UT²: Human-like Behavior via Neuroevolution of Combat Behavior and Replay of Human Traces

Jacob Schrum, Igor Karpov, and Risto Miikkulainen {schrum2,ikarpov,risto}@cs.utexas.edu

Our Approach: UT^2

- Human traces to get unstuck and navigate
 - Filter data to get general-purpose traces
 - Future goal: generalize to new levels
- Evolve skilled combat behavior
 Restrictions/filters maintain humanness
- Probabilistic judging based on experience
 Also assume that humans judge well

Bot Architecture

Use of Human Traces

Index and replay nearest traces

• Get unstuck

- Mix of scripted responses and human traces
- Human traces used when scripted response fails
- Explore levels
 - Want to explore like humans
 - Synthetic data: lone human wandering levels
 - Allow collisions since humans bump into walls with no problem
 - Resort to A* when retracing does not work

Use of Evolution

Evolved neural network in Battle Controller defines combat behavior

Battle Controller Outputs

- 6 movement outputs
 - Advance
 - Retreat
 - Strafe left
 - Strafe right
 - Move to nearest item
 - Stand still
- Additional output
 - Jump?

Battle Controller Inputs

Ray traces for walls/level geometry

Other misc. sensors for current weapon properties, nearby item properties, etc.

Evolving Battle Controller

- Used NSGA-II with 3 objectives
 - Damage dealt
 - Damage received (negative)
 - Geometry collisions (negative)
- Evolved in DM-1on1-Albatross
 - Small level to encourage combat
 - One native bot opponent
- High score favored in selection of final network
- Final combat behavior highly constrained

Playing the judging game

Judging

- When to judge
 - More likely after more interaction
 - More likely as time runs out
 - Judge if successful judgment witnessed
- How to judge
 - Assume equal # humans and bots
 - Mostly judge probabilistically
 - Assume target is human if it judged correctly

Humanness results

Most human humans

Most human epic bots

Most human bots

bot name	humanness %
UT^2	21.0526 %
HumanLikeBot	17.6471 %
ICE-WCCI2012	7.6923 %

player name	humanness %	skill level	humanness %
Craig Speelman	40.0000 %	1	33.3333 %
Chris Holme	21.4286 %	4	28.5714 %
John Weise	11.1111 %	2	11.1111 %
Samaneh Rastegari	9.0909 %	3	0.0000 %

Judging results

Best human judges

Best bot judges

		human name	accuracy %
bot name	accuracy %	John Weise	63.4146 %
UT^2	53.8462 %	Chris Holme	61.9048 %
HumanLikeBot	51.2195 %	Samanah Rastagari	56 8182 %
ICE-WCCI2012	40.0000 %	Samanen Kastegan	50.8182 70
		Craig Speelman	50.0000 %

Where do we stand?

Bots vs Humans, 2008–2011

Discussion

- Bot humanness is still low!
- Native bots are still most human!
- Humans are not very human either!
- Does judging change the game?
- Does the API hinder our progress?
- More detailed judgment analysis...

Questions?

Jacob Schrum Igor Karpov Risto Miikkulainen

{schrum2,ikarpov,risto}@cs.utexas.edu