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Abstract

RF-LISSOM, a self-organizing model of laterally connected
orientation mapsin the primary visual cortex, was used to study
the psychological phenomenon known as the tilt aftereffect.
The same self-organizing processesthat are responsiblefor the
long-term development of the map and its lateral connections
are shown to result in tilt aftereffects over short time scalesin
the adult. The model allows observing large numbers of neu-
rons and connections simultaneously, making it possibleto re-
late higher-level phenomenato low-level events, which isdiffi-
cult to do experimentally. The results give computational sup-
port for the ideathat direct tilt aftereffects arise from adaptive
lateral interactions between feature detectors, as haslong been
surmised. They also suggest that indirect effects could result
fromthe conservation of synaptic resourcesduring this process.
The model thus provides a unified computational explanation
of self-organization and both direct and indirect tilt aftereffects
in the primary visual cortex.

Introduction

The tilt aftereffect (TAE, Gibson and Radner 1937) isasim-
ple but intriguing visua phenomenon. After staring at a pat-
tern of tilted linesor gratings, subsequent lines appear to have
adight tiltin the opposite direction (Figure 1). The effect re-
sembles an afterimage from staring at a bright light, but it re-
flects changes in orientation perception rather than in color or
brightness.

Most modern explanations of the TAE are based on the
feature-detector modd of thevisual cortex (Hubel and Wiesdl
1968). Individua orientation detectors become more difficult
to excite during repeated presentation of oriented stimuli, and
thedesensiti zation persistsfor sometimeafterwards. Thisob-
servation forms the basis of the fatigue theory of the TAE: if
active neurons become fatigued over time, the set of neurons
activated for atest figure will shift away from the adaptation
orientation. Assuming the perceived orientation is some sort
of average over the orientation preferences of the activated
neurons, the perceived orientation would thus show the direct
TAE (Coltheart 1971).

The fatigue theory has been discredited because it has be-
come apparent that the adaptation is mediated by the lat-
eral connections between neurons, rather than changes occur-
ring withinthe neuronsthemselves (Bednar 1997; Vidyasagar
1990). The now-popular inhibition theory postulates that
tilt aftereffects result from changing inhibition between neu-
rons (Tolhurst and Thompson 1975), perhaps by increases in
the strength of lateral connections between them.

Although the inhibition theory was first proposed in the
1970s, only recently has it become computationally feasible
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Figure 1: Tilt aftereffect patterns. Fixate your gaze upon thecir-
cleinside the sguare at the center for at least thirty seconds, moving
your eyeslightly insidethe circle to avoid devel oping strong afterim-
ages. Now fixateupon thefigure at the left. The vertical linesshould
appear slightly tilted to the right; this phenomenon s called the di-
rect tilt aftereffect. If you fixateuponthe horizontal lines at theright,
they should appear barely tilted counterclockwise, demonstrating the
indirect tilt aftereffect. (Adapted from Campbell and Maffei 1971.)

totestinadetailed model of cortical function. A Hebbian self-
organizing process (the Receptive-Field Laterally Intercon-
nected Synergetically Self-Organizing Map, or RF-LISSOM;
Miikkulainen, Bednar, Choe, and Sirosh, 1997; Sirosh 1995;
Sirosh and Miikkulainen 1994a, 1996, 1997; Sirosh, Miik-
kulainen, and Bednar, 1996) has been shown to develop fea
ture detectors and specific lateral connections that could pro-
duce such aftereffects. The RF-LISSOM modd givesrise to
anatomical and functional characteristics of the cortex such
as topographic maps, ocular dominance, orientation, and size
preference columns, and the patterned lateral connections be-
tweenthem. Although other model sexist that explain how the
feature-detectors and afferent connections could develop by
input-drivenself-organization, RF-L1SSOM istheonly model
that also shows how the lateral connections can sdlf-organize
as an integra part of the process. The laterally connected
model has aso been shown to account for many of the dy-
namic aspects of thevisual cortex, such as reorganization fol-
lowing retina and cortical lesions (Miikkulainen et a.1997;
Sirosh 1995; Sirosh and Miikkulainen 1994b; Sirosh, Miik-
kulainen, and Bednar, 1996).

