TEXAS

The University of Texas at Austin

Abstract

Autolnit is a weight initialization algorithm that automatically adapts to
different neural network architectures. By analytically tracking the mean
and variance of signals as they propagate through the network, Autolnit
appropriately scales the weights at each layer to avoid exploding or vanishing
signals. Autolnit thus serves as an automatic configuration tool that makes
design of new neural network architectures more robust.

Background: Neural Net Signal Propagation

e A layer shifts its input by a and scales the input by a factor of .

e If the input to the layer has mean s, and variance v;,, after applying the layer,
the output signal will have mean o = o + By, and variance vy = 520,

e After L layers, the signal at the final layer has mean and variance
tous = B pin + a(BY + BY T 4 4 B4 1), vous = 87 v, (1)

o [f |8| > 1, the network will suffer from a mean shift and exploding signals:

lim oyt = 00, lim vgyu = 00. (2)
L—o0 L—o0
o If |G| < 1, the network will suffer from a mean shift and vanishing signals:
im poyt = /(1 —F), lim vy = 0. (3)
L—o0 L—o0

e Autolnit calculates weight initialization so that &« = 0 and 8 = 1, avoiding the
issues of mean shift and exploding /vanishing signals.

10 2.00
-1.75
8 -
1.50
2
8 Q
c 67 1.25 5
.C %
© s
% 1.00 o
c S
(@)]
2 0.75 v
0.50
h 0.25
4 6 8 10
Layer L

Figure 1:Autolnit maintains |3| = 1 to avoid exploding or vanishing signals.

Contribution: The Autolnit Framework

e Autolnit uses ¢ functions to map input mean and variance to output mean and
variance when a layer is applied:

J1ayer - (,Uina Vin) — (,uouta Vout)- (4)
e Functions are derived for each type of 1layer: gpropout; JreLu, Jconvan,s, €tC.

e If a layer has weights, they are initialized so that the layer output will have
zero mean and unit variance in expectation. For example:

0~ N (o, 1/y/fan_in(vy, + u?n)) e Goomvan i) = (0,1). (5)

Algorithm 1: Autolnit
Input: Network with layers L, directed edges E
output_layers={le L|(,l')¢ EVI' € L}
for output_layer in output_layers do
| initialize(output_layer)

def initialize (layer):
layers_-in={l€ L| (l,1layer) € E}
1 =1
for layer_in in layers_indo
Win,,Vin, = initialize(layer_in)

t1=1+1
Min — (Ninl,ﬂ:inz,- .. ,/JainN)
ViIl — (ViIl]_)ViIlz:)- ..)ViIlN)

if 1ayer has weights 6 then
‘ initialize @ s.t. glayer,g(uin, Vin) = (0, 1)
Mouty Vout — 0, 1
else
|_ Houty Vout = glayer(ﬂain, Vin)
return Hout 5 Vout

Autolnit:

Analytic Signal-Preserving Weight Initialization for Neural Networks

Garrett Bingham and Risto Miikkulainen

University of Texas at Austin and Cognizant Al Labs

Robustness to Hyperparameter Variation

e Different layers, activation functions, and hyperparameters affect the signal
variance in different ways.

e [gnoring these differences results in inconsistent behavior and vanishing signals.

e Autolnit adapts to these settings automatically, stabilizing signal propagation.

ELU GELU ReLU SELU (Glorot Uniform
T i i TN .
n 7] 7] 7] n 0.7

o _ _ _ _ _ o
C% rTrrrrrrrrrrrrrrrrrrrnrnl rrrrrrrrrrrrrrrrrrrrnrnl rrrrrrrerrrrrrrrrrrrrnrnl rrrrrrrrrrrrrrrrrrrrrnrl rrrrrrrrrrrrrerrrrrrrnrnl 45
'C% Softplus Softsign Swish tanh Autolnit as
- Q?' V[T \) i 7 7 IR A g
Tgﬁ 1072 = - _ i | ‘\\ %
EP 0—4 - - - - === Glorot Uniform - 5
N == Autolnit

