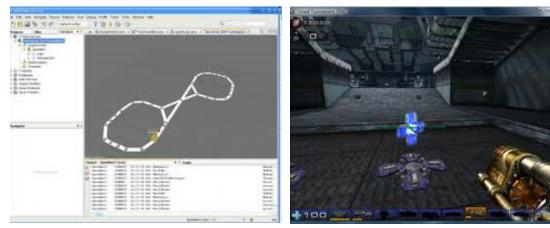
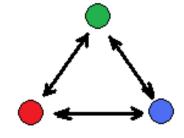
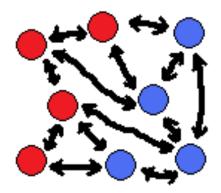
Botprize 2010


Jacob Schrum, Igor Karpov, and Risto Miikkulainen {schrum2,ikarpov,risto}@cs.utexas.edu

Unreal Tournament 2004

- Commercial videogame
- First Person Shooter genre
- Play vs. humans and bots
- Programming API: Pogamut


– Gamebots message protocol



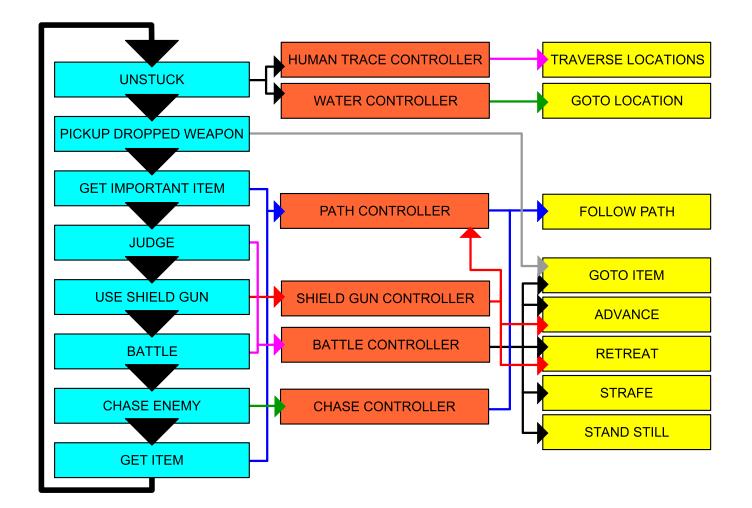
Turing Test For Bots

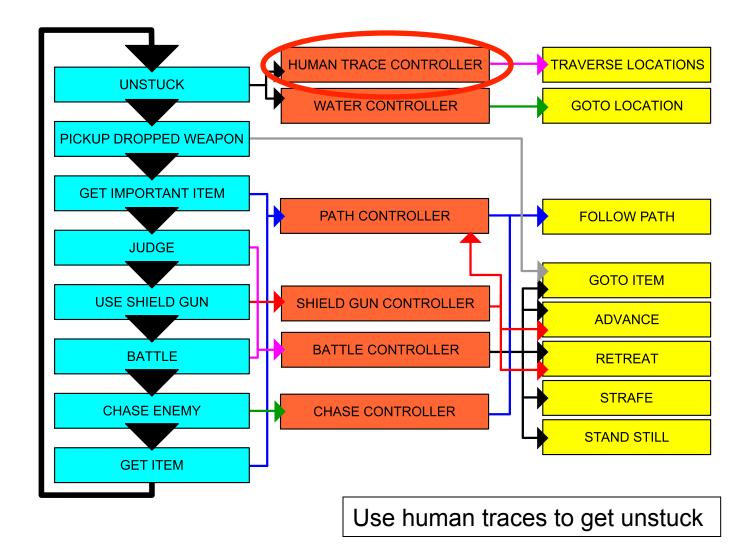
- Can humans tell bots from other humans?
- Botprize 2008, 2009
 - In style of traditional Turing Test
 - Bot vs. Judge vs. Confederate
 - 3 individuals per match
- Botprize 2010
 - Judging game
 - Multiple humans vs. multiple bots
 - All humans are judges and players