The current work is a first study of the functional behav-
ior of the model, specificaly the response to stimuli simi-
lar to those known to cause the TAE in humans. The RF-
LISSOM model alows observing activation and connection
patterns between large numbers of neurons simultaneoudly,
making it possible to relate higher-level phenomena to low-
level events, which is difficult to do experimentally. The re-
sults suggest that tilt aftereffects are not flaws in an other-
wisewell-designed system, but an unavoidableresult of aself-
organizing process that aims at producing an efficient, sparse
encoding of the input through decorrelation (as proposed by
Barlow 1990; see also Dong 1994; Field 1994; Foldiak 1990;
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Figure 2: Architectureof the RF-L1SSOM network. A tiny RF-
LISSOM network and retina are shown, along with connections to
a single neuron (shown as a large circle). Theinput is an oriented
Gaussian activity pattern on the retinal ganglion cells. The afferent
connectionsform alocal anatomical receptivefield on the simulated
retina. Neighboring neurons have different but highly overlapping
RFs. Each neuron computes an initial response as a dot product of
its receptivefield and its afferent weight vector. The responsesthen
repeatedly propagate within the cortex through the lateral connec-
tions and evolve into an activity “bubble’. After the activity stabi-
lizes, weights of the active neurons are adapted.

Miikkulainen et a.1997; Sirosh, Miikkulainen, and Bednar,
1996).

Architecture

Thecortical architecturefor themodel has been simplified and
reduced to the minimum necessary configuration to account
for the observed phenomena. Because thefocusisonthetwo-
dimensional organization of the cortex, each “neuron” in the
model cortex correspondsto avertical column of cellsthrough
the six layers of the human cortex. The cortical network is
modeled with a sheet of interconnected neuronsand theretina
with a sheet of retinal ganglion cells (figure 2). Neurons re-
ceive afferent connectionsfrom broad overlapping patches on
theretina. The N x N network is projected on to the retina
of R x R ganglioncells, and each neuronis connected to gan-
glioncellsinacircular areaof radiusr around the projections.
Thus, neuronsat aparticular cortical locationreceive afferents
from the corresponding location on theretina. Sincethe LGN
accurately reproduces the receptive fields of the reting, it has
been bypassed for simplicity.

Each neuron aso has reciprocal excitatory and inhibitory
lateral connections with itself and other neurons. Lateral ex-
citatory connections are short-range, connecting each neuron
withitself and itsclose neighbors. Latera inhibitory connec-
tions run for comparatively long distances, but aso include
connectionsto the neuron itself and to its neighbors.

Theinput to themodel consistsof 2-D ellipsoida Gaussian
patterns representing retinal ganglion cell activations. For
training, the orientations of the Gaussians are chosen ran-
domly from the uniform distributionin the range [0, 7). The
elongated spots approximate natural visua stimuli after the
edge detection and enhancement mechanisms in the retina.
They can aso be seen as amodd of the intrinsic retina ac-
tivity waves that occur in late pre-natal development in mam-
mals (Meister, Wong, Baylor, and Shatz 1991). The RF-
LISSOM network models the self-organization of the visua

cortex based on these natural sources of €l ongated features.

The afferent weightsareinitially set to random values, and
the lateral weights are preset to a smooth Gaussian profile.
The connectionsare organized through an unsupervised learn-
ing process. At each training step, neurons start out with zero
activity. Theinitial response n;; of neuron (¢, j) is calculated
as aweighted sum of theretinal activations:

Nij =0 Zgabﬂij,ab : 1
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whereé,;, istheactivation of retinal ganglion (a, ) withinthe
anatomical RF of the neuron, ;5 » 1S the corresponding af-
ferent weight, and o isapiecewise linear approximationof the
sigmoid activationfunction. Theresponseevolvesover avery
short time scale through lateral interaction. At each time step,
the neuron combines the above afferent activation > &y with
lateral excitation and inhibition:
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where I;; ; istheexcitatory lateral connection weight onthe
connection from neuron (&, {) to neuron (4, j), I;; x 1Sthein-
hibitory connection weight, and 7;; (¢ — 1) is the activity of
neuron (&, !) during the previous time step. The scaling fac-
tors v, and v; determine the relative strengths of excitatory
and inhibitory lateral interactions.

