Eugenic Evolution: The EuA, EuSANE, and TEAM
Active from 1998 - 2002
In standard evolutionary algorithms, new individuals are generated by random mutation and recombination. In Eugenic Evolution, individuals are systematically constructed to maximize fitness, based on historical data on correlations between allele and fitness values. This method, Eugenic Algorithm (EuA), compares favorably to standard methods such as Simulated Annealing and Genetic Algorithms in general combinatorial optimization tasks. The Eugenic principle has also been applied to the evolution of neural networks in a method called EuSANE, where new networks are systematically constructed from a pool of candidate neurons. The EuA principle is further enhanced in the TEAM method, where statistical models for each gene are individually maintained.
Matthew Alden Ph.D. Alumni mealden [at] uw edu
John Prior Masters Alumni jprior [at] cs utexas edu
Daniel Polani Postdoctoral Alumni d polani [at] herts ac uk
Aard-Jan van Kesteren Former Visitor
Neuroevolution: Harnessing Creativity in AI Model Design Sebastian Risi, David Ha, Yujin Tang, Risto Miikkulainen To Appear In , Cambridge, MA, 2025. MIT Press. 2025

Eugenic Evolution Utilizing A Domain Model Matthew Alden, Aard-Jan van Kesteren, and Risto Miikkulainen In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), 279-286, ... 2002

Eugenic Neuro-Evolution For Reinforcement Learning Daniel Polani and Risto Miikkulainen In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), 1041-1046... 2000

Eugenic Evolution For Combinatorial Optimization John W. Prior Masters Thesis, Department of Computer Sciences, The University of Texas at Austin, 1998. 126. Techn... 1998

TEAM The TEAM package contains C++ implementations of both EuA (The Eugenic Algorithm) and TEAM (The Eugenic Algorithm with M... 2002