neural networks research group
areas
•
people
•
projects
•
demos
•
publications
•
software/data
•
Empowerment for Continuous Agent-Environment Systems (2011)
Tobias Jung
and
Daniel Polani
and
Peter Stone
This paper develops generalizations of empowerment to continuous states. Empowerment is a recently introduced information-theoretic quantity motivated by hypotheses about the efficiency of the sensorimotor loop in biological organisms, but also from considerations stemming from curiosity-driven learning. Empowemerment measures, for agent-environment systems with stochastic transitions, how much influence an agent has on its environment, but only that influence that can be sensed by the agent sensors. It is an information-theoretic generalization of joint controllability (influence on environment) and observability (measurement by sensors) of the environment by the agent, both controllability and observability being usually defined in control theory as the dimensionality of the control/observation spaces. Earlier work has shown that empowerment has various interesting and relevant properties, e.g., it allows us to identify salient states using only the dynamics, and it can act as intrinsic reward without requiring an external reward. However, in this previous work empowerment was limited to the case of small-scale and discrete domains and furthermore state transition probabilities were assumed to be known. The goal of this paper is to extend empowerment to the significantly more important and relevant case of continuous vector-valued state spaces and initially unknown state transition probabilities. The continuous state space is addressed by Monte-Carlo approximation; the unknown transitions are addressed by model learning and prediction for which we apply Gaussian processes regression with iterated forecasting. In a number of well-known continuous control tasks we examine the dynamics induced by empowerment and include an application to exploration and online model-learning.
View:
PDF
,
PS
,
HTML
Citation:
Adaptive Behavior
, 19(1):16-39, 2011.
Bibtex:
@article{AB11-jung, title={Empowerment for Continuous Agent-Environment Systems}, author={Tobias Jung and Daniel Polani and Peter Stone}, volume={19}, journal={Adaptive Behavior}, number={1}, pages={16-39}, url="http://nn.cs.utexas.edu/?AB11-jung", year={2011} }
People
Tobias Jung
tjung [at] ulg ac be
Daniel Polani
Postdoctoral Alumni
d polani [at] herts ac uk
Peter Stone
pstone [at] cs utexas edu
Areas of Interest
Machine Learning