1076 — - - - -

rrrrrrrrrrrrrrrrrrrrrrl rrrrrrrrrrrrrrrrrrrrrrl rrrrrrrrrrrrrrrrrrrrrrl rrrrrrrrrrrrrrrrrrrrrrl rrrrrrrrrrrrrrrrrrrrrrl
"‘Q"’Q‘”Q“Q”’Q“QVJ“Q"’Q”’Q"’Q;“‘ "‘QQQQQ“Q;’Q;‘QE“QQQQQ&O;’* “QQDQQ“QQQ—QQ-‘:“Q“DQQ"Q‘W “Q-"Q"D”Q"Q"Q—Q“Q-“D;‘DQQQx TAPADAEAPADAPEAPAPAPA E

mmmmmmmmmm

~~~~~~~~~~ Al >} O ;>} AN ON,JN,JN.J OC\!.JN,_‘QN,JNJ_,
z ez gmgcwo@_aE rﬁ>w2w2 3 mmmmmmm gwgmmuE g R E >>>>>> >ﬁg“g<‘3 ><<3 m E 8P 0> 02> 020203202020 E
& pg%g“‘o“g“‘%ﬁtfﬁ§“<§* ”5%0%33:%5%5%?520}3% ogo 59 o3 3 3 omomo(’i’: ’Jgugaﬂaga - Qa‘gug < ﬁ:m O:QQ Qi Di m& Oﬁ =3 Qﬂ< “"
omomOQomomoonﬁoﬁoﬁwhg O(/)OU)OQOU)OU)OUJQO(/)OU)OU)OL“% o S 080 8 0 &3 O O U o 3 080 3 8 A3 S O U 20 © S0 8 O O O O Um

(&) 5 5 5 5 (b) .5

Figure 2:Signal propagation in All-CNN-C networks with different (a) activation functions and
(b) dropout rates. With the default initialization, signals often vanish with depth, and their
behavior is inconsistent across activation functions and dropout rates. With Autolnit, the variance
fluctuates naturally as each layer modifies its input. At layers with weights (marked in red),
Autolnit scales the weights appropriately to return the variance to approximately 1.0, stabilizing

training in each case.

e In separate experiments, the activation function, dropout rate, weight decay,
and learning rate were changed. While one hyperparameter varied, the others
were kept at detault values.

e Autolnit adapts the initialization to different activation functions and dropout
rates, and is robust to changes in weight decay and learning rate.

0.90 - 0.925 0.9 m
: =@®= Glorot Uniform
0.900 -
0.85 - 0.8 == Autolnit
I I I I I I I I I 1 IIIIIIII 1 Illlllq 1 LELLBLLLI I 1 1 IIIIII I 1 1 I

O \3\3 O o g0l 00 0.2 04 0.6 0.8 0 le-05 0.0001  0.001 0.1 0.2 05 1 2 5
\ %\6&@0
Weight Decay

Accuracy
o
ot

o
=)

AAHRAN @\) o X

Dropout Rate Learning Rate Multiplier

Figure 3:All-CNN-C test accuracy on CIFAR-10. Autolnit results in comparable or better

performance in every case.

Stability with Extremely Deep Networks

e Stable signal propagation is crucial, especially for deep networks.

e The default initialization causes exploding signals, even exceeding machine
precision on ResNet-812.

e Autolnit stabilizes extremely deep networks, with or without BatchNorm.

ResNet-56 ResNet-164 ResNet-812

%mm R

100 250 500 0 1000 2000
036 ResNet-56 w/o BatchNorm ResNet-164 w/o BatchNorm ResNet-812 w/o BatchNorm

1

He Normal
10 —— Autolnit n 7
1012 _ ] / T

0
10 | | | |
0 50 100 0 200 400 0 1000

Signal Variance

Layer Index

Figure 4:Signal propagation in residual networks. Gaussian input was fed to the networks and
empirical variance computed at each layer. Since ReLU, BatchNormalization, and Add are
counted as individual layers in this diagram, the total number of layers is different from that in
the architecture name (i.e. ResNet-164 has 164 convolutional layers but over 500 total layers).
The detfault initialization causes exploding signals, while Autolnit ensures signal propagation is
stable.

e Autolnit allows for a wider range of initial learning rates and improves accuracy.

2 0.6 - % : He Normal
3 £ S - ResNet-56
S 0.4 N © ResNet-164
) ? @ ResNet-812
. 0.2 . ’ Autolnit
