.71)

Let us then factor the left-hand side of Equation 6.70 in terms of different

powers of hk(xi,θ):(
c1 + cy

α

n
+ cyy

α2

n2

)
︸ ︷︷ ︸

ĉ1

+
(
ch + chy

α

n

)
︸ ︷︷ ︸

ĉh

hk(xi,θ) + chh︸︷︷︸
ĉhh

hk(xi,θ)2,
(6.72)

resulting in definitions for ĉ1, ĉh, ĉhh. Let us then add the following form of

zero to the left-hand side of Equation 6.71:(
chyhk(xi,θ)

α

n
+ cy

α

n
+ cyy

α2

n2

)
−
(
chyhk(xi,θ)

α

n
+ cy

α

n
+ cyy

α2

n2

)
. (6.73)

This operation allows the definitions for ĉ1, ĉh, ĉhh from Equation 6.72 to be

substituted into Equation 6.71:

ĉ1 + ĉhhk(xi,θ) + ĉhhhk(xi,θ)2 −
(
chyhk(xi,θ)

α

n
+ cy

α

n
+ cyy

α2

n2

)
+chyhk(xi,θ)

(
1− αn− 1

n

)
+ cy

(
1− αn− 1

n

)
+ cyy

(
1− αn− 1

n

)2

= ĉ1 + ĉhhk(xi,θ) + ĉhhhk(xi,θ)2 + ĉhyhk(xi,θ) + ĉy + ĉyy.
(6.74)

Simplifying into

chyhk(xi,θ)

(
1− αn− 1

n

)
+ cy

(
1− αn− 1

n

)
+ cyy

(
1− αn− 1

n

)2

−
(
chyhk(xi,θ)

α

n
+ cy

α

n
+ cyy

α2

n2

)
= ĉhyhk(xi,θ) + ĉy + ĉyy.

(6.75)

136

Finally, factor the left-hand side of Equation 6.75 in terms of, hk(xi,θ), 1, and

12: (
chy

(
1− αn− 1

n

)
− chy

α

n

)
︸ ︷︷ ︸

ĉhy

hk(xi,θ)

+

(
cy

(
1− αn− 1

n

)
− cy

α

n

)
︸ ︷︷ ︸

ĉy

+

(
cyy

(
1− αn− 1

n

)2

− cyy
α2

n2

)
︸ ︷︷ ︸

ĉyy

.

(6.76)

Thus, the in-parameterization constants with implicit label smoothing

can be defined for any desired, label-smoothed constants as follows:

ĉ1 = c1 + cy
α

n
+ cyy

α2

n2
(6.77)

ĉh = ch + chy
α

n
(6.78)

ĉhh = chh (6.79)

ĉhy = chy

(
1− αn− 1

n

)
− chy

α

n
(6.80)

ĉy = cy

(
1− αn− 1

n

)
− cy

α

n
(6.81)

ĉyy = cyy

(
1− αn− 1

n

)2

− cyy
α2

n2
(6.82)

So for any λ and any α ∈ (0, 1), there exists a λ̂ such that the behav-

ior imposed by λ̂ without explicit label smoothing is identical to the behav-

ior imposed by λ with explicit label smoothing. That is, any degree of label

smoothing can be implicitly represented for any TaylorGLO loss function. Fur-

thermore, the presented methodology can be inverted and used to decompose

137

a given TaylorGLO loss function into a non-label-smoothed variant and a cor-

responding α. Thus, TaylorGLO may discover and utilize label smoothing as

part of discovering loss functions, increasing their ability to regularize further.

6.8 Discussion

Based on a decomposition of the SGD learning rule, this chapter devel-

oped a unified theoretical framework that illustrates how loss function regular-

ization can be better understood. Analysis of their behavior at different stages

of the training process helped characterize different loss functions. At the null

epoch, all analyzed loss functions reduce training error, albeit with varying

strengths. At zero training error—that is, when training labels are memorized

perfectly—different loss functions have significantly different behaviors. When

there is no longer anything left to learn, the optimization biases of each loss

function become clear, demonstrating how they result in implicit regulariza-

tion.

Extending to the general case—optimization at any epoch for any train-

able parameter configuration—a constraint was developed on the proportional

strength with which the network output distribution’s entropy increase or de-

crease (Equation 6.51). This quantity can be thought of as a measure of

repulsion or attraction towards regions of the parameter space with zero train-

ing error. Each loss function has a characteristic curve for this value at varying

levels of memorization (Figure 6.1). When calculated for individual samples

during real training runs with different loss functions (Figure 6.2), TaylorGLO

138

loss functions exhibit remarkably different behavior from the cross-entropy

loss. TaylorGLO loss functions initially force training towards reduced error

much more strongly than the cross-entropy loss, and after a number of epochs

change to a different training regime where the majority of training samples

are repel from zero training error regions. Since these characteristic curves

all lie in the same phase space, future work could tackle metalearning these

curves themselves rather than loss function, thus providing a more direct rep-

resentation of loss function behavior.

There are many opportunities for further theoretical work in this area.

Certain key questions remain unanswered, such as the relationship between

model architecture and regularization, and will likely require theoreticians to

develop a comprehensive theory of regularization and generalization in deep

neural networks. However, the framework and analyses presented in this chap-

ter provide a compelling first step, and have already shed light on the effec-

tiveness of metalearned loss functions.

6.9 Conclusion

Regularization has long been a crucial aspect of training deep neural

networks, with many different flavors. This chapter contributed an under-

standing of regularization resulting from loss-function metalearning. A theo-

retical framework for representing different loss functions was first developed

in order to analyze their training dynamics in various contexts. The results

demonstrate that TaylorGLO loss functions implement a guard against overfit-

139

ting, resulting in automatic regularization. The results thus extend the scope

of metalearning, focusing it not just on finding optimal model configurations,

but also on improving regularization, learning efficiency, and robustness di-

rectly. In Chapter 7, two practical opportunities emerge from these analyses:

filtering based on an invariant derived at the null epoch will be shown to im-

prove the search process, and the robustness against overfitting will be shown

to make networks also more robust against adversarial attacks.

140

Chapter 7

TaylorGLO Extensions

TaylorGLO is formulated in a general manner and it can therefore be

extended to address several different challenges and opportunities in machine

learning. This chapter presents four such extensions: utilizing auxiliary loss

functions, focussing the search process through an invariant, guard against

adversarial attacks, and coevolving loss functions for GANs.

7.1 Auxiliary Classifier Loss Functions

As described in Section 2.5.3, auxiliary classifiers provide a unique form

form of regularization [167] through architectural changes, while also alleviat-

ing the vanishing gradients problem and providing a way to more effectively

learn lower-level features than in standard networks. This section characterizes

the behavior of TaylorGLO on networks with auxiliary classifiers, focussing on

a modified AllCNN-C network with two auxiliary classifiers. Three seperate

loss functions are jointly evolved, which are able to take advantage of the three

sets of network outputs.

141

C
on

vo
lu

tio
n

Re
LU

D
ro

po
ut

Av
er

ag
e

Po
ol

in
g

So
ftm

ax

D
ro

po
ut

C
on

vo
lu

tio
n

Re
LU

St
rid

e
C

on
v

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

St
rid

e
C

on
v

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

Av
er

ag
e

Po
ol

in
g

So
ftm

ax

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

Av
er

ag
e

Po
ol

in
g

So
ftm

ax

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

C
on

vo
lu

tio
n

Re
LU

ℒMain

ℒAux 2ℒAux 1

Figure 7.1: AllCNN-C with Auxiliary Classifiers. The AllCNN-C archi-
tecture can be augmented with auxiliary classifiers after each dropout layer to
provide regularization [167] and allow gradients to flow deeper into the model
more directly. TaylorGLO can improve the model’s performance by optimizing
three separate loss functions.

7.1.1 AllCNN-C with Auxiliary Classifiers

AllCNN-C provides two natural points where auxiliary classifiers may

be grafted onto the architecture: it is possible to do so after each of the

two dropout layers. Each auxiliary classifier is nearly identical to the final

five layers of AllCNN-C, albeit with half as many filters. Specifically, both

auxiliary classifier have the following layers: (1) 1 × 1 convolution with 96

filters and ReLU activations, (2) 1× 1 convolution with 10 filters and ReLU

activations, (3) average pooling, and (4) a softmax layer. The modified

architecture is illustrated in Figure 7.1.

Auxiliary losses are scaled by 0.3 and summed with the main loss,

resulting in the final training loss. The 0.3 scaling factor is appropriate

142

for the Inception-v3 architecture [167], and was confirmed to be appropri-

ate for AllCNN-C in a hyperparameter sweep with varying scaling values in

〈0.15, 0.3, 1, 2〉.

AllCNN-C is the only architecture that was evaluated with auxiliary

classifiers since it is simple and does not have skip connections, so that the

effects of auxiliary classifiers can be seen more clearly. Auxiliary classifiers

tend to be useful in deep networks without skip-connections, which provide a

different way for gradients to propagate more deeply. In fact, in an experiment

where auxiliary classifiers with the cross-entropy loss were added to a Pre

ResNet-20, training failed in nearly half of all training attempts and resulted

in slightly lower accuracy than the baseline when training did converge.

7.1.2 Experiments

Compared to the baseline, auxiliary classifiers provide an increase in

accuracy greater than one percentage point (Table 7.1). Notably, this perfor-

mance increase is not simply the result of a substantial increase in the number

of parameters; the AllCNN-C variant with auxiliary classifiers has only 1.40

million parameters, compared to the conventional AllCNN-C’s 1.37 million.

The addition of Cutout has a similar effect on the modified network as on

the baseline. There is a slight drop in performance, however the drop has a

slightly smaller magnitude in the auxiliary classifier case.

Integration with TaylorGLO is fairly straightforward: the three loss

functions’ parameter sets are concatenated and jointly optimized as if they

143

Table 7.1: Test-set performance of models with and without auxil-
iary classifiers. Loss functions discovered by TaylorGLO are compared to
the cross-entropy loss. The TaylorGLO results are based on the loss func-
tion with the highest validation accuracy during evolution. All averages are
from ten separately trained models and p-values are from one-tailed Welch’s
t-Tests. Standard deviations are shown in parentheses. Auxiliary classifiers
improve accuracy over the cross-entropy baseline. This improvement is further
enhanced by TaylorGLO, where unique loss functions are evolved for each aux-
iliary classifer. An ablation study is also presented where the TaylorGLO loss
function for the main output is also used for the auxiliary classifiers, weighted
by 0.3. This study demonstrates the power of having separate loss functions.
On AllCNN-C, the top result comes from the combination of Cutout regular-
ization and TaylorGLO with auxiliary classifiers, suggesting that they each
provide a different dimension of regularization.

