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Our setting: hard computational problems

Many important computational questions, such as satisfiability (SAT),
are intractable in the worst case.

Definition (SAT)

Does a truth assignment exist that makes a given Boolean expression true?

But heuristics often work: enormous problem instances can be solved.

SAT solvers are now in routine use for applications such as
hardware verification... with up to a million variables.

(Kautz and Selman, 2007)
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Which solver do you choose? (2009 SAT competition)
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Algorithm portfolios: what and why

Definition

An algorithm portfolio is

a pool of algorithms (“solvers”) and

a method for scheduling their execution.

Portfolios can

reduce effort by choosing solvers automatically, and

improve performance by allocating resources more effectively.

Existing portfolios, such as SATzilla (Xu et al. 2008), often use classifiers
trained on feature information to predict solver performance.

4 / 17



How should we predict solver performance?

Research Questions

What predictions can we make with minimal information?

What assumptions are needed to make useful predictions?

Do they hold sufficiently well in practice?

To explore these questions, we will build unifying generative models of
solver behavior and evaluate them in the SAT domain.
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Assumptions that make modeling easier

Outcomes of runs are discrete, few, and fixed.

Utilities of outcomes are known.

Durations of runs are discrete, few, and fixed.

Learning is offline, but action is online.

Tasks are drawn IID from some distribution.

Information is obtained from outcomes alone.
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Architecture of a model-based portfolio
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Basic structure in solver behavior

Inter-algorithm correlations: solvers can be (dis)similar.

Example

“If solver X yielded outcome A on this task, solver Y likely will as well.”

Inter-task correlations: tasks can be (dis)similar.

Example

“If solver X yielded outcome A on task 1, it likely will on task 2 as well.”

Inter-duration correlations: runs can have (dis)similar outcomes.

Example

“If solver X did not quickly yield outcome A on this task, it never will.”
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Conditional independence in solver behavior

The outcome of a solver run is a function of only three inputs:

the task on which it is executed,

the duration of the run, and

the seed of any internal pseudorandom sequence.

This strong local independence suggests a possible model:

take actions to be solver-duration pairs, and

assume that tasks cluster into classes.

Classes then capture the basic three aspects of solver behavior.
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Multinomial latent class model of search
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Burstiness: another important aspect of solver behavior

Definition

Burstiness is the tendency of some random events to recur.

Solver outcomes recur—for some solvers more than others.

Example

“If solver X yields outcome A on this task, it will again; not so for Y.”

Deterministic solvers are entirely bursty. Randomized solvers are less so.

Burstiness also appears in text data. The Dirichlet compound
multinomial (DCM) distribution has modeled it well in that domain.
(Madsen et al., 2005)
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DCM (bursty) latent class model of search
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Greedy, discounted selection

One efficient approach is to choose the next action according to
immediate expected utility without regard to later actions.

This approach gives us

a hard policy that chooses the expected-best action, and

a soft policy that draws actions proportional to expected utility.

Actions are solver-duration pairs: they have wildly different costs.

An obvious response is to reduce an action’s expected utility by its cost,
discounting by γc for a c-second run and factor γ.
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Experimental procedure

In our experiments, we use

every individual solver from the latest SAT competition, and

every problem instance from its three benchmark collections;

in repeated trials, we

run the solvers on a randomly-drawn training set,

fit a model to that training data, and then

run a portfolio using that model on the remaining test set.

Empirical Questions

For each combination of model and action selection policy,

how does its performance compare to its subsolvers?

how does its performance compare to that of other portfolios?
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Portfolio performance (on the random collection)
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Recapitulation

These results suggest that

models can capture useful patterns given little information, and

these latent class models can be applied to a portfolio in practice.

Research in progress aims to

extend these models to capture dynamic information, and

improve action planning to better exploit their predictions.
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Thanks!—Questions?
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