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Category learning is an essential cognitive function. Empirical evidence and 

theoretical reasons suggest existence of multiple dissociable category learning systems. 

Here, a proposal is made that different category learning tasks are dominated by different 

category learning systems. A dual system theory of category learning COVIS proposes 

dissociation between an explicit, hypothesis-testing system, and an implicit, procedural 

learning system. Two studies testing this dissociation are presented, supporting the notion 

that hypothesis testing, utilizing working memory and explicit reasoning, mediates 

learning in rule-based tasks, while gradual and automatic S-R learning mediates 

information-integration tasks. Inconsistent findings in the literature regarding a prototype 

learning task suggest that two versions of this task, the A/nonA, single prototype task and 

the A/B, two prototype task, are mediated by distinct category learning mechanisms. A 

novel methodology for studying the A/nonA task and the A/B task is proposed and 
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utilized in a functional magnetic resonance imaging study. The study reveals that the A/B 

task is mediated by declarative memory while the A/nonA task is mediated by perceptual 

learning. We conclude that at least four category learning systems exist, based on four 

memory systems of the brain: working memory, procedural memory, declarative memory 

and perceptual memory. The four category learning systems compete or cooperate during 

learning, each system dominating in a different category learning task. Category learning 

tasks provide a useful tool to understand learning and memory systems of the brain. 
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Chapter 1: Dissociable category learning systems 

INTRODUCTION 

Humans live in a world of categories. Some objects or events are unique for us - 

my mother, my car, my country; but most objects we deal with are generic members of 

their category and we do not need to treat them uniquely. A cat, a house, a T-shirt - the 

article "a" says that we are talking about one member of a category but its individual 

identity is not important, not relevant for understanding the message. 

Categorization is an essential cognitive function consisting in assigning entities 

into categories/concepts. The term “category” denotes a group of things that have 

something in common; the term “concept” refers to a mental representation of a category. 

As an essential cognitive function, categorization penetrates into every part of our lives. 

When we are deciding whether to take a jacket in the morning or not, we categorize the 

weather of the day as "jacket needed" or "jacket not needed." A doctor who looks for the 

best treatment for his patient needs to make a diagnosis - category assignment - and 

prescribe a medicine or therapy that has provided the best therapeutic effect in similar 

cases in the past. Social stereotypes are another form of categorization. Whenever we 

perceive, we perceive something as a member of a category. 

Concepts and categorization serve a number of important functions, among them 

communication, cognitive economy, and inferences. The obvious function of 

categorization is providing us with a label that can be shared with others, enabling 

communication. However, the usefulness of the label is determined by the structure of the 

categories and goes well beyond communication. As proposed by Rosch (1978), concepts 

promote "cognitive economy." We encounter a large amount of entities every day. 

Without concepts, the quantity of information we would have to perceive, remember, 

communicate and learn about would exceed our limited cognitive capacity. 

Categorization divides and organizes experience into meaningful chunks. To categorize a 

stimulus means a) to consider it as equivalent to other stimuli in the same category, b) to 
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consider it as different from stimuli not present in that category. The ability of a category 

label to provide us with information leads us to another function of categorization, its role 

in induction and inferences. We often use concepts when we reason about entities. 

Concepts are basic constituents of human thought and allow us to make inferences about 

properties that are not perceptible.  

OVERVIEW OF THE DISSERTATION  

Given the function that categorization serves in cognition, we want to know more 

about the process. How do we categorize new objects into known categories? How do we 

learn new categories? Why do we categorize the way we do? Is there a structure in 

natural categories? Can we reproduce it in the laboratory? What is the mental 

representation of categories? What neural systems support category learning? Are all 

categories treated equally or are there kinds of categories? In the past five years, I have 

been studying category learning with the hope to help answer some of these questions. In 

this dissertation, I will present some results of this effort. The main goal of this 

dissertation is twofold:  first, to present evidence for dissociation between different kinds 

of categorization tasks; and second, to propose a connection between processes involved 

in these tasks and general learning and memory systems as proposed in memory 

literature. If valid, this connection could prove useful for both categorization research and 

memory research. On one hand, it would allow us to greatly increase our understanding 

of the cognitive process of categorization by generalizing what we know about learning 

and memory systems; one the other hand, it would offer memory researchers new tasks as 

diagnostic tools. The connections between categorization and learning and memory 

research has been often neglected or implicitly assumed without testing. I hope the 

research presented in this dissertation can help establish these connections on a more 

solid basis. 

Chapter 1 will start with a review of theories attempting to explain human 

categorization and category learning. We will see that categorization has been studied 

under several different paradigms and explained using different theories. We will draw a 
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conclusion that different theories may be addressing different categorization tasks and are 

complementary, rather than exclusive to each other. That will lead us from the question 

of which theory is true into a question of how different theories may be combined to fully 

explain human categorization behavior. We will follow with a proposal of dissociation 

between at least three types of categorization tasks, and a corresponding dissociation 

between three types of cognitive and neural processes that subserve them. The three types 

of tasks discussed will be: a rule-based task that is proposed to rely on an explicit 

hypothesis testing system; an information-integration task that is proposed to rely on a 

procedural learning based system; and a prototype task that is proposed to rely on a 

perceptual learning system. The first half of this dissertation (Chapters 1-3) will focus on 

the rule-based and information-integration category learning, as they afford themselves to 

the use of similar types of stimuli, category structures and analytic tools. The second half 

of this dissertation (Chapters 4-6) will focus on the prototype learning task. We will note 

two types of a prototype learning task that have been used in literature, propose a 

dissociation between them, and test it. We will conclude the dissertation in Chapter 7 

with a discussion of how different kinds of categorization tasks may be supported by 

different cognitive and neural systems. We will revisit the outline of the dissertation later 

in this chapter, during the description of different categorization tasks and learning 

systems. 

DRAWING FROM HISTORY: BASIC APPROACHES TO CATEGORIZATION AND REAL WORLD 

CONCEPTS  

Things around us can be categorized in a number of ways. The existing human 

categorization systems emerged from the interaction between real-world stimuli and 

human cognitive processes. The study of the particular way of categorizing the world can 

help us to understand these processes. Cognitive psychologists have therefore aimed to 

reveal the inner structure of categories, to understand the process of concept acquisition, 

and to grasp and predict actual human categorization performance. We will first focus on 

categorization approaches whose emergence was primarily inspired by the aim to 
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understand real world categories, almost at a philosophical level. Throughout the history, 

five major views of category learning and categorization have emerged: 1) classical, rule-

based approach, 2) prototype approach, 3) exemplar approach, 4) theory-based or 

knowledge-based categorization, and 5) decision bound approach. We will now give an 

overview of the basic approaches and discuss their inspirations and possible weaknesses.  

Classical view 

Classical, rule-based approach began in the early twenties and was elaborated in 

the fifties and sixties. It proposes that humans derive a categorization rule during the 

process of category learning on the basis of hypothesis testing, and then use this rule 

when categorizing new stimuli into categories. Categories can be specified by a small 

number of necessary and sufficient properties. For example, a square is a polygon with 

four equal sides. When something meets these requirements, it is a member of a category, 

otherwise it is not. The boundary is strict. 

In the early twenties, one of the first experiments addressing concept learning was 

Hull's experiment with “Chinese” characters (Hull, 1920). For Hull, as a behaviorist, a 

concept was simply the learned association between category stimuli and the category 

label. In his experiment, Hull used sets of cards with a “Chinese” character on it. Each set 

(category) had a particular pattern in common; this pattern Hull called a concept. In the 

learning phase, participants were to learn a label (a nonsense syllable) for a set of training 

cards. In the test phase, the participants were asked to novel cards with the correct 

concept names. Because participants were able to transfer their knowledge from training 

to test stimuli, they had learned to associate the labels with the defining patterns 

(concepts). However, when the participants were asked to draw the particular element 

which a card had to contain to be labeled with a particular name, it turned out that many 

participants were able to categorize the stimuli correctly even when they were not 

explicitly aware of any such common element. Hull concluded that the hypothesis testing 

process can occur implicitly. 
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In line with Hull, Vygotsky (1962) used a set of 22 cubes which differed in color, 

shape, height and size. On the bottom side, four non-sense words were written: "lak", 

"bik", "mur", "cev". During the experiment, the experimenter always showed one label at 

a time and asked the participants to find other cubes that might have the same word 

written on them. Step by step, names of other cubes were also uncovered, until the 

participants completed the classification of all of the cubes correctly. They should then 

verbalize, what characteristics "lak" had, how they differ from "bik", and so on. The 

height and size were the relevant dimensions for the concepts, while color and shape 

proved irrelevant. 

Vygotsky identified three stages of category learning. In the first stage, categories 

are ill-formed unstructured sets. Categorization is based mainly on an impression. In the 

second stage, categories are complexes of concrete items, their grouping based on 

objective relations between the items. However, these relations are factual (as a family 

name), not abstract as in real concepts, or the grouping is based on a whole number of 

relations which have no logical connection. The third stage is one of real concept 

formation. Items in a category belong there because of one logically consistent 

characteristic (the definition of the concept) which resembles the relation objectively 

existing between the items. Vygotsky concluded that the basic constituent of a concept is 

the process of abstraction of the definition. The normative approach to what “real” 

concepts are is clear. 

In the fifties, Bruner, Goodnow and Austin (1956) focused on the process of 

concept attainment. According to Bruner et al., concept attainment "refers to the process 

of finding predictive defining attributes that distinguish exemplars from nonexemplars of 

the class one seeks to discriminate" (p. 22). Concept formation then refered to sorting 

items into any meaningful set of classes. 

The authors assumed that concepts are attained in the process of hypotheses 

formulations and hypotheses testing. In their experiments, Bruner et al. used a set of 

cards with four to six dimensions varying along two to three values. The participants 

were instructed as to the form of the sought-after definition (conjunctive, disjunctive, or 
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relational). They were either shown a sequence of the cards or were allowed to choose 

whichever card from the set they wished. With each card they were notified whether it 

does or does not exemplify the intended concept. After each notification, the subjects 

were encouraged to make their best guess as to what the concept is. Bruner at al. were 

interested in the strategies the participants had used. In general, certain sub-optimalities 

of the hypothesis testing were observed. The adopted strategies were much more 

appropriate and efficient for the conjunctive than the disjunctive concepts, and the 

participants sought positive instances and confirmation rather than falsification. 

In all the experiments that are now under the classical view, the concepts were 

defined by a set of necessary properties, which, when present, were sufficient for the 

concept membership. The concepts were expected to be acquired by forming hypotheses 

and their testing. In Hull's experiments, the process of hypotheses testing was rather 

passive and automatic – the participants were not aware they were learning a concept. In 

Bruner et al.’s experiments, the process was active and conscious, but as such it was 

forced by the experimenters' instructions. Vygotsky did acknowledge that participants 

went through pre-definition stages of concept formation, but concluded that the final 

stage of learning is a formation of a concept definition. 

The main objection against the classical view has been that it does not account for  

most natural categories (Rosch & Mervis, 1975). Categories rarely have strict boundaries 

and cannot be simply defined by sets of necessary and sufficient properties. The divorce 

with the philosophical attempt to find such properties for at least some concepts is 

illustrated by a comment of Edward E. Smith (1995) that many categories (mainly the 

natural-kind categories) "may have necessary and sufficient conditions, but because no 

one knows them, they are not part of anyone's concept" (p. 29). From the perspective of 

Vygotsky, we would have to say that the majority of common natural concepts never 

reached the third stage of attainment. The attention of researchers therefore shifted to the 

studies of ill-defined categories and alternative models - prototype and exemplar theories 

- were proposed. 
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Prototype theory 

The prototype, sometimes also called feature-based theory, was first introduced in 

the seventies, after several studies had shown that the classical view failed to explain 

some empirical phenomena observed for natural-kind and artifact categories. First, 

linguists, philosophers, and psychologists, who aimed to demonstrate the classical view, 

were unable to find definitions for the most natural concepts (E. E. Smith, 1995). Second, 

people disagreed with each other or even with themselves during the time, as to what is 

and what is not a member of a category (McCloskey & Glucksberg, 1978). Third, the 

classical view fails to explain typicality and prototype effect. The typicality effect means 

that people do not consider all members of a category as equally good members (Rosch 

& Mervis, 1975). For example, some birds are more birdlike than others. The prototype 

effect is manifested by the fact that people classify a stimulus very quickly – even when 

they had never perceived it before as a member of a category – if it possesses typical 

features shared by category exemplars or constitutes a central tendency of the presented 

exemplars (Posner & Keele, 1970).  

The leading proponent of the prototype view of natural categories was Rosch. In a 

series of studies, Rosch and her colleagues (Mervis, Catlin, & Rosch, 1976; Rosch, 

1975a, 1975b, 1978; Rosch & Mervis, 1975) studied several phenomena that converge 

and provide a measure of prototypicality: 1) the goodness of membership, assigned 

reliably by participants to members of a category, 2) reaction times in categorization 

tasks, 3) accuracy of categorization, 4) easiness of learning artificial categories, 5) free 

recall of the members of natural categories, and 6) possibility to substitute for a 

superordinate term. For some categories, such as colors or numbers, prototypes may 

precede the category (Rosch, 1975a). For most domains, they are abstracted from the 

category exemplars.  

The prototype, or feature-based theory, emphasizes the family-resemblance 

principle proposed by Wittgenstein (1953). Wittgenstein analyzed such concepts as 

"game" or "tool" and argued that although there are no features common to all members 

of a category, the members are somewhat alike, or similar. Members of a category, like 
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members of a family, share a number of common features, none of them necessary or 

sufficient. Members are generally more similar to each other than to non-members, 

however, the boundaries are fuzzy. In a categorization decision, a new example is 

compared to a prototype and if it is similar enough, it is classified as a member of the 

category. 

But what exactly is a prototype? There are two approaches to this question. It may 

be either an ideal exemplar of a category, or a central tendency of a category. These two 

approaches are sometimes confused. Rosch considered prototypes as the clearest cases or 

best examples of the category, even when not central (Rosch, 1973, 1975a). For instance, 

categories such as “tall people, short people” may be represented by the ideals (extreme 

values) rather than central tendencies. The central tendency approach has been usually 

applied in studies of artificial categories (Posner & Keele, 1968, 1970; Reed, 1972). 