Task and Model Avg. TaylorGLO Acc. Baseline Acc. p-value

CIFAR-10
AllCNN-C 0.9271 (0.0013) 0.8965 (0.0021) 0.42×10−17

AllCNN-C + Cutout 0.9329 (0.0022) 0.8911 (0.0037) 1.60×10−14

AllCNN-C + Aux (Ablation) 0.9255 (0.0011) 0.9112 (0.0022) 9.67×10−11

AllCNN-C + Aux 0.9307 (0.0021) 0.9112 (0.0022) 1.03×10−13

AllCNN-C + Aux + Cutout 0.9369 (0.0010) 0.9078 (0.0012) 5.36×10−21

144

(a) Auxiliary Classifiers (b) Auxiliary Classifiers + Cutout

Figure 7.2: Best TaylorGLO loss functions for AllCNN-C with auxil-
iary classifiers. Loss functions are plotted for binary classification at x0 = 1.
Correct predictions lie on the right side of the graphs, and incorrect ones on
the left. There is a clear difference in what is optimal for each of the aux-
iliary classifiers and the main loss function, both with and without Cutout.
With Cutout, the optimal functions for auxiliary classifiers are noticably dif-
ferent, both in shape and range. Thus, what is optimal is influenced by both
architecture and complementary regularization techniques.

were from a single loss function. To accommodate the larger search space, the

population size is doubled from 20 to 40. The auxiliary loss functions’ scaling

factors are both set to one, with the intention that the proper scaling would

be metalearned implicitly as part of TaylorGLO.

In every case in Table 7.1, TaylorGLO provides a statistically signifi-

cant improvement in performance. TaylorGLO works harmoniously with other

regularization techniques; the best result on AllCNN-C includes auxiliary clas-

sifiers, Cutout, and TaylorGLO.

The best set of discoverd loss functions is illustrated in Figure 7.2.

The three loss functions are very different in terms of both shape and range,

suggesting that they are specialized to each auxiliary classifier.

145

(a) Auxiliary Classifiers (b) Auxiliary Classifiers + Cutout

Figure 7.3: Attraction towards zero training error curves for Taylor-
GLO loss functions for AllCNN-C with auxiliary classifiers. Each
curve—plotted using Equation 6.51—describes the zero training error attrac-
tion dynamics for individual samples given their current deviation from perfect
memorization, ε. TaylorGLO is able to discover loss functions with fundamen-
tally different training dynamics for each setting, demonstrating how Taylor-
GLO is able synergize with existing forms of regularization to reach higher
levels of performance.

The set of three loss functions is also different when Cutout regulariza-

tion is included; for example, they cover a larger range. The specific differences

in behavior can be analyzed by looking at each loss function’s characteristic

zero training error attraction curve (Figure 7.3). Without Cutout, the main

loss function only provides a force towards zero training error for sufficiently

low levels of memorization, while the first auxiliary loss function always pro-

vides a repulsive effect away from zero training error, and the second auxiliary

loss function always provides a force towards zero training error—like the cross-

entropy loss does. Conversely, with Cutout, the main loss function and first

auxiliary loss function always tends towards zero training error, and the second

auxiliary loss function only provides an attracive force towards zero training

146

error for low levels of memorization—similar to the TaylorGLO loss function.

The two sets of loss functions thus have fundamentally different training dy-

namics. This result shows how TaylorGLO adapts loss functions to specific

settings, i.e. the inclusion or lack of Cutout regularization.

This application to auxiliary classifiers provides a practical example of

how the TaylorGLO technique can be extended to evolve multiple mutually-

optimized loss functions simultaneously. TaylorGLO can thus be used to am-

plify the beneficial effects of auxiliary classifiers.

7.2 Utilizing an Invariant to Guide Search

There are many different instances of λ for which models are untrain-

able. Given the training dynamics at the null epoch (characterized in Sec-

tion 6.4), general constraints on λ were derived in Section 6.5).

The inverse of these constraints may be used as an invariant during

loss function evolution. That is, they can be used to identify entire families

of loss function parameters that are not usable, rule them out during search,

and thereby make the search more effective.

7.2.1 Integration with TaylorGLO

Before each candidate λ is evaluated, it is checked for conformance to

the invariant. If the invariant is violated, the algorithm can skip that candi-

date’s validation training and simply assign a fitness of zero. However, due to

the added complexity that the invariant imposes on the fitness landscape, a

147

Table 7.2: Test-set accuracy of loss functions discovered by Taylor-
GLO with and without an invariant constraint on λ. Models were
trained on the loss function that had the highest validation accuracy during
TaylorGLO evolution. All averages are from ten separately trained models and
p-values are from one-tailed Welch’s t-Tests. Standard deviations are shown
in parentheses. The invariant allows focusing metalearning to viable areas of
the search space, resulting in better loss functions.

Task and Model TaylorGLO + Invariant p-value

CIFAR-10
AlexNet 0.7901 (0.0026) 0.7933 (0.0026) 0.0092
PreResNet-20 0.9169 (0.0014) 0.9164 (0.0019) 0.2827
AllCNN-C 0.9271 (0.0013) 0.9290 (0.0014) 0.0004
AllCNN-C + Cutout 0.9329 (0.0022) 0.9350 (0.0014) 0.0124
Wide ResNet 28-5 0.9548 (0.0015) 0.9540 (0.0016) 0.1323

larger population size is needed for evolution within TaylorGLO to be more

stable. Practically, a doubling of the population size from 20 to 40 works well.

7.2.2 Experiments

Table 7.2 presents results from TaylorGLO runs with and without the

invariant on the CIFAR-10 image classification benchmark dataset [94] with

various architectures. Networks with Cutout [35] were also evaluated to show

that TaylorGLO provides a different approach to regularization. Standard

training hyperparameters from the references were used for each architecture.

Notably, the invariant allows TaylorGLO to discover loss functions that have

statistically significantly better performance in many cases, and never a detri-

mental effect. These results demonstrate that the theoretical invariant is useful

148

in practice, and should become a standard in TaylorGLO applications.

7.3 Optimizing Loss Functions Against Adversarial At-
tacks

As was described in Section 5.5.3, TaylorGLO loss functions discourage

overconfidence, i.e. the resulting activations are less extreme and vary more

smoothly with input. Such encodings are likely to be more robust against noise,

damage, and other imperfections in the data and in the network execution. In

the extreme case, they may also be more robust against adversarial attacks.

This hypothesis will be tested experimentally in this section.

7.3.1 Adversarial Attacks

Adversarial attacks elicit incorrect predictions from a trained model by

changing input samples in small ways that can even be imperceptible. They

are generally classified as “white-box” or “black-box” attacks, depending on

whether the attacker has access to the underlying model or not. Naturally,

white-box attacks are more powerful at overwhelming a model.

One such white-box attack is the Fixed Gradient Sign Method (FGSM)

[56]. It is very simple to conduct; following evaluation of a dataset, input gra-

dients are taken from the network following a backward pass. The individual

gradients have their sign calculated in an element-wise fashion, and are added

to future network inputs with an ε scaling factor (note that this is a different

ε than in Chapter 6) that determines the attack strength. Specifically, inputs

149

are modified as

xi ← xi + ε sign (∇xiL(xi,yi,θ)) . (7.1)

Experiments were designed to evaluate how well networks trained with

TaylorGLO loss functions are able to handle FGSM attacks compared to those

trained with the cross-entropy loss. Additionally, given that TaylorGLO can

optimize loss functions against any objective, adversarially-hardened loss func-

tions were evolved against an adversarial attack accuracy metric.

7.3.2 Experiments

Figure 7.4 shows how robust networks with different loss functions

are to FGSM attacks of various strengths. In this experiment, AllCNN-C,

AllCNN-C with Cutout, Wide ResNet 16-8, and Wide ResNet 28-5 networks

were trained on CIFAR-10 with TaylorGLO and cross-entropy loss. Indeed,

TaylorGLO outperforms the cross-entropy loss models significantly at all at-

tack strengths.

Note that in this case loss functions were evolved simply to perform

well, and adversarial robustness emerged as a side benefit. However, it is also

possible to take adversarial attacks into account as an explicit objective in

loss function evolution. Since TaylorGLO can uses non-differentiable metrics

as objectives in its search process, the traditional validation accuracy objective

can be replaced with validation accuracy at a particular FGSM attack strength.

Remarkably, loss functions found with this objective outperform both

the previous TaylorGLO loss functions and the cross-entropy loss. These re-

150

Te
st

in
g

Ac
cu

ra
cy

0.00

0.20

0.40

0.60

0.80

1.00

FGSM Epsilon (Attack Strength)
0 0.05 0.1 0.15 0.2 0.25 0.3

Cross-Entropy Loss
TaylorGLO Loss
TaylorGLO Loss with Robustness Objective

(a) AllCNN-C
Te

st
in

g
Ac

cu
ra

cy

0

0.2

0.4

0.6

0.8

1

FGSM Epsilon (Attack Strength)
0 0.05 0.1 0.15 0.2 0.25 0.3

Cross-Entropy Loss
TaylorGLO Loss
TaylorGLO Loss with Robustness Objective

(b) AllCNN-C with Cutout

Te
st

in
g

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

FGSM Epsilon (Attack Strength)
0 0.05 0.1 0.15 0.2 0.25 0.3

Cross-Entropy Loss
TaylorGLO Loss
TaylorGLO Loss with Robustness Objective

(c) Wide ResNet 16-8

Te
st

in
g

Ac
cu

ra
cy

0.00

0.20

0.40

0.60

0.80

1.00

FGSM Epsilon (Attack Strength)
0 0.05 0.1 0.15 0.2 0.25 0.3

Cross-Entropy Loss
TaylorGLO Loss
TaylorGLO Loss with Robustness Objective

(d) Wide ResNet 28-5

Figure 7.4: Robustness of TaylorGLO loss functions against FGSM
adversarial attacks on CIFAR-10. For each architecture, the blue bars
represent accuracy achieved through training with the cross-entropy loss, green
bars with a TaylorGLO loss, and gray bars with a TaylorGLO loss specifically
evolved in the adversarial attack environment. The leftmost points on each
plot represent evaluations without adversarial attacks. TaylorGLO regular-
ization makes the networks more robust against adversarial attacks, and this
property can be further enhanced by making it an explicit goal in evolution.

151

Figure 7.5: Comparing accuracy basins of AllCNN-C with cross-
entropy, TaylorGLO, and adversarially robust TaylorGLO loss func-
tions on CIFAR-10. Basins are only plotted along one perturbation di-
rection for clarity, using the same technique as in Section 5.5.1. While the
adversarially robust TaylorGLO loss function does not confer an increase in
accuracy in the absence of adversarial attacks, it has a wider, flatter accuracy
basin. This is indicative of increased robustness as a result of using a Taylor-
GLO loss function that has been selected for against an adversarial robustness
objective.

sults demonstrate that the TaylorGLO regularization leads to robust encoding,

and such robustness can be further improved by making it an explicit goal in

loss-function optimization.

7.3.3 Comparing Accuracy Basins

As described in Section 5.5.1, models trained with TaylorGLO loss

functions have flatter accuracy basins—a characteristic associated with robust

networks. Indeed, as was shown above, they are robust even against adversarial

attacks, presumably because of the flatter basins.

Since TaylorGLO loss functions that were discovered against an ad-

versarial performance objective were even more robust, what do their basins

152

look like? On AllCNN-C, while the absolute accuracy on the testing set is not

statistically significantly different when training with an adversarially robust

versus a standard TaylorGLO loss function, the resultant accuracy basin is

wider and flatter (Figure 7.5). This result suggests that it may be advanta-

geous for TaylorGLO to evaluate against an adversarial performance metric,

even in the absence of adversarial attacks in the target application.

7.4 Loss Functions for GANs

As GANs have grown in popularity, the difficulties involved in train-

ing them have become increasingly evident. The loss functions used to train

a GAN’s generator and discriminator networks greatly impact performance.