While the cortical response is settling, the retina activity
remains constant. The activity pattern starts out diffuse and
spread over a substantia part of the map, but withinafew it-
erationsof equation 2, convergesintoasmall number of stable
focused patches of activity, or activity bubbles. After the ac-
tivity has settled, the connection weights of each neuron are
modified. Both afferent and lateral weights adapt according
to the same mechanism: the Hebb rule, normalized so that the
sum of theweightsis constant:

where ;; stands for the activity of neuron (¢, ) in thefina
activity bubble, w;; ., is the afferent or lateral connection
weight (1, £ or 1), a isthelearning rate for each type of con-
nection (4 for afferent weights, «g for excitatory, and «;
for inhibitory) and X,,,, isthe presynaptic activity (¢ for af-
ferent, n for lateral). The larger the product of the pre- and
post-synaptic activity 7;; X, , the larger the weight change.
Therefore, when the pre- and post-synaptic neurons fire to-
gether frequently, the connection becomes stronger. Both ex-
citatory and inhibitory connections strengthen by correlated
activity; normalization then redistributes the changes so that
thesum of each weight typefor each neuron remains constant.

At longdistances, very few neuronshavecorrel ated activity
and therefore most | ong-range connectionseventua ly become
weak. The weak connections can be eliminated periodically,

Wij mn (t + (St) = , (3)



resultingin patchy lateral connectivity similar tothat observed
in thevisua cortex. The radius of the latera excitatory inter-
actions starts out large, but as self-organization progresses, it
isdecreased until it covers only the nearest neighbors. Such a
decrease is hecessary for global topographic order to develop
and for the receptive fields to become well-tuned at the same
time.

Experiments

The model consisted of an array of 192 x 192 neurons, and
aretinaof 24 x 24 ganglion cells. The circular anatomical
receptive field of each neuron was centered in the portion of
the retina corresponding to the location of the neuron in the
cortex. The RF consisted of random-strength connections to
al ganglion cdls less than 6 units away from the RF cen-
ter. The cortex was self-organized for 30, 000 iterations on
oriented Gaussian inputswith mgjor and minor axes of half-
width ¢ = 7.5 and 1.5, respectively.! The training took 8
hours on 64 processors of a Cray T3D at the Pittsburgh Su-
percomputing Center. The model requiresmorethan threegi-
gabytes of physica memory to represent the more than 400
million connectionsin thissmall section of the cortex.

Orientation map organization

In the self-organization process, the neurons devel oped ori-
ented receptive fields organi zed into orientation columnsvery
similar to those observed in the primary visual cortex. The
strongest lateral connections of highly-tuned cells link areas
of similar orientation preference, and avoid neurons with the
orthogonal orientation preference. Furthermore, the connec-
tion patterns of highly oriented neurons are typicaly elon-
gated aong the direction in the map that corresponds to the
neuron’spreferred stimulus orientation. This organization re-
flects the activity correlations caused by the elongated Gaus-
Sian input pattern: such a stimulus activates primarily those
neurons that are tuned to the same orientation as the stimu-
lus, and located along itslength (Sirosh et a.1996). Sincethe
long-range lateral connections are inhibitory, the net result is
decorrelation: redundant activation isremoved, resultingina
sparse representation of the nove features of each input (Bar-
low 1990; Field 1994; Sirosh et a.1996). Asasideeffect, illu-
sions and aftereffects may sometimes occur, as will be shown
bel ow.

Aftereffect ssmulations

In psychophysical measurements of the TAE, afixed stimulus
is presented at a particular location on the retina. To simulate

Theinitial lateral excitation radiuswas 19 and was gradually de-
creased to 1. The lateral inhibitory radius of each neuron was 47,
and inhibitory connectionswhose strength was below 0.00025 were
pruned away at 30, 000 iterations. Thelateral inhibitory connections
were preset to a Gaussian profilewith & = 100, and the lateral exci-
tatory connectionsto a Gaussianwith o = 15. Thelateral excitation
v. andinhibition strength v; wereboth0.9. Thelearningratea 4 was
gradually decreased from 0.007 to 0.0015, ag from 0.002 to 0.001
and a1 was a constant 0.00025. The lower and upper thresholds of
the sigmoid were increased from 0.1 to 0.24 and from 0.65 to 0.88,
respectively. The number of iterations for which the lateral connec-
tions were allowed to settle at each training iteration wasinitially 9,
and was increased to 13 over the course of training. The parameter
settings were identical to those of Sirosh (1995), and were not tuned
or tweaked for the tilt aftereffect simulations. Small variations pro-
duce roughly equivalent results (Sirosh 1995).

