
Evolving Deep LSTM-based Memory networks using an
Information Maximization Objective

Aditya Rawal
Computer Science, University of Texas at Austin

aditya@cs.utexas.edu

Risto Miikkulainen
Computer Science, University of Texas at Austin

and Sentient Technologies, Inc.

risto@cs.utexas.edu

ABSTRACT

Reinforcement Learning agents with memory are constructed
in this paper by extending neuroevolutionary algorithm NEAT
to incorporate LSTM cells, i.e. special memory units with
gating logic. Initial evaluation on POMDP tasks indicated
that memory solutions obtained by evolving LSTMs outper-
form traditional RNNs. Scaling neuroevolution of LSTM to
deep memory problems is challenging because: (1) the fit-
ness landscape is deceptive, and (2) a large number of asso-
ciated parameters need to be optimized. To overcome these
challenges, a new secondary optimization objective is intro-
duced that maximizes the information (Info-max) stored in
the LSTM network. The network training is split into two
phases. In the first phase (unsupervised phase), independent
memory modules are evolved by optimizing for the info-max
objective. In the second phase, the networks are trained by
optimizing the task fitness. Results on two different mem-
ory tasks indicate that neuroevolution can discover powerful
LSTM-based memory solution that outperform traditional
RNNs.

CCS Concepts

•Computer systems organization→Neural Networks;
•Computing methodologies → Artificial Intelligence;

Keywords

Algorithms

1. INTRODUCTION
Natural organisms can memorize and process sequential

information over long time lags. Chimpanzees and orangutans
can recall events that occurred more than a year ago [16].
Long term social memory can provide significant survival
benefits. For example, bottlenose dolphins can recognize
each other’s whistle sounds even after decades [7]. Such a ca-
pability allows the dolphin to identify adversaries as well as

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’16, July 20-24, 2016, Denver, Colorado, USA.

c© 2016 ACM. ISBN TBA.

DOI: 10.475/123 4

potential teammates for hunting. First step towards adap-
tive behavior is to memorize past events and utilize them for
future decision making [23]. For example, a group of hyenas,
during lion-hyena interactions, modulate their behavior over
a period of time through memory-based emotions - transi-
tioning from being fearful initially to becoming risk-taking
later [27].

Memory is a key cognitive component and incorporat-
ing this capability in artificial agents can make them more
realistic [22]. New methods are presented in this paper
that can evolve deep sequence processing networks to solve
reinforcement-learning (RL) memory tasks with long time-
dependencies. Tasks requiring memory can be formally be
described as POMDP problems. Traditionally, recurrent
neural networks (RNNs) have been the preferred choice for
this purpose. However, RNNs leak information and are un-
able to discover long-term dependencies [11]. Long Short
Term Memory (LSTM) [12] successfully overcomes these
limitations of RNNs. It consists of memory cells with lin-
ear activations. The inflow and outflow of information to
and from these cells is controlled by associated input/output
gated units. While LSTM networks have been used to achieve
strong results in the supervised sequence learning problems
such as in speech recognition [10] and machine translation
[2], their success in POMDP tasks has been limited [5, 4]. A
possible reason is that it is difficult to train LSTM units (in-
cluding its associated control logic) with weak reward/fitness
signal. Also, the number of LSTM units in a network is a
parameter that is often manually selected. This approach
turns out to be inefficient especially in new problems where
the memory depth requirements are not clear.

In this work, NEAT (Neuroevolution of Augmenting Topolo-
gies) [24] algorithm is extended to incorporate LSTM cells
(NEAT-LSTM). Since NEAT algorithm can evolve network
topologies, it can discover the correct amount of memory
units for the task. NEAT-LSTM outperform RNNs in two
distinct memory tasks. However, NEAT-LSTM solutions do
not scale as the memory requirement of the task increases.
To overcome this problem, a secondary objective is used that
maximizes the information stored in the LSTM units. The
LSTM network is first evolved during the pre-training phase
with this unsupervised objective to capture and store rele-
vant features from the environment. Subsequently, during
the task fitness optimization phase, the stored LSTM fea-
tures are utilized to solve the memory task. This approach
yields LSTM networks that are able to solve deeper memory
problems.