Thus, optimizing these loss functions jointly can result in better GANs. This

section presents an extension of TaylorGLO to evolve loss functions for GANs.

Images generated in this way improve both visually and quantitatively, as the

experiments in this section show.

7.4.1 TaylorGLO for GANs

In TaylorGLO for GANs, there are three functions that need to be

jointly optimized (using the notation described in Table 2.1):

1. The component of the discriminator’s loss that is a function of D(x),

the discriminator’s output for a real sample from the dataset,

2. The synthetic / fake component of the discriminator’s loss that is a

153

function of D(G(z)), the discriminator’s output from the generator that

samples z from the latent distribution), and

3. The generator’s loss, a function of D(G(z)).

The discriminator’s full loss is simply the sum of components (1) and (2).

Table 7.3 shows how existing GAN formulations can be broken down into this

tripartite loss.

Table 7.3: GLO interpretation of existing GAN formulations. These
three components are all that is needed to define the discriminator’s and gen-
erator’s loss functions (sans regularization terms). Thus, TaylorGLO can dis-
cover and optimize new GAN formulations by jointly evolving three separate
functions.

Formulation Loss D (real) Loss D (fake) Loss G (fake)
Ex∼Pdata

Ez∼Pz
Ez∼Pz

GAN (minimax) [55] − logD(x) − log(1−D(G(z))) log(1−D(G(z)))
GAN (non-saturating) [55] − logD(x) − log(1−D(G(z))) − logD(G(z))
WGAN [10] −D(x) D(G(z)) −D(G(z))
LSGAN [112] 1

2 (D(x)− 1)2 1
2 (D(G(z)))2 1

2 (D(G(z))− 1)2

These three functions can be jointly evolved in a similar manner to that

for auxiliary classifiers (Section 7.1). However, unlike classifier loss functions,

GAN loss functions have a single input, i.e. D(x) or D(G(z)). Thus, a

set of three third-order TaylorGLO loss functions for GANs requires only 12

parameters to be optimized, making the technique quite efficient.

Fitness for each set of three functions requires a different interpretation

than in regular TaylorGLO. Since GANs cannot be thought of as having an

154

accuracy, a different metric needs to be used. The choice of fitness metric

depends on the type of problem and target application. In the uncommon

case where the training data’s sampling distribution is known, the clear choice

is the divergence between such a distribution and the distribution of samples

from the generator. This approach will be used in the experiments below.

7.4.2 Experimental Setup

Rather than extending Lossferatu to support GANs, TaylorGLO for

GANs was integrated into the LEAF evolutionary AutoML framework [105].

TaylorGLO parameters were evolved by the LEAF genetic algorithm as if they

were hyperparameters. The implementation of CoDeepNEAT [115] for neural

architecture search in LEAF was not used.

TaylorGLO for GANs was evaluated on the CMP Facade [176] dataset

with a pix2pix-HD model [185]. The dataset consists of only 606 perspective-

corrected 256× 256 pixel images of building facades. Each image has a corre-

sponding annotation image that segments facades into twelve different compo-

nents, such as windows and doors. The objective is for the model to take an

arbitrary annotation image as an input, and generate a photorealistic facade

as output. The dataset was split into a training set with 80% of the images,

and validation and testing sets, each with a disjoint 10% of the images.

Since individual image quality metrics can be exploited by adversarially

constructed, lesser-quality images [20], two metrics were used to evaluate loss

function candidates: (1) structural similarity index measure (SSIM) [186] be-

155

tween generated and ground-truth images, and (2) perceptual distance, imple-

mented as the L1 distance between VGG-16 [157] ImageNet [145] embeddings

for generated and ground-truth images. During evolution, a composite objec-

tive [156] of these two metrics was used to evaluate candidates. The metrics

were normalized (i.e., SSIM was multiplied by 17 and perceptual distance by

−1) to have a similar impact on evolution.

The target GAN model, pix2pix-HD, is a refinement of the seminal

pix2pix model [85]. Both models generate images conditioned upon an in-

put image. Thus, they are trained with paired images. The baseline was

trained with the Wasserstein loss [10] and spectral normalization [118] to en-

force the Lipschitz constraint on the discriminator. The pix2pix-HD model is

also trained with additive perceptual distance and discriminator feature losses.

Both additive losses are multiplied by ten in the baseline. Models were trained

for 60 epochs.

When running TaylorGLO experiments, each of the twleve TaylorGLO

parameters was evolved within [−10, 10]. The learning rate and weights for

both additive losses were also evolved since the baseline values, which are op-

timal for the Wasserstein loss, may not necessarily be optimal for TaylorGLO

loss functions.

7.4.3 Experiments

TaylorGLO found a set of loss functions that outperformed the original

Wasserstein loss with spectral normalization. After 49 generations of evolu-

156

Input:

Ground-Truth:

Wasserstein Reproduction (Baseline):

TaylorGLO Reproduction:

Figure 7.6: Five random samples from the CMP Facade test dataset,
comparing Wasserstein and TaylorGLO loss functions. The loss func-
tions are used to train pix2pix-HD models that take architectural element
annotations (top row) and generate corresponding photorealistic images sim-
ilar to the ground-truth (second row). Images from the model trained with
TaylorGLO (bottom row) have a higher quality than the baseline (third row).
TaylorGLO images have more realistic coloration and finer details than the
baseline.

157

tion, it discovered the loss functions

LDreal
= 5.6484 (D(x)− 8.3399) + 9.4935 (D(x)− 8.3399)2

+8.2695 (D(x)− 8.3399)3
(7.2)

LDfake
= 6.7549 (D(G(z))− 8.6177) + 2.4328 (D(G(z))− 8.6177)2

+8.0006 (D(G(z))− 8.6177)3
(7.3)

LGfake
= 0.0000 (D(G(z))− 5.2232) + 5.2849 (D(G(z))− 5.2232)2

+0.0000 (D(G(z))− 5.2232)3.
(7.4)

A learning rate of 0.0001, discriminator feature loss weight of 4.0877, and

perceptual distance loss weight of 10.3155 evolved for this candidate.

Figure 7.6 compares images for five random test samples that were gen-

erated with both the Wasserstein baseline and metalearned TaylorGLO loss

functions. Visually, the TaylorGLO samples have more realistic coloration and

details than the baseline. Baseline images all have an orange tint, while Tay-

lorGLO images more closely match ground-truth images’ typical coloration.

Note that color information is not included in the model’s input, so per-sample

color matching is not possible. Additionally, TaylorGLO images tend to have

higher-quality fine-grained details. For example, facade textures are unnatu-

rally smooth and clean in the baseline, almost appearing to be made of plastic.

Quantitatively, the TaylorGLO model also outperforms the Wasserstein

baseline. Across ten Wasserstein baseline runs, the average test-set SSIM was

9.4359 and the average test-set perceptual distance was 2129.5069. The Tay-

lorGLO model improved both metrics, with a SSIM of 11.6615 and perceptual

distance of 2040.2561.

158

Notably, the training set is very small, with fewer than 500 image

pairs, showing how loss-function metalearning’s benefits on small classifica-

tion datasets also extend to GANs. Thus, metalearned loss functions are an

effective way to train better GAN models, extending the types of problems to

which TaylorGLO can be applied.

7.5 Conclusion

The TaylorGLO approach to evolving loss functions provides a practical

foundation that can be extended to take advantage of various opportunities

and to meet various challenges in machine learning. On model architectures

with auxiliary classifiers, TaylorGLO can evolve unique loss functions for each

classifier, allowing regularization to be tuned for different parts of the network.

Leveraging the theoretical work in Chapter 6, an invariant on TaylorGLO

parameters can be used to guide the evolutionary search process towards better

regions of the loss function parameter landscape. Networks can be hardened

against adversarial attacks by using metalearned loss functions; a property

that can be amplified by using an adversarial fitness metric in the TaylorGLO

search process. Finally, TaylorGLO is extended to evolve new formulations

for conditional generative adversarial networks that provide higher quality

image reconstructions. Altogether, these techniques provide a taste of what is

possible with TaylorGLO, and loss-function metalearning more broadly.

159

Chapter 8

Discussion and Future Work

This dissertation introduced loss-function metalearning—a new type of

metalearning that aims to optimize a given model’s core training objective to

improve performance along a variety of dimensions. This chapter provides a

retrospective and discussion of the techniques, results, and analyses that have

been presented. A prescription for AI practitioners is given, detailing how two

new techniques, GLO and TaylorGLO, can be used in practice. Finally, the

broader impacts of this research are discussed.

8.1 Loss-Function Metalearning

The research in this dissertation started from a basic hypothesis: Loss

functions can be optimized automatically to find customized functions that

perform better than those designed by hand. Verifying this hypothesis re-

quired the development of a technique to search a large space of loss functions

effectively and methodically. Evolutionary computation was leveraged and

ultimately this hypothesis was found valid with Genetic Loss-function Opti-

mization (GLO), a general technique for loss-function metalearning.

GLO performed well on image classification models. Models trained

160

with a newly discovered loss function, Baikal, reached higher accuracies than

those trained with cross-entropy loss more quickly. Additionally, Baikal func-

tioned more effectively on small datasets. When training with increasingly

small subsets of the training dataset, accuracy degraded less with Baikal than

with cross-entropy loss.

Baikal was found to have a unique shape with an unintuitive property:

loss values increase with increasingly confident predictions. This property

may seem detrimental to proper training, but a distributional analysis of the

network predictions showed that overly confident predictions are penalized,

providing a form of regularization.

GLO discovered Baikal, and other performant loss functions, through

a two-phase approach to loss-function metalearning: (1) new loss functions

are evolved by having their structure represented as trees, allowing optimiza-

tion through Genetic Programming (GP); and (2) loss function coefficients

are optimized using a Covariance-Matrix Adaptation Evolutionary Strategy

(CMA-ES). A variety of loss functions can be represented in this manner,

since the GP search space can be augmented with new operators and loss

function input nodes.

While the approach was successful, the separation of the two phases

makes it challenging to find a mutually optimal structure and coefficients.

Furthermore, small changes in the tree-based search space do not always result

in small changes in the phenotype, and can easily make a function invalid,

making the search process ineffective. To make loss-function metalearning

161

more practical, an alternative technique was developed: Multivariate Taylor

expansion-based genetic loss-function optimization (TaylorGLO). TaylorGLO

was designed with the intention of being a single-phase approach that finds

performant loss functions with fewer candidate evaluations than GLO. By

designing a more focused search space that sacrifices a degree of flexibility,

evolution can optimize loss-functions more effectively in practice.

TaylorGLO evolves fixed-length vectors of values that define a loss func-

tion. With a novel parameterization for loss functions based on multivariate

Taylor polynomials, the key pieces of information that affect a loss function’s

behavior are represented in these vectors compactly. Such vectors are then op-

timized for a specific task using CMA-ES. This optimization process is effective

since the parameterization provides a smooth, well-behaved fitness landscape.

This smoothness is in contrast to the fitness landscape in the structural evo-

lution phase of GLO, where seemingly small changes to a function’s structure

can have disproportionate effects on fitness.