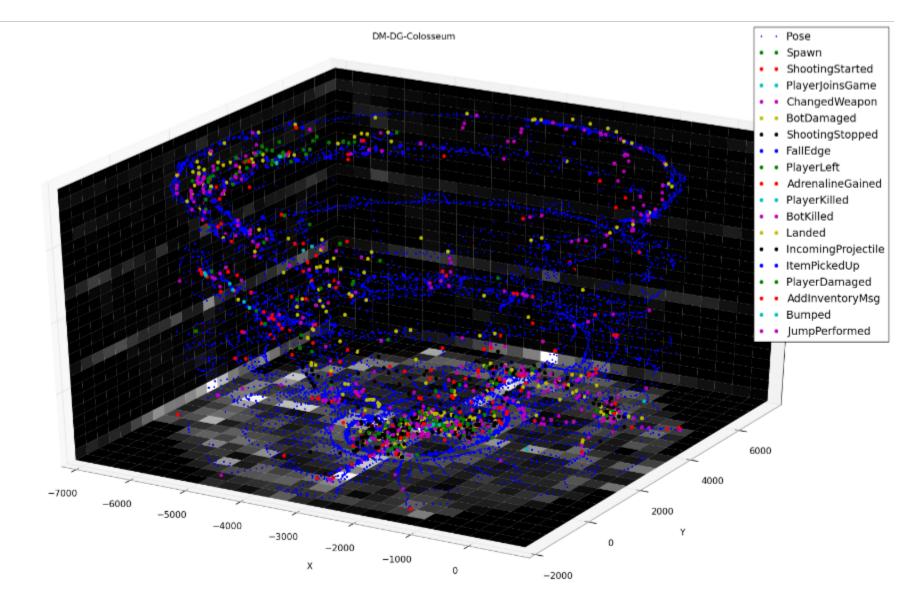
Judging Game

- Special judging gun
 - Replaces the Link Gun
- Primary and alternate fire look identical
 - Primary fire against bots
 - Alternate fire against humans
- Correctly judge opponent:
 Kills opponent, +10 frags
- Incorrectly judge opponent:
 - Shooter dies, -10 frags
- Bots can use this gun!

Competition


- 3 sessions, 1 hour each
- 4 matches per session, 15 minutes each
- 5 competing bots, 6-7 judges, and 1-2 native UT bots per session
- 3 large custom levels used:


Our Bot (Demo)


Agent Architecture

Agent Architecture

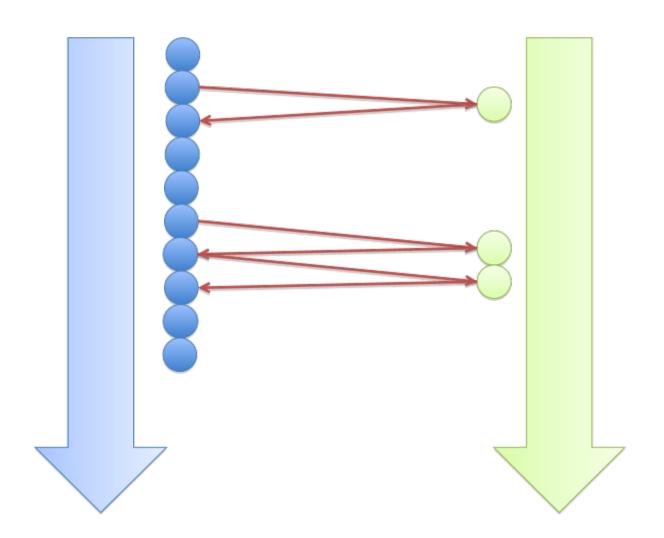
Human Trace Data

Replaying Human Experience

Record

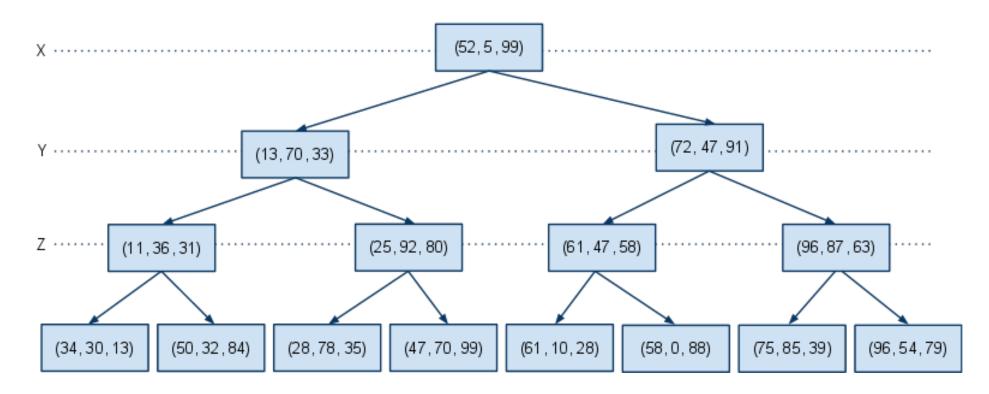
- Player pose
 - position, orientation, velocity and acceleration
- o Events
 - fall, damage, weapons, items, jumps, etc.