S I MY WO GnY NN ONNY MW W W W § ResNet-56
< ResNet-164
(a) 107191072 1078 1077 1076 107% 107* 1072 1072 107! ResNet-812
Learning Rate
1.00 ‘ ResNet-164
. b A a,;;;mvvvvvvvvvvvvvvvvvvv BatchNorm
2 0.75 - % wv— He Normal
S ‘VV Autolnit
5 0.50 1—¥ No BatchNorm
<th 0.25 - < He Normal
dd4 4444444444 dddddd 44t ddddddd Autolnit
||||||||||||||||||||||||||||||
N N 0N A T T A A T 10 1 1D LR Schedul

@@@@@@ S SS3S33S3S Linear warmup
A28 888 55888888 T
{star t}*{tp}

(b) trtt gttt pt IIITITT I T Tagans i choch b0,

#MN?‘C‘ONH#C?C\I]HCDG)@D h d
wwwwmwmwmwmmwmmwwww bbb/ then cosine deca, Yy

) VOO
ooooooooooo QO until epoch 200.
HHHHHHHHHHHHHHH

Figure 5:ResNet accuracy on CIFAR-10 with different settings. (a) Accuracy of unnormalized
ResNet architectures after five epochs of training with different learning rates and weight initializa-
tions. While default initialization makes training difficult in ResNet-56 and impossible at greater
depths, Autolnit results in consistent training at all depths. (b) Accuracy of ResNet-164 with a
variety of learning rate schedules and initializations. Autolnit is comparable to or outperforms

the default initialization in every case.

Scaling up to ImageNet

e Autolnit improves performance with hybrid transformer architectures.

e Accuracy is improved on Imagenette, a 10-class subset of ImageNet.

CoAtNet w/ GELU w/ ReLU w/ SELU w/ Swish w/o Norm

Default Init. 89.38 89.22 86.09 88.69

Glorot Normal 91.44 91.54 87.59 90.42 85.89
Glorot Uniform 91.16 91.18 88.25 90.06 85.73
He Normal 88.48 88.05 86.11 88.36 -

He Uniform 88.66 87.87 86.37 88.41 -
LeCun Normal 91.11 90.57 87.80 90.83 -
LeCun Uniform 90.55 90.65 87.67 90.57

Autolnit 92.48 92.15 86.80 92.28 85.73

Table 1:CoAtNet top-1 accuracy on Imagenette, shown as median of three runs. The first four

experiments vary the activation function, while the fifth removes all normalization layers from the
architecture. A “-” indicates that training diverged. Autolnit produces the best model in three of

the five settings, and remains stable even without normalization layers.

e Autolnit scales to large datasets like ImageNet.

top-1 top-5
Detfault Init. 74.33 91.60
Autolnit 75.35 92.03

Table 2:ResNet-50 top-1 and top-5 validation accuracy on ImageNet. Autolnit improves perfor-

mance, even with large and challenging datasets.

Reliability vs. Data-Dependent Initialization

e Because Autolnit does not depend on data samples, it is more reliable than
data-dependent initialization methods are.

All-CNN-C ResNet 164 w/o BatchNorm
0900 _ 090 Y [ etiatiatn Seeietiet et Rttt et et SSeietiutiet Sieiiettetiutt: S
0.875 - 0.85 -
§ 0.850 - 0.80 -
|-
5 0.825 - e 0.75 - —— LSUV
& ! [T ———  Autolnit
- 0.800 - 0.70 -
(¢b)
= 0.775 - - . 0.65 -
0.750 - : At LUV 0.60 -
: ——— Autolnit
0'725_"{ I |".'|' | I BB ILNLELE —T1r T 17 055 T | L LB B | LY L) LB — 1T T 17
1 2 4 8 16 32 064 128256512 1 2 4 8 16 32 04 128256512

Number of samples S used for LSUYV initialization

Figure 6:Mean CIFAR-10 test accuracy for Autolnit vs. LSUV with different numbers of samples
S. Each evaluation is repeated 10 times; the shaded area shows the maximum and minimum
accuracy among all trials. Autolnit is consistent, but LSUV struggles when S is small or the