Because TaylorGLO is computationally more efficient, it can be applied

to much larger models, with up to millions of trainable parameters. Several

modern deep architectures were evaluated on three image classification bench-

mark datasets. Loss functions discovered by TaylorGLO for these tasks tend to

outperform the cross-entropy loss statistically significantly. TaylorGLO finds

loss functions that are customized to each setting, beating the “one size fits

all” approach taken with the cross-entropy loss. They also outperform the

Baikal loss, discovered by the original GLO technique, and do it with signifi-

162

cantly fewer function evaluations. As with Baikal, the reason for the improved

performance is that evolved functions discourage overfitting to the class labels,

thereby resulting in automatic regularization.

The power of TaylorGLO was demonstrated in a number of specialized

settings. First, it was applied to models with auxiliary classifiers, where three

separate loss functions were evolved. TaylorGLO took advantage of the dif-

ferences between the different classifiers to evolve loss functions with unique

behaviors. Overall, models with auxiliary classifiers trained with TaylorGLO

had higher performance.

In a second special setting, TaylorGLO was adapted to evolve tripartite

loss functions for conditional generative adversarial networks (GANs). On

a facade generation dataset, TaylorGLO loss functions trained GANs that

generated images that were quantitatively better than those produced from a

GAN trained with a Wasserstein loss. This unique application showcases the

power and flexibility of loss-function metalearning.

While TaylorGLO outperforms the original GLO technique in many

practical applications, GLO is still useful on its own. In cases where a loss

function may have several different inputs, GLO scales better than TaylorGLO,

which would require a very large increase in the number of parameters (as

described in Equation 5.4). Loss functions that include many different inputs,

such as batch statistics, can represent richer behaviors during training by

taking more data into account when optimizing a model. In such cases, GLO

provides a possible approach that can find such loss functions by expanding its

163

search space. Thus, both GLO and TaylorGLO contribute unique capabilities

to the field.

Notably, loss-function metalearning improves performance on networks

that have already been tuned extensively by hand to perform well with cross-

entropy loss. Thus, these designs may be overfit against the cross-entropy loss,

potentially eclipsing some of the benefits that TaylorGLO loss functions can

offer. Finding mutually beneficial architectures and loss functions is thus a

promising direction for future work. One way this mutual optimization could

be accomplished is by integrating TaylorGLO loss-function metalearning into

a technique such as CoDeepNEAT [115].

Another important direction of future work is to apply loss-function

metalearning to different types of problems. For example, the techniques can

be easily applied to simple regression tasks, where different loss functions,

such as the Huber loss [80], have been beneficial. On the other extreme,

transformer models, such as BERT [34], which have been used to build state-

of-the language models, are often fine-tuned to specific tasks with the cross-

entropy loss. GLO and TaylorGLO can offer a way to evolve loss functions

that are customized to each individual transformer architecture and target

task, thus increasing their performance.

Overall, this dissertation presented results that validate loss-function

metalearning as a technique to improve model performance. However, develop-

ing an understanding of the principles behind loss-function metalearning—that

is, altered training dynamic and regularization—is also important.

164

8.2 Loss-Function Regularization and Effects on Models

In addition to showing that loss-funcion metalearning works from an

empirical perspective, this dissertation provided a conceptual and theoretical

understanding of the regularizing effects that loss functions impart on the

training process.

To characterize networks trained with TaylorGLO loss functions, the

minima they reach were analyzed. Using a prior loss landscape visualization

technique that plots network performance through a random, filter-normalized

slice of trainable parameter space [102], TaylorGLO loss functions were ob-

served to result in flatter, lower minima. This finding indicates increased

robustness and better generalization [90] compared to the cross-entropy loss.

While these minima had different performance characteristics, they

were also in different parts of the trainable parameter space. This was demon-

strated by analyzing the distribution of weights in networks trained with a

TaylorGLO loss function and with the cross-entropy loss. Models trained with

TaylorGLO had normally distributed weights, while the cross-entropy loss re-

sulted in a Laplace distribution. Thus, the two loss functions reach entirely

different regions of the parameter space. TaylorGLO models also had a signif-

icantly higher L2 parameter norm than cross-entropy loss models. This find-

ing helps further disprove [48] the common belief that networks with smaller

parameter norms perform better [125, 191]. Additionally, these observed dis-

tributions and parameter norms were not greatly affected by the addition of

Cutout regularization, indicating a different mechanism of regularization.

165

To understand how TaylorGLO loss functions reach different minima

than the cross-entropy loss, networks’ scaled logits were plotted in histograms

throughout the training process. These visualizations showed qualitatively dif-

ferent training behavior between TaylorGLO and cross-entropy loss functions.

Furthermore, the TaylorGLO loss functions that vary between architectures

have very distinct behaviors, showing how TaylorGLO can customize and op-

timize training for each setting.

Following these empirical findings, a theoretical framework was devel-

oped to understand conceptually the specific behaviors that different loss func-

tions effect. A novel decomposition of the stochastic gradient descent learning

rule allows any loss function to be decomposed into two expressions that define

the optimization process’s behavior for any given sample. Using this frame-

work, loss functions were characterized in a zero training error regime. In this

case, where there is nothing left to learn from training data, the implicit biases

that loss functions place on the optimization process become the only visible

behavior. Metalearned loss functions represent a wide variety of implicit bi-

ases, showing one aspect of metalearned loss function regularization.

Subsequently, loss functions were characterized at the opposite end of

the training process, i.e. at the null epoch. In this scenario, all loss functions

fit the training data, with TaylorGLO loss functions offering flexibility in how

strongly the data is fit. However, TaylorGLO is also able to represent undesired

behaviors at the null epoch. These degenerate behaviors were characterized,

and an invariant on TaylorGLO loss function parameters was developed using

166

the theoretical framework by setting a constraint on optimization behavior at

the null epoch. This invariant was integrated into TaylorGLO, where it was

used to avoid unnecessary candidate evaluations and guide evolution towards

more fruitful areas of the search space. In this process, TaylorGLO found

better loss functions that further improve performance in most cases.

The null epoch and zero training error represent the two extrema of

the training process: no data fitting and perfect data fitting. To analyze

training between these extrema, the way that a model’s output distribution’s

entropy changed was characterized. A constraint was developed to determine

the proportional strength of entropy growth or reduction for any given sample.

Practically, the way entropy changes indicates whether a model’s trainable

parameters are being attracted or repelled from regions with zero training

error. For each loss function, this value can be calculated for varying degrees of

sample memorization. These values form a characteristic curve that represents

the core data-fitting dynamics for a given loss function.

It turned out that the cross-entropy and mean-squared-error loss func-

tions are always attracted towards zero training error, while TaylorGLO and

Baikal loss functions are repelled for sufficiently well-memorized samples. This

property explains how these metalearned loss functions regularize by prevent-

ing overconfidence.

The strength of attraction towards zero training error was then cal-

culated for individual training samples during a real training processes. The

cross-enropy loss, as expected, biased the model towards zero training error

167

for every sample, with a strength that decreased as training progressed. Con-

versely, the analyzed TaylorGLO loss function had a very strong bias towards

zero training error in early training. As training progressed, well-fit samples

were repelled from zero training error, while misclassified and poorly-fit sam-

ples were still strongly biased towards zero training error.

In the future, these entropy behavior characteristic curves can be evolved

directly. Such curves represent a loss function’s attraction or repulsion towards

zero training error for varying levels of sample memorization. Thus, these

behaviors can thus be directly metalearned—rather than being implicitly en-

coded in a loss function—by optimizing the characteristic curves directly.

Overall, these analyses provide a unique way to observe different loss

functions’ behavior. Different loss functions are seen to work in slightly differ-

ent ways, customizing regularization to each domain. As such, the interaction

between loss function regularization and other regularization technique may

vary between models. These interactions are explored next.

8.3 Interactions Between Different Regularization Meth-
ods

This dissertation evaluated loss-function metalearning in many different

settings with different types of regularization techniques. The conclusion is

that metalearned loss functions provide regularizing effects in a way that is

different from other regularization techniques.

Different regularization techniques interact in different ways and with

168

metalearned loss functions and the target model architecture. These differ-

ences provide evidence that regularization is not necessarily a continuum.

Thus, value judgements on quantities of regularization, such as the assertion

that “a model has more or less regularization than another model,” are over-

simplifications. Individual regularization techniques must instead be thought

of as different processes that need to be compared comprehensively.

Many types of regularization can be viewed as operations that are added

to a base network, each with a unique set of performance characteristics. Dif-

ferences between different combinations of operations can be compared using

interaction graphs. The base architecture lies at the center of the graph. Fol-

lowing each edge away from the center adds a specific type of regularization.

The color of each edge characterizes the change in performance that results

from the addition: green is a statistically significant, positive improvement,

red is a statistically significant, negative improvement, and yellow indicates

a statistically insignificant difference. A particularly useful characteristic of

these graphs is that there are multiple instances of nodes for a given set of

operations, one for each possible ordering the addition of these operations.

These multiple paths provides insights into the interactions between different

regularization techniques.

Figure 8.1 shows such an interaction graph for the AllCNN-C archi-

tecture. To construct this graph, experiments were run with ten repetitions

each to collect performance statistics. Several interesting observations can be

made on the graph. For example, on the AllCNN-C architecture (Figure 8.1),

169

Figure 8.1: Regularization interaction graph for AllCNN-C on
CIFAR-10. Each consecutive node away from the center node represents
the addition of a single regularization technique. The edges leading to these
nodes are colored green if the technique improves performance compared to
the previous node, and red if they are detrimental, and yellow (in Figure 8.3)
if there is no effect. On AllCNN-C, all techniques improve performance, with
the notable exception of Cutout and CutMix, which only improve performance
when coupled with TaylorGLO. This shows how regularization techniques are
not necessarily additive operations; interactions between regularization tech-
niques are more complex.

170

AlexNet

TaylorGLO

CutMixCutout

CutMixCutout

TaylorGLO TaylorGLO

**

*

Figure 8.2: Regularization interaction graph for AlexNet on CIFAR-
10. On AlexNet, all tested regularization techniques improves performance,
except for Cutout alone. However, it also exhibits a constructive interaction
with TaylorGLO, much like on AllCNN-C. Unlike on AllCNN-C, CutMix im-
proves performance in the abscence of TaylorGLO. These differences show
that even superficially similar architectures are affected by regularization dif-
ferently.

the addition of Cutout always results in a performance drop unless it follows

the addition of TaylorGLO. This property indicates a constructive relation-

ship between TaylorGLO and Cutout. Such a relationship can be intuited

from the snowflake plots by observing patterns in the paths leading to Cutout

nodes. The same can be seen for CutMix. All other evaluated regularization

techniques exhibit additive effects.

On the AlexNet architecture (Figure 8.2), Cutout alone is detrimental,

but exhibits the same constructive interaction behavior with TaylorGLO, as

on AllCNN-C.

On Wide ResNets (Figure 8.3), a modern family of architectures with

skip connections, CutMix and TaylorGLO have a complex relationship. On

171

TaylorGLO

CutMixCutout

CutMixCutout

TaylorGLO TaylorGLO

*** ******

ns

ns

WRN 16 8

(a) Wide ResNet 16-8

WRN 28 5

TaylorGLO

CutMixCutout

CutMixCutout

TaylorGLO TaylorGLO

ns

****** ***
ns

(b) Wide ResNet 28-5

Figure 8.3: Regularization interaction graphs for Wide ResNets on
CIFAR-10. On wide and shallow networks (a), all regularization techniques
garner performance improvements, while combining CutMix and TaylorGLO
does not significantly alter performance. Conversely, narrow and deep net-
works exhibit very different interactions, in that TaylorGLO does not improve
performance significantly on its own. Ultimately, altering the depth and width
of a single type of architecture affects the way in which regularization can hap-
pen. The similarities and differences in Figures 8.1 through 8.3 show how the
interactions between different regularization techniques depend on the model
architecture. They show that regularization techniques are not simply additive
behaviors; their impacts on performance depend on which other regularization
techniques are present.