Index for lookup by


- $_{\circ}$ Region of origin
- Future events
- Replay (when stuck)
 - $_{\circ}~$ Short relative path from origin

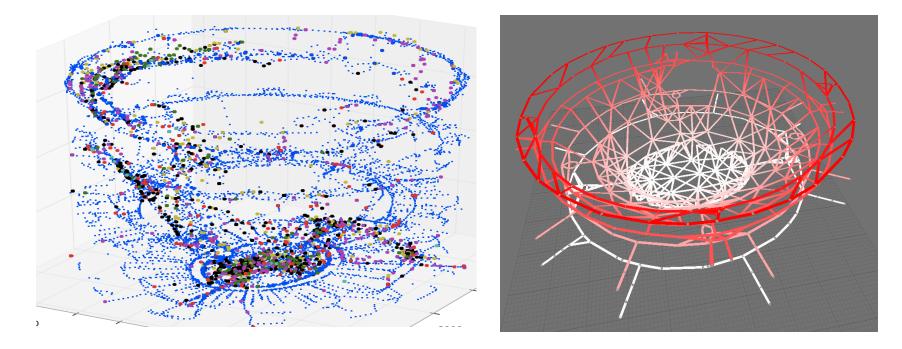
What is in the Database?

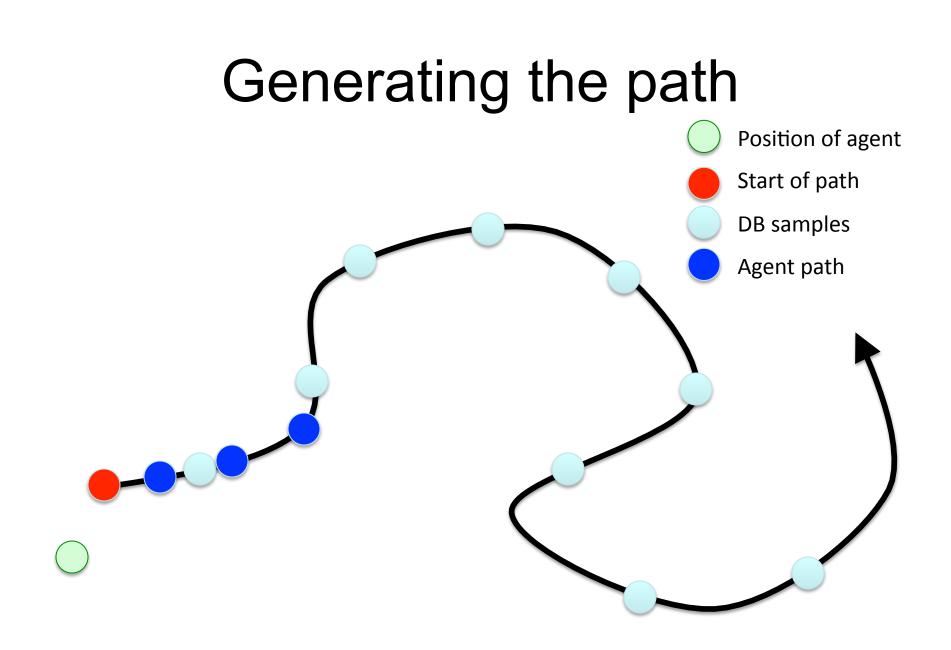
t, x, y, z, rx, ry, rz, vx, vy, vz, ax, ay, az