H

N

|
N

Aftereffect (degrees counterclockwise)
o

_4 . -
-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
Angle on Retina (degrees counterclockwise)

Figure 3: Tilt aftereffect versusretinal angle.  The open cir-
cles represent the average tilt aftereffect for a single human subject
(DEM) from Mitchell and Muir (1976) over ten trials. For each an-
gleineachtrial, the subject adapted for three minutes on asinusoidal
grating of agiven angle, then wastested for the effect on ahorizontal
grating. Error barsindicate 1 standard error of measurement. The
subject shown had the most complete data of the four in the study.
All four showed very similar effectsin the x-axisrange+40°; thein-
direct TAE for the larger angles varied widely between 4-2.5°. The
graphis roughly anti-symmetric around 0°, sothe TAE isessentially
the samein both directions relative to the adaptation line. The heavy
line shows the average magnitude of the tilt aftereffect in the RF-
LISSOM model over ninetrials at different locations on the retina.
Error barsindicate +1 standard error of measurement. The network
adaptedto a vertical adaptation line at a particular position for 90 it-
erations, then the TAE was measured for test lines oriented at each
angle. The duration of adaptation was chosen so that the magnitude
of the human data and the model match; this was the only parame-
ter fit to the data. The result from the model closely resembles the
curve for humansat all angles, showing both direct and indirect tilt
aftereffects.

these conditions in the model, the position and angle of the
inputswere fixed to asingle value for anumber of iterations,
rather than having a uniform random distribution as in self-
organization. To permit more detailed analysis of behavior at
short time scales, the learning rates were reduced from those
used during self-organization,to a4 = ag = ay = 0.00005.
All other parameters remained as in self-organization.

To compare with the psychophysical experiments, per-
ceived orientations were compared before and after tilt adap-
tation. Perceived orientation was measured as a vector sum
over all active neurons, withthe magnitudeof each vector rep-
resenting the activation level, and the vector direction repre-
senting the orientati on preference of the neuron before adapta-
tion. Perceived orientation was computed separately for each
possible orientation of the test Gaussian, both before and af-
ter adaptation. For a given angular separation of the adapta-
tion stimulus and the test stimulus, the computed magnitude
of the tilt aftereffect is the difference between the initia per-
ceived angle and the one perceived after adaptation. Figure 3
plotsthese differences after adaptation for 90 iterationsof the
RF-L1SSOM agorithm. For comparison, figure 3 a so shows
the most detailed data available for the TAE in human foved
vision (Mitchell and Muir 1976).



Theresultsfrom the RF-LISSOM simulation are strikingly
similar to the psychophysical results. For therange 5° to 40°,
all subjectsin the human study (including the one shown) ex-
hibited angle repulsion effects nearly identical to those found
in the RF-L1SSOM model. The magnitude of thisdirect TAE
increases very rapidly to a maximum angle repulsion at ap-
proximately 10°, falling off somewhat more gradually to zero
as the angular separation increases.

Theresultsfor larger angular separations (from 45° to 85°)
show a greater inter-subject variability in the psychophysical
literature, but thosefoundfor the RF-LISSOM model are well
within the range seen for human subjects. Theindirect effects
for the subject shown were typical for that study, athough
some subjects showed effects up to 2.5°.

In addition to the angular changes in the TAE, its magni-
tudein humansincreases regularly with adaptation time (Gib-
son and Radner 1937). The equivalent of “time” in the RF-
LISSOM model isaniteration, i.e. asinglecycle of input pre-
sentation, activity propagation, settling, and weight modifi-
cation. As the number of adaptation iterations is increased,
the magnitude of the TAE in the model increases monotoni-
caly, while retaining the same basic shape of figure 3 (Bed-
nar 1997). The curve that best matches the human data was
shown infigure 3.

Due to the time required to obtain even a single point on
the angular curve of the TAE for human subjects, complete
experimental measurements of the angular function at differ-
ent adaptation times are not available. However, when the
time course of the direct TAE is measured a a single orien-
tation, the increase is approximately logarithmic with time
(Gibson and Radner 1937), eventualy saturating at a level
that depends upon the experimental protocol used (Greenlee
and Magnussen 1987; Magnussen and Johnsen 1986). Fig-
ure 4 compares the shape of this TAE versus time curve for
human subjects and for the RF-LISSOM model. The z axis
for the RF-LISSOM and human data has different units, but
the correspondence between the two curves might provide a
rough way of quantifying the equivalent real time for an “it-
eration” of the model. The time course of the TAE in the RF-
LISSOM model is similar to the human data. The TAE in-
creases approximately logarithmically, but it does not com-
pletely saturate over theadaptation amountstested sofar. This
difference suggeststhat thebiol ogical implementation has ad-
ditiona constraints on the amount of learning that can be
achieved over the time scale over which thetilt aftereffect is
seen.

How doesthe TAE arisein the modéd ?