Six sections follow this introduction. Section 2 provides



Figure 1: (a) The LSTM unit architecture: A single LSTM unit is comprised of three components: (1) green-
colored multiplication gates and sigmoid/tanh activation function, (2) yellow-colored internal memory state
with linear activation, and (3) blue-colored peephole connections. There are three multiplication gates (write,
forget and read) that control the flow of information through the LSTM unit. The peephole connections allow
the internal memory state of the LSTM unit to be probed. The peripheral control logic (shown in gray cloud-
shaped boxes) and the peephole connection weights are modified during the course of evolution. (b) The
Sequence-Classification Task: This is a binary classification task where the network has to count whether the
number of 1s in the input sequence exceeds the number of -1s (0s are ignored). At the start of evolution, the
network consists of one input node and one output node. NEAT evolves hidden layer topology. A network
requires memory in order to succeed in this task. Example of input-output sequence values are shown in the
table.

a brief background on NEAT and LSTM and describes the
related work in building agent memory. Two memory tasks
are defined in Section 3. These tasks are used to compare
the performance of different algorithms. In Section 4, NEAT
is extended to include LSTM (NEAT-LSTM) and its perfor-
mance is compared against RNN. The challenges in scaling
the memory solutions are also analyzed and a new unsuper-
vised objective is presented to solve this problem. Future
directions are discussed in section 5 and section 6 provides
a summary of the work.

2. BACKGROUND AND RELATED WORK
Recurrent neural network (RNN) can be used as policy

controller or function approximators to store information
from the past in their hidden states. However, scaling RNNs
to problems that require deeper memory is challenging be-
cause RNNs can leak information over time. Recently, Long
Short Term Memory (LSTM) has achieved success in solving
supervised sequence processing tasks such as speech recogni-
tion [10] and machine translation [2]. LSTMs overcomes the
limitation of RNNs by storing information in special linear
unit (memory cells) and controlling their inflow and outflow
through gating units.

2.1 LSTM
LSTM include three types of control gates: write control

that determines the input to the memory state (with linear
activation), forget gate that controls how much of the stored
memory value is transferred to the next time step, and out-
put gate which regulates the output of the memory cell. In

addition, LSTM units can include extra peephole connec-
tions to probe the internal memory state. The peephole
connections allow the LSTM gates to be modulated based
on value stored in the internal memory state. The output
activation function is tanh. Structure of a single LSTM unit
is depicted in Figure 1a.

LSTM have been used as both policy controller and func-
tion approximator to solve RL problems. For example, LSTM
based network was used as a function approximator in the
robot navigation task [4]. In this work, the input sequence
to LSTM was pre-processed to capture salient information
from the environment. An unsupervised event extraction
was performed by classifying stream of inputs into a vari-
able number of distinct classes. Any change in input stream
class is considered an event, and is fed into a RL model
consisting of LSTM function approximator. One drawback
of this method is that it can ignore sequential information
that remains fixed during a trial but changes across trials. In
[28], policy gradient algorithm was applied to train LSTM
networks resulting in deeper memories for POMDP tasks.
Bayer et al.[5] evolved custom LSTM memory cells using
mutation operators. These custom cells are then manually
instantiated to construct LSTM network for solving the T-
maze problem. Their result suggests that evolving LSTMs
can lead to interesting solutions to POMPD problems that
are difficult to solve otherwise. Yet the evolved memory is
not deep enough to be useful in real-world AI tasks (like
deep T-maze or modeling hyena emotions). New methods
are required to scale the evolution of LSTM to such tasks.
Powerful neuroevolutionary techniques (like NEAT) is one



Figure 2: (a) Sequence Recall in simple T-maze: At the beginning of each trial, the agent observes one light.
As the agent moves forward in the aisle towards the T-junction, it no longer has access to the light. The color
of the light (red/green) indicates the direction (right/left) that the agent should take at T-junction in order
to reach the goal. Therefore, to be successful, the agent needs to memorize the color of the light that was
shown at the start. (b) Network architecture: In this task, the network has two inputs: one input represents
the distance to the T-junction and the second input is the light sequence (active only during the first few
time steps) (c) Deep T-maze: In the Deep T-maze, there are multiple input lights at the start corresponding
to the multiple T-junctions. In order to be successful, the agent is required to recall the input light sequence
in the correct order at each T-junction. This task requires deeper memory than the simple T-maze.

candidate approach to achieve complex memory solutions.
NEAT can evolve both the topology and weights of a LSTM
network in a non-parametric manner.