t, e

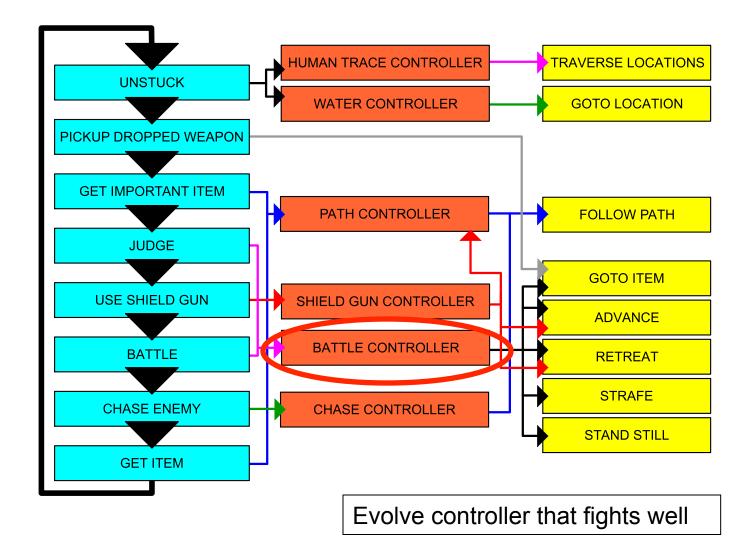
Indexing the Data: Octrees

- O(log N) lookup
- Offline indexing
- ~30 sec to load index

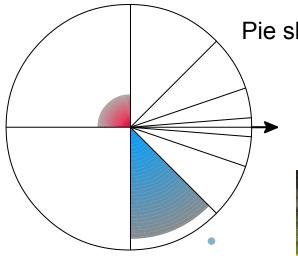

Indexing the Data: KD-Trees



- O(log N) nearest neighbor search
- Offline indexing
- ~30 sec to load index


Indexing the Data: Navpoint Graph

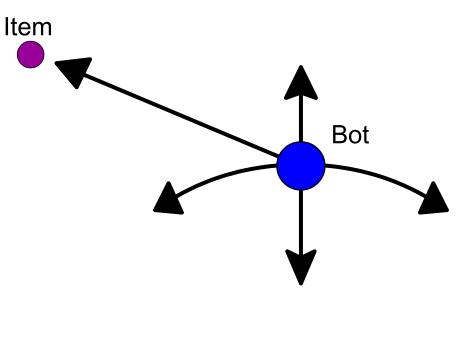
- Each level has graph of navpoints (under 300)
- Store navpoints in a KD-tree (quick)
- For each point in human DB, find closest navpoint (offline)
- Retrieve all points within navpoint's Voronoi region
- From here, use random or nearest selection (online)



Agent Architecture

Battle Controller Inputs

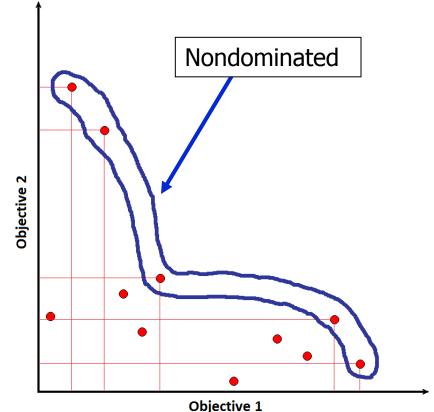
Pie slice sensors for enemies


Ray traces for walls/level geometry

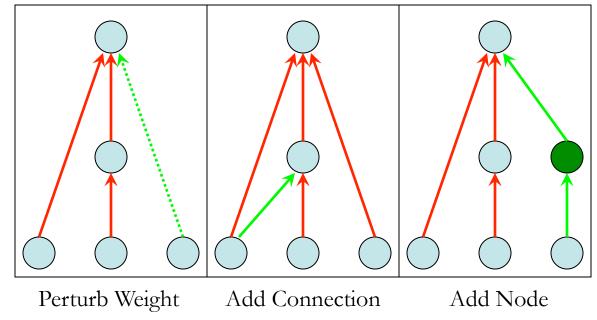
Other misc. sensors for current weapon properties, nearby item properties, etc.

Battle Controller Outputs

- 6 movement outputs
 - Advance
 - Retreat
 - Strafe left
 - Strafe right
 - Move to nearest item
 - Stand still
- 3 additional outputs
 - Shoot?
 - Alternate fire?
 - Jump?