The TAE seen in figures 3 and 4 must result from changes
in the connection strengths between neurons, since no other
component of the model changes as adaptation progresses.
Simulations performed with only one type of weight (either
afferent, lateral excitatory, or lateral inhibitory) adapting at
a given time show that the inhibitory weights determine the
shape of the curve for al angles (Bednar 1997). The small
component of the TAE resulting from adaptation of either type
of excitatory weights is amost precisely opposite the total
effect. Although each inhibitory connection adapts with the
same learning rate as the excitatory connections (a; = a4 =
ap = 0.00005), there are many more inhibitory connections

RF-LISSOM adaptation iterations
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Figure 4: Direct tilt aftereffect versustime. The circles show
the magnitude of the TAE asa function of adaptation time for human
subjectsMWG (unfilled circles) and SM (filled circles) from Green-
lee and Magnussen (1987); they were the only subjectstested in the
study. Each subject adaptedto asingle +12° line for thetime period
indicated on the horizontal axis (bottom). To estimate the magnitude
of the aftereffect at each point, avertical test linewas presented at the
samelocation and the subject was requested to set a comparison line
at another location to match it. The plots represent averages of five
runs; the data for 0 — 10 minutes were collected separately from the
rest. For comparison, the heavy line showsaverage TAE inthe LIS
SOM model for a+12° test line over 9 trials (with parameters asin
figure 3). The horizontal axis (top) represents the number of itera-
tions of adaptation, and the vertical axisrepresentsthe magnitude of
the TAE at this time step. The RF-LISSOM results show a similar
logarithmic increase in TAE magnitude with time, but do not show
the saturation that is seen for the human subjects.

than excitatory connections. The combined strength of all the
small inhibitory changes outweighs the excitatory changes,
and resultsin a curve with a sign oppositethat of the compo-
nents from the excitatory weights.

In what way do the changing inhibitory connections cause
these effects? During adaptation, we see that the response
to the 0° adaptation line becomes gradually more concen-
trated towards the central area of the Gaussian pattern pre-
sented. Thisis because theinhibition between active neurons
increases, allowing only the most strongly activated neurons
to remain active after settling (equation 2). However, the dis-
tribution of active orientation detectorsiscentered around the
same angle, so the same angleis perceived.

The response to atest line with a slightly different orienta
tion (e.g. 10°) is also more focused after adaptation, but the
overall distribution of activated neurons has shifted. Fewer
neurons that prefer orientations close to the adaptation line
now respond, but an increased number of those that prefer
distant angles do. This is because inhibition was strength-
ened primarily between neurons close to the adaptation an-
gle, and not between those which prefer larger orientations,
greater than the 10° test line. The net effect is a shift of the
perceived orientation away from the adaptation angle, result-



inginthedirect TAE.

In contrast, the response to a very different test line (e.g.
60°) is broader and stronger after adaptation. Adaptation oc-
curred only in activated neurons, so neurons with orientation
preferences greater than 60° are unchanged. However, those
with preferences somewhat less than 60° actualy now re-
spond more strongly. During adaptation, their inhibitory con-
nections with other active neurons, i.e. those that represent
orientations close to the 0° adaptation line, became stronger.
Sincethe sum of inhibitionis constant for each neuron (equa-
tion 3), the connectionsto neurons representing distant angles
(e.g. 60°) became weaker. As aresult, the 60° line now in-
hibits them less than before adaptation. Thus they are more
active, and the perceived orientation has shifted towards 0°.
Thisindirect effect is therefore true to its name, caused indi-
rectly by the strengthening of inhibitory connections. The RF-
LISSOM model thus shows computationally that both the di-
rect and indirect effects could be caused by activity-dependent
adaptation of inhibitory lateral interactions.

Discussion and Future Wor k

The results presented above suggest that the same sdlf-
organizing principles that result in sparse coding and reduce
redundant activation may also be operating over short time
intervalsin the adult, with quantifiable psychologica conse-
guences such as the TAE. This finding demonstrates a po-
tentially important computational link between development,
structure, and function.

Even though the RF-LISSOM model was not originally de-
veloped as an explanation for the tilt aftereffect, it exhibits
tilt aftereffects that have nearly al of the features of those
measured in humans. The effect of varying angular separa
tion between the test and adaptation linesis similar to human
data at all orientations, the time course is approximately log-
arithmic in each, and the TAE islocalized to the retinal loce
tion which experienced the stimulus. With minor extensions,
the model should account for other features of the TAE, such
as higher variance at obliqueorientations, frequency localiza-
tion, movement direction specificity, and ocular transfer. For
adiscussion of the match between the model and data for hu-
mans from a variety of experiments, see Bednar (1997).