2.2 Problem of Deception
From an optimization perspective, since the problem of

evolving memory is deceptive, extra objectives (to promote
solution diversity) can be used to overcome deception [15,
18]. In such approaches, the evolutionary optimization prob-
lem is often cast as a multi-objective problem with two ob-
jectives - primary objective (task fitness) and secondary di-
verstiy objective (like novelty search). However, there are no
guarantees that such diversity objectives can aid the learning
algorithm to capture and store useful historical information
from the environment. Since the secondary diversity objec-
tive is unrelated to the task fitness, the network can also
undergo unsupervised pre-training to optimize this objec-
tive. One such unsupervised objective is presented in this
paper that maximizes the total theoretic information stored
in the LSTM network.

2.3 Unsupervised Training of LSTM
In supervised learning domain, unsupervised pre-training

of neural networks to initialize its parameters has been shown
to improve the overall network task performance signifi-
cantly. This idea of pre-training the network with unsu-
pervised objective can also be extended to the RL domain.
However, not much literature exists on the topic of unsu-
pervised pre-training of LSTM for RL POMDP tasks. On a
related note, [13] performed unsupervised clustering of mu-
sical data using LSTM networks. In this work, Binary In-
formation Gain Optimization (BINGO, [21]) was used as
an unsupervised objective. BINGO maximizes the informa-
tion gained from observing the output of a single layer net-
work of logistic nodes, interpreting their activity as stochas-
tic binary variables. One limitation of BINGO is that it

searches only for uncorrelated binary features (thus the so-
lution ends up having zeros and ones in equal parts), which
limits the amount of information the network can store. In-
stead, LSTM features with maximal information are evolved
in this work. Specifically, the LSTM networks are evolved
(using NEAT) to first extract and store independent (and
highly informative) real-valued features. These features are
then later used to solve the memory task. Storing indepen-
dent features in the LSTM ensures that the network has
maximal information from a theoretic perspective. This
information-theoretic objective to train LSTM network is
similar to the info-max approach published in [6]. However,
the main difference is that there is no underlying assump-
tion on the number of mixed features and the linearity of the
mixture. Next, the NEAT algorithm is described in brief.

2.4 NEAT
NEAT is a neuroevolution method that has been success-

ful in solving sequential decision making tasks[24, 25, 15].
The evolved network is used as a policy controller that re-
ceives sensory inputs and outputs agent actions at each time
step. NEAT begins evolution with a population of simple
networks and complexifies the network topology into diverse
species over generations, leading to increasingly sophisti-
cated behavior. As new genes are added through muta-
tions, they are assigned unique historical markings. During
crossover, genes with the same historical markings are re-
combined to produce offsprings. The population of networks
is divided into different species based on number of shared
historical markings. Speciation protects structural innova-
tions in networks by reducing competition among different
species. The historical markings and speciation thus allow
NEAT to construct complex task-relevant features. Mem-
ory can be introduced into the network by adding recurrent
connections through mutations. NEAT is an ideal choice to
evolve networks with memory in a non-parametric manner.



Figure 3: NEAT-LSTM vs. NEAT-RNN comparison on the Sequence-Classification task. The memory depth
requirement is varied on the x-axis. The y-axis values represents the success rate of each method in 50
runs. The performance of NEAT-RNN and NEAT-LSTM is comparable for 4-deep sequence classification.
As the task depth is increased to 6-deep, NEAT-LSTM significantly outperforms NEAT-RNN. Successful
solutions to the sequence-classification task should be able to retain an aggregate of previous inputs and
should also continuously update this aggregate with new incoming inputs. The performance results indicate
that LSTM-based networks can memorize information over longer intervals of time as compared to RNNs.

3. MEMORY TASKS
This section describes two memory tasks. Both the tasks

are situated in a discrete maze where the agent moves one-
step at each time-step of the trial. The first task, sequence
classification, is a binary classification problem of streaming
input. The second task, sequence recall, requires the agent
to recall a previously provided instruction input and use it to
make future decisions (turn left or right at the T-junction).
In both the tasks, the agent is required to store and to utilize
the past events in order to be successful in the task.

