
Botprize 2010

Jacob Schrum, Igor Karpov, and Risto Miikkulainen
{schrum2,ikarpov,risto}@cs.utexas.edu

Unreal Tournament 2004

•  Commercial videogame
•  First Person Shooter genre
•  Play vs. humans and bots
•  Programming API: Pogamut

– Gamebots message protocol

Turing Test For Bots

•  Can humans tell bots from other humans?
•  Botprize 2008, 2009

–  In style of traditional Turing Test
•  Bot vs. Judge vs. Confederate
•  3 individuals per match

•  Botprize 2010
– Judging game

•  Multiple humans vs. multiple bots
•  All humans are judges and players

Judging Game
•  Special judging gun

–  Replaces the Link Gun
•  Primary and alternate fire look identical

–  Primary fire against bots
–  Alternate fire against humans

•  Correctly judge opponent:
–  Kills opponent, +10 frags

•  Incorrectly judge opponent:
–  Shooter dies, -10 frags

•  Bots can use this gun!

Competition

•  3 sessions, 1 hour each
•  4 matches per session, 15 minutes each
•  5 competing bots, 6-7 judges, and 1-2

native UT bots per session
•  3 large custom levels used:

Goatswood	 IceHenge	 Colosseum	

Our Bot (Demo)

Agent Architecture

Agent Architecture

Use human traces to get unstuck

Human Trace Data

Replaying Human Experience

•  Record
o  Player pose

  position, orientation, velocity and acceleration
o  Events

  fall, damage, weapons, items, jumps, etc.
•  Index for lookup by

o  Region of origin
o  Future events

•  Replay (when stuck)
o  Short relative path from origin

What is in the Database?
t, x, y, z, rx, ry, rz, vx, vy, vz, ax, ay, az t, e

Indexing the Data: Octrees
•  O(log N) lookup
•  Offline indexing
•  ~30 sec to load index

Indexing the Data: KD-Trees

•  O(log N) nearest neighbor search
•  Offline indexing
•  ~30 sec to load index

Indexing the Data: Navpoint Graph
•  Each level has graph of navpoints (under 300)
•  Store navpoints in a KD-tree (quick)
•  For each point in human DB, find closest navpoint (offline)
•  Retrieve all points within navpoint's Voronoi region
•  From here, use random or nearest selection (online)

Generating the path
Posi%on	 of	 agent	

Start	 of	 path	

DB	 samples	

Agent	 path	

Agent Architecture

Evolve controller that fights well

Battle Controller Inputs
Pie slice sensors for enemies

Ray traces for walls/level geometry

Other misc. sensors for
current weapon properties,
nearby item properties, etc.

Battle Controller Outputs
•  6 movement outputs

–  Advance
–  Retreat
–  Strafe left
–  Strafe right
–  Move to nearest item
–  Stand still

•  3 additional outputs
–  Shoot?
–  Alternate fire?
–  Jump?

Mutiobjective Optimization

•  Pareto dominance: iff
– 
– 

•  Assumes maximization
•  Want nondominated points
•  NSGA-II used in this work

•  What to evolve?
–  NNs as control policies

Nondominated

Constructive Neuroevolution
•  Genetic Algorithms + Neural Networks
•  Build structure incrementally (complexification)
•  Good at generating control policies
•  Three basic mutations (no crossover used)

Perturb Weight Add Connection Add Node

Objectives

•  Damage dealt
•  Accuracy
•  Damage received (negative)
•  Geometry collisions (negative)
•  Actor collisions (negative)
•  Behavior diversity

Behavioral Diversity
•  Behavior vector:

– Given input vectors, concatenate outputs

•  Behavioral diversity objective:
– AVG distance from other

behavior vectors

0.1 2.3 4.3 5.2 3.2

…

0.5 5.3 7.5 3.4 2.1

1.3 4.2 5.6 4.5 7.7

2.4 4.3 0.7 4.2 2.1 3.5 …

Behavior vector

High average distance from other points

Botprize 2010 Results
Bot Name Humanness % Judging Accuracy %

Conscious-Robots 31.82% N/A

UT^2 27.27% 45.74 %
ICE-2010 23.33% N/A

Discordia 17.78% 54.83 %

w00t 9.30% 53.84 %

Human Player Humanness %

Mads Frost 80.00%

Simon and Will Lucas 59.09%

Ben Weber 48.28%

Nicola Beume 47.06%

Minh Tran 42.31%

Gordon Calleja 38.10%

Mike Preuss 35.48%

Human Player Judging Accuracy %

Gordon Calleja 78.57%

Nicola Beume 67.21%

Minh Tran 64.29%

Ben Weber 64.08%

Mike Preuss 59.70%

Mads Frost 57.69%

Simon and Will Lucas 54.79%

Also, native UT bot had
humanness of 35.3982%.

Native bot and winner did
not judge at all.

Insights

•  Judging for the bot is not important
– Better to not judge then do it wrong

•  Different judges, different expectations
– Combat, dodging, jumping, etc.
– Perhaps mimicry of opponents would help

•  Human judges expect reaction/response
– Shoot and miss, run away and wait

•  Human judges like to observe
– From roof tops, through sniper scope

Why Did We Lose?

•  Specific weapon issues (sniping)
•  Some tricks in our judging behavior
•  Problems with following
•  Perhaps perceived as too skilled
•  Still got stuck a few times
•  Some weird firing glitches

•  Mostly minutiae!

Believable Bots

•  Will be writing a book chapter on our bot
•  Experiments evaluating bot performance

– Human Trace Controller gets bot unstuck
– Evolved Battle Controller good at combat

Human Trace Experiments
•  Do the human traces help the agent get unstuck?

–  Time stuck with full system, w/o filtering, w/random paths
•  Does the performance improve with more data?

–  Time stuck with 1, 2, 3 players, etc.
•  Does the indexing method make a difference?

–  Random vs. nearest starting point
–  Constrained by Octree region
–  Constrained by Navpoint region

Evolution Experiments

•  Does evolution improve combat?
– Bot vs. random combat action selector

•  Are all the different actions useful?
– Usage of each type of movement action
– Ablation studies

•  Importance of weapons
– Above experiments with limited weapon access

Future Work

•  Human Traces
–  Generalize to unseen levels
–  Induce better navigation graphs
–  Make intelligent decisions about when to jump
–  Use to improve following
–  Supervised learning

•  Evolution
–  Different features/input representation
–  Apply to other control modules
–  Apply to selection between modules
–  Reduce reliance on scripted behavior

Future Work

•  Theory of Mind
– Planned behavior transitions

•  e.g. a chasing bot expects to enter combat mode
– Mimicry: expectation of similarity

•  Match opponent’s level of dodging,
aggressiveness, ammo wasting, etc.

•  Establish communication

– Deliberation
•  Sniping humans don’t move as much
•  Better human judges don’t make snap decisions

Questions?

Jacob Schrum
Igor Karpov

Risto Miikkulainen
{schrum2,ikarpov,risto}@cs.utexas.edu

Botprize 2010 Results

Judgment Counts
UT^2 total correct incorrect ratio
by humans 33 24 9 0.27

by bots 4 4 0

total 37 28 9 0.24

Frost total correct incorrect ratio
by humans 10 8 8 0.8

by bots 4 3 3

total 14 11 11 0.79

Conscious-R total correct incorrect ratio
by humans 44 30 14 0.32

by bots 6 3 3

total 50 33 17 0.34

Swill total correct incorrect ratio
by humans 22 9 13 0.59

by bots 9 3 6

total 31 12 19 0.61