Recently, Goldstone (Goldstone, 1996; Goldstone, Steyvers, & Rogosky, 2003) justified 

the validity of both approaches and showed that categories tend to be represented by their 

central tendency when acquired as isolated concepts, but they tend to emphasize extreme 

values when acquired as contrasting concepts. Goldstone reserved the term “prototype” 

for the central tendency and used the term “caricature” to describe the representation that 

over-emphasizes the differentiating features.  

Two types of stimuli are typically used in prototype learning research (Figure 

1.1). One type draws from the tradition of the seminal work of Rosch (1976) and Reed 

(1972). In this line of research, inspired by Wittgenstein’s notion of family-resemblance, 

the stimuli consist of sets of features, giving rise to the alternative prototype theory name, 

the feature-based theory. Prototypes are represented by a certain combinations of features 

(Figure 1.1.a) and exemplars are derived from the prototypes by altering some of the 

prototypical features (Figure 1.1.b). The original ambition of this type of research was to 

mimic internal structure of natural categories. Since then, many family-resemblance 

categories were constructed with the primary goal of demonstrating better fit of one 

categorization model against another (Murphy et al., 2005), with less concern about 

ecological validity of the category structures. 
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The second type of stimuli is dot-pattern stimuli. Prototypes are represented by a 

certain dot configuration (Figure 1.1.c) and category exemplars are derived from the 

prototypes by small changes in the position of the dots (“distortions”, Figure 1.1.d). 

These stimuli were used in the seminal work of Posner and Keele (1968, 1970). The 

primary goal of their research was to use novel categories in order to address the question 

of how abstract representations can arise from category exemplars. The dot patterns have 

been used ever since as novel stimuli, without the intention to represent the structure of 

the real world categories.  

 

FIGURE 1.1. PROTOTYPE CATEGORY STRUCTURES. Left (a,b): Binary-valued dimension 
stimuli forming family-resemblance structure. a. Category prototype. b. Category 
exemplars. Right (c,d): Dot-pattern stimuli. c. Category prototype. d. Category 
exemplars. 

 

The prototype theory has a number of limitations that prevent us from accepting it 

as the sole theory of either natural concepts or categorization. The central tendency 

(prototype) cannot be the only information abstracted in the process of category learning. 

There are other information people are sensitive to - size of the category, variability of its 

members, and within-category correlation of features (Anderson & Fincham, 1996; Chin-
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Parker & Ross, 2002; Stewart & Chater, 2002). Second, not all categories have a family 

resemblance structure. For instance, consider the concept of a prey. To protect from 

predators, it is a good adaptation for a prey to be armored or to live in trees. But an 

animal that is both armored and lives in trees would probably not be better protected than 

an animal having just one of these properties. No prototype of a well-protected prey can 

be offered in this case. Finally, the simple prototype theory that assumes a single 

prototype for each category implies that a category is learnable only when it is linearly 

separable, but many experiments have shown that humans can learn complex, nonlinear 

categorization rules (Ashby & Maddox, 1992; Medin & Schwanenflugel, 1981; Shepard, 

Hovland, & Jenkins, 1961). The assumption of a single prototype can be however 

relaxed, leading to clustering and multiple prototype models (Love, Medin, & Gureckis, 

2004; Verbeemen, Vanpaemel, Pattyn, Storms, & Verguts, 2007) that can account for 

learnability of nonlinear bounds. We will return to the prototype theory-inspired research 

in the second half of this dissertation in detail (Chapters 4-6). 

Exemplar theory 

The exemplar theory was first presented by Medin and Shaffer (1978) as an 

alternative to the prototype theory and hitherto remained an influential approach to 

categorization. Exemplar theory assumes that people represent categories by storing 

individual exemplars in memory. When categorizing a new object, people retrieve these 

exemplars and compare similarity of the new object to the exemplars of the particular 

category with its similarity to the exemplars of alternative categories. If the similarity to a 

particular category is higher than that to examples of other considerable categories, the 

object is classified into that category. Presentation of examples is a common way of 

concept learning in childhood – parents teach their children various concepts by showing 

instances (“look, this is a dog”) or by listing instances (“examples of furniture include a 

chair, a table, a bed, and such things”). Prototype approach assumes that these examples 

only serve in the generation of an abstract concept representation - the prototype. 
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Exemplar approach assumes that these examples themselves are the concept 

representation. 

One of the most widely cited exemplar models of categorization is Nosofsky's 

generalized context model (Nosofsky, 1986). Nosofsky accepts the geometrical model of 

similarity, where stimuli are represented as points in multidimensional psychological 

space and their similarity is a function of the distance in the psychological space. 

Attention may stretch or shrink the psychological space along its axes. This means that 

the similarity of two objects differing substantially in color and a little in shape may be 

high when the shape is the more attended dimension and color the less attended one, but 

low when attention is on the color dimension. New prototype models often adopt this 

geometrical model of similarity (Minda & Smith, 2001) and the geometrical model of 

perceptual space is also used in decision bound models (Ashby & Gott, 1988). 

According to the exemplar theory, categorization of a stimulus into a category is a 

probabilistic function of the similarity of the stimulus to all exemplars of the given 

category compared to its similarity to all exemplars of alternative categories. Such a 

model gets over many weaknesses of the prototype theory – it accounts well for a wide 

variety of observed data, is sensitive to correlation information and can be successfully 

applied to modeling nonlinearly separable categories. Predictions based on exemplar 

models seem to account better for the observed results than the prototype predictors do 

(Nosofsky, 1987, 1992b), but this advantage may be less general than once thought. First, 

exemplar models are often superior to prototype models when a testing phase follows 

soon after learning phase. After a sufficient delay, prototype models outperform exemplar 

models (Reed, 1972). Several studies suggested that some kind of abstraction occurs 

during learning and seems itself more stable over time than are individual exemplars 

(Homa, 1973; Homa & Little, 1985; Posner & Keele, 1970). Also, for well-established 

concepts, such as “dogs”, it seems more likely that people retrieve an already pre-stored 

abstraction (prototype) than all encountered dog exemplars. Second, only a very limited 

set of category structures has been actually used to demonstrate superiority of exemplar 

models, mostly using categories that were ill-structured, represented by a handful of 



 12 

exemplars varying on small number of binary dimension (Medin & Schaffer, 1978; 

Medin & Smith, 1981; Nosofsky, 1987, 1992b). For categories with larger number of 

stimuli, prototype models outperform exemplar models (Homa, 1973; Minda & Smith, 

2002; J. D. Smith & Minda, 2000).  Another criticism directly addresses the central 

concept of both prototype and exemplar theory - similarity. Categorization of an item is 

supposed to be a function of its similarity either to a central tendency of a category or to 

stored exemplars. Rips and Collins (1993), however, argue that resemblance (similarity) 

is not sufficient to account for categorization. The theory-, or knowledge-based view of 

categories was born.  

Knowledge-based view 

Although the majority of this dissertation focuses on category learning when no 

background knowledge is available, it is important to note that alternatives to this focus 

have been proposed. Recall that the prototype and exemplar approaches assume that the 

basic factor for categorization is similarity. Things belong to the same category because 

they are alike. However, this notion has been questioned. An alternative, called 

knowledge-based (or theory-based) view, proposes that concepts are organized around 

personal theories about the world. These theories provide an explanation of the set of 

properties displayed by an instance. We group together many classes of objects on the 

basis of their deeper aspects. In the process of categorization, background knowledge 

plays a major role regardless of the surface similarity.  

The role of background knowledge and participants' theories about the world was 

primarily demonstrated by a line of research coming from psycholinguistics (Barsalou, 

1987; Labov, 1973; Lakoff, 1986; Rips, 1989; Rips & Collins, 1993) and focus primarily 

on categorization into concepts well known to the participants. Although something 

round and flat with 2 inch diameter may be more similar to a quarter than to a pizza, 

people still categorize it more likely to be a pizza than a quarter, because they know that 

quarters cannot be 2 inch in diameter (Rips, 1989).  
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Understanding the role of background knowledge and personal theories of the 

world in categorization is one part of the picture. To understand the other part, a divorce 

of the cognitive psychological tradition and the linguistics tradition is necessary. The 

boom of categorization research in the last three decades is characterized by a diversion 

from the original aim of studying real world categories and a shift to a focus on 

understanding category learning of novel artificial categories in carefully controlled 

laboratory conditions. The clear oversimplification is counterweighted by a complete 

control over participant’s experience with category exemplars and elimination (or 

control) of the background knowledge. In this dissertation, we will focus on 

understanding category learning under these controlled conditions, studying 

categorization when no background knowledge is available. Although we are aware that 

such research offers just a part of the picture, we believe this approach enables us to gain 

a wealth of information about learning mechanisms that take part in complex real world 

concept learning. 

Decision bound approach 

Decision bound theory is different from the theories described above, as its 

current contribution to the categorization research is mainly that of methodology and a 

data analysis approach, rather than as a theory of category representation and 

categorization processes. Decision bound theory (Ashby, 1992; Ashby & Gott, 1988; 

Ashby & Townsend, 1986), also called general recognition theory, developed as an 

extension of signal detection theory (Green & Swets, 1966). The theory assumes that 

stimuli can be represented as points in the perceptual space.1 The perceptual 

representation of a single stimulus can vary from trial to trial due to perceptual noise, just 

as assumed in signal detection theory. In the process of categorization, a classifier divides 

the perceptual space into regions and associates a category label with each region. A 

particular stimulus is then classified based on which region of the perceptual space it falls 

                                                 
1 This assumption seems valid for perceptual but not conceptual categories (Tversky & Hutchinson, 1986), 
and the application of the decision bound theory has been indeed largely limited to perceptual categories. 
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into. The border that separates the regions is called the decision bound, analogous to the 

decision criterion as used in signal detection theory. In its original formulation, the 

decision bound theory assumed that people may directly represent decision bounds and 

only retrieve response label of the region (the side of the bound) that a stimulus falls into 

(Ashby & Maddox, 1998; Maddox & Ashby, 1993), rather than computing the similarity 

of a stimulus to category prototypes (as assumed by the prototype theory) or computing 

similarity to all category exemplars (as assumed by the exemplar theory). Currently, the 

concept of decision bound is used primarily as an abstract description of the character of 

a category structure or as a description of a participant’s behavior, without implicating its 

ontological status. At least for some types of category structures, ontological status is 

however attributed to the representation of categories as regions in perceptual space and 

the process of categorization is assumed to involve retrieval of a response associated with 

that particular region of the perceptual space (Ashby, Alfonso-Reese, Turken, & 

Waldron, 1998; Ashby & Waldron, 1999). 

Coming from the signal detection framework, another important proposition of 

the decision bound theory was to model categories as multivariate normal distributions 

(Ashby & Gott, 1988, see Figure 1.2), with a potentially unlimited number of unique 

stimuli representing each category. This was an important step from using categories 

consisting of small number of exemplars varying along a few binary dimensions, as was a 

tradition in exemplar and prototype theory inspired research. Using the new category 

structures, Maddox and Ashby (1993) showed that decision bound models can 

outperform exemplar models. This questioned the rein of exemplar models, with their 

seemingly unbeatable ability to predict 90% or more of response variance (Nosofsky, 

1986), and proved that there is still much unanswered in category learning research. 

Although originally proposed primarily for the convenience of characterizing different 

kinds of decision bounds and for its ability to dissociate predictions of competing 

categorization theories, the notion of categories as multivariate normal distributions 

seems to have a merit as a reasonable representation of many natural categories (Ashby, 

1992; Ashby & Maddox, 1998; Flannagan, Fried, & Holyoak, 1986). The use of normally 
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distributed stimuli as the experimental category structures and the mathematical modeling 

tools of the general recognition theory played a major role in further development of the 

category learning field. We will discuss the notions and methods of the decision bound 

theory in more detail as we will draw heavily from this tradition of research in the first 

half of this dissertation (Chapters 2-3). 

 

FIGURE 1.2. A SCHEMA OF CATEGORY STRUCTURES PROPOSED BY THE DECISION BOUND 
THEORY. Left: Categories represented by bivariate normal distributions in a two-
dimensional space. x and y axis represent stimulus dimensions, f(x,y) represents 
probability density function for (x,y). fA and fB represent the probability density functions 
of categories A and B. From Ashby and Gott, 1988. Right: Possible categories and 
stimuli used in a decision bound theory experiment. Each symbol represents a stimulus 
with a particular value on each of two dimensions of variations (x,y). Open circles denote 
category A exemplars, stars denote category B exemplars. Dashed line represents the 
optimal decision bound. 

The need for consolidation: the multiple system approach 

Classical theory, prototype and exemplar theories, and the decision bound theory 

have all offered models of category learning that have been successful in predicting a 

wide array of category learning data. Researchers supporting one theory have been 

coming up with clever manipulations showing that their model accounts for empirical 

observations better than a competing model. Because all of them were successful in 

beating their competitors in at least some cases, no clear winner has arisen from the 

competition. Where does that leave us?  
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The first important step was to realize that rather than being based on a specific 

representation or process, categorization is likely based on a number of complementary 

processes. Both empirical evidence and our intuition tell us that in the process of 

categorization, people: can use rules, can abstract central tendencies, are affected by 

individual category exemplars, and learn associations between classes of stimuli and an 

appropriate response. The particular category structure used seems to play a major role in 

determining which categorization processes become dominant. Counterexamples are no 

longer used to disprove a particular theory, but rather to find conditions and limitations of 

it. A large body of research followed this line of thought and demonstrated that humans 

have available multiple mechanisms that can be used during categorization (Allen & 

Brooks, 1991; Erickson & Kruschke, 1998; Kemler-Nelson, 1984; Nosofsky, Palmeri, & 

McKinley, 1994).  

The second important step was to start considering the implementation level of 

categorization, the neural systems that support it. Neuropsychological and neuroimaging 

findings provided further dissociations between different category learning tasks and 

suggested that many learning and memory systems of the brain are involved in category 

learning (Ashby & Maddox, 2005; Folstein & Van Petten, 2004; Keri, 2003; Nomura et 

al., 2007; E. E. Smith, Patalano, & Jonides, 1998). Originally inconsistent findings now 

seem to be reconcilable when we assume that different cognitive and neural mechanisms 

may be better suited for different kinds of categorization tasks. The first taxonomies of 

different categorization tasks and the corresponding learning systems have been 

proposed. In the next few pages, we review the proposed associations between different 

categorization tasks and the memory systems that subserve them. 

MEMORY SYSTEMS IN CATEGORY LEARNING TASKS 

Categorization tasks used in the literature can be classified in a number of ways. 