3.1 Sequence Classification
This is a binary classification task, where given an input

sequence of 1 and -1 (interleaved with 0s), the network needs
to determine whether it received more 1s than -1s. The num-
ber of interleaved 0s in the input sequence is random and
ranges between (10-20 time steps) . This task can be visu-
alized as a maze positioning task. An agent situated at the
center of a one-dimensional maze is provided instructions to
move either left/right. It is expected to move left (west)
when its input is -1 and move right (east) when its input is
1. When its input is zero, it is not expected to move. At
the end of the sequence, the agent needs to identify whether
it is on the right side of the maze or the left side i.e. has
it taken mores steps towards east than west. Note, that in-
put 0 does not affect this decision but only serves to confuse
the agent. The number of turns (left/right) that the agent
takes during a trial is defined as the depth of the task. For
example, a sequence of four turns (total four 1/-1 inputs in-
terleaved with 0 in the input sequence) is termed as 4-deep.
Different sequence classification experiments are carried out
by varying the depth of the task (4/5/6 deep). The net-
work architecture and example input-output combinations
are shown in Figure 1b.

3.2 Sequence Recall
In the simple T-Maze, at the beginning, an agent receives

an instruction stimulus (like red/green light) (see Figure 2a).
The agent then travel a corridor until it reaches the T-
junction. At the junction, the path splits into two branches
(left/right) and the agent needs to take the correct branch

in order to reach the reward. The position of the reward
is indicated by the instruction stimulus it received at the
beginning. For example, red light can indicate presence of
reward on the right-branch and green light can indicate the
reward on left branch. A successful agent thus can only
maximize collecting the reward by memorizing and utilizing
its stimulus instruction. T-Maze has been widely used as a
benchmark problem for evaluating agents with memory [3,
5, 15, 18]. This simple T-maze (with one T-junction) can
then be extended to a more complex deep T-maze which con-
sists of a sequence of independent T-junctions (Figure 2c.).
Here, the agent receives a sequence of ordered instructions
(one corresponding to each T-junction decision) at the start
of trial and it has to utilize the correct instruction at ev-
ery T-junction in order to reach the goal. Risi et al. [19]
used one such T-maze extension (double T-maze) to test
plastic neural networks. The distracted sequence recall task
used in [17] is another variation of the deep T-maze recall,
but it uses supervised training to learn the LSTM param-
eters. However, the approach presented in this paper uses
a weak fitness signal (proportional to the number of cor-
rectly recalled input instructions) to train the memory net-
work. Scaling the memory depth of network to recall long
sequences in such RL settings has been a challenge.

4. EXPERIMENTS
In each experiment, a population of 100 networks is evolved

using NEAT for 15,000 generations. Each individual in
the population is evaluated on all possible input sequences.
Deeper tasks therefore require more evaluations than shal-
low ones. The length of each trial also depends on the task-
depth. For example, a 4-deep sequence classification task
consists of at least four time steps (corresponding to four
1/-1) and 40 time steps of 0 inputs interleaved between 1/-
1. During evolution, out of a total fitness of 100, the net-
work receives a fraction for correctly predicting a part of
the problem. For example, in a 4-deep sequence classifica-
tion problem, if the agent correctly predicts its position in
the maze (left or right side) after two turns, then it receives
50 fitness points. It is expected that such partial reward will



Figure 4: NEAT-LSTM, NEAT-RNN and NEAT-LSTM Info-max comparisons on Sequence-Recall task.
Success percentage of each method is plotted for T-maze with varying depth. Both NEAT-RNN and NEAT-
LSTM can quickly find the solution to simple one-step T-maze. As the maze becomes deeper, NEAT-LSTM
outperforms NEAT-RNN. However, beyond 3-deep, the problem becomes too complex for both the methods.
A solution to the deep T-maze problem requires memorizing the input light sequence in its correct order for
several hundred time-step. NEAT-LSTM Info-max can successfully find solutions for even 5-deep recall. This
suggests that pre-training of LSTM networks with unsupervised Info-max objective results in the capture of
useful information from the environment that can later be used to solve the memory task.

shape the network towards evolving optimal behavior. Data
is collected from 50 runs of each experiment type and the
average success rate (percentage of runs that yield solution
with maximum fitness) is measured to compare performance
of different methods. At each time step, the network under
evaluation is activated once. The value at the input of a node
is propagated to its output in a single time step. Therefore,
the number of time steps it takes for the network input to
reach the output is equal to the shortest path between in-
put and output. This setup is critical in ensuring that the
network captures the input sequence values and their order
correctly in the recall task. Further details on experimen-
tal setup, results and evolved network can be found on the
demo page: http://nn.cs.utexas.edu/?deepmemory

