neural networks research group
areas
people
projects
demos
publications
software/data
LISSOM: Laterally Interconnected Self-Organizing Maps
Active from 1987 - 1997
LISSOM is a biologically more realistic implementation of the SOM idea, where the weight change neighborhood is determined through competition and collaboration mediated by lateral connections (instead of a global supervisor), and weights are changed based on Hebbian learning and renormalization (instead of Euclidean distance). LISSOM was developed as a first step towards modeling biological maps (see the visual cortex page), but it also has useful properties in its own right. It is capable of self-organization roughly similar to the SOM model, but because the lateral connections decorrelate the activation patterns on the map, they form a better internal representation for visual patterns such as those in handwritten digit recognition.
People
Joseph Sirosh
Ph.D. Alumni
joseph sirosh [at] gmail com
Yoonsuck Choe
Ph.D. Alumni
choe [at] tamu edu
Risto Miikkulainen
Faculty
risto [at] cs utexas edu
Publications
Tilt Aftereffects in a Self-Organizing Model of the Primary Visual Cortex
James A. Bednar
Masters Thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX, 1997...
1997
Software/Data
Austin Arboretum Foliage Corpus
Photographs for use with color modeling work taken by Judah De Paula at the Austin Arboretum. Images contain mostly leav...
2007
Flowers Color Image Corpus
Photographs for use with color modeling work taken by Judah De Paula at the Austin Arboretum. Images contain mostly clos...
2007
Related Areas
Unsupervised Learning, Clustering, and Self-Organization