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Abstract 

Recent Machine Learning systems in vision and language 
processing have drawn attention to single-word vector spaces, 
where concepts are represented by a set of basic features or 
attributes based on textual and perceptual input. However, 
such representations are still shallow and fall short from 
symbol grounding. In contrast, Grounded Cognition theories 
such as CAR (Concept Attribute Representation; Binder et 
al., 2009) provide an intrinsic analysis of word meaning in 
terms of sensory, motor, spatial, temporal, affective and 
social features, as well as a mapping to corresponding brain 
networks. Building on this theory, this research aims to 
understand an intriguing effect of grounding, i.e. how word 
meaning changes depending on context. CAR representations 
of words are mapped to fMRI images of subjects reading 
different sentences, and the contributions of each word 
determined through Multiple Linear Regression and the 
FGREP nonlinear neural network. As a result, the FGREP 
model in particular identifies significant changes on the 
CARs for the same word used in different sentences, thus 
supporting the hypothesis that context adapts the meaning of 
words in the brain. In future work, such context-modified 
word vectors could be used as representations for a natural 
language processing system, making it more effective and 
robust. 

Keywords: Neural Networks; FGREP; Concept Attribute 
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Introduction 
Recently, Deep Learning systems of vision and natural 
language processing (NLP) have drawn special attention 
into single-word vector spaces. They are able to extract low 
level features in order to recognize concepts (e.g. cat), but 
they are incapable of forming an abstract notion of the 
concept (symbol). In general, these models build semantic 
representations from text corpora where words that appear 
in the same context are likely to have similar meanings 
(Harris, 1970; Landauer & Dumais, 1997, Burgess, 1998; 
Baroni et. al., 2010). However, such representations lack 
intrinsic meaning, which means sometimes even different 
concepts may appear similar. This problem has driven 

researchers to develop new componential approaches, where 
concepts are represented by a set of basic features, or 
attributes, based on textual and perceptual input. (Bruni, et 
al., 2012; Silberer & Lapata, 2014, Vinyals et. al., 2015). 
However, even with their multimodal embedding space, 
such vector representations fall short from symbol 
grounding.  

In contrast, embodiment theories of knowledge 
representation (Regier, 1996; Landau et al., 1998, Barsalou, 
2008) provide a direct analysis in terms of sensory, motor, 
spatial, temporal, affective, and social phenomena. Further, 
these theories can be mapped to brain networks. Recent 
fMRI studies helped identify a distributed large-scale 
network of sensory association, multimodal and cognitive 
regulator systems linked with the storage and retrieval of 
conceptual information (Binder et al., 2009). This network 
was then used as a basis for Concept Attribute 
Representation (CAR) theory, an embodiment theory that 
enumerates semantic features of concepts and grounds them 
in brain networks (Binder et al., 2009, 2011 and 2016). 

An intriguing challenge to such theories is that concepts 
are dynamic, i.e. word meaning depends on context and 
recent experience (Pecher, Zeelenberg, & Barsalou, 2004). 
For example, a pianist would invoke different aspects of the 
word piano depending on whether he will be playing in a 
concert or moving the piano. When thinking about a coming 
performance, the emphasis will be on the piano’s function, 
including sound and fine hand movements. When moving 
the piano, the emphasis will be on shape, size, weight and 
other larger limb movements. 

This paper focuses on addressing these challenges based 
on the CAR theory. The main idea is that different attributes 
in CARs can be weighted differently depending on context, 
i.e. according to how important each attribute is in that 
context. More specifically, neutral CARs of words are first 
used to form an expected fMRI pattern of a subject reading 
a sentence. That pattern is compared to an actual fMRI 
image. Two techniques, multiple linear regression and a 
FGREP neural network, are then used to determine how the 
CARs would have to change to account for the actual fMRI 



pattern. These changes represent the weighting in context; it 
is thus possible to track the dynamic meanings of words by 
tracking how the weighting changes across contexts. 

Experiments with available fMRI data show that the 
approach is feasible, demonstrating meaningful differences 
for e.g. human communication vs. noise from a machine; 
dangerous storm vs. dangerous person; live mouse vs. dead 
mouse. These changes are principled and could be captured 
e.g. by a neural network. It might then be possible to create 
them dynamically, and form as a basis for a more robust and 
grounded natural language processing system.  