4.1 Experiment 1: Comparing RNNs vs. LSTM
First, RNNs are evolved using standard NEAT algorithm

(labeled as NEAT-RNN). A user-defined parameter controls
the probability (set to 0.1 in these experiments) of adding
a new recurrent link. The recurrent links can be either
self-loops or a longer loop consisting of several intermedi-
ate nodes. Next, NEAT is extended to evolve LSTM-based
networks that are compared with RNNs.

4.1.1 Method: NEAT-LSTM

Standard NEAT algorithm can add new nodes (sigmoid or
rectified linear units) through mutation. In this work, NEAT
is extended such that during its search process, it can add
new LSTM units (probability of adding a new LSTM unit is
0.01). On being first instantiated, LSTM gates have default
values - always write, always read and always forget. This
setting ensures that initially, newly added LSTM units do
not affect the functionality of the existing network. Each
new instantiation of a LSTM unit is associated with the
corresponding addition of a minimum of six network param-
eters - three connections from external logic to the control
gates (depicted as cloud shaped gray boxes in Figure 1a) and
three peephole connections (blue-colored links in Figure 1a).
During the course of evolution, the existing parameters can
be modified/removed and new ones can be added to suit

the requirements of the task. No recurrent connections are
allowed except the recurrency that exists within the LSTM
unit.

4.1.2 Results

As shown in Figure 3, both NEAT-RNN and NEAT-LSTM
can solve the 4-deep sequence classification task easily. As
memory depth requirement increases to six, their success
rate gradually decreases. NEAT-LSTM significantly out-
performs NEAT-RNN in all the cases (t-test; p<0.01). The
sequence-classification task is relatively simpler than the
sequence-recall task. The agent is required to update and
store its internal state with each new valid input (1/-1).
Therefore, the successful networks have simple architecture
(consisting of only a few recurrent neurons in the case of
NEAT-RNN and a single LSTM in the case of NEAT-LSTM).

In the sequence-recall task, both NEAT-RNN and NEAT-
LSTM quickly find the solution to one-step T-maze (Fig-
ure 4). This result is expected and it matches the outcomes
of previous papers that focused on this problem ([15, 28]).
However, as the T-maze becomes deeper, the successful solu-
tions are required to store input light sequence information
for longer durations and in its correct order. Therefore, be-
yond 3-deep T-maze, the problem becomes too complex for
both NEAT-RNN and NEAT-LSTM to solve.

4.2 Experiment 2: Scaling NEAT-LSTM
In the harder task of sequence recall, the agent needs to

store the entire input sequence in correct order. Incremen-
tal evolution approach was applied in order to solve deeper
recall problems (>4-deep). Networks were first evolved for
2-, 3-, and 4-deep recall problems; these networks were then
used as a starting point (in the NEAT algorithm) to solve
the more complex problems of increasing depth (>4-deep).
However, this approach did not yield much success. The
problem may be that as the length of the input sequence in-
creases, the number of parameters to be evolved also increase
(with each additional LSTM units). Also, the incremental
evolution approach requires detailed knowledge of the prob-



Figure 5: Unsupervised Pre-training using the Information Maximization objective. Highly informative,
independent LSTM features are incrementally added by modifying the write control, forget control and input
data logic using NEAT. Unsupervised pre-training is carried out until evolution stops discovering independent
features or at the end of 10000 generations. By the end of this pre-training phase, salient information observed
by the agent is captured and stored in the LSTM network. The pre-training aids evolution of deeper memory
solutions in two ways. First, it reduces the problem of deception by directing evolutionary search towards
landscapes that provide new information. Second, by incrementally adding independent features, it avoids
the problem of training a large number of LSTM parameters simultaneously.

lem domain that is not inline with the goal of this paper (i.e.
to solve the memory task with limited domain knowledge).