172

Wide ResNet 16-8, TaylorGLO and CutMix, individually, improve the trained

model’s performance significantly. However, combining both does not result in

any additional performance improvements. Additionally, unlike on AllCNN-C

and AlexNet, Cutout always improves performance. However, on Wide ResNet

28-5, a variant that is more deep and narrow, the regularization interactions are

quite different, in that TaylorGLO ceases to improve performance significantly.

A deeper understanding of these interferences, and why certain regu-

larization techniques function on certain architectures but not on others, is a

compelling direction for future work. While developing a comprehensive theo-

retical framework for regularization would be very challenging—due to the

varied ways in which different regularization techniques function—perhaps

understanding specific interferences yields insights that lead towards such a

framework.

From a practical perspective, the interactions between different regu-

larization techniques can be leveraged by future metalearning techniques to

find optimal combinations for a given scenario. On the other hand, practition-

ers should not assume that regularization techniques will always be beneficial.

This further demonstrates the importance of a model’s architecture, and en-

courages the combination of loss-function metalearning and neural architecture

search.

173

8.4 Architectural Dependence

Experiments in the dissertation showed that some specific architectures

work better with loss-function metalearning than others. Small changes, such

as the different ordering of layers between ResNet and Preactivation ResNet

architectures, can make TaylorGLO work better. Even changes to the depth

and width of a particular architecture can affect TaylorGLO’s performance.

Conceivably, different architectures have weight manifolds that are more

amenable to regularization by loss functions. That is, loss functions can ef-

fect different spaces of changes to the manifold. These spaces of changes can

have varying degrees of compatibility with the manifolds for different architec-

tures, in a similar vein to how different architectures are more or less trainable

themselves.

This hypothesis provides compelling motivation to coevolve loss func-

tions and mutually beneficial architectures together, as discussed in Section 8.1.

The analyses in Chapters 4, 5, and 7 were done on architectures that were de-

signed with the cross-entropy loss, but perhaps there are other architectures

that work better only with a different loss function.

Developing an understanding of how differences between architectures

affect what performance improvements are attainable through loss-function

metalearning is important future work. Such an understanding will allow

better models to be trained and theoretical insights to be developed.

174

8.5 Prescription for AI Practitioners

The research presented in this dissertation opens up an exciting op-

portunity for AI researchers and engineers to enhance their models through

loss-function evolution. Customized loss functions can improve a particular

model’s performance without humans needing to make hand-designed changes.

For most cases, TaylorGLO provides a practical approach that can be

applied to existing deep neural networks with minimal changes. A TaylorGLO

loss function can replace an existing loss function directly. The parameters to

this loss function can then be evolved in situ for the task at hand.

Even if trained networks have comparable testing accuracies with Tay-

lorGLO and the cross-entropy loss, networks trained with TaylorGLO loss

functions are more robust against adversarial attacks. Similarly, any end-

application objective—which does not need to be differentiable—can be used

by TaylorGLO to evolve tailor-made loss functions that are customized to the

needs of any particular application.

8.6 Broader Impact

While the main goal of the research in this dissertation is to improve

deep learning, it is important to be cognizant that machine learning is a dual-

use technology. Much as with other historically important fields and inven-

tions, machine learning, and artificial intelligence more broadly, can usher pos-

itive societal impacts, but they can also make it possible for nefarious actors

175

to misappropriate it to harm humanity and the rights and liberties of individ-

uals. Additionally, AI systems that are not properly supervised can result in

unwanted outcomes. There is a natural tendency to trust such systems at face

value if their perceived benefits are great enough. However, such trust can

lead to scenarios where an AI system behaves in a counterintuitive manner,

in a fashion that contradicts the wishes of humans, or in a domain in which it

was not designed to function. There are also more indirect, negative impacts

on climate, inequities, and fairness. It is important to take such concerns into

account in the training, deployment, and use of AI systems.

8.6.1 Earth’s Climate

As AI systems become larger and more complex, their power usage—

which is correlated with compute usage—increases. In a world where a signifi-

cant fraction of energy is still produced with polluting energy sources, there is

a release of carbon dioxide associated with trained and deployed models that

should not simply be ignored.

California, where the infrastructure that ran the experiments in this

dissertation is located, is estimated to have had an estimated carbon dioxide

equivalent total output emission rate of 226.21 kgCO2eq/kWh in 2018 [6].

This quantity can be used to calculate the climate impact of compute-intensive

experiments.

Table 8.1 provides estimates of total emissions for various TaylorGLO

experiments. They were calculated using the Machine Learning Impact cal-

176

Table 8.1: Estimated total emissions resulting from individual Taylor-
GLO experiments with different configurations. The estimates assume
a population size of 20 and 50 generation runs. Values are upper bounds re-
ported in equivalent kilograms of carbon dioxide, thus accounting for other
gases of interest. Emission estimates show how the environmental impact of
machine learning can vary greatly depending on the chosen model architecture.
The impact is significant, and should be taken into account when planning ex-
periments.

TaylorGLO Experiment Total Emissions (kgCO2eq)

AlexNet on CIFAR-10 4.07
ResNet-20 on CIFAR-10 11.58
Pre ResNet-20 on CIFAR-10 10.48
AllCNN-C on CIFAR-10 19.30
AllCNN-C + Aux. Classifiers on CIFAR-10 22.20
PyramidNet 110a48 on CIFAR-10 83.53
Wide ResNet 28-5 on CIFAR-10 48.52
Wide ResNet 16-8 on CIFAR-10 40.80
Wide ResNet 28-10 on CIFAR-10 119.10

culator [96], assuming that experiments were evenly distributed across both

hardware configurations specified in Section 3.3.4, and that no candidates

failed evaluation (which would result in slightly lower estimates). Presented

values can be thought of as being an upper bound.

Machine learning research is not cheap: many of these estimates are

on the same order-of-magnitude as the full-life-cycle carbon footprint of an

iPhone 12 (i.e., 70 kgCO2eq) [5]. Therefore, experiments should minimize

compute usage, not only because it is costly, but because of its impact on the

environment as well.

177

8.6.2 Research Community Inequities

Over the past decade, many key developments in deep learning in par-

ticular have risen out of large institutions with vast computational resources.

Larger, more compute-intensive models tend to outperform smaller models.

This trend has made it challenging for smaller groups to make contributions

to the field. Evolution-based machine learning techniques, such as those em-

bodied in this dissertation, inherently require large amounts of compute power.

These techniques subsequently confer greater advantages to larger organiza-

tions than smaller ones. However, computers continually become more pow-

erful, and thus many of these techniques will eventually be within reach of all

researchers, in the same vein that the automobile or the smartphone were once

exclusively used by those with greater economic means but are now accessible

to more people.

8.6.3 Fairness, Safety, and Robustness

Fairness, safety, and robustness are becoming increasingly important

as AI systems get deployed in the world, particularly when personal data is

involved. Such systems have to operate in the real world, where data is not

always as meticulously crafted as in a laboratory setting. AI systems impact

people’s lives directly, whether is in the form of a biased credit decision or an

injury caused by an autonomous vehicle that misclassified a street sign. Thus,

AI practitioners must be mindful of fairness, safety, and robustness throughout

a system’s development and deployment.

178

While fairness in training data is an entire issue in and of itself, the

way in which a dataset is consumed can also affect whether the system is fair.

Metalearned loss functions reduce overfitting in models, leading to models that

tend to learn patterns rather than memorize individual samples. TaylorGLO,

which was shown specifically to help guide learning away from overconfident

memorization, could be a useful tool to help train fairer models.

TaylorGLO has also been shown to result in significantly more robust

models, particularly in the face of adversarial attacks. This robustness has im-

portant implications for safety, where TaylorGLO models will less susceptible

to out-of-distribution data and attacks by bad actors.

Therefore, while it is not a full solution, TaylorGLO can be used to

make AI systems more fair, safe, and robust.

179

Chapter 9

Conclusion

This dissertation described the scientific journey that developed loss-

function metalearning. This chapter closes this journey by reviewing the key

contributions in this work. Closing remarks then reflect on how these contri-

butions pushed the front line of knowledge further and how they can serve as

a step in the further development of machine learning.

9.1 Contributions

This dissertation makes the following contributions to science:

Loss-Function Metalearning with GLO: Prior to this work, practition-

ers typically selected from a small number of loss functions for training their

models. The metalearning of loss functions was first tackled in Chapter 4 with

GLO, a novel technique to automatically discover new loss functions using

evolution with a tree-based representation. Loss function trees can be further

optimized through continuous coefficient evolution. The resulting loss func-

tions were shown to outperform existing loss functions while training faster

and performing well in low-data settings. Overall, GLO provides a flexible

180

approach that can be naturally extended, especially to domains where the loss

function has a large number of inputs.

Efficient Loss-Function Metalearning with TaylorGLO: While the

GLO approach provided unparalleled flexibility, it comes with a cost and

is oftentimes unnecessary. TaylorGLO was introduced in Chapter 5 as an

alternative technique with a more practical loss-function parameterization.

Performance gains were demonstrated on many architectures across a variety

of image classification benchmark datasets. Models trained with TaylorGLO

loss functions were found to have very different training dynamics from those

trained with the cross-entropy loss. These customized training dynamics al-

lowed them to reach different parts of the trainable parameter space with

flatter minima than standard loss functions, and thus better robutsness and

generalization properties.

Theoretical Framework for Understanding Regularization: To un-

derstand how and why metalearned loss functions can train more performant

networks, a theoretical framework for explaining loss-function regularization

was developed in Chapter 6. A novel stochastic gradient descent learning rule

decomposition allows any loss function to be decomposed into two expressions

that describe their behavior. These behaviors were analyzed at the beginning

of training and in a zero training error regime to elucidate the implicit biases

that different loss functions impart. TaylorGLO loss functions are also found

181

to implicitly represent arbitrary degrees of label smoothing, another type of

regularization, for any metalearned loss function, thus showing another dimen-

sion through metalearned loss functions can regularize networks. The entropy

of the model’s output distribution changes throughout the training process,

illustrating how individual samples are treated by different loss functions, and

demonstrating a key aspect of the regularizing behavior.

Inspiring Applications: The flexibility of loss-function metalearning with

TaylorGLO was demonstrated in Chapter 7 through four unique applications.

First, TaylorGLO was leveraged to evolve separate loss functions for models

with auxiliary classifiers. TaylorGLO is able to take advantage of the dif-

ferent training dynamics associated with each auxiliary classifier to provide

appropriate training signals at each point in the network. Second, using the

theoretical framework in Chapter 6, an invariant on TaylorGLO parameters

was integrated into the evolutionary search, resulting in further performance

improvements. Third, TaylorGLO loss functions’ robustness was leveraged to

develop an approach to guard against adversarial attacks. TaylorGLO loss

functions are already more resilient against such attacks compared to the

cross-entropy loss; however an adversarial performance objective allowed it

to discover new loss functions that improved robustness against adversarial

attacks further. Fourth, TaylorGLO was applied to a unique type of model,

conditional generative adversarial networks (GANs), where it discovered loss

functions that lead to higher-quality generated images.