The stimuli used differ in the number of dimensions along which they vary and in the 

character of those dimensions (e.g. binary-valued or continuous). The category structures 

used differ in the number of exemplars they consist of, and whether they are:  
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overlapping or nonoverlapping, normally or nonnormally distributed, linearly separable 

or nonlinearly separable, probabilistic or deterministic. A well developed taxonomy of 

categorization tasks is currently lacking. In an extreme case, we may need a separate 

categorization theory for every category learning task. That could perhaps provide us 

with the most accurate theories, but with little understanding of the underlying principles 

and hard-to-generalize, compartmentalized knowledge. An alternative is to try to find a 

taxonomy of the existing tasks based on the processes and memory systems that they may 

involve. One such taxonomy has been proposed by Ashby and colleagues (Ashby & Ell, 

2001; Ashby & Maddox, 2005; Ashby & Spiering, 2004). They differentiate between 

three types of tasks, supported by three memory systems: a rule-based task, based on 

working memory and reasoning; an information-integration task, based on the procedural 

learning system; and a prototype-distortion task, based on the perceptual learning system. 

We will now review the proposed task dissociations as we will use this taxonomy as the 

starting working hypothesis in our own investigations. 

Rule-based tasks 

Rule-based tasks are those in which the rule for category membership is easy to 

describe verbally. As such, the rule is likely to be discovered and applied by the 

participants in the process of learning. Examples of rule-based category structures are 

presented in Figure 1.3. On the left panel, an example of a rule-based category structure 

that uses binary-dimension stimuli is shown. The categorization rule that determines 

membership in category A and category B is “if the background color is blue, it is A; if 

the background color is yellow, it is B.” The right panel shows an example of a rule-

based category structure that uses normally distributed categories with continuous-value 

stimuli. Each point denotes a stimulus, for instance a Gabor patch varying in spatial 

frequency and orientation.2 The categorization rule that determines membership in 

category A and category B is “if the spatial frequency is low, it is A; if the spatial 

                                                 
2 Gabor patch is a sinewave grading enclosed in a Gaussian envelope (see examples on Figure 1.3, right 
panel) 
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frequency is high, it is B.” Note that the word “rule” is used here in two different 

meanings. First, for most category structure, there is some formal description of how 

category membership can be determined. This description is often called a categorization 

rule, no matter of its character.  However, the category structures are only called rule-

based if this categorization rule is likely to be explicitly learned by the participants. Most 

unidimensional rules involving separable dimensions do constitute rule-based categories; 

most rules that are of higher level complexity than a conjunctive rule do not (Ashby & 

Maddox, 2005). 

 

 

FIGURE 1.3. RULE-BASED CATEGORY STRUCTURES. Left: Stimuli varying along four 
binary-dimensions. The categorization rule is “blue background stimuli belong to 
category A, yellow background stimuli belong to category B.” From Ashby and Ell, 
2001. © 2008 Elsevier Ltd. All rights reserved. Reprinted with permission. Right: 
Normally distributed categories with large number of exemplars and stimuli varying 
along two continuous dimensions. Each point denotes a stimulus (Gabor patch), two 
example stimuli are presented. The categorization rule is “low spatial frequency stimuli 
are category A, high spatial frequency stimuli are category B.”  
 

Although on the surface, the two tasks presented in Figure 1.3 may look quite 

different for a participant, they both can be learned by the same hypothesis testing 

process. The classical approach to categorization (Bruner, Goodnow, & Austin, 1956) 
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and most multiple systems approaches postulate a categorization system that is based on 

such extraction of a categorization rule via hypothesis testing and explicit reasoning (e.g. 

Anderson & Betz, 2001; Ashby & Ell, 2001; Erickson & Kruschke, 1998; Nosofsky, 

Palmeri, & McKinley, 1994; Patalano, Smith, Jonides, & Koeppe, 2001; E. E. Smith, 

Patalano, & Jonides, 1998). The hypothesis testing system involves working memory and 

attentional processes and is thought to rely on the prefrontal working memory system  

(Ashby & O'Brien, 2005; Tracy et al., 2003).3  

Working memory and the prefrontal system in rule-based learning 

Working memory is a short-term ability to maintain and manipulate limited 

amount of information (Baddeley, 1995). Prefrontal cortex has been implicated as the 

crucial neural structure supporting working memory and attention (D'Esposito & Postle, 

1999; D'Esposito, Postle, Stuss, & Knight, 2002; Goldman-Rakic, 1987, 1990; 

Narayanan et al., 2005), with anterior striatum, reciprocally connected to the prefrontal 

cortex, being part of the working memory network (Hikosaka, Sakamoto, & Usui, 1989; 

R. Levy, Friedman, Davachi, & Goldman-Rakic, 1997; Schultz et al., 1995).  

Although working memory is a limited time memory, not a long-term memory, it 

can mediate learning in a rule-based task since the task has a structure simple enough to 

be discovered quickly by a reasoning process (Ashby & O'Brien, 2005; E. E. Smith & 

Grossman, 2008). Limited working memory capacity determines the complexity of 

stimuli and rules that can be learned. The role of the prefrontal cortex in rule-based 

learning has been reported by several neuroimaging studies (E. E. Smith, Patalano, & 

Jonides, 1998; Tracy et al., 2003), and also seems firmly established in the 

neuropsychological research as the Wisconsin card sorting test (a rule-based task) is 

widely used for neuropsychological diagnosis of frontal lesions (Robinson, Heaton, 

Lehman, & Stilson, 1980). The notion of the working memory basis of rule-based 

learning is more recent (Ashby & O'Brien, 2005; E. E. Smith & Grossman, 2008) and has 

                                                 
3 Other names used for the hypothesis testing system are: verbal system, reflecting its role in learning of 
verbalizable rules; explicit system, reflecting the explicit, conscious awareness accessible nature; and rule-
based system, somewhat tautological name reflecting that it is a mechanism for learning rules. 
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been supported by only a few studies. The goal of the first half of the dissertation is to 

increase our understanding of the working memory role in category learning. We will 

return to a theory of rule-based and information-integration learning later in this chapter. 

Chapter 2 and Chapter 3 will then provide behavioral evidence for the preferential role of 

working memory in rule-based learning.   

 

Information-integration tasks 

Information-integration tasks are those tasks in which information from multiple 

dimensions need to be integrated at some pre-decisional stage. This can be done, for 

instance, by a linear combination of dimensional values or by treating each stimulus as a 

gestalt rather than analyzing it into its constituent components (Ashby, Ell, & Waldron, 

2003). Figure 1.4 shows two examples of information-integration category structures, 

using the same stimuli as the rule-based structures to clarify the differences. On the left 

panel, an information-integration category structure with stimuli varying along four 

binary dimensions is presented. The rule for category membership is not immediately 

obvious: “if a stimulus has at least two out of the three following features - blue 

background, two embedded symbols, embedded symbols of green color - it is A; 

otherwise, it is B.”  Recall the dual meaning of the word “rule”, with its narrow meaning 

in the context of “rule-based structure.” Although there exists a rule that separates 

category A exemplars from category B exemplars, this rule is rather complex, and as such 

is not likely to be explicitly discovered, represented and applied by participants in this 

form. The category structure is thus not considered rule-based. The right panel presents a 

category structure based on bivariate normally distributed stimuli. The rule that 

determines category membership is “if orientation is bigger than spatial frequency, it is 

A; if spatial frequency is bigger than orientation, it is B.” Again, although an optimal rule 

exists, it is not likely to be discovered and explicitly used by the participant as it requires 

combination of incommensurable units.  
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The use of the category structure on right panel is much more popular and will be 

primarily used here because using alternative, non-information-integration strategies is 

made difficult. The large number of unique stimuli makes memorization inefficient and 

the elongation of the categories along the decision bound ensures that unidimensional 

rules provide poor accuracy (compare with the right panel on Figure 1.2 where the 

optimal bound location is the same, but a unidimensional rule (some decision bound 

perpendicular to one of the axes) could yield accuracy only marginally worse). The 

category structure on the left panel can be solved using a number of strategies, among 

them exemplar memorization or use of a rule-plus-exceptions verbal strategy (Erickson & 

Kruschke, 1998) being most common.  

Another popular information-integration task is the weather prediction task in 

which participants need to integrate information from several probabilistic cues in order 

to predict which of two outcomes (rain or shine) is likely to occur. Although we will 

include results of the weather prediction task in the discussion of the information-

integration task, it is important to note that participants in this task are often found to use 

a mix of non-information integration as well. Common is the use of unidimensional rules, 

especially early in the learning (Gluck, Shohamy, & Myers, 2002) and memorization of 

the limited set of stimuli (14), especially later in the learning (Knowlton, Squire, & 

Gluck, 1994).4  

 

                                                 
4 Note also that most prototype-based category structures require integration of 

information across several stimulus dimensions and thus can be (and sometimes are) 
viewed as a subtype of the information-integration structures. However, it seems that the 
prototype structures promote additional learning mechanisms, and we will thus consider 
them separately.  
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FIGURE 1.4. INFORMATION-INTEGRATION CATEGORY STRUCTURES. Left: Stimuli 
varying along four binary-value dimensions. From Ashby & Ell, 2001. © 2008 Elsevier 
Ltd. All rights reserved. Reprinted with permission. Right: Normally distributed 
categories with stimuli varying along two continuous dimensions. No simple verbalizable 
rule separates category A stimuli and category B stimuli. 
 

In the current view, it is assumed that participants in the information-integration 

task learn the associations between regions in the perceptual space (groups of stimuli) 

and the category label, rather than deriving any explicit categorization rules. The 

mechanism of learning is thought be implicit, procedural learning-based and dependent 

on the posterior striatum (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby & 

Waldron, 1999; Nomura et al., 2007). 

Procedural memory and the striatum in information-integration learning 

Procedural memory, also called the habit memory, is a form of nondeclarative 

memory. It is memory for “how to” – how to ride a bike, ski, play tennis, play the piano, 

etc. The characteristic feature of procedural memory is that it is acquired gradually 

through practice and is not easily communicated verbally to others (e.g., try to describe 

how you tie shoe laces). It is now studied in the context of acquisition of both motor 

skills and cognitive skills. Popular paradigms for studying procedural learning are, for 

example, a serial reaction time task (Nissen & Bullemer, 1987; Reber & Squire, 1994, 

1999; Willingham, Nissen, & Bullemer, 1989) and control of complex systems (Berry & 
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Broadbent, 1984, 1988). The key neural structure in many kinds of procedural learning is 

the striatum (Curran, 1995; Mishkin, Malamut, & Bachevalier, 1984; Westwater, 

McDowall, Siegert, Mossman, & Abernethy, 1998). 

In the context of category learning, the procedural system is assumed to gradually 

and incrementally learn to associate specific regions in the perceptual space with category 

assignments (Ashby & Waldron, 1999; Knowlton, Mangels, & Squire, 1996). The 

proposed circuit (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Waldron, 

1999) starts with stimulus representation in inferotemporal cortex. Many-to-one 

convergence of inferotemporal cells onto the posterior caudate (Wilson, 1995) creates a 

low-resolution representation of the perceptual space within the caudate. The striatum 

then functions to associate a pattern of cortical activation with a motor response, by 

strengthening recently activated synapses after dopamine-mediated reward (Wickens, 

1993). The striatum has been implicated in linking a stimulus with classification response 

in both human and animal research (for a review of this research, see Packard & 

Knowlton, 2002). Patients with striatal damage are impaired on information-integration 

tasks (Filoteo, Maddox, & Davis, 2001a; Knowlton, Mangels, & Squire, 1996; Knowlton, 

Squire, Paulsen, Swerdlow, & Swenson, 1996), but amnesiac patients are not (Eldridge, 

Masterman, & Knowlton, 2002; Filoteo, Maddox, & Davis, 2001b; Knowlton, Squire, & 

Gluck, 1994). 

 

Dissociation between rule-based and information-integration category learning 

Ashby and colleagues (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby 

& Waldron, 1999) proposed a formal model called COVIS (COmpetition between Verbal 

and Implicit Systems), describing how the hypothesis-testing system and the procedural 

system interact in the process of category learning. They proposed that both learning 

systems attempt to acquire and solve every categorization task encountered. However, the 

relative weight of each system in the category judgment depends on the relative success 

of each system in category learning, which in turn depends on the type of category 
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structure to be acquired. The dissociation between rule-based and information-integration 

categorization tasks comes from the tradition of decision bound theory. The nature of the 

decision bound – whether it is easy to describe verbally or not – discriminates the rule-

based structures from the information-integration structures. The hypothesis-testing 

system searches for and applies explicit rules that are easy to verbalize; it thus dominates 

in learning of rule-based category structures. The procedural learning-based system 

learns to associate a category response with a region of perceptual space without deriving 

any explicit rule. Although slower, the procedural system dominates learning in the 

information-integration category structures because no simple rule is likely to be 

discovered by the hypothesis-testing system. In contrast, category structures acquired by 

the procedural system may be very complex (e.g. Ashby & Maddox, 1992, 2005).  

As a consequence of the proposed learning mechanisms and the underlying 

neurobiology of the two systems, manipulations that affect one but not the other system 

should differentially affect rule-based and information-integration learning. This has been 

confirmed in a number of studies (see Maddox and Ashby, 2004 for a review). Several 

experiments have introduced manipulations that affect information-integration, but not 

rule-based category learning. First, because feedback-mediated dopamine release is 

thought to play a crucial role in strengthening the cortico-striatal synapses mediating the 

stimulus-response associations, timely feedback should be crucial for information-

integration learning. When the feedback is delayed, the recently activated synapses may 

return to baseline and the stimulus-response association may not be strengthened 

(Arbuthnott, Ingham, & Wickens, 2000; Kerr, & Wickens, 2001). Maddox and 

colleagues (Maddox, Ashby, & Bohil, 2003; Maddox & Ing, 2005) indeed showed that 

with a five second delay between a response and feedback, learning of an information-

integration category structure becomes impossible, while learning of a rule-based 

structure is minimally affected. Second, the procedural component of information-

integration learning should be critically dependent on consistent stimulus-response 

mapping. Most category learning experiments use consistent stimulus-response 

mappings. In a typical paradigm, the participant is asked to press button “A” with the left 
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hand and button “B” with the right hand to indicate category A and category B stimulus 

(A-B training). Maddox, Bohil and Ing (2004; see also Ashby, Ell, & Waldron, 2003) 

used a variable stimulus-response mapping. The participants were asked to press either 

button “Yes” or button “No” to a stimulus in response to a question “Is this an A?” or “Is 

this a B?” (Yes-No training). As the stimulus-response-outcome mapping was 

inconsistent, the Yes-No training impaired information-integration category learning 

compared to A-B training, but had no effect on the rule-based category learning.  