4.2.1 Method: Information Maximization Objective

One way to overcome the problem of deception is by en-
suring that evolution discovers unique time-dependencies by
not re-discovering existing information. In solving POMDP
tasks that require memory, the agent can benefit by cap-
turing salient historical information from the environment
and storing it in its neural-network controller. As the agent
moves in the environment over multiple trials, it comes across
a lot of information. For example, it can observe the wall
(which are mostly static across trials) or it can observe a bi-
nary light (red/green in T-maze), which can provide possible
clues for the location of the goal. It is difficult to discern
which information should be stored for later use (blinking
light) and which should be discarded (static walls). One so-
lution could be to store inputs (in their native form or in
combination with other inputs) such that the total informa-
tion stored in the network is maximized. From a theoretical
perspective, the information stored in a set of random vari-
ables is maximized when their joint entropy is maximized.
The joint entropy of two random variables X and Y can be
defined as,

H(X,Y ) = H(X) +H(Y )− I(X,Y ) (1)

H(X) =
∑

P (X) logP (X) (2)

where H(X), H(Y ) are the individual entropies of X and
Y respectively and I(X, Y ) is the mutual information be-
tween X and Y. Thus, to maximize the information stored
in the network, the individual entropy of its hidden unit
activations should be maximized and their mutual informa-
tion minimized. The mutual information can be expressed
as Kullback-Leibler divergence:

I(X,Y ) =
∑

P (X,Y ) log
P (X,Y )

P (X)P (Y )
(3)

Random variables with zero mutual information are sta-
tistically independent. Computing and storing highly infor-

mative, maximally independent features (i.e. features with
high individual entropy and low mutual information) in the
network is the unsupervised objective that will be used for
NEAT (Info-max). The features are stored in the hidden
LSTM units, since these units can retain information over
several time steps. Evolving independent features allows
for pre-training the network and only augments the NEAT-
LSTM approach as outlined in Section 4.1.1. The new learn-
ing algorithm now consists of two steps: The first one is
an unsupervised objective phase where the independence of
LSTM hidden units is maximized (see Figure 5), and the sec-
ond is an RL phase where the fitness objective is maximized
(Figure 6).

A feature vector is constructed by concatenating the mem-
ory state values (yellow-colored circle in Figure 1) of the
LSTM unit from each neural network activation across dif-
ferent trials. There is one distinct feature vector correspond-
ing to each LSTM hidden unit. To compute entropy and mu-
tual information, the feature vectors are treated as random
variables. The real-valued features are partitioned into 10
equal-sized bins, and a histogram is constructed by counting
the number of elements in each bin. Entropy and pairwise
mutual information (an approximation of total mutual in-
formation) of feature histograms is then calculated using
equation 2 and equation 3 respectively.

Evolving multiple independent features simultaneously can
be challenging. This problem can be broken down using in-
cremental evolution [9] (without the need for domain knowl-
edge). Independent features (with their values stored in in-
dividual LSTM units) can be discovered one at a time us-
ing NEAT. Since the primary goal of this work is to build
networks with memory, one simplifying assumption can be
introduced: environment is not dynamic, i.e. it does not
change over time. With this assumption, independent fea-
tures once discovered and stored in LSTM need not change
over a period of time. The stationarity assumption also en-
tails that during the unsupervised training phase, only the
write control logic, forget control logic and input data logic
of the LSTM unit need to be modified. Once the indepen-
dent features have been discovered, no more changes to the



Figure 6: RL training using the fitness objective. During the RL phase, the stored/memorized features are
utilized to solve the memory task. The write control, forget control and input data logic of the LSTM units
(that store independent features) is frozen and the read control logic is evolved using NEAT. NEAT can add
new hidden layers over the top of existing LSTM network.

write, forget and input logic of the LSTM units are required
(i.e. they are frozen). For the remainder of evolutionary
search, NEAT can only add outgoing connections from the
frozen network (to facilitate re-use of frozen logic). Often,
there exists multiple solutions to the problem of finding net-
works with maximum information. Some of these network
solutions could be large. To bias NEAT towards evolving
smaller solutions during unsupervised objective optimiza-
tion, a regularization factor is introduced that penalizes
larger networks. The size of the evolved network (equal to
the number of network connections) is weighted by a reg-
ularization parameter (value varies between 0 and 1), and
the resulting penalty term is subtracted from the unsuper-
vised objective value. Unsupervised training is stopped ei-
ther when NEAT cannot find any more independent features
or at end of 10000 generations.