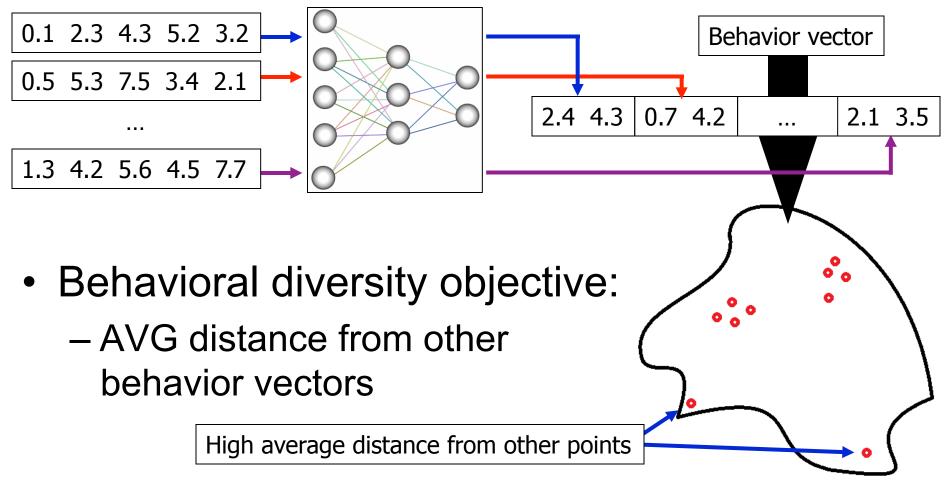
Mutiobjective Optimization


- Pareto dominance: $\vec{v} \succ \vec{u}$ iff $- \forall i \in \{1, ..., n\}: v_i \ge u_i$ $- \exists i \in \{1, ..., n\}: v_i > u_i$
- Assumes maximization
- Want nondominated points
- NSGA-II used in this work
- What to evolve?

NNs as control policies

Constructive Neuroevolution

- Genetic Algorithms + Neural Networks
- Build structure incrementally (complexification)
- Good at generating control policies
- Three basic mutations (no crossover used)


Objectives

- Damage dealt
- Accuracy
- Damage received (negative)
- Geometry collisions (negative)
- Actor collisions (negative)
- Behavior diversity

Behavioral Diversity

- Behavior vector:
 - Given input vectors, concatenate outputs

Botprize 2010 Results

Bot Name	Humanness %	Judging Accuracy %
Conscious-Robots	31.82%	N/A
UT^2	27.27%	45.74 %
ICE-2010	23.33%	N/A
Discordia	17.78%	54.83 %
w00t	9.30%	53.84 %

Also, native UT bot had humanness of 35.3982%.

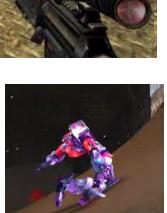
Native bot and winner did not judge at all.

Human Player	Humanness %
Mads Frost	80.00%
Simon and Will Lucas	59.09%
Ben Weber	48.28%
Nicola Beume	47.06%
Minh Tran	42.31%
Gordon Calleja	38.10%
Mike Preuss	35.48%

Human Player	Judging Accuracy %
Gordon Calleja	78.57%
Nicola Beume	67.21%
Minh Tran	64.29%
Ben Weber	64.08%
Mike Preuss	59.70%
Mads Frost	57.69%
Simon and Will Lucas	54.79%

Insights

- Judging for the bot is not important
 - Better to not judge then do it wrong
- Different judges, different expectations

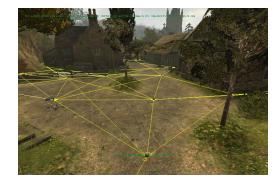

- Combat, dodging, jumping, etc.

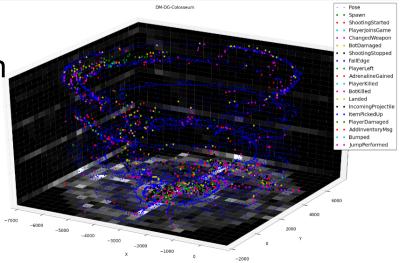
- Perhaps mimicry of opponents would help
- Human judges expect reaction/response
 Shoot and miss, run away and wait
- Human judges like to observe
 - From roof tops, through sniper scope

Why Did We Lose?

- Specific weapon issues (sniping)
- Some tricks in our judging behavior
- Problems with following
- Perhaps perceived as too skilled
- Still got stuck a few times
- Some weird firing glitches
- Mostly minutiae!