The previous studies show that the procedural system differs from the hypothesis-

testing system in that it requires timely feedback and a consistent stimulus-response 

mapping. When these are not provided, learning by the implicit system is adversely 

affected. These manipulations have minimal effect on rule-based learning because the 

hypothesis-testing system utilizes consciously accessible working memory that can hold 

the feedback information over the delay and uses explicitly represented categorization 

rule that can be flexibly tested and applied with both A-B training and Yes-No training. 

One may argue that the disruption of information-integration category learning 

but not rule-based learning in the previous studies is due to differences in complexity and 

therefore difficulty of simple (usually one-dimensional) verbalizable rules in the rule-

based condition versus complex nonverbalizable rules in the information-integration 

condition. To provide evidence for the existence of two alternative systems, double 

dissociation should be demonstrated. A manipulation that affects working memory load 

should affect the hypothesis-testing, but not procedural learning system. Chapter 2 and 

Chapter 3 are dedicated to discussing and demonstrating this dissociation.  

Prototype learning tasks 

Prototype learning tasks, inspired by the prototype theory, represent categories as 

collections of stimuli that are generated from a single prototype by various alterations of 

the prototypical values. Category exemplars are often called “prototype distortions”. 

Recall the two examples of prototype-based category structures presented in Figure 1.1. 

The left panels (Figure 1.1.a,b) show a prototype and a collection of category exemplars, 
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using binary-valued stimuli. These types of categories represent the traditional family-

resemblance based natural categories as proposed by Wittgenstein (Wittgenstein, 1953) 

and promoted by Rosch (Rosch & Mervis, 1975). The right panels (Figure 1.1.c,d) show 

a prototype and a collection of category exemplars using dot-pattern stimuli. One pattern 

of dots is the prototype, and category exemplars are created by randomly moving the 

location of each dot in the prototype. These types of categories follow the research of 

prototype theorists who focused on prototype abstraction in novel artificial categories 

(Posner & Keele, 1968, 1970; Reed, 1972). 

The prototype can be learned by extracting the common features or the common 

structure from the category exemplars. It is thought that this extraction depends on the 

perceptual representation memory mediated by learning-related changes in the visual 

cortex (Ashby & Casale, 2003; Casale & Ashby, in press; Reber & Squire, 1999).  

Perceptual memory and the cortical system in prototype learning 

The perceptual representation memory system is a form of implicit 

(nondeclarative) memory, manifested by an improvement in the perception and 

processing of a repeated stimulus (Dosher & Lu, 1999; Schacter, 1990, 1994; Tulving & 

Schacter, 1990). Perceptual memory has been primarily studied in the context of 

perceptual repetition priming (Schacter, 1994; Schacter, Cooper, & Delaney, 1990), a 

phenomenon of speeded identification of a recently encountered stimulus even in the 

absence of explicit memory for the prior exposure. Repetition priming has been shown to 

be independent of declarative (medial temporal lobe-based) memory (Schacter, Cooper, 

& Delaney, 1990; Schacter, Cooper, Tharan, & Rubens, 1991), but also independent of 

nondeclarative striatal memory (Knowlton, Squire, Paulsen, Swerdlow, & Swenson, 

1996; Reber & Squire, 1999). Priming and the perceptual memory are mediated by 

stimulus related changes within the sensory cortex, primarily by a reduction of activity 

for repeated stimuli (Schacter & Buckner, 1998; Schacter, Wig, & Stevens, 2007; 

Slotnick & Schacter, 2006; Wiggs & Martin, 1998).   
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Perceptual memory can be elicited not only for identical, but also perceptually 

similar stimuli (Biederman & Cooper, 1992; Cooper, Schacter, Ballesteros, & Moore, 

1992; Wagner, Gabrieli, & Verfaellie, 1997). Perceptual memory seems thus ideally 

suited for prototype extraction from a set of category exemplars as all category stimuli 

are typically perceptually similar. Keri and colleagues (Keri et al., 2002) proposed a 

computational model of prototype learning based on fast synaptic changes of lateral 

connections within the sensory cortex, following a Hebbian rule. These synaptic changes 

can support prototype formation in a self-organizing manner, without external feedback. 

The neurobiological plausibility of this model is supported by an observation that such 

fast synaptic changes occur in the primary visual cortex of rat (Varela et al., 1997). 

Priming-like changes in the visual cortex were indeed found in several fMRI studies of 

prototype learning (Aizenstein et al., 2000; Reber, Stark, & Squire, 1998a, 1998b) and 

steep typicality gradients in prototype learning emphasize the role of perceptual similarity 

for the perceptual memory system (Casale & Ashby, in press; J. D. Smith & Minda, 

2002). We will return to prototype learning in the second half of the dissertation in detail 

(Chapters 4-6). 

And what about declarative memory? Completing the picture 

In the quest for understanding category learning, we have arrived at the 

conclusion that different category learning tasks seem to be tapping into different 

learning and memory systems. The taxonomy dissociating rule-based, information-

integration, and prototype category structures, dependent on working memory, procedural 

memory, and perceptual representation memory respectively (Ashby & Ell, 2001; Ashby 

& Maddox, 2005; Ashby & Spiering, 2004) seems well supported and is covering the 

majority of the category structures used. However, one important memory system – the 

explicit, declarative memory system mediated by the medial temporal lobe – has not been 

mentioned. Categorization tasks are often considered non-declarative, hippocampus-

independent forms of learning. Indeed, many neuropsychological studies have contrasted 

category learning with recognition in amnesic patients and found spared category 
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learning in rule-based Wisconsin Card Sorting Test (Janowsky, Shimamura, Kritchevsky, 

& Squire, 1989; Leng & Parkin, 1988), in an information-integration task with large 

categories (Filoteo, Maddox, & Davis, 2001b), in the weather prediction task (Knowlton, 

Mangels, & Squire, 1996; Knowlton, Squire, & Gluck, 1994) and in the prototype 

learning task (Bozoki, Grossman, & Smith, 2006; Knowlton & Squire, 1993). Based on 

these findings, Ashby and Waldron (2000) argued that medial temporal lobe structures 

are not critical for most forms of category learning. On the opposite side, exemplar 

models assuming declarative memory keep providing good fits to a range of 

categorization data (Nosofsky, 1992a; Nosofsky & Johansen, 2000; Shin & Nosofsky, 

1992; Stanton, Nosofsky, & Zaki, 2002). Nosofsky and Zaki (1998) argued that all 

category learning is ultimately dependent on exemplar memory mediated by the medial 

temporal lobe, and the seeming dissociation between recognition and categorization is 

solely due to lower sensitivity of the categorization tasks compared to the recognition 

tasks. So, is there a role for declarative memory in category learning?  

Probably neither extreme is correct. First, even when the neuropsychological 

findings indicate that an intact medial temporal lobe is not necessary for many 

categorization tasks, the current view is that exemplar memory plays at least a 

complementary role in many category learning tasks in normal participants (Ashby & Ell, 

2001; J. D. Smith & Minda, 2001). Knowlton (1999) in response to Nosofsky and Zaki 

acknowledged the role of (declarative) exemplar memory besides other category learning 

mechanisms, but suggested that exemplar knowledge acquisition and category knowledge 

acquisition should not be considered as mutually exclusive mechanisms of category 

learning. Rather, future research should focus on the circumstances under which one or 

the other is more likely to occur. In line with this proposal, many experiments focused on 

identifying conditions suited for exemplar memorization. They identified its preferential 

role when categories are small, consisting of only a few exemplars (Homa, Sterling, & 

Trepel, 1981; Minda & Smith, 2001), when categories are poorly structured (Lei & 

Zhansheng, 2003; J. D. Smith & Minda, 2000), when individual exemplars are repeatedly 

presented (Knowlton, Squire, & Gluck, 1994; J. D. Smith & Minda, 1998) and when an 
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exemplar constitutes a salient exception to the categorization rule (Erickson & Kruschke, 

1998; Nosofsky & Palmeri, 1998; Nosofsky, Palmeri, & McKinley, 1994).  

The paragraph above suggests that there is a declarative component to many 

categorization tasks. However, is there a categorization task that may be primarily 

dependent on the declarative memory? Recently, a suspicion turned surprisingly to one 

version of the prototype task. A closer look at the literature shows that two versions of 

the prototype tasks exist, A/nonA version and A/B version. In the A/nonA version, only 

one category exists, consisting of distortions from a single prototype, and the participants 

need to distinguish categorical (A) from noncategorical (nonA) items. In the A/B version, 

two categories exist, derived from two distinct prototypes, and the participants need to 

distinguish category A exemplars from category B exemplars. Ashby and Casale (2003) 

discussed the role of the perceptual representation system in prototype learning and 

pointed out that while a feeling of perceptual familiarity (mediated by the perceptual 

memory) can support performance of the A/nonA task, it is not, by itself, sufficient in the 

A/B task, as both A exemplars and B exemplars would elicit familiarity. Zaki and 

colleagues (Zaki, Nosofsky, Jessup, & Unversagt, 2003) tested both A/B and A/nonA 

prototype task in amnesiac patients and found intact A/nonA learning, but impaired A/B 

learning. Based on this finding, Ashby and colleagues (Ashby & Maddox, 2005; Ashby 

& O'Brien, 2005) proposed that while the A/nonA prototype task may be mediated by 

perceptual memory, the A/B prototype task may be mediated by explicit, declarative 

memory. The second half of this dissertation is dedicated to examination of this notion 

(Chapters 4-6). 



 30 

Chapter 2: Dual task interference in category learning5 

In Chapter 1, we discussed the COVIS model proposed by Ashby and colleagues 

(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Waldron, 2000). COVIS 

postulates two systems that compete throughout learning – a hypothesis-testing system 

that uses logical reasoning and depends on working memory and selective attention, and 

a procedural learning-based system, that gradually learns associations between regions in 

the perceptual space and a category label through practice, without deriving explicit rules. 

COVIS proposes that the hypothesis-testing system dominates learning of rule-based 

category structures while the procedural system dominates learning of information-

integration category structures. Behavioral dissociation between the hypothesis-testing 

system and the procedural learning system can thus be demonstrated by manipulations 

that selectively affect rule-based learning or information-integration learning. 

Recall that several studies demonstrated manipulations that affected information-

integration, but not rule-based learning using delayed feedback or inconsistent stimulus-

response mapping (Ashby, Ell, & Waldron, 2003; Maddox, Ashby, & Bohil, 2003; 

Maddox, Bohil, & Ing, 2004; Maddox & Ing, 2005). One may argue that information-

integration is more complex than rule-based learning, so the reverse dissociation needs to 

be demonstrated as well. Recent studies began to explore conditions that affect rule-

based, but not information-integration learning using working memory load 

manipulations (Maddox, Ashby, Ing, & Pickering, 2004; Maddox, Filoteo, Hejl, & Ing, 

2004). Waldron and Ashby (2001) introduced a concurrent, attention demanding task that 

should affect the hypothesis-testing, but not procedural system. They used binary-valued 

stimuli and found large dual task interference on uni-dimensional rule-based learning and 

small dual task interference on (multidimensional) information-integration learning. The 

authors concluded that their study demonstrated the role of the hypothesis testing system 
                                                 
5 Major portions of this chapter have been previously published as an article Zeithamova & Maddox 

(2006). Memory & Cognition, 34(2), 387-398. Copyright 2006 Psychonomic Society, Inc 
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and working memory in rule-based learning and supported the multiple system view of 

categorization. 

In this chapter, we explore the role of a dual task in category learning in more 

detail. We begin by reviewing the study of Waldron and Ashby (2001), noting a few 

possible shortcomings and presenting an alternative explanation of their results suggested 

by Nosofsky and Kruschke (2002). We then present two experiments offering additional 

evidence for the dissociation between the rule-based and information-integration category 

learning. In the first experiment, we test and extend the generality of Waldron and 

Ashby’s results when applied to a uni-dimensional rule-based and (two-dimensional) 

information-integration category learning task using a large number of perceptually 

similar continuous-value dimension stimuli. Second, we examine the dual task 

interference in two-dimensional, conjunctive rule-based learning and provide a critical 

test of Nosofsky and Kruschke’s single system explanation of the original results.  

REVIEW OF WALDRON AND ASHBY (2001) 

Recall that COVIS postulates that the hypothesis-testing system relies on working 

memory and selective attention to solve rule-based category tasks, whereas learning in 

the procedural-learning system is essentially automatic. Waldron and Ashby (2001) 

provided an empirical test of this prediction by comparing rule-based and information-

integration category learning under dual task conditions with that in a single-task control. 

They chose a numerical analog of the Stroop task (for a detailed review of the Stroop 

task, see MacLeod, 1991) to serve as a dual task. The Stroop task is known to require 

working memory and selective attention, and to strongly activate the anterior cingulate 

and prefrontal cortex (Bench, Frith, Grasby, & Friston, 1993), neural structures 

associated with the explicit, hypothesis-testing system, but not with the implicit 

procedural-learning system proposed in COVIS. 

Waldron and Ashby had participants learn to categorize stimuli that varied on four 

binary dimensions (see the left panels of Figures 1.3 and 1.4 in Chapter 1). In the uni-

dimensional rule-based condition, one dimension was relevant and the remaining three 



 32 

were irrelevant (Figure 1.3, left panel). In the information-integration condition, 

information from three dimensions had to be integrated and one dimension could be 

ignored (Figure 1.4, left panel). Under the control conditions, the participant simply 

categorized each stimulus on every trial and received feedback after each response. In the 

dual task conditions, the participant had to perform a numerical analog of the Stroop task 

during each trial of categorization. The Stroop task stimulus was presented 

simultaneously with the categorization stimulus for 200 ms. The Stroop stimulus was 

then masked and the categorization stimulus remained on the screen until the participant 

categorized it. After categorization feedback, the participant was to respond to the Stroop 

stimulus they had seen at the beginning of the trial. Therefore, the participant was 

required to hold a representation of the Stroop stimulus in the working memory during 

the process of categorization and while receiving feedback. Performance in the Stroop 

task was emphasized over the categorization task. Participants were tested on four rule-

based tasks and four information-integration tasks. Participants performed each task 

either until they reached the learning criterion of 8 trials in a row correct or until they 

reached 200 trials. 