The CAR theory is first reviewed below, and the sentence 
fMRI and word representation data described. The methods 
for determining semantic changes, i.e. multiple linear 
regression and FGREP, are then presented, followed by an 
analysis of the results. 

 

 
Figure 1: Perceptual Grounding. CARs are composed of a list of 
known modalities that relate to specialized sensory, motor and 
affective brain processes, systems processing spatial, temporal, and 
casual information, and areas involved in social cognition. They 
capture aspects of experience central to the acquisition of abstract 
and concrete event as well as object concepts. 

Concept Attribute Representation Theory 
CARs represent the basic components of meaning defined in 
terms of known neural processes and brain systems (Binder, 
2016). They relate semantic content to systematic 
modulation in neuroimaging activity. And are therefore not 
limited to the classical sensory-motor dimensions of most 
embodied theories. 

CARs are composed of a list of well-known modalities 
that correspond to specialized sensory, motor and affective 
brain processes, systems processing spatial, temporal, and 
casual information, and areas involved in social cognition. 
They capture aspects of experience central to the acquisition 
of event and object concepts (both abstract and concrete).  

These attributes were selected after an extensive body of 
physiological evidence based on two assumptions: (1) all 
aspects of mental experience can contribute to concept 
acquisition and consequently concept composition; (2) 
experiential phenomena are grounded on neural processors 
representing a particular aspect of experience (Figure 1). 

These aspects of mental experience model each word as a 
collection of a 66-dimensional feature vector that captures 
the strength of association between each neural attribute and 

the word meaning. An example is shown in Figure 2. For a 
more detailed account of the attribute selection and 
definition see Binder et al. (2009, 2011 and 2016).  

Data Collection and Preprocessing 

Two existing data sets were used in this study: fMRI images 
of sentences and CARs obtained via Mechanical Turk. 

Neural Images 
The stimuli shown to subjects consisted of a list of 240 
every day written sentences prepared in the Knowledge 
Representation in Neural Systems (KRNS) project 
(Glasgow et al., 2016). The sentences are composed by 
three to nine words from a set of 242 words (141 nouns, 39 
adjectives and 62 verbs). Eleven subjects took part in this 
experiment producing 12 repetitions each. Participants 
viewed the sentences word by word while in the scanner. 
The data was acquired by the Center for Imagining Research 
of the Medical College of Wisconsin (Anderson et al., 
2016). The fMRI data was preprocessed and transformed 
into a single sentence fMRI representation per participant 
(by averaging all the repetitions), with a final selection of 
396 voxels per sentence on a scale from 0.2-0.8, for further 
use in the computational models. 

 

 
Figure 2: Bar plot for CAR 66 semantic features. The attribute 
ratings represent the basic features of chair. Given that this 
concept is an object, gets low weightings on human-related 
attributes: face, speech, social, and emotion and strong on visual, 
shape, touch, manipulation, and some others. 

Semantic Vectors 
The semantic attribute ratings were collected thru Amazon 
Mechanical Turk for each of the 242 words (e.g. family, 
hospital, chair, small, green, laughed, listened, walked). In 
a scale of 0..6, the participants were asked to assign the 
degree to which a given concept is associated to a specific 
type of neural component of experience (e.g. “To what 
degree do you think of a chair as having a fixed location, as 
on a map?”). Approximately 30 ratings (all attributes for 
each word) were collected. After averaging all the ratings 
and removing outliers, the final attributes were transformed 
to unit length yielding a collection of 66-dimensional 
feature vector that captures the weights of association 
between each neural attribute and the 242 words. Note that 
in this manner, the richness and complexity of 
representations is based on intrinsic meaning of each word, 
and not on word co-occurrence (Figure 2). 



Data Preparation 
The data set did not include fMRI images for words in 
isolation, a technique developed by Anderson et al. (2016) 
was adopted to approximate them. The voxel values for 
words were obtained by averaging all fMRI images for the 
sentence where each word occurred. Thus, the vectors 
include a combination of examples of that word along with 
other words that appear in the same sentence (context). 
Because of the limited number of combinations, some of 
these became identical, and were excluded from the dataset.  