network is deep.

More Effective Neural Architecture Search

e Networks were evolved in five tasks to simulate research and discovery of new
architectures.

e Because Autolnit initializes each candidate appropriately, the search is
accelerated and better networks are discovered.

MNIST Omniglot PMLB Adult Wikipedia Toxicity Oxford 102 Flower
7 0.8 0.860 - 0.965 0.945
g8 ,.FP / | gf"z 0.940 -
.L: os 0.6 0.855 = ’P 0.960 0.935 - ‘_,_,_/—’__:
0 10 20 30 0 10 20 30 40 0 10 20 30 0 10 20 30 0 10 20 30
(3) Generation —— Evolved Init === Autolnit
++ m | S—
T l& T I\IF W \ i — 41
HI‘HI lill+i%}+ 4 iﬂﬁ I I } AT ' ,, é LAY 1 [ |:§ I'lﬁ g H )
(b) MNIST PMLB Adult Wikipedia Toxicity

Figure 7:Evaluation of Autolnit with neural architecture search. (a) Performance improvement
over generations in the five tasks. Autolnit outperforms the evolved initialization on four tasks and
matches it on one. (b) Representative networks evolved with Autolnit. Although the networks

are distinct, Autolnit initializes them properly, leading to good performance in each case.

€ cognizant

Discovering Better Activation Functions

e Activation function discovery is another AutoML opportunity:.

e Proper initialization leads to higher performance and the discovery of better
activation functions.

150

B Default . Autolnit B Autolnit++

100

Activation
Functions
@]
o

-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CIFAR-10 Validation Accuracy

VR
o
SN———

ReLU(a - arctan(B - x)) a-log(o(B - x)) ELU(a - Softplus(B - x))

O —
Accuracy: 0.9256 Accuracy: 0.9292
‘- —
/- - = 2

n - Accuracy: 0.9288 -
.E O _ O —
= T 1 r —10 = | r L | I
"S a-ReLU(B -tanh(e¥ X —1)) ELU(a - x) a-ELU(SB - x)
< I 10 = 10 =

Accuracy: 0.9334 Accuracy: 0.9350

- 0 =

0T 1 I L I I

Accuracy: 0.9356

a - Swish(x) — 0.21

I 10 = 10 =
Accuracy: 0.9298 " Accuracy: 0.9302 Accuracy: 0.9318
5 = % 5 = f: -l 5 - ; -
0 = 0 = 0 =

a - Softplus(B - x) — 0.81 ReLU(a - x) — 0.40

+
:'_‘, 1 | I 0T 1 I
=
13 Swish(a - x) —0.21 10 —a-log(o(B-x)) —0.81 10 a - (ELU(]x]) + B - x) — 0.80
"S Accuracy: 0.9320 Accuracy: 0.9350 Accuracy: 0.9356 ¢
< 5 - 5 - 5 = 4
~ 0 =
0 = 0 =

L I 1 | I 1 | I

(b) -5 0 5 -5 0 5 -5 0 5

Figure 8:Evaluation of Autolnit with activation function discovery. (a) Distribution of accuracies
achieved with 200 activation functions and different weight initialization strategies. Autolnit and
Autolnit++ make training more stable and allow more high-performing activation functions to be
discovered than the default initialization does. (b) High-performing activation functions. The red
line shows the function at initialization, with @ = = v = 1. The blue lines show the shapes the
activation function takes during training, created by sampling «, 3,y from U(0.5,2.0). Autolnit’s

flexibility should turn out useful for developing new activation functions in the future.

Autolnit Software

# Install
pip install git+https://github.com/cognizant-ai-labs/autoinit.git

# Import
from autoinit import Autolnit

# Initialize
training model = Autolnit().initialize model(training model)

Contact

My website has links to my email, LinkedIn, Google Scholar, and CV.

T =g
-r""=|!I
l.'lﬂ.

garrettbingham.com