Waldron and Ashby found that the dual Stroop task produced greater interference 

for the unidimensional rule-based task than for the information-integration task (Figure 

2.1). These findings support the COVIS prediction that the working memory and 

attention requiring hypothesis testing system supports rule-based learning, while the 

(automatic) procedural system supports information-integration learning. 
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FIGURE 2.1. RESULTS FROM WALDRON AND ASHBY (2001). Early: Results from the first 
half of the experiment. Late: Results from the second half of the experiment. RB: rule-
based; II: information-integration. Copyright 2001 Psychonomic Society, Inc. Reprinted 
with permission.  
 

We found the results compelling, but a few possible weaknesses need to be noted. 

First, examine the results presented on Figure 2.1. The category structure x condition 

interaction was present only during the first half of the experiment. Additionally, because 

of the different baseline performance, the smaller dual task effect on information-

integration learning could be a result of the floor effect. Second, the eight correct 

responses in a row learning criterion might be too lenient. We conducted a series of 

simulations with the original Waldron and Ashby stimulus sequences (in these sequences 

each stimulus was presented once in each block of 16 trials) and found that the eight-in-a-

row criterion could be reached through random responding within two hundred trials with 

probability .33. Also, a participant using a unidimensional rule to solve the information-

integration tasks could respond correctly on each individual trial with probability .75. 

Third, as we discussed in Chapter 1, exemplar memorization is likely to be operative with 

so few stimuli. This may have involved different neural structures than the authors 

assumed and thus may have influenced the results in an unknown way. The goal of 
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Experiment 1 is test the role of working memory in rule-based learning using the dual 

task methodology while avoiding these possible shortcomings. 

A different criticism of Waldron and Ashby’s experiment came from Nosofsky 

and Kruschke (2002), who questioned its interpretation. They claimed that a single 

system exemplar model can account for the larger dual task interference in the rule-based 

task when a selective attention parameter (such as proposed in Kruschke, 1992) is varied 

between the control and the dual (Stroop) condition. As only one dimension is relevant in 

the rule-based task, the selective attention requirement for good performance is high. 

Selective attention requirement is low in the information-integration task, as attention can 

be spread across all dimensions without affecting performance. Experiment 2 tests this 

notion. 

EXPERIMENT 1 

The main aim of Experiment 1 was to test the generalizability of Waldron and 

Ashby’s (2001) results while avoiding their possible shortcomings, using a large number 

of unique stimuli varying along continuous-valued dimensions. The stimuli were Gabor 

patches that varied across trials in spatial frequency and spatial orientation. 

Unidimensional (UD) rule-based and information-integration (II) category learning were 

examined under control and dual Stroop conditions. The scatter plots of the stimuli used 

in the UD and II category learning conditions are shown in Figure 2.2 along with the 

optimal decision bound. Each point in the scatterplot denotes the spatial frequency and 

spatial orientation of a single stimulus. In the unidimensional condition, spatial frequency 

was the relevant and spatial orientation was the irrelevant dimension. The optimal rule 

required participants to respond A when the spatial frequency was low and to respond B 

when the spatial frequency was high. Both dimensions were relevant in the information-

integration condition. The optimal rule required participants to respond A when the 

difference of the value on spatial frequency dimension and the value on the spatial 

orientation dimension was low and to respond B when the difference of the values on the 

two dimensions was high. Such a rule is not likely to be explicitly learned and verbalized 



 35 

by the participants because it compares values in different units. The category 

discriminabilities (d’) in the physical space were 4.5 for unidimensional and 10.3 for 

information-integration category structure.6 

Method 

Participants 

One hundred seventy students at The University of Texas at Austin participated in 

the experiment in partial fulfillment of a class requirement or for pay. All observers were 

tested for 20/20 vision, and no observer completed more than one experimental condition. 

Each participant completed one of four experimental conditions: unidimensional rule-

based, control (UDC), unidimensional rule-based, dual Stroop (UDS), information-

integration, control (IIC), and information-integration, dual Stroop (IIS). 

Stimuli and apparatus 

The categorization stimuli were Gabor patches that varied across trials in spatial 

frequency and spatial orientation. The experiment used the randomization technique 

introduced by Ashby and Gott (1988). Forty category A and forty category B stimuli 

from the unidimensional categories were generated by sampling randomly from two 

bivariate normal distributions (Figure 2.2, left panel). The stimuli for the information 

integration categories were generated by rotating the 80 rule-based stimuli clockwise by 

45º around the center of the spatial frequency-spatial orientation space and then shifting 

the spatial frequency and spatial orientation by an amount that resulted in the appropriate 

d′ (Figure 2.2, right panel). The category distribution parameters for both structures are 

listed in Table 2.1. 

                                                 
6  These discriminabilities were chosen to avoid ceiling effects in the UD conditions and floor effects in the 
II conditions. In addition, we hoped to approximately equate performance across these two category 
structures in the control condition. To anticipate, we were not successful in equating control condition 
performance. The II control condition performance was worse than UD control condition performance. 
However, if the two conditions differed only in difficulty, as sometimes suggested, we would expect a 
larger dual task interference effect on II than on UD category learning.  COVIS, on the other hand, predicts 
a larger dual task interference effect on UD category learning. 
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FIGURE 2.2. CATEGORY STRUCTURES USED IN EXPERIMENT 1. UD (left panel): 
Unidimensional rule-based; II (right panel): information-integration. Open circles denote 
category A, filled squares denote category B. Dashed lines represent the optimal decision 
bound.  
 

 

Category structure µfA  µoA µfB µoB σf σo covfo 

Unidimensional rule-based 2.93 45 3.32 45 0.087 34 0 

Information-integration 2.81 56 3.44 34 0.674 24 16 

 

TABLE 2.1. CATEGORY DISTRIBUTION PARAMETERS FOR THE CATEGORY STRUCTURES 
USED IN EXPERIMENT 1. µ = mean; σ = standard deviation; cov = covariance; f = spatial 
frequency (cycles per degree); o = orientation (degrees); A = category A parameters; B = 
category B parameters.  
 

Each Gabor patch was generated using Matlab (MathWorks, Natick, MA) 

routines from the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). The size of each 

stimulus was 200 x 200 pixels, covering about four degrees of visual angle and was 

centered on a computer screen with gray background. Following Waldron and Ashby 
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(2001), the Stroop task stimuli used in the dual task were two whole numbers sampled 

without replacement from the range 2-8. On 85% of trials, the numerically larger number 

was physically smaller (95 pixels tall vs. 180 pixels tall). The stimuli were presented on 

gray background. 

Procedure 

Each condition consisted of 5 80-trial blocks of trials. In the control conditions, 

the participants were told that there were two categories of stimuli and that these are to be 

learned via corrective feedback. On each trial, a categorization stimulus was presented on 

the screen and remained there until the participant categorized the stimulus into either 

category “A” by pressing button “Z” on the keyboard with their left hand or into category 

“B” by pressing button “?” on the keyboard with their right hand. Corrective feedback 

was then provided for 1000 ms followed by a 1000 ms delay and 1000 ms inter-trial 

interval. 

In the dual, Stroop conditions, a categorization stimulus was presented centered 

on the screen, with the Stroop task stimuli presented concurrently to the left and right of 

the categorization stimulus for 200 ms followed by a rectangular white masks for another 

200 ms. The categorization stimulus remained on the screen until the participant 

categorized it into one of the two categories by pressing “Z” or “?” on the keyboard. The 

categorization response was followed by 1000 ms corrective feedback and 1000 ms blank 

screen delay. Then either the word “value” or word “size” appeared on the screen. The 

participant then indicated on which side the number with the larger value or larger size 

was presented. The response was followed by 1000 ms corrective feedback and 1000 ms 

inter-trial interval. The timing of each trial was identical to that used in Waldron and 

Ashby (2001). 
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Results 

Stroop task performance  

Fifty and forty-five participants completed the unidimensional Stroop and 

information-integration Stroop conditions, respectively. The overall proportion correct 

for the Stroop task was .84. There was no difference in Stroop task accuracy between the 

unidimensional (mean = .831, se = .022) and information-integration conditions (mean = 

.849, se = .019) groups (t(93) = 0.582, p = .562), suggesting that the effort and cognitive 

resources allocated to the Stroop task were equal in both groups. Fifteen participants in 

the UDS condition and thirteen participants is the IIS condition did not reach the 80% 

required accuracy minimum on the Stroop task and their data were excluded from further 

analyses. 

Category learning performance 

For each participant, we computed the proportion correct for each block and the 

overall proportion correct. We began by examining the shape of the II and UD overall 

score distributions collapsed across control and Stroop. The distribution of overall scores 

for the unidimensional category structure deviated significantly from normality 

(Kolmogorov-Smirnov test (KS) D(76) = .212, p=.002), while the distribution of overall 

scores for the information-integration category structure did not (KS D(66) = .097, p = 

.557). This pattern held in each block as well. To illustrate, histograms of the overall 

accuracy distributions for the UDC and IIC conditions are shown in Figure 2.3. While the 

II distribution is unimodal and close to normal, the UD distribution is bimodal, with one 

modus close to the chance level of accuracy 0.5 and another at a much higher level of 

performance. 
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FIGURE 2.3. DISTRIBUTION OF THE OVERALL SCORES IN EXPERIMENT 1. UDC: control 
unidimensional group; IIC: control information-integration group. Abscissa denotes 
midpoints of the bins, except the left .5 bin that includes all subjects bellow .55. No 
subject reached accuracy above .95. 
 

Figure 2.4 presents the mean accuracy scores (proportion correct) for each group. 

The experimental hypothesis predicts the dual task to have a bigger impact on 

unidimensional rule-based than on information-integration category learning. To assess 

the effect of the dual task on underlying distributions with such different shapes provided 

a challenge as ANOVA, like most standard statistical methods, assumes normal 

distributions. We used a “bootstrapping”7 procedure to compare the drop in mean 

performance across the control and Stroop conditions to determine whether this drop was 

larger for the unidimensional than for the information-integration category structures. 

Specifically, the test design was verifying that the 95% confidence interval for the 

difference in performance drops [(UDC - UDS) – (IIC – IIS)] was reliably bigger than 

zero. We found that the 15.2% drop in overall performance in the unidimensional rule-

based category learning dual task, relative to the control task, was reliably bigger than the 

                                                 
7 Bootstrap analysis is a statistical method for obtaining an estimate of reliability or error, such as 
confidence intervals, without a priori assumptions about population distribution. The sample distribution 
and variability is used as a model for the population distribution and simulations carried out on actual 
samples are used to draw inference. Bootstrapping is appropriate to use when the distribution shape is 
unknown (Efron & Tibshirani, 1993).  
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6.1% drop in the overall performance observed in the information-integration dual task 

relative to the control task.8  
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FIGURE 2.4. MEAN CATEGORIZATION BLOCK ACCURACIES (PROPORTION CORRECT) 
FOR EACH GROUP IN EXPERIMENT 1. The control groups are denoted with solid lines and 
filled marks, dual Stroop task groups with broken lines and open marks. Unidimensional 
rule-based groups are marked with squares, information-integration groups with triangles. 
Error bars denote bootstrapped 68% confidence intervals (equivalent to a standard error 
of mean). 
 

                                                 
8 The difference between the median drop in performance across the two category structures was even 
stronger. The median performance drop for the unidimensional category observers was 29.0% in the Stroop 
compared to the control condition which is reliably bigger (bootstrapped 95% confidence interval) than 
6.8% median performance drop for the information-integration category observers. For an interested reader, 
the category structure x condition interaction was detected also using a parametric method (ANOVA 
interaction [F(1,138) = 4.006, MSE = 0.367, p = .047]). 
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Discussion 

Experiment 1 yielded several interesting results. First, and foremost, including the 

dual Stoop task had a large effect on unidimensional rule-based, but not information-

integration category learning. This finding replicates that observed in Waldron and Ashby 

(2001) and extends it to a situation in which a large number of normally distributed 

continuous-valued dimension stimuli were used.  Importantly, this pattern holds even 

though performance is best in the unidimensional control condition and is worst in the 

unidimensional Stroop condition, ruling out a complexity explanation of the results. 

Second, the results suggested that unidimensional rule-based category learning (under 

control and dual task conditions) differed qualitatively from information-integration 

category learning. Specifically, whereas the distribution of scores observed in the 

information-integration conditions was unimodal and close to normal, the distribution of 

scores observed in the rule-based conditions was bimodal, suggesting an all-or-none 

character to category acquisition (for a similar result, see J. D. Smith, Minda, & 

Washburn, 2004).  

The qualitative difference in the performance profiles across unidimensional rule-

based and information-integration conditions is consistent with the multiple-system 

notion. Rule-based category learning involves the hypothesis-testing system. In this 

system, different rules are tested and are either accepted or rejected. When the correct 

categorization rule is identified, categorization accuracy improves dramatically. When 

incorrect rules are applied, categorization accuracy is near chance, resulting in a bimodal 

performance distribution. Information-integration category learning involves the  

procedural learning based system that learns gradually, incrementally and automatically, 

leading to a normal, unimodal distribution of scores. 

EXPERIMENT 2 

One potential weakness of Experiment 1 and Waldron and Ashby (2001) is that 

the number of dimensions relevant for optimal categorization differs across conditions. 

Nosofsky and Kruschke (2002) pointed out, that the results of Waldron and Ashby are 
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consistent with a single system approach which operates on a single exemplar 

representation with normal (control) or limited (Stroop) selective attention. To elaborate, 

Nosofsky and Kruschke (2002) argued that the Stroop task would disrupt ALCOVE’s 

(Kruschke, 1992) selective attention learning parameter. Failure to attend to the single 

relevant dimension in the unidimensional rule-based task would cause strong 

interference, because attending to the three irrelevant dimensions would waste vast 

amounts of processing capacity. In the complex, information-integration category 

structure, three dimensions are relevant and only one irrelevant. Thus, a wide variety of 

attentional weights would lead to reasonable performance and only a little processing 

capacity would be wasted on the one irrelevant dimension.  

Ashby and Ell (2002) demonstrated that ALCOVE, although able to account for 

the qualitative pattern found in Waldron and Ashby (2001), could not account for the 

quantitative pattern. ALCOVE either underestimates the observed difference between 

unidimensional control and information-integration control category learning, or it 

assumes no attention learning in the Stroop condition (leading participants in the 

unidimensional Stroop condition to be unaware that a single dimension was relevant).  