Given the final set of 237 sentences and 236 words (138 
nouns, 38 adjectives and 60 verbs), the next step was to 
identify pairs of sentences with differences on word 
meanings such as live mouse vs. dead mouse, good soldier 
vs. soldier fighting, built hospital vs. damaged hospital, and 
playing soccer vs. watching soccer. This collection will 
allow the computational models to evaluate distinctive 
attribute representations and consequently adjust the base-
line meaning of a word to convey the effects of context and 
conceptual combination. 

A collection of 77 such sentences, with different shades 
of meaning for verbs, nouns and adjectives, as well as 
different contexts for nouns and adjectives was assembled. 
This collection will be used as Words of Interest (WoI) for 
the analysis of context in the experiments (Table 1).  

 
Table 1: Contrasting Sentences. Eight sentences from the 
collection of the 77 contrasting sentences. Here, for instance, the 
verb kicked is used in two different contexts, playing with a ball 
(as in Soccer) vs. breaking the door (as an aggressive behavior). 

 
 

Computational Models 
A new technique is proposed in this section for analyzing 
data imaging. It is grounded on the CAR theory and 
implemented using Multiple Linear Regression (LReg) and 
the FGREP neural network (Forming Global 
Representations with Extended BP; Miikkulainen & Dyer, 
1991). The main idea is to predict sentence fMRI by 
mapping CARWord to SynthWord (fMRI) (top of Figure 3). 
The SynthWord is then combined by averaging to form 
SyntSent for the predicted sentence. Next, the SynthSent is 
compared to the actual fMRISent (middle of Figure 3). The 
differences are included by modifying the SynthWord that 
map to fMRISent and by modifying the CARWord that map 
to the modified SynthWord (bottom of Figure 3). The 
resulting CARWord indicate how word meaning change 
across sentences. 

 
Figure 3: General System framework and data flow. Mapping 
CARWord to SynthWord (top). Then SynthWord is combined by 
averaging to form SyntSent and to be compared to the actual 
fMRISent (middle). Invert the process to modify the CARWords 
via SynthWord revised (bottom). The Revised CARWord includes 
different word meaning across sentences. 

Multiple Linear Regression  
At the word level, Multiple regression (LReg) is used to 
learn the mapping between CARWord and SynthWord 
voxels. The training set has attribute vectors of words as 
independent variables and the corresponding SynthWord 
vectors as the dependent variable, predicting one voxel at 
the time. Similarly, at the sentence level, the training 
contains assembled sentences (SynthSent) as independent 
and the corresponding Observed fMRISent as the dependent 
variable. Once the prediction error is calculated, LReg is 
inverted (which is possible because it is linear), to determine 
what the CARWord values should have been to make the 
error zero. 

Neural Network with FGREP  
It is possible that the linear prediction based on LReg is not 
powerful enough to account for the context effects. 
Therefore, a nonlinear approach based on neural networks is 
tested as well. A neural network is trained to map 
CARWord to SynthWord, which are then averaged (as 
before) into a prediction of the sentence SynthSent (Figure 
4). The prediction error is used (through backpropagation) 
to train the network. 

After training, this network is used to determine how the 
CARWords should change to eliminate the error. That is, 
for each sentence, the CARWords are propagated and the 
error is formed as before, but during backpropagation, the 
network is no longer changed. Instead, the error is used to 
change the CARWords themselves (which is the FGREP 
method---Forming Global Representations through 
Extended backPropagation; Miikkulainen et al., 1991). This 
modification can be carried out until the error goes to zero, 
or no additional change is possible (because the CAR values 
are already at their max or min limits).  

 



 
Figure 4: The FGREP model to account for context effects. Propagate CARWord to SynthWord. Compose SynthSent by averaging the 
words into a prediction of the sentence. Compare SynthSent against Observed fMRISent. Backpropagate the error with FGREP for each 
sentence, freezing network weights and changing only CARWord. Repeat until error reaches zero. 
 