182

Practical Experimentation Platform: Chapter 3 introduced Lossferatu

and Fumanchu, two components of a comprehensive distributed system that

can manage, run, and analyze evolution-based experiments, such as those pre-

sented in this dissertation. The development of such a system was necessary

to make extensive experiments possible. Lossferatu and Fumanchu were able

to greatly speed up the pace of iteration and scientific discovery by removing

much of the tedium, inefficiency, and manual effort that are typically found

in roughly built research systems. Additionally, two libraries written in Swift,

SwiftCMA and SwiftGenetics—which were used by Lossferatu—were open-

sourced. SwiftCMA provides an implementation of CMA-ES, while SwiftGe-

netics is a representation-agnostic toolset that is used to build genetic algo-

rithms through protocol-oriented programming.

9.2 Closing Remarks

Loss functions represent the fundamental objective that neural net-

works use to learn and thus greatly affect the performance of resulting mod-

els. In the abscense of a comprehensive theory for deep learning, optimal loss

functions cannot be built from first principles; a search-based approach must

be used.

Loss-function metalearning provides a new way to improve deep learn-

ing. By providing an automated way to improve neural network training, two

new techniques—GLO and TaylorGLO—let practitioners train more robust

models with better performance characteristics. These techniques discover

183

new loss functions that regularize by dynamically biasing the training process.

The TaylorGLO technique in particular can be readily applied to modern deep

neural network architectures with practically no manual tuning necessary.

The ability to optimize loss functions may make it possible to develop

new classes of architectures that have been overlooked because they do not

train well with traditional loss functions. Overall, loss-function metalearning

is an important step in the journey towards models that are able to completely

and automatically adapt to their target domain, resulting in the best possible

performance.

184

Bibliography

[1] Kubernetes. https://kubernetes.io.

[2] MinIO. https://min.io.

[3] Nosferatu, 1922.

[4] Amazon Simple Storage Service. API reference, Amazon Web Services,

Inc., Geneva, CH, March 2006.

[5] iPhone 12 Product Environmental Report. https://www.apple.com/

environment/pdf/products/iphone/iPhone_12_PER_Oct2020.pdf, Oc-

tober 2020.

[6] United States Environmental Protection Agency eGRID2018. https:

//www.epa.gov/egrid, March 2020.

[7] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete

Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A

system for large-scale machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16), pages 265–

283, Savannah, GA, 2016. USENIX Association.

185

[8] David Ackley and Michael Littman. Interactions between learning and

evolution. Artificial life II, 10:487–509, 1991.

[9] Mohamed Baker Alawieh, Yibo Lin, Zaiwei Zhang, Meng Li, Qixing

Huang, and David Z Pan. GAN-SRAF: Sub-resolution assist feature

generation using conditional generative adversarial networks. In Pro-

ceedings of the 56th Annual Design Automation Conference (DAC), page

149. ACM, 2019.

[10] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein

generative adversarial networks. In Doina Precup and Yee Whye Teh,

editors, Proceedings of the 34th International Conference on Machine

Learning (ICML), volume 70 of Proceedings of Machine Learning Re-

search, pages 214–223, International Convention Centre, Sydney, Aus-

tralia, 06–11 Aug 2017. PMLR.

[11] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Fran-

cone. Genetic programming: An introduction, volume 1. Morgan Kauf-

mann San Francisco, 1998.

[12] David Barber and Felix V. Agakov. Information maximization in noisy

channels: A variational approach. In S. Thrun, L. K. Saul, and B. Schölkopf,

editors, Advances in Neural Information Processing Systems 16, pages

201–208. MIT Press, 2004.

[13] Jonathan T Barron. A general and adaptive robust loss function. In

186

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4331–4339, 2019.

[14] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Recon-

ciling modern machine-learning practice and the classical bias–variance

trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–

15854, 2019.

[15] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic

learning rule. Université de Montréal, Département d’informatique et

de recherche . . . , 1990.

[16] J. B. Biggs. The role of metalearning in study processes. British

Journal of Educational Psychology, 55(3):185–212, 1985.

[17] Garrett Bingham, William Macke, and Risto Miikkulainen. Evolution-

ary optimization of deep learning activation functions. In Proceedings

of the Genetic and Evolutionary Computation Conference, 2020.

[18] Christopher M Bishop. Regularization and complexity control in feed-

forward networks. 1995.

[19] Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit

regularization for deep neural networks driven by an Ornstein-Uhlenbeck

like process. In Conference on Learning Theory, pages 483–513, 2020.

[20] Ali Borji. Pros and cons of GAN evaluation measures. Computer Vision

and Image Understanding, 179:41–65, 2019.

187

[21] Anna S. Bosman. Fitness Landscape Analysis of Feed-Forward Neural

Networks. PhD thesis, University of Pretoria, 2019.

[22] Anna S. Bosman, Andries P. Engelbrecht, and Mardé Helbig. Progres-

sive gradient walk for neural network fitness landscape analysis. In

Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO) Companion, GECCO ’18, pages 1473–1480, New York, NY,

USA, 2018. ACM.

[23] Anna Sergeevna Bosman, Andries Engelbrecht, and Mardé Helbig. Vi-

sualising basins of attraction for the cross-entropy and the squared error

neural network loss functions. Neurocomputing, 2020.

[24] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun,

Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent Sagun, and

Riccardo Zecchina. Entropy-SGD: Biasing gradient descent into wide

valleys. Journal of Statistical Mechanics: Theory and Experiment,

2019(12):124018, 2019.

[25] Pafnutĭı L’vovich Chebyshev. Théorie des mécanismes connus sous

le nom de parallélogrammes. Imprimerie de l’Académie impériale des

sciences, 1853.

[26] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accel-

erating learning via knowledge transfer. In Proceedings of the Fourth

International Conference on Learning Representations (ICLR), 2016.

188

[27] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever,

and Pieter Abbeel. InfoGAN: Interpretable representation learning

by information maximizing generative adversarial nets. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 29, pages 2172–2180.

Curran Associates, Inc., 2016.

[28] JSR Chisholm. Rational approximants defined from double power series.

Mathematics of Computation, 27(124):841–848, 1973.

[29] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb,

Kazuaki Yamamoto, and David Ha. Deep learning for classical Japanese

literature, 2018.

[30] Janet Clegg, James Alfred Walker, and Julian Frances Miller. A new

crossover technique for Cartesian genetic programming. In Proceedings

of the 9th Genetic and Evolutionary Computation Conference (GECCO),

pages 1580–1587. ACM, 2007.

[31] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and

Quoc V Le. Autoaugment: Learning augmentation strategies from data.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 113–123, 2019.

[32] Charles Darwin. On the Origin of Species. 1859.

189

[33] Charles Darwin and Alfred Wallace. On the tendency of species to form

varieties; and on the perpetuation of varieties and species by natural

means of selection. Journal of the proceedings of the Linnean Society of

London. Zoology, 3(9):45–62, 1858.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language un-

derstanding. In Proceedings of the 2019 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–

4186, Minneapolis, Minnesota, June 2019. Association for Computa-

tional Linguistics.

[35] Terrance DeVries and Graham W Taylor. Improved regularization of

convolutional neural networks with Cutout. arXiv preprint arXiv:1708.04552,

2017.

[36] Hao Dong, Simiao Yu, Chao Wu, and Yike Guo. Semantic image syn-

thesis via adversarial learning. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), pages 5706–5714, 2017.

[37] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient

methods for online learning and stochastic optimization. Journal of

Machine Learning Research, 12(Jul):2121–2159, 2011.

[38] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural ar-

chitecture search: A survey. Journal of Machine Learning Research,

190

20(55):1–21, 2019.

[39] William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M.

Dai, Shakir Mohamed, and Ian Goodfellow. Many paths to equilibrium:

GANs do not need to decrease a divergence at every step. In Proceed-

ings of the Sixth International Conference on Learning Representations

(ICLR), 2018.

[40] Richard Forsyth. BEAGLE — a Darwinian approach to pattern recog-

nition. Kybernetes, 10(3):159–166, 1981.

[41] Joseph BJ Fourier. La théorie analytique de la chaleur. Mémoires de

l’Académie Royale des Sciences de l’Institut de France, 8:581–622, 1829.

[42] AS Fraser. Monte Carlo analyses of genetic models. Nature, 181(4603):208,

1958.

[43] Maurice Fréchet. Sur la distance de deux lois de probabilité. Comptes

Rendus Hebdomadaires des Séances de l’Académie des Sciences, 244(6):689–

692, 1957.

[44] Adam Gaier and David Ha. Weight agnostic neural networks. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems

32, volume 32, pages 5364–5378. Curran Associates, Inc., 2019.

[45] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approxima-

tion: Representing model uncertainty in deep learning. In Proceedings of

191

the 33rd International Conference on Machine Learning (ICML), pages

1050–1059, 2016.

[46] Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and

Graham W Taylor. Batch normalization is a cause of adversarial vul-

nerability. In Seventh International Conference on Learning Represen-

tations (ICLR), Deep Phenomena Workshop, 2019.

[47] Ruohan Gao and Kristen Grauman. 2.5D visual sound. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 324–333, 2019.

[48] Aditya Sharad Golatkar, Alessandro Achille, and Stefano Soatto. Time

matters in regularizing deep networks: Weight decay and data augmen-

tation affect early learning dynamics, matter little near convergence. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems

32, volume 32, pages 10678–10688. Curran Associates, Inc., 2019.

[49] Santiago Gonzalez. SwiftCMA. https://github.com/sgonzalez/

SwiftCMA.

[50] Santiago Gonzalez. SwiftGenetics. https://github.com/sgonzalez/

SwiftGenetics.

[51] Santiago Gonzalez, Joshua Landgraf, and Risto Miikkulainen. Faster

training by selecting samples using embeddings. In 2019 International

192

Joint Conference on Neural Networks (IJCNN), 2019.

[52] Santiago Gonzalez and Risto Miikkulainen. Improved training speed,

accuracy, and data utilization through loss function optimization. In

2020 IEEE Congress on Evolutionary Computation (CEC), pages 1–8.

IEEE, 2020.

[53] Santiago Gonzalez and Risto Miikkulainen. Improved training speed,

accuracy, and data utilization through loss function optimization. In

Proceedings of the IEEE Congress on Evolutionary Computation (CEC),

pages 1–8. IEEE, 2020.

[54] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT Press, 2016.

[55] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-

erative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, editors, Advances in Neural Informa-

tion Processing Systems 27, pages 2672–2680. Curran Associates, Inc.,

2014.

[56] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explain-

ing and harnessing adversarial examples. In Proceedings of the Third

International Conference on Learning Representations (ICLR), 2015.

193

[57] “Student” William Sealy Gosset. The probable error of a mean. Biometrika,

pages 1–25, 1908.

[58] PR Graves-Morris. The numerical calculation of Padé approximants.

In Padé approximation and its applications, pages 231–245. Springer,

1979.

[59] PR Graves-Morris and DE Roberts. Calculation of Canterbury approx-

imants. Computer Physics Communications, 10(4):234–244, 1975.