In Experiment 2, we decided to investigate the notion of Nosofsky and Krushke’s 

using a conjunctive rule-based category structure where both dimensions are relevant for 

optimal categorization (see Method section for details). Nosofsky and Kruschke would 

predict none or small dual task interference because no dimension is irrelevant in this task 

and a wide range of attentional weights can provide a high level of performance. Also, 

because the attention learning mechanism is disrupted, attention should be spread over 

both dimensions throughout the course of learning. COVIS, however, would predict 

stronger dual task interference because the conjunctive task, unlike the information-

integration task, is solved under control condition by the hypothesis testing system. 

Under the dual Stroop task condition, use of conjunctive rules (attending to both 

dimensions) is less likely and use of sub-optimal unidimensional rules (selective attention 

to one dimension while ignoring the other) is more likely, because conjunctive rules 
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require more working memory capacity than unidimensional rules. Experiment 2 aims to 

provide a test of these two alternatives.  

Method 

Participants 

Sixty students at The University of Texas at Austin participated in the experiment 

in partial fulfillment of a class requirement or for pay. Thirty completed the conjunctive 

control (CJC) condition and thirty completed the conjunctive Stroop (CJS) condition. All 

participants were tested for 20/20 vision. 

Stimuli and apparatus 

The stimuli, stimulus generation procedure and apparatus were identical to those 

used in Experiment 1. The only difference was in the nature of the category structures. 

Eighty stimuli were generated by sampling randomly from four bivariate normal 

distributions. Three were assigned to category A and one to category B. The four 

distributions parameters and the number of stimuli generated from each are displayed in 

Table 2.2. A scatter plot of the stimuli and the optimal rule is presented in Figure 2.5. The 

optimal rule required participants to respond B when the spatial frequency was high and 

the orientation was steep, and to respond A otherwise. Note that both dimensions are 

relevant for correct categorization. The number of stimuli generated from each 

distribution was chosen to equate the number of stimuli in both categories and in an 

attempt to reduce the usage of unidimensional rules to solve the task. 
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FIGURE 2.5. CONJUNCTIVE (CJ) CATEGORY STRUCTURE USED IN EXPERIMENT 2. Open 
circles denote category A, filled squares denote category B. Dashed line represents the 
optimal decision bound. 
 

 Distribution µf µo σf σo covxy N 

A1 2.95 35 0.21 3.12 0 8 

A2 3.30 35 0.21 3.12 0 16 

A3 2.95 55 0.21 3.12 0 16 

B 3.30 55 0.21 3.12 0 40 

 

TABLE 2.2. DISTRIBUTION PARAMETERS FOR THE CONJUNCTIVE CATEGORY 
STRUCTURE USED IN EXPERIMENT 2. N: number of stimuli derived from each 
distribution. Stimuli from the distributions A1, A2, A3 were all members of category A. 
 

Procedure 

The procedure was identical to that in Experiment 1 except that there were four 

rather than five blocks of 80 trials. Participants were told that perfect performance is 
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possible and that they should certainly achieve above 80% correct before the end of 

training. 

Results 

Stroop task performance.  

Mean Stroop task accuracy was .862 (sem = .026). Five participants did not reach 

required 80% Stroop task accuracy, and their data were excluded from further analyses. 

Categorization task performance 

We first inspected the distribution of scores in order to compare them to those in 

Experiment 1 (data not shown). Although there was a tendency toward bimodality, the 

Kolmogorov-Smirnov test did not show a significant deviation from normality for either 

condition nor collapsed across the control and the dual condition in any block (KS D(55) 

= .153, p = .153 for the collapsed data and overall score distribution).  

Mean categorization accuracy for each block of trials is shown in Figure 2.6. 

Overall categorization accuracy was 70.2% in the control group and 60.6% in the Stroop 

group. Thus, the Stroop task produced a 9.6% drop in categorization accuracy that was 

significant (bootstrapped 95% confidence interval for the drop (CJC – CJS)). 
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FIGURE 2.6. MEAN BLOCK ACCURACIES IN EXPERIMENT 2 (CONJUNCTIVE TASK). 
Control group is denoted with solid line and filled diamonds, dual Stroop task group with 
broken line and open diamonds. Error bars denotes bootstrapped 68% confidence 
intervals (equivalent to a standard error of mean). 
 

To examine response strategies, we fit a general linear classifier, a conjunctive 

and a unidimensional decision bound model to each participant’s responses in the last 

block (the details of these models can be found e.g. in Maddox, Ashby, & Bohil, 2003). 

We found that the proportion of participants who used a strategy employing both 

dimensions dropped from 77% in the control to 44% in the dual task condition and the 

proportion of participants using a unidimensional rule for categorization increased from 

7% in control to 17% in the dual task condition.9  

                                                 
9 The responses of the rest of the participants were best account by a flat response strategy that assumes 
that the response is independent from the stimulus values. 
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Discussion 

The results from Experiment 2 supported the COVIS prediction that 

categorization based on the combination of both dimensions is less likely and using 

unidimensional strategies more likely under dual task condition than under control 

condition; a prediction that is opposite of that from Nosofsky and Kruschke’s (2002) 

account of Waldron and Ashby’s (2001) results. To compare the observed drop in 

performance in the conjunctive rule-based condition with those from Experiment 1, we 

computed the average performance across the first four blocks of trials (since Experiment 

2 concluded four rather than five blocks of trials) in each condition. The results are 

displayed in Figure 2.7. Figure 2.7 suggests that the impact of the dual Stroop task was 

indeed larger on conjunctive rule-based than on information-integration category 

learning, as predicted by COVIS, and opposite from that predicted by Nosofsky and 

Kruschke (2002).  
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FIGURE 2.7. COMPARISON OF MEAN CATEGORIZATION ACCURACIES ACROSS 
EXPERIMENTS 1 AND 2. Only data from the first four blocks were used. 
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Both the shape of the score distributions and the dual task effect on the 

conjunctive task were intermediate between those found in Experiment 1 for 

unidimensional rule-based and information-integration. The results suggest that a number 

of strategies may be used to resolve the conjunctive task and each of these strategies may 

be influenced by the dual task differently. Detailed discussion of the dual task 

interference for the three category structures is reserved for the General Discussion. 

 

GENERAL DISSCUSSION 

The theoretical framework which gave rise to the experiments reported in this 

article was the COVIS model of category learning (Ashby, Alfonso-Reese, Turken, & 

Waldron, 1998). COVIS builds upon a body of research that identified alternative 

strategies of category learning and extends it by identifying the underlying neural 

structures. This line of research contrasts with theories assuming a single system of 

category learning. In this discussion, we will first focus on the COVIS account of the 

observed pattern of data, then review alternative multiple-system approaches to 

categorization, and finally ask whether a single system approach to categorization may be 

sufficient in accounting for the results observed here and elsewhere. 

COVIS 

COVIS assumes the existence of at least two category learning systems: an 

initially favored hypothesis-testing system that seeks explicit rules and relies on working 

memory and selective attention, and an implicit system that is procedural–learning-based 

and essentially automatic. Two predictions result from this notion. First, category 

learning by the hypothesis testing system when a simple correct categorization rule exists 

that yields nearly perfect performance (such as our unidimensional rule-based category 

structure) should have an all-or-none character, while learning by the procedural-learning 

based system is gradual and incremental. Second, a dual task requiring limited cognitive 
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resources, working memory and selective attention, should impair the hypothesis testing 

system, but not the procedural system.  

The three category structures used in the two studies reported in this paper differ 

in their level of attainability by the two systems. Unidimensional rule-based category 

learning resulted in a bimodal, all-or-none distribution of scores and was affected most by 

the dual task, suggesting a strong reliance on the hypothesis-testing system in solving the 

task. The unidimensional category structure is indeed well acquired by the hypothesis-

testing system, because a simple rule can yield almost perfect accuracy. However, if the 

correct rule is not found, alternative rules yield performance at chance levels of accuracy. 

The procedural learning based system may exhibit poor acquisition of such a structure 

because the variance along the relevant dimension is small while the variance along the 

irrelevant dimension is high. The high convergence of connections from the 

inferotemporal cortex to the tail of caudate nucleus may cause the same striatal units to 

be activated by stimuli coming from different categories but sharing similar value on the 

irrelevant dimension, making the stimulus-response mapping within the caudate difficult. 

Thus, although this task was easiest under the control condition, the need to find the one 

correct rule by the hypothesis-testing system with limited resources and unreliable 

responses from the implicit system made it most difficult under the dual task condition.  

Neuroimaging study by Bench et al. (1993) showed that the anterior cingulate and 

frontal cortex are structures strongly activated while performing a Stroop task. The fact 

that the presence of the Stroop task most affected unidimensional rule-based category 

learning provides an empirical support for the COVIS proposition that the explicit, 

hypothesis testing system, but not the procedural system, relies on working memory and 

attentional processes and on these same underlying brain structures (i.e. anterior cingulate 

and frontal cortex). The dual Stroop task may influence several stages of the hypothesis-

testing system. It may make selective attention to relevant dimension more difficult to 

achieve because selective attention is needed for the Stroop task. Its working memory 

load may make it harder to remember the current rule to be tested and which rules did not 
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work previously. It may impair the ability to detect conflict and evaluate performance and 

select and switch to a new rule (anterior cingulate functions). 

Information-integration category learning was the most difficult in the control 

condition, but exhibited the smallest decrement in performance in the dual task condition, 

becoming the easiest. The information-integration category structure is better acquired by 

the procedural system than the hypothesis-testing system. COVIS predicts that after 

trying unsuccessfully all salient rules, the weight on the hypothesis-testing system 

decreases and the responses become dominated more often by the procedural system. The 

procedural system learns the stimulus-response mapping gradually and incrementally, 

yielding a normal distribution of scores. The stimulus-response mapping in the caudate is 

facilitated by the larger distance of the stimuli from the two categories in the stimulus 

space (d prime in the physical space of 10.3 compared to 4.5 for the unidimensional 

structure). The dual Stroop task may influence information-integration category learning 

in two opposite ways: It may hurt performance because it reduces cognitive resources 

needed for initially biased hypothesis testing and/or slows down the shift in favor of the 

implicit system, or it may facilitate performance because the limited capacity hypothesis-

testing system becomes less initially biased and/or the overall system shifts faster towards 

the implicit system. We found a slight performance drop in the dual compared to the 

control condition, suggesting that the first influence or a combination of both is more 

likely. Because the implicit system itself is unaffected by the dual task, once the weight 

of that system increases sufficiently, accuracy would be expected to be essentially the 

same under the control as under the dual condition. 

The conjunctive rule-based category structure used in the Experiment 2 has 

properties intermediate between those used in Experiment 1, yielding intermediate 

difficulty and performance drop under the two conditions. The optimal conjunctive rule 

yields the highest accuracy (100% possible), however, unidimensional rules on either 

dimension can provide accuracy up to 80%, and information-integration strategies may 

be successful as well due to relative high separability of the four underlying distributions. 

The proportion of participants using a combination of both dimensions (spreading 
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attentional weights in terms of ALCOVE (Kruschke, 1992)) for categorization decision 

decreased and the proportion of participants using values on a single dimension increased 

under the dual task condition, contrary to the ALCOVE prediction (Nosofsky & 

Kruschke, 2002) and with agreement to the prediction assuming two learning systems. 

The results of Experiment 2 also argue for dual Stroop task interference on performance 

evaluation and rule switching, in addition to working memory load, because participants 

were more likely to stick with the suboptimal unidimensional rules despite corrective 

feedback.  

Rule versus similarity 

There has been a long tradition in cognitive psychology research of focusing on 

the distinction between perceptual categorization that is based on a rule application and 

that based on overall similarity to previously seen instances (Allen & Brooks, 1991; 

Brooks, 1978; Folstein & Van Petten, 2004; Kemler-Nelson, 1984; J. D. Smith & 

Shapiro, 1989). Rule versus similarity distinction provides an alternative theory of 

multiple strategies of categorization. Rule application involves a high working memory 

load and requires analytic, serial processing of criterial attributes with differential 

weighting of attributes, while similarity-based processing involves a low working 

memory load and holistic, parallel, automatic processing with equal weighting of 

attributes (E. E. Smith, Patalano, & Jonides, 1998).  

The theories assuming alternative strategies of categorization involving 

qualitatively distinct processes of rule application and similarity judgment are strikingly 

similar to the computational level description of the COVIS model. The rule application 

is assumed to involve working memory and selective attention to criterial attributes, 

similar to the explicit, hypothesis testing system. The similarity judgment is an automatic, 

holistic process that does not have a high working memory load, comparable to the 

implicit, procedural learning based system. A dual task reduces the likelihood of using 

analytical rules in categorization (J. D. Smith & Shapiro, 1989).  
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Rule versus similarity distinction theories would therefore predict a similar 

pattern of results as obtained here, because the holistic strategies promoted over the 

analytic strategies under the dual task have different relative utilities for correct 

categorization. However, direct application of these theories to the results from our two 

experiments is complicated by the dissimilarity of the experimental paradigms. 

Experiments illustrating the dissociation between rules and similarity often use a unitary 

category structure where category membership can be determined perfectly from rule 

application or similarity-based processes and induction of either process is achieved by 

instruction manipulation (e.g. explicit formulation of the rule versus feedback training 

only in Allen and Brooks, 1991). An alternative are experiments using real world 

categories for which the existence or nonexistence of necessary attributes (rules) is 

known to participants (e.g. size of a quarter in Rips, 1989). In our experiments, 

participants have no prior knowledge about the nature of the category structure and 

training is based on feedback only for all category structures. Category structures 

themselves, rather than instruction or prior knowledge, promote or inhibit the use of 

either system. The process of rule discovery and testing is of equal importance to rule 

application in the COVIS model, and the interaction and relative weighting of the two 

systems is explicitly stated. On the other hand, studies in which use of a rule versus a 

similarity judgment is addressed in conditions in which both strategies are available at 

any given trial may help to shed more light on how the competition between the 

hypothesis testing and the implicit system is resolved. Also, while the rule versus 

similarity distinction may be widely valid across modalities and extend to higher level 

cognition, such as language, COVIS has a narrower focus on visual perceptual 

categorization and, because of the specified underlying neurobiology, cannot be 

automatically applied outside its original domain. In sum, despite some methodological 

and terminological differences, the neuropsychological COVIS model and the cognitive 

psychology based theories of alternative rule and similarity strategies of categorization 

are more likely to complement than to oppose one another. 