Training the neural network requires as input the 236 
CARWord 66-dimensional vectors (W1, W2, W3) and as 
target, the equivalent corresponding 396-dimensional 
SynthWord vector (W’1, W’2, W’3). The network then 
learns a general mapping of words across all sentences. This 
mapping is then utilized in the FGREP phase to change the 
CARWord for each different sentence separately (Figure 4). 
As the last step, the changes in the semantic attributes are 
analyzed according to the CAR theory for each affected 
sentence. At this point, due to scarcity of data this is a 
manual process verifying that the changes made sense. 

Results 
The two approaches LReg and FGREP were evaluated in a 
preliminary experiment of distinguishing between the 
different meanings of the verb listened. LReg was found to 
be inadequate in this task and therefore in two subsequent 
experiments, focusing on the the adjective dangerous and in 
the noun mouse only the FGREP approach was used. The 
analysis was performed on the individual subjects for which 
the fMRI data in general was most consistent. 

Different contexts for the verb “listened “ 
Both models were used in this experiment to compare the 
contrasting meanings of HUMAN COMMUNICATION vs. 
NOISE FROM A MACHINE for the word listened as 
expressed in 89: The mayor listened to the voter, 92: The 
lonely patient listened to the loud television. The left side of 
Figure 5 shows the results for LReg between the original 
and transformed CARs. Although the CARs adjusted in all 
sentences, the changes were small and unprincipled, unable 
to characterize the difference between human 
communication versus noise from a machine. In contrast, 
the outcome for FGREP resulted in context-dependent 

changes as shown, for sentences 89 and 92 in the right side 
of Figure 5.  

CARs in Sentence 89 presented salient activations in 
human-related attributes like Face, and Body, Audition, and 
Speech, as well as Human, Communication, and Cognition, 
presumably denoting human verbal interaction. For 
Sentence 92, high activations on Vision, Bright, Color, 
Pattern, Large, Shape, Complexity, Touch, Temperature, 
Weight, Scene, Near, Harm, Unpleasant, Happy, and Angry 
describe a loud and large object such as a television. These 
results suggest that the linear mapping that LReg performs 
is not powerful enough to capture context, but the nonlinear 
mapping of FGREP is. The following experiments therefore 
both used the FGREP method for this task.  

Different contexts for the adjective “dangerous” 
This experiment compared the contrasting meanings of 
NATURE vs. BAD PEOPLE for the word "dangerous", as 
expressed in 98: The flood was dangerous, 118: The 
dangerous criminal stole the television. Figure 6 shows the 
differences resulting from the FGREP method. As with the 
verb listened, context-dependent changes did emerge. 

CARs in Sentence 98 present changes on activation for 
Large, Motion, SOMS attributes Texture and Weight, and 
event attributes Time, Short, and Caused, reflecting moving 
water. The attributes Toward, Harm, Unpleasant, and the 
emotion of Angry, represent the experiential and personal 
nature of danger. Conversely, Sentence 118 shows high 
activation for Vision, Complexity, Face, and Speech, 
because they represent human types and roles such as a 
criminal. Motor attribute Lower Limb as well as evaluation 
attributes Benefit, Angry, Disgusted, and Fearful can be 
associated with a dangerous act by a criminal. The FGREP 
method, therefore, was largely able to differentiate between  

 



  
Figure 5: Results for the word listened in two contrasting sentences. LReg (left) did not capture context. All changes were insignificant to 
characterizing the context-dependent representations. The green line shows the original CARs for comparison. FGREP (right) did grasp 
context. The CARs for Sentence 89 have increased activations in human-related attributes like Face and Body, Auditory attributes, as well 
as Human, Communication and Cognition. In contrast, Sentence 92 activations on Vision, Color, Large, Shape, Complexity, Touch 
Temperature, High sound, and Unpleasant, depict a loud object such as a television.  

 
the contrasting relevant dimensions of dangerous act of 
nature and humans. 

Different contexts for the noun “mouse” 
This experiment compared the contrasting meanings of 
DEAD vs. ALIVE for the word mouse as expressed in 
sentences 56: The mouse ran into the forest, 60: The man 
saw the dead mouse. Figure 7 shows the differences 
resulting from the FGREP method, which are again 
systematic and meaningful. 