Subsequently, during the RL phase, the LSTM outputs are
provided as extra inputs (in addition to the sensor inputs)
to the NEAT algorithm. NEAT evolves the read control
logic of the frozen LSTM units to utilize the stored features
appropriately as deemed fit for the task. This approach
makes neuroevolution computationally more tractable.

4.2.2 Results

NEAT-LSTM with the information maximization objec-
tive (NEAT-LSTM Info-max) was evaluated on sequence-
recall task, since it is the harder of the two memory tasks.
As shown in Figure 4, NEAT-LSTM and NEAT-RNN out-
perform NEAT-LSTM Info-max in the 1-deep task. This is
probably because NEAT-LSTM and NEAT-RNN are pow-
erful enough to quickly find a solution to the shallow mem-
ory problem. As the memory depth requirement increases
however, NEAT-LSTM Info-max consistently outperforms
NEAT-LSTM and NEAT-RNN (t-test; p<0.01). NEAT-
LSTM Info-max is able to solve 5-deep sequence recall prob-
lem about 20% of the time.

5. DISCUSSION AND FUTURE WORK
In the sequence-recall task, the networks evolved using

NEAT-LSTM Info-max method can preserve information (in
correct order) over hundreds of time steps. This result sug-
gests that pre-training of LSTM network with information

maximization objective facilitates the capture of useful in-
formation from the environment. To confirm this hypoth-
esis, pairwise mutual information was computed between
LSTM feature vectors and the network inputs. Since each
input light in the input sequence is independent of the other,
maximum-information objective should often yield solutions
such that different LSTM units capture information from
distinct previous inputs. This was often found to be true.
The info-max objective drives the network evolution towards
gathering maximum possible information. Note that unlike
novelty search, info-max is not open-ended since it depends
on the richness of observable information in the environ-
ment. Further comparisons between Info-max and novelty
search on memory tasks can be found at the demo page (link
provided in Section 4) . While the idea of maximizing agent
information is proposed to increase the depth of the agent’s
memory, it can indirectly lead to exploratory behaviors. Ar-
tificial curiosity [20] is one such concept, where the agent is
explicitly rewarded for exploring areas in the environment
that provide more information.

When neuroevolution is used to discover features, a rich
feature set may accumulate. Recently, feature accumulation
through evolution has been successful in solving both su-
pervised learning problems and RL problem. For example,
Szerlip et al. [26] used novelty search as an unsupervised
objective to train HyperNEAT networks for MNIST digit
recognition problem. Koutnik et al. [14] used a similar diver-
sity objective (during unsupervised training) to train Con-
volutional Networks for simulated car racing. The Info-max
objective presented in this paper is customized for memory
tasks and therefore, should work better in POMDP prob-
lems. The idea of maximizing information gain for advanc-
ing the complexity of behaviors is biologically plausible as
well [1].

6. CONCLUSIONS
Incorporating memory into artificial agents in a non-parametric

manner is a challenging problem [8]. As a solution to this
problem, LSTM networks are evolved using NEAT (NEAT-
LSTM). NEAT discovers the appropriate number of LSTM
units suitable for a given task. Evaluation on two mem-
ory tasks indicate that LSTM networks outperform RNNs



in shallow POMDP tasks. To further scale the evolution
of LSTM to deeper memory problems, a new information
maximization (Info-max) objective is devised. The LSTM
networks are pre-trained by optimizing for this unsupervised
objective. During the course of pre-training over several
generations, LSTM units incrementally capture and stored
unique features from the environment. After this pre-training
phase, the LSTM network is evolved to solve the memory
task. The strong performance of NEAT-LSTM Info-max
on deep sequence recall task indicates its utility in building
generic AI agents that can solve both MDPs and POMDPs.

7. ACKNOWLEDGMENTS
This research was supported in part by the National Sci-

ence Foundation under grant DBI-0939454 and National In-
stitutes of Health under grant 1R01GM105042.

8. REFERENCES
[1] C. Adami. The use of information theory in

evolutionary biology,. Annals NY Acad. Sci.,
1256:49–65, 2012.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
In In ICLR, 2015.

[3] B. Bakker. Reinforcement learning with long
short-term memory. In Advances in Neural
Information Processing Systems 14, pages 1475–1482,
2002.

[4] B. Bakker, V. Zhumatiy, G. Gruener, and
J. Schmidhuber. A robot that reinforcement-learns to
identify and memorize important previous
observations. In In Proceedings of the 2003 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, IROS 2003, pages 430–435, 2003.