 53 

Single versus multiple systems in category learning 

The alternative to the notion of multiple systems in categorization is the notion of 

a single categorization system. First we have to make clear what a system means. In 

COVIS, the two category learning systems operating in parallel differ both in the 

computational and implementation level of description; one system coding for explicit 

rules in frontal structures using selective attention and working memory, the other 

encoding instances in the inferotemporal cortex and procedural learning-based stimulus-

response mapping in the striatum. Both systems then compete (or cooperate) to determine 

the response of the overall system (the organism). When arguing against the multiple 

system account of Waldron and Ashby (2001) results, Nosofsky and Kruschke (2002) 

accept that other processes, such as selective attention to relevant dimension, may take 

place in category learning. However, they emphasize that different processes operate on a 

single exemplar category representation. What seems like a distinction between 

categorization based on a rule application versus overall similarity evaluation is then the 

same exemplar-based categorization when all attention weight is on one diagnostic 

dimension versus when attention weight is spread about equally across many dimensions. 

A similar idea was recently presented by Pothos (2005) who argues that rules and 

similarity represent two extremes on a single continuum of similarity operations, with no 

need to model rule and similarity processes separately. Rule application is a similarity 

evaluation process where only a single or small number of object’s features are involved.  

These are compelling ideas and the imperative of parsimony requires accepting 

the single system notion (a single representation with a single process) unless we have a 

sufficient body of evidence that a single system explanation cannot account for the 

empirical data available. 

Several lines of evidence lead us to believe that a single system explanation is not 

sufficient to account for the data observed in our two experiments and, most importantly, 

in the complex of a broad range of other studies. First, we already discussed how 

Nosofsky and Kruschke (2002) account of Waldron and Ashby (2001) is inconsistent 
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with the results of our Experiment 2 (see also Ashby and Ell, 2002, for evaluation of 

Nosofsky and Kruschke). 

Second, single system models, such as ALCOVE (Kruschke, 1992) do not 

specifically address the underlying neural substrate for the exemplar storage and the 

neural mechanism of categorization. A number of studies focused on differential 

activation of the brain in different categorization paradigms and suggest that at least 

humans have available more than one system involving different neural circuits and 

category representations (E. E. Smith, Patalano & Jonides, 1998; Seger & Cincotta, 2002; 

see Keri, 2003, for a review of studies including clinical neuropsychology findings, 

functional neuroimaging, and single cell studies). To address specifically the single 

versus multiple representations issue, Keri (2003) summarizes a number of studies 

showing that inferotemporal cortex is responsible for category instances representation, 

while prefrontal cortex encodes abstract rules. Such a finding supports at least two-fold 

category representation, one is the representation of specific instances (exemplars), the 

other of rules. Because an organism behaves as an integral system, different 

representations and processes will interact and act in concordance in order to produce 

meaningful behavior. Pothos’ (2005) putative continuum from rules to similarity may 

thus reflect relative contribution of each system to the overall response of an organism, 

such as postulated in COVIS, by the relative weighing of the two subsystems’ responses 

in producing the final decision. 

Third, even if a single system model could account for the pattern of data 

observed in our two experiments, we may still question whether that provides us with a 

valid and more parsimonious explanation. First, exemplar models are often viewed as 

highly flexible. Recently, Olsson, Wennerholm and Lyxzen (2004) showed that exemplar 

and other mathematical models often suffer from overfitting, i.e. accounting perfectly for 

noise as well as actual variance due to cognitive processes. Second, with respect to the 

issue of parsimony, it is unclear whether a single system model that requires different sets 

of assumptions (and parameter values) about the underlying processes to account for the 

wide array of “multiple systems” data is more parsimonious than a multiple systems 
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model that a priori predicts the patterns observed in the multiple systems data. For 

instance, Nosofsky and Kruschke (2002) claim: “As long as the sensitivity parameter c is 

not too high, ALCOVE predicts far greater interference on the simple one-dimensional 

task than on the complex three-dimensional task” (p.171). The c parameter measures the 

overall discriminability of the stimuli and should be high for such highly discriminable 

stimuli as used in Waldron and Ashby (2001). We conclude that the dual task 

interference effects found here provide evidence for the existence of at least two category 

learning systems, one that utilizes working memory and attention and dominates in 

learning of the rule-based category structures and one that does not require these limited 

resources and dominates in learning of the information-integration category structures. 
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Chapter 3: Working Memory in Category Learning10 

WORKING MEMORY ROLE IN THE HYPOTHESIS TESTING AND PROCEDURAL LEARNING 

SYSTEM 

Most multiple systems models of category learning postulate a hypothesis-testing 

(or rule-based) component. These include models that make no claims about the 

neurobiological underpinnings, such as RULEX (Nosofsky, Palmeri, & McKinley, 1994) 

or ATRIUM (Erickson & Kruschke, 1998), as well as neurobiologically-inspired models 

like COVIS (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; see also Patalano, Smith, 

Jonides, & Koeppe, 2001). COVIS postulates two category learning systems: a 

hypothesis-testing system that seeks verbalizable rules and is mediated primarily by the 

prefrontal cortex, and a procedural learning system that learns stimulus-response 

associations primarily mediated by striatum. As stated explicitly in COVIS (and perhaps 

implicitly assumed in RULEX and ATRIUM), processing of the feedback in the 

hypothesis testing system is effortful and requires working memory and attentional 

capacity. Following feedback on an incorrect trial, a number of events occur in the 

hypothesis testing system: (1) The salience of the current rule decreases; (2) A decision is 

made about whether to re-use the current rule or to generate and select a new one; (3) If 

applicable, attention is switched from the old rule to the new rule. These events in the 

hypothesis testing system require both time and availability of the limited resources 

(working memory and attention: Maddox, Ashby, Ing, & Pickering, 2004; Waldron & 

Ashby, 2001). On the other hand, the procedural system requires the feedback to follow 

the categorization response immediately (Maddox, Ashby, & Bohil, 2003; Maddox & 

Ing, 2005), but feedback is then processed automatically and does not require working 

memory or attention (Maddox, Ashby, Ing, & Pickering, 2004).  

                                                 
10 Major portions of this chapter have been previously published as an article Zeithamova & Maddox 
(2007). The role of visuospatial and verbal working memory in perceptual category learning. Memory and 
Cognition, 35(6), 1380-1398. Copyright 2007 Psychonomic Society, Inc 
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Maddox et al. (2004) tested the prediction that feedback processing is effortful 

and time consuming for the hypothesis-testing system, but not for the procedural system. 

They contrasted rule-based and information-integration category learning using the 

category structures depicted in Figure 2.2 (previous chapter) across the three 

experimental conditions displayed in Figure 3.1.A. In the control condition, participants 

viewed a stimulus, generated a categorization response and received 500 ms of corrective 

feedback followed by a 2000 ms (blank screen) inter-trial interval. In the “long” feedback 

processing condition, the categorization response feedback was followed by 2500 ms 

blank screen delay display to allow feedback processing, after which a trial of a 

Sternberg’s verbal working memory task was presented. Trial was concluded with a 2000 

ms inter-trial interval. As the verbal working memory task, the Sternberg (1966) memory 

scanning task was used (Figure 3.1.B). In the Sternberg memory scanning task, four 

digits between 1 and 9 were presented for 500 ms (memory set). Next, a 1000 ms delay 

(blank screen) was presented followed by a single digit (probe). The participants had to 

indicate whether this digit was a part of the memory set or not. In the “short” condition, 

the categorization response feedback was followed immediately by the working memory 

task.  
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FIGURE 3.1. TRIAL DESIGN IN MADDOX ET AL. (2004) AND EXPERIMENT 1. (A) Schema 
of three conditions: Control = control condition, long = long feedback processing time 
condition, short = short feedback processing time condition; WM = working memory 
task. (B) Verbal working memory task design. (C) Visuo-spatial working memory task 
design. 

 

Maddox et al. found a large disruption of rule-based category learning in the 

“short” condition compared to the control condition, and a small (and not statistically 

significant) disruption of rule-based category learning in the “long” condition. Presence 

of the Sternberg task had no effect on information-integration category learning.  
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OVERVIEW OF THE CURRENT STUDIES 

Maddox et al. (2004) provided evidence that working memory and attention are 

necessary for accurate feedback processing in rule-based category learning, but not 

information-integration category learning. They used a version of Sternberg’s memory 

scanning task to tax working memory and attentional processes. However, several 

questions remain to be answered.  

In the working memory literature, a distinction is made between at least two kinds 

of working memory: verbal and visuo-spatial (e.g. Baddeley & Logie, 1999; Jonides et 

al., 1996). This distinction holds behaviorally (Cocchini, Logie, Sala, MacPherson, & 

Baddeley, 2002; Logie, Zucco, & Baddeley, 1990; Shah & Miyake, 1996), and there is 

also evidence that verbal and visuo-spatial working memory rely on different neural 

systems (Goldman-Rakic, 1998; E. E. Smith, Jonides, & Koeppe, 1996). However, the 

existing models of the hypothesis testing system do not address the distinction and do not 

make any a priori prediction regarding the effects of a secondary verbal vs. visuo-spatial 

working memory task on category learning. The Sternberg task is a standard verbal 

working memory task (Raghavachari et al., 2001), the question remains how a visuo-

spatial working memory task affects rule-based and information-integration category 

learning. In this section, we discuss a series of reasonable predictions.  

Maddox et al. (2004) showed that a sequential verbal working memory task did 

not affect information-integration category learning. One hypothesis is that this result 

would be replicated with a visuo-spatial working memory task. The logic is as follows: if 

the information-integration task is primarily learned via the procedural learning system 

and the procedural system processes feedback automatically without the need for (any 

kind of) working memory or attentional resources, there should be no effect of visuo-

spatial working memory on information-integration category learning. A second 

hypothesis is that the presence of a visuo-spatial workin memory task will affect 

information-integration category learning. The logic is as follows: processing in the 

procedural system depends critically on the visual stimulus representation in the 

inferotemporal cortex (Freedman, Riesenhuber, Poggio, & Miller, 2003). This 
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representation may be disrupted by the presence of a visuo-spatial task because the 

stimuli of the visuo-spatial task are visually presented and difficult to encode verbally. 

Additionally, the procedural system  is assumed to rely on basal ganglia (e.g. Filoteo, 

Maddox, Salmon, & Song, 2005; Poldrack, 2002), much like visuo-spatial working 

memory is assumed to depend on the basal ganglia, perhaps even to a larger extend than 

other types of working memory (Lawrence, Watkins, Sahakian, Hodges, & Robbins, 

2000; Postle, Jonides, Smith, & Corkin, 1997).  

In the hypothesis-testing system, working memory is needed for holding the 

currently active rule, comparing the rule with the current feedback, and selecting and 

switching to a new rule if necessary. Because rules learned by the hypothesis-testing 

system are usually verbalizable (Ashby, Alfonso-Reese, Turken, & Waldron, 1998), one 

reasonable prediction is that a sequential verbal working memory task will adversely 

affect rule-based category learning, but a sequential visuo-spatial working memory task 

will not. This prediction assumes that rule-based learning involves generating a verbal 

representation of the stimulus, response and feedback. Thus, placing a load on a separate 

visuo-spatial working memory store will not affect these verbal processes. Although 

verbal and visuo-spatial working memory stores are separable, a second possibility is that 

a sequential visuo-spatial working memory task will adversely affect rule-based category 

learning. Two general mechanisms may underlie such a disruption. First, a visuo-spatial 

working memory task may affect rule-based learning indirectly, because it, like the verbal 

working memory task, relies on the central executive as a common, limited-capacity 

resource (Baddeley, 1995; Baddeley & Logie, 1999). A load on the visuo-spatial working 

memory store would thus influence rule-based category learning via the central executive 

or general attention demand. Second, visuo-spatial working memory may be involved in 

some aspect of rule-based category learning that does not require verbal working 

memory.  

To conceive which aspects of rule-based learning may be differentially influenced 

by the secondary verbal and visuo-spatial working memory tasks, we need to consider 

what steps or processes may possibly be parts of rule learning and discovery. With 
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unidimensional rules on stimuli that vary along a limited number of continuously varied 

dimensions (as used in our experiments), the process may include the following 

intertwined steps: (1) selection and focused attention on one stimulus dimension (e.g. 

“spatial frequency”); (2) generation, representation and testing of a categorization rule 

(in the narrow sense of the meaning) along that dimension (e.g. “narrow stripes are 

category A, wide stripes are category B”); (3) learning, storing and application of a 

categorization criterion (e.g. the optimal spatial frequency distinguishing between 

narrow and wide stripes). Verbal working memory would then seem critical primarily for 

rule generation, maintenance and testing (Step 2), while visuo-spatial working memory 

may then be critical for learning and representation of the actual categorization criterion 

(image of a particular spatial frequency: Step 3) and/or for identification of individual 

stimulus dimensions (analytical decomposition of the stimulus) that is a basis for Step 1. 

A second reasonable prediction is thus that the visuo-spatial working memory may 

disrupt rule-based learning, either in a similar fashing to a verbal working memory task, 

or differently.  

The goal of Experiment 1 was to test these hypotheses using the same procedure 

as Maddox et al. (2004), but replacing the verbal Sternberg working memory task with a 

visuo-spatial working memory analog. The basic experimental design is depicted in 

Figure 3.1.A, the design of the verbal Sternberg task and our visuo-spatial analog are 

presented in Figure 3.1.B and 3.1.C. To anticipate, we found no effect of the sequential 

visuo-spatial working memory task on information-integration category learning, but we 

did find an effect on rule-based category learning. 

Experiment 2 explored the generality of the working memory effects in perceptual 

category learning. Whereas Maddox et al. (2004) and Experiment 1 examined a rule on 

the spatial frequency of a Gabor patch stimulus, Experiment 2 examined rules on the 

orientation of a Gabor patch stimulus. Gabor patch stimuli have several desirable 

properties for perceptual category learning researchers. For example, they have a known 

dimensional structure with two separable dimensions. The two dimensions have simple 

verbal labels, are measured in different units and have no emergent properties. However, 



 62 

orientation has two special properties that spatial frequency does not have. First, it is 

periodic with zero degrees being equivalent to 360 degrees. Second, it contains special 

values, called “cardinal” orientations. Cardinal orientations – vertical and horizontal– are 

processed differently from other values at both the neural and behavioral level. People are 

more sensitive and more accurate when asked to judge orientations around cardinal 

orientations (Campbell & Kulikowski, 1966; Heeley & Timney, 1988; Orban, 

Vandenbussche, & Vogels, 1984). This is likely due to the fact that more neurons in 

primary visual cortex are tuned to cardinal orientations (Furmanski & Engel, 2000).  