 
Figure 6: FGREP results for the adjective dangerous across two 
contrasting sentences. CARs in Sentence 98 changed activation for 
Large, Motion, Texture and Weight, Time, Short, and Caused, 
reflecting moving water. The attributes Toward, Harm, 
Unpleasant, and Angry, represent the experiential nature of danger. 
Sentence 118 shows high activation for Vision, Complexity, Face, 
and Speech, because they represent human types and roles. Lower 
Limb, Benefit, Angry, Disgusted and Fearful can be associated  

CARs in Sentence 56 have increased activation for 
Vision, Motion, Complexity, High, and Sound, possibly 
suggesting animate properties of the live mouse. Upper 
Limb, spatial attributes Path and Away, and event attributes 
Time, Duration, Short, and Consequence, symbolize activity 
such as running. Emotions of Fearful and Surprised may 
well be associated with seeing a live mouse. In contrast, 
Sentence 60 shows increased activation for Temperature, 
Weight, and Smell, as well as emotions Sad, Angry, 
Disgusted and Fearful, which may be associated to the dead 
mouse. These changes indicate different aspects of mouse in 
two contrasting contexts. 

Discussion and Further Work 
The experiments in this paper suggest that different aspects 
of word meaning are activated in different contexts, and it is 
possible to see those changes in the corresponding fMRI 
images. These changes are likely to be nonlinear: The linear 
mapping approach (regression) tends to muddle them, but a 
nonlinear mapping (FGREP neural network) can tease them 
apart.  

This result is remarkable considering that the dataset was 
not originally designed to answer the question of dynamic 
meaning. In particular, having fMRI images for isolated 
words available, instead of having to synthesize them, 
should amplify the observed effects significantly. It should 
also be possible to include sentences with contrasting 
contexts systematically, thus increasing the number of 
possible observations, and making it possible to identify 
differences in a more comprehensive manner. 

With such a larger dataset, it should be possible to 
characterize changes across multiple sentences. Different 
kinds of changes may occur in nouns, adjectives, and verbs, 
and there are likely to be interactions between them. 
Moreover, the semantic changes can vary from individual to 
individual. As the first step, only single subjects were 
analyzed in this paper.  In the future, the analysis can be 



extended to more subjects, identifying which changes are 
consistent across subjects, and which ones are more 
individualistic.  For instance, the subject in experiment 3 
was Sad that the mouse was dead; another subject could 
show a different emotion.  

After formulating such principles, the next step would be 
to utilize them in building artificial natural language 
processing systems. It may be possible to train e.g. a neural 
network to predict how meaning changes in context. Such a 
network could be then used as a part of an engineered 
natural language processing system, dynamically modifying 
the vector representations for the words to fit the context. 
Such a system should be more effective and more robust in 
its inference, and match human behavior better. 

 
Figure 7: FGREP results for the noun mouse across two 

contrasting sentences. CARs in Sentence 56 increased activation 
for Vision, Motion, Complexity, High, and Sound, presumably to 
indicate the animate properties of the live mouse. Upper Limb, 
Path, Away, Time, Duration, Short, and Consequence, suggest 
activity such as running. In contrast, Sentence 60 shows increased 
activation for Temperature, Weight, and Smell, as well as Sad, 
Angry, Disgusted and Fearful, which can be associated to the dead 
mouse. These changes indicate different aspects of mouse in two 
contrasting contexts. 

Conclusion 
Concepts are dynamic; their meaning depends on context 
and recent experience. In this paper, word meaning was 
represented as a collection of attributes (CARs), grounded 
in observed brain networks. Multiple Linear Regression 
analysis and a nonlinear FGREP Neural Network were used 
to understand how the CARs could change to construct the 
actual sentence representations seen in fMRI images. 
Preliminary results suggest that there are indeed systematic 
changes in CARs, and they make sense in each sentence 
context. These changes could only be seen in the FGREP 
analysis, suggesting that they are likely to be nonlinear. In 
the future, such changes could be characterized more fully 
and used to make artificial natural language systems 
sensitive to context. 
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