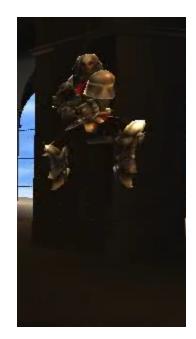
Believable Bots


- Will be writing a book chapter on our bot
- Experiments evaluating bot performance
 - Human Trace Controller gets bot unstuck
 - Evolved Battle Controller good at combat



Human Trace Experiments

- Do the human traces help the agent get unstuck?
 Time stuck with full system, w/o filtering, w/random paths
- Does the performance improve with more data?
 Time stuck with 1, 2, 3 players, etc.
- Does the indexing method make a difference?
 - Random vs. nearest starting point
 - Constrained by Octree region
 - Constrained by Navpoint region


Evolution Experiments

- Does evolution improve combat?
 Bot vs. random combat action selector
- Are all the different actions useful?
 - Usage of each type of movement action
 - Ablation studies
- Importance of weapons
 - Above experiments with limited weapon access

Future Work

- Human Traces
 - Generalize to unseen levels
 - Induce better navigation graphs
 - Make intelligent decisions about when to jump
 - Use to improve following
 - Supervised learning
- Evolution
 - Different features/input representation
 - Apply to other control modules
 - Apply to selection between modules
 - Reduce reliance on scripted behavior

Future Work

- Theory of Mind
 - Planned behavior transitions
 - e.g. a chasing bot expects to enter combat mode
 - Mimicry: expectation of similarity
 - Match opponent's level of dodging, aggressiveness, ammo wasting, etc.
 - Establish communication
 - Deliberation
 - Sniping humans don't move as much
 - Better human judges don't make snap decisions

Questions?

Jacob Schrum Igor Karpov Risto Miikkulainen

{schrum2,ikarpov,risto}@cs.utexas.edu

Botprize 2010 Results

Most human bots

bot name	team	affiliation	humanness %
Conscious- Robots	Raul Arrabales Jorge Muñoz	Carlos III University, Madrid	31.8182 %
UT*2	lgor Karpov Jacob Schrum Risto Miikulainen	University of Texas, Austin	27.2727 %
ICE-2010	Akihiro Kojima Daichi Hirono Takumi Sato Seiji Murakami Ruck Thawonmas	Intelligent Computer Entertainment Lab. Ritsumeikan University, Japan	23,3333 %
Discordia	Casey Rosenthal Clare Bates Congdon	University of Southern Maine	17.7778 %
wOOt	Daniel Büscher Matthias Gorzellik Jannis Seyfried Björn Witt	Institut für Informatik Albert-Ludwigs Universität Freiburg, Deutschland	9.3023 %

Most human humans

player	affiliation	humanness %
Mads Frost	IT University Copenhagen	80.0000 %
Simon and Will Lucas	University of Essex	59.0909 %
Ben Weber	UC Santa Cruz	48.2759 %
Nicola Beume	TU Dortmund University	47.0588 %
Minh Tran	Edith Cowan University	42.3077 %
Gordon Calleja	IT University Copenhagen	38.0952 %
Mike Preuss	TU Dortmund University	35.4839 %

Best human judges

Best bot judges

bot name	accuracy %
Discordia	54.8387 %
woot	53.8462 %
UT^2	45.7447 %

player	accuracy %
Gordon Calleja	78.5714 %
Nicola Beume	67.2131 %
Minh Tran	64.2857 %
Ben Weber	64.0845 %
Mike Preuss	59.7015 %
Mads Frost	57.6923 %
Simon and Will Lucas	54.7945 %

Judgment Counts

UT^2	total	correct	incorrect	ratio
by humans	33	24	9	0.27
by bots	4	4	0	
total	37	28	9	0.24
Conscious-R	total	correct	incorrect	ratio
by humans	44	30	14	0.32
by bots	6	3	3	
total	50	33	17	0.34
Frost	total	correct	incorrect	ratio
Frost	total	correct	incorrect	ratio
Frost by humans	total 10	correct 8	incorrect 8	ratio
Frost by humans by bots	total 10 4	correct 8 3	incorrect 8 3	ratio 0.8
Frost by humans by bots total	total 10 4 14	correct 8 3 11	incorrect 8 3 11	ratio 0.8 0.79
Frost by humans by bots total Swill	total 10 4 14 total	correct8311correct	incorrect 8 3 11 incorrect	ratio 0.8 0.79 ratio