The only prominent features of the TAE that do not directly
follow from the modd are saturation of the effect for long
adaptations, and recovery of accurate perception evenin com-
plete darkness (Greenlee and Magnussen 1987; Magnussen
and Johnsen 1986). These two features suggest that the in-
hibitory weights modified duringtilt adaptation could actual ly
be a set of small, temporary weights adding to or multiply-
ing more permanent connections. Such amechanismwaspro-
posed by von der Malsburg (1987) as an explanation of visua
object segmentation; this idea was implemented for the RF-
LISSOM model by Choe and Miikkulainen (1996) and Miik-
kulainen et a.(1997). The TAE may be merely a minor con-
sequence of thismulti-level architecture for representing cor-
relations over awide range of time scales.

A main contribution of the RF-LISSOM model of the TAE
isits novel explanation of the indirect effect. Proponents of
the latera inhibitory theory of direct effects have generally
ignored indirect effects, or postulated that they occur only at
higher cortical levels (Wenderoth and Johnstone 1988), partly

because it has not been clear how they could arise through
inhibitionin V1. RF-LISSOM demonstrate that a quite Sim-
ple, local mechanism in V1 is sufficient to produce indirect
effects. If the total synaptic resources at each neuron are
limited, strengthening the lateral inhibitory connections be-
tween active neurons weakens their inactive inhibitory con-
nections. There iswidespread biologica evidence of compe-
tition for a limited number of synaptic sites (Bourgeois et al.
1989; Hayes and Meyer 1988; Murray et a.1982; Palas and
Finlay 1991; Purves 1988). There is aso extensive compu-
tational justification for synaptic resource conservation, be-
ginning with one of the first computational models of Heb-
bian adaptation (Rochester, Holland, Haibt, and Duda 1956).
Without such normalization, connection weights governed by
a Hebbian rule will increase indefinitely, or else each would
reach a maximum strength (Miller and MacKay 1994). Nei-
ther outcome would appear biologicaly or computationally
plausible, so the assumption of some form of normalization
iswell-motivated (Sirosh 1995).

Through mechanisms similar to those causing the TAE, the
RF-L1SSOM model should also be able to explain simultane-
oustiltillusions between spatialy separated stimuli. Such an
explanationwas originaly proposed by Carpenter and Blake-
more (1973). However, it will be necessary to train the sys-
tem with inputs that have longer-range correl ations between
similar orientations, such as sinusoidal gratings (representing
objects with parale lines). With such patterns, long-range
connectionsdevel op between widely separated orientationde-
tectors, in addition to the relatively local connections now
present. Trained with such patterns, RF-LISSOM should be
ableto account for tilt illusionsas well astilt aftereffects. Al-
though such experimentsrequire even larger cortex and retina
sizes, they should become practica in the near future.

In addition, many similar phenomenasuch as aftereffects of
curvature, motion, spatia frequency, size, position, and color
have been documented in humans (Barlow 1990). Since spe-
cific detectors for most of these festures have been found in
the cortex, RF-LISSOM should be ableto account for them by
thesame process of decorrelation mediated by self-organizing
lateral connections.

Conclusion

The experiments reported in this paper lend strong computa-
tional support to the theory that tilt aftereffects result from
Hebbian adaptation of the lateral connections between neu-
rons. Furthermore, the aftereffects occur as a result of the
same decorrelating process that is responsible for the initial
development of the orientation map. This process tends to
deemphasi ze constant features of theinput, resulting in short-
term perceptual anomalies such as aftereffects. The same
model should also apply to other aftereffects and to simulta
neoustiltillusions.

Because RF-LISSOM is a computational model, it can
demonstrate many phenomenain high detail that are difficult
to measure experimentally, thus presenting a view of the cor-
tex that is otherwise not available. This type of analysis can
provide an essential complement to experimental work with
humans and animals. RF-LISSOM provides a comprehen-
sive and fundamental account of how both cortical structure
and function emerge by Hebbian self-organization in the pri-



mary visua cortex. It also showshow bothindirect and direct
tilt aftereffects could arise from simple, biologicaly plausible
mechanisms in the primary visual cortex. Thusasingle sim-
ple computational model may lead to significant insightsinto
avariety of cortica phenomena, and thereby contributeto our
understanding of the cortex.
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