[5] J. Bayer, D. Wierstra, J. Togelius, and
J. Schmidhuber. Evolving memory cell structures for
sequence learning. In Proc. ICANN, pages 755–764,
2009.

[6] A. J. Bell and T. J. Sejnowski. An
information-maximisation approach to blind
separation and blind deconvolution. Neural
Computation, pages 1129–1159, 1995.

[7] J. Bruck. Decades-long social memory in bottlenose
dolphins. Proceedings of the Royal Society B:
Biological Sciences, 280, (2013).

[8] F. Doshi. The infinite partially observable markov
decision process. In NIPS,2009, 2009.

[9] F. Gomez and R. Miikkulainen. Incremental evolution
of complex general behavior. Adaptive Behavior,
5:317–342, 1997.

[10] A. Graves and N. Jaitly. Towards end-to-end speech
recognition with recurrent neural networks. In In
Proc. 31st ICML, pages 1764–1772, (2014).

[11] S. Hochreiter, Y. Bengio, P. Frasconi, and
J. Schmidhuber. Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies. In A
Field Guide to Dynamical Recurrent Neural Networks.
IEEE Press, 2001.

[12] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

[13] M. Klapper-Rybicka, N. N. Schraudolph, and
J. Schmidhuber. Unsupervised learning in lstm

recurrent neural networks. In ICANN, pages 684–691.
Springer-Verlag, 2001.

[14] J. Koutnik, J. Schmidhuber, and F. Gomez. Evolving
deep unsupervised convolutional networks for
vision-based reinforcement learning. In In Proceedings
of the 2014 Conference on Genetic and Evolutionary
Computation, (GECCO 2014), pages 541–548, 2014.

[15] J. Lehman and R. Miikkulainen. Overcoming
deception in evolution of cognitive behaviors. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2014), Vancouver,
BC, Canada, July 2014.

[16] G. Martin-Ordas, D. Berntsen, and C. J. Memory for
distant past events in chimpanzees and orangutans.
Current Biology, 23(15):1438–1441, (2013).

[17] D. D. Monner and J. A. Reggia. A generalized
lstm-like training algorithm for second-order recurrent
neural networks. Neural Networks, 25:70–83, 2012.

[18] C. Ollion, T. Pinville, and D. Stephane. With a little
help from selection pressures: evolution of memory in
robot controllers. In In Artificial Life, volume 13,
pages 407–414, 2012.

[19] S. Risi, C. E. Hughes, and K. O. Stanley. Evolving
plastic neural networks with novelty search. Adaptive
Behavior, 18(6):470–491, 2010.

[20] J. Schmidhuber. Formal theory of creativity, fun, and
intrinsic motivation (1990-2010). In IEEE
Transactions on Autonomous Mental Development,
volume 2(3).

[21] N. N. Schraudolph and T. J. Sejnowski. Unsupervised
discrimination of clustered data via optimization of
binary information gain. Advances in Neural
Information Processing Systems, 5:499–506, 1993.

[22] J. Schrum, I. Karpov, and R. Miikkulainen. Ut2:
Human-like behavior via neuroevolution of combat
behavior and replay of human traces. In Proceedings of
the IEEE Conference on Computational Intelligence
and Games (CIG 2011), pages 329–336, 2011.

[23] K. O. Stanley, B. Bryant, and R. Miikkulainen.
Evolving adaptive neural networks with and without
adaptive synapses. In Proceedings of the 2003
Congress on Evolutionary Computation, Piscataway,
NJ, 2003. IEEE.

[24] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

[25] K. O. Stanley and R. Miikkulainen. Competitive
coevolution through evolutionary complexification.
Journal of Artificial Intelligence Research, 21:63–100,
2004.

[26] P. A. Szerlip, G. Morse, J. K. Pugh, and K. O.
Stanley. Unsupervised feature learning through
divergent discriminative feature accumulation. In In
Proc. of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[27] H. Watts and K. E. Holekamp. Interspecific
competition influences reproduction in spotted hyenas.
Journal of Zoology, 276(4):402–410, (2008).

[28] D. Wierstra, A. Foerster, J. Peters, and
J. Schmidhuber. Recurrent policy gradients. Logic
Journal of IGPL, 18(2):620–634, (2010).