[60] John J Grefenstette and J Michael Fitzpatrick. Genetic search with

approximate function evaluations. In Proceedings of an International

Conference on Genetic Algorithms and Their Applications, pages 112–

120, 1985.

[61] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,

and Aaron C Courville. Improved training of Wasserstein GANs. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Information

Processing Systems 30, pages 5767–5777. Curran Associates, Inc., 2017.

[62] Ishaan Gulrajani, Colin Raffel, and Luke Metz. Towards GAN bench-

marks which require generalization. In Proceedings of the Seventh In-

ternational Conference on Learning Representations (ICLR), 2019.

[63] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual

networks. In Proceedings of the IEEE Conference on Computer Vision

194

and Pattern Recognition (CVPR), pages 5927–5935, 2017.

[64] Nikolaus Hansen and Stefan Kern. Evaluating the CMA evolution strat-

egy on multimodal test functions. In International Conference on Par-

allel Problem Solving from Nature, pages 282–291. Springer, 2004.

[65] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal

mutation distributions in evolution strategies: The covariance matrix

adaptation. In Proceedings of IEEE international conference on evolu-

tionary computation, pages 312–317. IEEE, 1996.

[66] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized

self-adaptation in evolution strategies. Evolutionary computation, 9(2):159–

195, 2001.

[67] Stephen Hanson and Lorien Pratt. Comparing biases for minimal net-

work construction with back-propagation. In D. Touretzky, editor, Ad-

vances in Neural Information Processing Systems 1, volume 1, pages

177–185. Morgan-Kaufmann, 1989.

[68] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, general-

ize better: Stability of stochastic gradient descent. In Proceedings of

the 33rd International Conference on Machine Learning (ICML), pages

1225–1234, 2016.

[69] Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher Reale, Re-

becca Russell, Louis Kim, and peter chin. Learning to repair soft-

195

ware vulnerabilities with generative adversarial networks. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems 31,

pages 7933–7943. Curran Associates, Inc., 2018.

[70] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification. In Proceed-

ings of the IEEE International Conference on Computer Vision (ICCV),

pages 1026–1034, 2015.

[71] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-

ual learning for image recognition. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 770–778,

2016.

[72] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity

mappings in deep residual networks. In European Conference on Com-

puter Vision (ECCV), pages 630–645. Springer, 2016.

[73] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,

and Sepp Hochreiter. GANs trained by a two time-scale update rule

converge to a local Nash equilibrium. In I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-

itors, Advances in Neural Information Processing Systems 30, volume 30,

pages 6626–6637. Curran Associates, Inc., 2017.

196

[74] Geoffrey E Hinton and Terrence J Sejnowski. Optimal perceptual infer-

ence. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 448–453. Citeseer, 1983.

[75] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,

and Ruslan R Salakhutdinov. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580,

2012.

[76] John Henry Holland. Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and artificial

intelligence. AUniversity of Michigan Press, 1975.

[77] Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski,

OpenAI Jonathan Ho, and Pieter Abbeel. Evolved policy gradients. In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett, editors, Advances in Neural Information Processing Systems

31, volume 31, pages 5400–5409. Curran Associates, Inc., 2018.

[78] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-

berger. Densely connected convolutional networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4700–4708, 2017.

[79] Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge

Belongie. Stacked generative adversarial networks. In Proceedings

197

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), July 2017.

[80] Peter J Huber. Robust estimation of a location parameter. The Annals

of Mathematical Statistics, pages 73–101, 1964.

[81] Apple Inc. libdispatch. https://apple.github.io/swift-corelibs-libdispatch.

[82] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In Proceed-

ings of the 32nd International Conference on Machine Learning (ICML),

pages 448–456, 2015.

[83] Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu, and Masashi

Sugiyama. Do we need zero training loss after achieving zero training

error? arXiv preprint arXiv:2002.08709, 2020.

[84] Information technology – Advanced Message Queuing Protocol (AMQP)

v1.0 specification. Standard, International Organization for Standard-

ization, Geneva, CH, May 2000.

[85] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-

to-image translation with conditional adversarial networks. arxiv, 2016.

[86] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czar-

necki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning,

Karen Simonyan, et al. Population based training of neural networks.

arXiv preprint arXiv:1711.09846, 2017.

198

[87] Yaochu Jin. Surrogate-assisted evolutionary computation: Recent ad-

vances and future challenges. Swarm and Evolutionary Computation,

1:61–70, 06 2011.

[88] Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman,

Tristan Yang, Boaz Barak, and Haofeng Zhang. SGD on neural networks

learns functions of increasing complexity. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 32, pages 3496–3506.

Curran Associates, Inc., 2019.

[89] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progres-

sive growing of GANs for improved quality, stability, and variation. In

Proceedings of the Sixth International Conference on Learning Represen-

tations (ICLR), 2018.

[90] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-

skiy, and Ping Tak Peter Tang. On large-batch training for deep learn-

ing: Generalization gap and sharp minima. In Proceedings of the Fifth

International Conference on Learning Representations (ICLR), 2017.

[91] Diederik Kingma and Max Welling. Auto-encoding variational Bayes.

In Proceedings of the Second International Conference on Learning Rep-

resentations (ICLR), 12 2014.

[92] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2015.

199

[93] John R Koza. Human-competitive results produced by genetic program-

ming. Genetic Programming and Evolvable Machines, 11(3-4):251–284,

2010.

[94] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of fea-

tures from tiny images. 2009.

[95] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet

classification with deep convolutional neural networks. In F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 25, pages 1097–1105. Curran

Associates, Inc., 2012.

[96] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas

Dandres. Quantifying the carbon emissions of machine learning. arXiv

preprint arXiv:1910.09700, 2019.

[97] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle,

and Ole Winther. Autoencoding beyond pixels using a learned similarity

metric. arXiv preprint arXiv:1512.09300, 2015.

[98] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.

Nature, 521(7553):436, 2015.

[99] Yann LeCun, Corinna Cortes, and CJC Burges. The MNIST dataset of

handwritten digits, 1998.

200

[100] Joel Lehman et al. The surprising creativity of digital evolution: A

collection of anecdotes from the evolutionary computation and artificial

life research communities. arXiv preprint arXiv:1803.03453, 2018.

[101] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearn-

ing: a survey of trends and technologies. Artificial Intelligence Review,

44(1):117–130, 2015.

[102] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Gold-

stein. Visualizing the loss landscape of neural nets. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems 31,

pages 6389–6399. Curran Associates, Inc., 2018.

[103] Ming Li, Rui Xi, Beier Chen, Mengshu Hou, Daibo Liu, and Lei Guo.

Generate desired images from trained generative adversarial networks.

In Proceedings of the IEEE International Joint Conference on Neural

Networks (IJCNN), pages 1–8. IEEE, 2019.

[104] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regular-

ization effect of initial large learning rate in training neural networks. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems

32, pages 11674–11685. Curran Associates, Inc., 2019.

[105] Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch,

and Risto Miikkulainen. Evolutionary neural autoML for deep learning.

201

In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO), pages 401–409, 2019.

[106] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning

face attributes in the wild. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), pages 3730–3738, 2015.

[107] Jason D Lohn, Gregory S Hornby, and Derek S Linden. Evolution,

re-evolution, and prototype of an X-band antenna for NASA’s Space

Technology 5 mission. In Proceedings of the International Conference

on Evolvable Systems, pages 205–214. Springer, 2005.

[108] Ilya Loshchilov and Frank Hutter. CMA-ES for hyperparameter op-

timization of deep neural networks. arXiv preprint arXiv:1604.07269,

2016.

[109] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regulariza-

tion. In Proceedings of the Sixth International Conference on Learning

Representations (ICLR), 2018.

[110] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using

t-SNE. Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[111] Xudong Mao, Qing Li, Haoran Xie, Raymond Yiu Keung Lau, Zhen

Wang, and Stephen Paul Smolley. On the effectiveness of least squares

generative adversarial networks. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 2018.

202

[112] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and

Stephen Paul Smolley. Least squares generative adversarial networks.

In The IEEE International Conference on Computer Vision (ICCV),

Oct 2017.

[113] Tim McGraw. Live Like You Were Dying. Jan 2004.

[114] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled

generative adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

[115] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel

Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan,

Nigel Duffy, et al. Evolving deep neural networks. In Artificial In-

telligence in the Age of Neural Networks and Brain Computing, pages

293–312. Elsevier, 2019.

[116] Julian F Miller, Peter Thomson, and Terence Fogarty. Designing elec-

tronic circuits using evolutionary algorithms. arithmetic circuits: A case

study, 1997.

[117] Mehdi Mirza and Simon Osindero. Conditional generative adversarial

nets. arXiv preprint arXiv:1411.1784, 2014.

[118] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. In Proceed-

ings of the Sixth International Conference on Learning Representations

(ICLR), 2018.

203

[119] N. Morgan and H. Bourlard. Generalization and parameter estima-

tion in feedforward nets: Some experiments. In D. Touretzky, editor,

Advances in Neural Information Processing Systems 2, volume 2, pages

630–637. Morgan-Kaufmann, 1990.

[120] Karl Mutch. Studio Go Runner. https://hub.docker.com/repository/

docker/leafai/studio-go-runner, 2017 - 2020.

[121] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-

stricted Boltzmann machines. In Proceedings of the 27th International

Conference on Machine Learning (ICML), pages 807–814, 2010.

[122] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz

Barak, and Ilya Sutskever. Deep double descent: Where bigger mod-

els and more data hurt. In Proceedings of the Seventh International

Conference on Learning Representations (ICLR), 2019.

[123] John Nash. Non-cooperative games. Annals of Mathematics, pages

286–295, 1951.

[124] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,

and Andrew Y Ng. Reading digits in natural images with unsupervised

feature learning. Neural Information Processing Systems 24, Workshop

on Deep Learning and Unsupervised Feature Learning, 2011.

[125] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-

Bayesian approach to spectrally-normalized margin bounds for neural

204

networks. In Proceedings of the Sixth International Conference on

Learning Representations (ICLR), 2018.

[126] Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-

SGD: Path-normalized optimization in deep neural networks. In C. Cortes,

N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 28, pages 2422–2430.

Curran Associates, Inc., 2015.

[127] Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan

Srebro. Data-dependent path normalization in neural networks. arXiv

preprint arXiv:1511.06747, 2015.

[128] Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan

Srebro. Geometry of optimization and implicit regularization in deep

learning. arXiv preprint arXiv:1705.03071, 2017.

[129] Scott Niekum, Andrew G Barto, and Lee Spector. Genetic programming

for reward function search. IEEE Transactions on Autonomous Mental

Development, 2(2):83–90, 2010.

[130] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution

and checkerboard artifacts. Distill, 2016.

[131] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary

205

DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An im-

perative style, high-performance deep learning library. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Systems 32, pages

8024–8035. Curran Associates, Inc., 2019.

[132] Karl Pearson. On the criterion that a given system of deviations from

the probable in the case of a correlated system of variables is such that it

can be reasonably supposed to have arisen from random sampling. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 50(302):157–175, 1900.

[133] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and

Geoffrey Hinton. Regularizing neural networks by penalizing confident

output distributions. In Fifth International Conference on Learning

Representations (ICLR), Workshop paper, 2017.

[134] Xin Qiu, Elliot Meyerson, and Risto Miikkulainen. Quantifying point-

prediction uncertainty in neural networks via residual estimation with

an I/O kernel. In Proceedings of the Seventh International Conference

on Learning Representations (ICLR), 2019.

[135] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised rep-

resentation learning with deep convolutional generative adversarial net-

works. arXiv preprint arXiv:1511.06434, 2015.

206

[136] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Reg-

ularized evolution for image classifier architecture search. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, volume 33, pages

4780–4789, 2019.

[137] Esteban Real, Chen Liang, David R. So, and Quoc V. Le. AutoML-Zero:

Evolving machine learning algorithms from scratch. arXiv:2003.03384,

2020.

[138] Ingo Rechenberg. Evolutionsstrategien. In Simulationsmethoden in der

Medizin und Biologie, pages 83–114. Springer, 1978.

[139] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt

Schiele, and Honglak Lee. Generative adversarial text to image syn-

thesis. In Maria Florina Balcan and Kilian Q. Weinberger, editors,

Proceedings of the 33rd International Conference on Machine Learning

(ICML), volume 48 of Proceedings of Machine Learning Research, pages

1060–1069, New York, New York, USA, 20–22 Jun 2016. PMLR.

[140] Wolfram Research, Inc. Mathematica, Version 12.1. Champaign, IL,

2020.

[141] John R Rice. The algorithm selection problem. In Advances in Com-

puters, volume 15, pages 65–118. Elsevier, 1976.

[142] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the

theory of brain mechanisms. Technical report, Cornell Aeronautical Lab

207

Inc Buffalo NY, 1961.

[143] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-

ing internal representations by error propagation. Technical report,

California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[144] Carl Runge. Über empirische Funktionen und die Interpolation zwis-

chen äquidistanten Ordinaten. Zeitschrift für Mathematik und Physik,

46(224-243):20, 1901.

[145] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael

Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Vi-

sual Recognition Challenge. International Journal of Computer Vision

(IJCV), 115(3):211–252, 2015.

[146] Graeme D Ruxton. The unequal variance t-test is an underused alter-

native to Student’s t-test and the Mann–Whitney U test. Behavioral

Ecology, 17(4):688–690, 2006.

[147] Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon

Bottou. Empirical analysis of the Hessian of over-parametrized neural

networks. arXiv preprint arXiv:1706.04454, 2017.

[148] Levent Sagun, Utku Evci, Veli Uğur Güney, Yann Dauphin, and Léon

Bottou. Empirical analysis of the hessian of over-parametrized neural

208

networks. In Sixth International Conference on Learning Representa-

tions (ICLR), Workshop paper, 2018.

[149] Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann machines.

In Artificial Intelligence and Statistics, pages 448–455, 2009.

[150] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec

Radford, Xi Chen, and Xi Chen. Improved techniques for training

GANs. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems 29,

volume 29, pages 2234–2242. Curran Associates, Inc., 2016.

[151] Franklin E Satterthwaite. An approximate distribution of estimates of

variance components. Biometrics bulletin, 2(6):110–114, 1946.

[152] Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do

infinite width bounded norm networks look in function space? In Alina

Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second

Conference on Learning Theory, volume 99 of Proceedings of Machine

Learning Research, pages 2667–2690, Phoenix, USA, 25–28 Jun 2019.

PMLR.

[153] Jürgen Schmidhuber. Evolutionary principles in self-referential learn-

ing, or on learning how to learn: the meta-meta-... hook. PhD thesis,

Technische Universität München, 1987.

209

[154] Jürgen Schmidhuber. Deep learning in neural networks: An overview.

Neural networks, 61:85–117, 2015.

[155] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from

experimental data. Science, 324(5923):81–85, 2009.

[156] Hormoz Shahrzad, Daniel Fink, and Risto Miikkulainen. Enhanced op-

timization with composite objectives and novelty selection. In Artificial

Life Conference Proceedings, pages 616–622. MIT Press, 2018.

[157] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:1409.1556,

2014.

[158] Leslie N Smith. Cyclical learning rates for training neural networks. In

Proceedings of the IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 464–472. IEEE, 2017.

[159] Paul Smolensky. Information processing in dynamical systems: Foun-

dations of harmony theory. Technical report, Colorado University at

Boulder Deptartment of Computer Science, 1986.

[160] Lee Spector, Erik Goodman, A Wu, W B. Langdon, H m. Voigt, M Gen,

S Sen, M Dorigo, S Pezeshk, M Garzon, E Burke, and Morgan Kauf-

mann Publishers. Autoconstructive evolution: Push, PushGP, and

Pushpop. Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO), 05 2001.

210

[161] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-

tin A. Riedmiller. Striving for simplicity: The all convolutional net.

CoRR, abs/1412.6806, 2015.

[162] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural net-

works from overfitting. The Journal of Machine Learning Research

JMLR, 15(1):1929–1958, 2014.

[163] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. High-

way networks. In 32nd International Conference on Machine Learning

(ICML), Deep Learning Workshop, 2015.

[164] Kenneth O. Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen.

Designing neural networks through neuroevolution. Nature Machine

Intelligence, 1(1):24–35, 2019.

[165] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks

through augmenting topologies. Evolutionary Computation, 10(2):99–

127, 2002.

[166] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with con-

volutions. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1–9, 2015.

211

[167] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and

Zbigniew Wojna. Rethinking the Inception architecture for computer

vision. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2818–2826, 2016.

[168] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-

mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of

neural networks. In Proceedings of the First International Conference

on Learning Representations (ICLR), 2013.

[169] Brook Taylor. Methodus incrementorum directa & inversa. Auctore

Brook Taylor, LL. D. & Regiae Societatis Secretario. typis Pearsonianis:

prostant apud Gul. Innys ad Insignia Principis in . . . , 1715.

[170] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed com-

puting in practice: the condor experience. Concurrency and computa-

tion: practice and experience, 17(2-4):323–356, 2005.

[171] L Theis, A van den Oord, and M Bethge. A note on the evaluation of

generative models. In Proceedings of the Fourth International Confer-

ence on Learning Representations (ICLR), pages 1–10, 2016.

[172] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the

gradient by a running average of its recent magnitude. COURSERA:

Neural networks for machine learning, 4(2):26–31, 2012.

212

[173] Andrey N. Tikhonov. Solution of incorrectly formulated problems and

the regularization method. In Proceedings of the USSR Academy of

Sciences, volume 4, pages 1035–1038, 1963.

[174] A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–

460, 1950.

[175] Alan Mathison Turing. Intelligent machinery, 1948.

[176] Radim Tyleček and Radim Šára. Spatial pattern templates for recogni-

tion of objects with regular structure. In Proceeding of the German Con-

ference on Pattern Recognition (GCPR), pages 364–374, Saarbrucken,

Germany, 2013. Springer.

[177] https://github.com/rabbitmq/rabbitmq-server/graphs/contributors.

RabbitMQ. https://rabbitmq.com.

[178] https://github.com/studioml/studio/graphs/contributors. Stu-

dio. https://studio.ml, 2017 - 2020.

[179] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Koray Kavukcuoglu,

Oriol Vinyals, and Alex Graves. Conditional image generation with Pix-

elCNN decoders. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,

and R. Garnett, editors, Advances in Neural Information Processing Sys-

tems 29, pages 4790–4798. Curran Associates, Inc., 2016.

[180] David A Van Dyk and Xiao-Li Meng. The art of data augmentation.

Journal of Computational and Graphical Statistics, 10(1):1–50, 2001.

213

[181] Leonid Nisonovich Vaserstein. Markov processes over denumerable

products of spaces, describing large systems of automata. Problemy

Peredachi Informatsii, 5(3):64–72, 1969.

[182] Cédric Villani. The Wasserstein distances. In Optimal Transport, pages

93–111. Springer, 2009.

[183] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith,

and Sebastian Risi. Evolving Mario levels in the latent space of a

deep convolutional generative adversarial network. In Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO), pages

221–228. ACM, 2018.

[184] Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as

adaptive regularization. In C. J. C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural In-

formation Processing Systems 26, volume 26, pages 351–359. Curran

Associates, Inc., 2013.

[185] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz,

and Bryan Catanzaro. High-resolution image synthesis and semantic

manipulation with conditional GANs. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages

8798–8807, 2018.

[186] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Im-

age quality assessment: from error measurement to structural similarity.

214

IEEE Transactions on Image Processing, 13(1), 2004.

[187] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural

similarity for image quality assessment. In The Thrity-Seventh Asilomar

Conference on Signals, Systems & Computers, 2003, volume 2, pages

1398–1402. IEEE, 2003.

[188] Edward Waring. Problems concerning interpolations. Philosophical

transactions of the royal society of London, (69):59–67, 1779.

[189] Bernard L Welch. The generalization of Student’s problem when several

different population variances are involved. Biometrika, 34(1/2):28–35,

1947.

[190] Henry Wilbraham. On a certain periodic function. The Cambridge and

Dublin Mathematical Journal, 3:198–201, 1848.

[191] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Ben-

jamin Recht. The marginal value of adaptive gradient methods in ma-

chine learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems 30, pages 4148–4158. Curran Asso-

ciates, Inc., 2017.

[192] David H Wolpert. Stacked generalization. Neural Networks, 5(2):241–

259, 1992.

215

[193] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenen-

baum. Learning a probabilistic latent space of object shapes via 3D

generative-adversarial modeling. In D. D. Lee, M. Sugiyama, U. V.

Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems 29, pages 82–90. Curran Associates, Inc.,

2016.

[194] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel

image dataset for benchmarking machine learning algorithms, 2017.

[195] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Ex-

ploring randomly wired neural networks for image recognition. In

Proceedings of the IEEE International Conference on Computer Vision

(ICCV), pages 1284–1293, 2019.

[196] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping

in gradient descent learning. Constructive Approximation, 26(2):289–

315, 2007.

[197] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk

Choe, and Youngjoon Yoo. CutMix: Regularization strategy to train

strong classifiers with localizable features. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), pages 6023–6032,

2019.

[198] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.

216

[199] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-

Paz. mixup: Beyond empirical risk minimization. In Proceedings of

the Sixth International Conference on Learning Representations (ICLR),

2018.

[200] Yao Zhou, Cong Liu, and Yan Pan. Modelling sentence pairs with tree-

structured attentive encoder. In Proceedings of the 26th International

Conference on Computational Linguistics (COLING), Technical Papers,

pages 2912–2922, 2016.

[201] Zhiming Zhou, Han Cai, Shu Rong, Yuxuan Song, Kan Ren, Weinan

Zhang, Yong Yu, and Jun Wang. Activation maximization generative

adversarial nets. arXiv preprint arXiv:1703.02000, 2017.

[202] Donald W Zimmerman. A note on preliminary tests of equality of

variances. British Journal of Mathematical and Statistical Psychology,

57(1):173–181, 2004.

[203] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learn-

ing transferable architectures for scalable image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 8697–8710, 2018.

217

Vita

Santiago Gonzalez was born in Mexico City, Mexico in 1998. He re-

ceived the Bachelor of Science and Master of Science degrees in Computer

Science from the Colorado School of Mines in December of 2014 and 2015,

respectively. He started pursuing his Doctorate of Philosophy in Computer

Science at the University of Texas at Austin in August of 2016.

Permanent address: slgonzalez@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

218