In Experiment 2, we examined the effect of both visuo-spatial and verbal working 

memory tasks on rule-based learning when the optimal categorization rule required the 

participant to separate orientations above and below 70 degrees from horizontal (oblique 

– Experiment 2A), or orientations above and below 90 degrees (cardinal – Experiment 

2B). When the criterion is set at 70 degrees, we expect the findings to replicate those 

observed when spatial frequency was relevant, because learning a rule on the (arbitrary) 

orientation of 70 degrees likely requires the same processes needed to learn a rule on 

spatial frequency. In both cases, there are two obvious dimensions (spatial frequency and 

orientation) along which to generate explicit rules, these rules need to be tested, the 

irrelevant dimension ignored and the optimal criterion on the relevant dimension needs to 

be learned. We will test this prediction in Experiment 2A. 

The processes involved in cardinal orientation based category learning may be 

however different. As we noted above, people exhibit greater sensitivity to orientation 

changes near cardinal orientations (Campbell & Kulikowski, 1966; Heeley & Timney, 

1988; Orban, Vandenbussche, & Vogels, 1984). We say that cardinal orientations are 

perceptually special. This well established higher perceptual sensitivity may likely lead 

to more precise categorization (leading to higher asymptotic accuracy for learners) once a 

correct rule is discovered. In other words, perceptual advantage for cardinal orientations 

should improve categorization criterion learning.  

Furthermore, it is possible that cardinal orientations do not simply constitute an 

easier categorization criterion value on the general categorization rule “respond A if 
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orientation is greater than a criterion, respond B if orientation is smaller than a criterion.” 

Rather, as soon as the participant notices that stimuli vary in orientation, the cardinal 

orientations may constitute salient, spontaneously used categorization rules that create 

intuitive categories (e.g. right-tilted, left-tilted). We say that cardinal orientations may be 

conceptually special. In other words, cardinal orientations may constitute a highly salient 

categorization rule per se, with Step 2 and Step 3 being merged together. To our 

knowledge, no categorization studies explicitly tested this assumption. However, 

Huttenlocher, Hedges and Duncan (1991) reported that their participants used cardinal 

orientations as reference points in location estimation. If cardinal orientations are 

conceptually special, people may tend to use these early in learning as a rule of the first 

choice and most of the categorization rule discovery stage of learning may be skipped. 

This possible conceptual significance of cardinal orientations may lead to higher 

proportion of learners and much more rapid learning with minimal working memory load 

(and thus minimal effect of a secondary working memory task) as most participants 

would simply select the correct categorization rule as their first choice.  

Now let us consider possible effects of a working memory task when learning a 

rule on a cardinal orientation. First consider verbal working memory effects. If cardinal 

orientations are special perceptually, but not conceptually, all the effortful hypothesis-

testing processes still need to take place to find the correct rule, and we would expect to 

observe a verbal working memory task effect. If cardinal orientations are special 

perceptually and conceptually, the highly salient cardinal rule will be chosen early and 

much of the hypothesis testing process will be bypassed. Under these conditions, we 

would expect to see no or a minimal effect of the verbal working memory task.  

Second, consider visuo-spatial working memory effects. If the mechanism of the 

visuo-spatial working memory task effect is the same as that for the verbal working 

memory task (e.g. through the central executive), then we predict the same effect (or lack 

of effect) for both types of working memory tasks. If the mechanisms of visuo-spatial and 

verbal working memory task effects differ, then the predictions will differ depending on 

the role of the visuo-spatial working memory in rule-based category learning.  
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Let us return to the three steps that take a part in unidimensional rule-based 

learning: (1) selection and focused attention on one stimulus dimension, (2) 

categorization rule generation, representation and testing, and (3) criterion learning, 

representation and application. In order for the first step to occur, the participant needs to 

notice how the stimuli vary between one another and decompose them into their 

individual constituent dimensions. If visuo-spatial working memory is necessary for such 

analytic perception of individual stimulus dimensions, the participant may have difficulty 

identifying the dimensions along which the stimulus varies and how they vary, interfering 

with the first step of rule-based learning and leading to a learning deficit in the visual 

condition (even if the verbal working memory task had no effect). If visuo-spatial 

working memory is crucial for learning and representing of the categorization criterion 

(Step 3), a cardinal orientation criterion may lead to two opposing scenarios. First, 

learning of a criterion on the cardinal orientation may lead to little or no visuo-spatial 

working memory effect. This may follow either from (a) the existing higher perceptual 

sensitivity around cardinal orientation which should make learning of cardinal orientation 

criterion easier and less working memory demanding or (b) from possible conceptual 

significance of the cardinal orientation, i.e. if sorting based on a cardinal orientation 

criterion constitutes an intuitive, highly salient categorization rule per se and does not 

need to be actually learned the same way as an oblique criterion. Second, and making an 

opposite prediction, a criterion on a cardinal orientation may be more working memory 

demanding because the increased perceptual sensitivity to orientations around cardinal 

would lead participants to consider and test larger number of possible criteria. This 

argument assumes that cardinal orientations are not conceptually special and a criterion 

on a cardinal orientation needs to be learned in very much the same way as on an oblique 

orientation. In other words, it assumes that a participant would equally likely consider a 

criterion e.g. on 88 degrees as a criterion on 90 degrees. We will test the working 

memory effects on cardinal orientation based categorization in Experiment 2B. 
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EXPERIMENT 1 

 

The goal of Experiment 1 was to test a number of hypotheses regarding the effect 

of a visuo-spatial working memory task on rule-based and information-integration 

category learning. To achieve this goal, we replicated Maddox et al.’s (2004) procedure, 

but replaced the Sternberg (verbal) working memory task with a visuo-spatial working 

memory task (Figure 3.1). We were interested in determining whether the effects on rule-

based and information-integration category learning observed for a verbal working 

memory task replicated when it was replaced with a visuo-spatial working memory task. 

If the pattern was not replicated, we wanted to determine how the pattern changed. 

 

Method 

Participants and Design 

 Two hundred ninety three students at The University of Texas at Austin 

participated in the experiment in partial fulfillment of a class requirement or for pay. All 

participants were tested for 20/20 vision. The experimental design was 2 category 

structures (rule-based vs. information-integration) x 3 sequential working memory 

conditions (control, long feedback processing time, short feedback processing time). 

Each participant completed one of the 6 experimental conditions: rule-based control (RB 

control: 46 participants), rule-based long feedback processing time (RB long: 51 

participants), rule-based short feedback processing time (RB short: 53 participants), 

information-integration control (II control: 38 participants), information-integration long 

feedback processing time (II long: 52 participants), or information-integration short 

feedback processing time (II short: 53 participants). 
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Stimuli and Apparatus 

 Category learing. The stimulus dimensions and category structures were identical 

to those from Maddox et al. (2004). The categorization stimuli were Gabor patches 

(sinewave gratings enclosed in a Gaussian envelope) that varied across trials in spatial 

frequency and orientation. For the rule-based and information-integration category 

structures, forty category A and forty category B stimuli were obtained by randomly 

sampling from two bivariate normal distributions. The rule-based task was 

unidimensional, with spatial frequency being the relevant dimension and orientation 

being the irrelevant dimension. The optimal rule was to “respond A if the frequency of 

the Gabor is small (below 3.13 cycles per degree), respond B if the frequency of the 

Gabor is large (above 3.13 cycles per degree).” Both dimensions were relevant in the 

information-integration task and no simple verbal rule discriminated between the two 

categories. A schematic representation of the two category structures is depicted in 

Figure 2.2 (Chapter 2); the category distribution parameters for both category structures 

are listed in Table 3.1.  

 

Category structure µfA  µoA µfB µoB σf σo covfo 

Rule-based 2.97 45 3.28 45 0.087 34 0 

Information-integration 2.84 55 3.41 35 0.674 24 16 

TABLE 3.1. CATEGORY DISTRIBUTION PARAMETERS FOR THE RULE-BASE AND 
INFORMATION-INTEGRATION CATEGORY STRUCTURES USED IN EXPERIMENT 1. µ = 
mean; σ = standard deviation; cov = covariance; f = spatial frequency (cycles per degree); 
o = orientation (degrees); A = category A parameters; B = category B parameters.  
  

Each Gabor stimulus was generated and presented using Matlab (MathWorks, 

Natick, MA) running Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). The stimuli 

were 200 x 200 pixels, centered on a computer screen, covering about four degrees of 

visual angle.  

 Visuo-spatial working memory. A visuo-spatial working memory task that was 

analogous to the Sternberg working memory task used in Maddox et al. (2004) was 
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created (Figure 3.1.C). The participant was asked to remember 4 locations out of 9 

possible (analogous to remembering four numerical digits sampled from 9 possible 

digits). First, nine locations were randomly placed in an imaginary 9 x 9 grid, with the 

restriction that there is one location in each imaginary row and one location in each 

imaginary column. The nine locations were marked by dark gray circles each with a 

radius of 48 pixels and remained visible throughout the visuo-spatial task trial. After 500 

ms, four out of the nine locations were highlighted by a white circle with radius of 40 

pixels for 500 ms (memory set). The participant needed to remember those four locations. 

Next, all nine locations were highlighted for 1000 ms (delay period). Finally, only one 

location (probe) was highlighted and the participant’s task was to indicate whether that 

location was one of the four initially highlighted locations. The probability of a probe 

being one of the memory set was .5. 

Procedure 

 The procedure was identical to that of Maddox et al. (2004). There were three 

conditions: control, long and short (Figure 3.1.A). Each condition consisted of four 

randomly ordered 80-trial blocks. The participants were informed that there were two 

equally likely categories and that their task is to learn which patterns go into which 

category via corrective feedback. In the control condition, a categorization stimulus was 

presented on each trial and remained on the screen for 1000 ms or until the participant 

categorized it in either category A or category B. If the participant did not respond during 

the 1000 ms, the Gabor stimulus disappeared and only the response prompt (“Categorize 

the pattern as A or B”) remained on the screen. The participant had as much time as 

needed to make a response. Corrective feedback was then provided for 500 ms followed 

by a 2000 ms inter-trial interval (blank screen). 

 In the long feedback processing time condition, the categorization response 

feedback was followed by a 2500 ms blank screen to allow feedback processing, after 

which a trial of visuo-spatial working memory task was presented. The visuo-spatial task 

response was followed by a 2000 ms blank screen inter-trial interval and no feedback was 
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provided. The short feedback processing time condition was similar to the long feedback 

processing time condition, however, the categorization response feedback was followed 

immediately by the visuo-spatial working memory task and the 2500 ms delay was 

placed after the working memory task response. After each block of 80 trials, participants 

were given a short self-paced break during which they were informed how many trials 

had passed and were urged to keep their visuo-spatial task accuracy high. 

 

Results and Discussion 

Working memory task performance 

 The mean percent correct in the working memory task was high, 96.0% for RB 

long (sd = 7.0%); 94.1% for RB short (sd = 7.6%); 96.0% for II long (sd = 7%); 93.2% 

for II short (sd = 9.8%) groups. There were no differences between rule-based (mean = 

95.0%, sd = 7.3%) and information-integration (mean = 94.5%, sd = 8.6%) category 

structure groups (t(207) = 0.413, p = .680), suggesting that the resources allocated to the 

working memory task were distributed about equally. There was a difference between 

participants in long (mean = 96.0%, sd = 7.0%) and short (mean = 93.6%, sd = 8.7%) 

feedback processing time conditions collapsed over the two category structures (t(207) = 

2.125, p = .035).  

Category learning performance 

Distribution of accuracy scores. In Chapter 2, we identified substantial differences 

between the distributions of accuracy scores in rule-based and information-integration 

category learning. We found a bimodal distribution of scores in rule-based learning and a 

normal distribution of scores in information-integration learning. Thus, we began our 

analysis of category learning performance by examining the distribution of accuracy 

scores. The distribution of scores for the rule-based groups and information-integration 

groups (collapsed over the three working memory conditions) from the final block of 
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trials are presented in Figure 3.2. As is apparent from Figure 3.2, the score distribution 

for the rule-based category structure participants deviates from normality (Kolmogorov-

Smirnov D(150) = .156, p = .001), while the score distribution for the information-

integration category structure participants does not deviate from normality (KS D(143) = 

.056, p = .510). The same pattern holds for each of the working memory groups (control, 

long and short) within each category structure, with the rule-based groups appearing 

bimodal and the information-integration groups appearing normal. These results suggest 

that different processes underlie rule-based and information-integration category learning 

that lead to very different performance profiles. 

  

 
FIGURE 3.2. DISTRIBUTION OF THE FINAL BLOCK ACCURACY IN EXPERIMENT 1. Scores 
of rule-based (RB) and information-integration (II) category learning groups collapsed 
over the three feedback processing conditions (control, short and long). 

 

To gain further insight into the nature of the bimodality in the rule-based score 

distributions, we applied a series of models separately to the control, long and short score 

distributions. Each model assumes that the observed score distribution results from a 

mixture of two underlying distributions. A detailed description of the models and the 

results are presented in Supplemental Data. To summarize, the score distribution for each 

of the three rule-based category learning groups was best fit by a mixture of two 

underlying distributions, one with mean at .5 (chance) and one with a mean around .8. As 
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suggested by this analysis, there were two types of participants in each condition: 

learners, who discovered the appropriate categorization rule, and chance performers, who 

failed to discover the rule. The difference between the three rule-based groups was in the 

relative weight of the two distributions, i.e. the proportion of participants that fell under 

the .5 modus (nonlearners) and under the .8 modus (learners). More specifically, the 

effect of the secondary visuo-spatial working memory task was to decrease the proportion 

of learners (participants who discovered the rule and constituted the .8 accuracy modus) 

from 69.2% in the RB control group to 44.0% in the RB long and 48.8% in the RB short 

group. 

Proportion of learners. The distributional analyses suggest that the score 

distributions in the rule-based conditions are composed of a mixture of two populations 

of participants (chance performers and learners), and that the relative ratio of learners to 

chance performers decreases when a sequential working memory task is included. As a 

further test, we compared the proportion of learners in each condition by defining 

“learners” as participants who reached .65 correct and higher in the last block of trials 

and “nonlearners” as participants who failed to reach .65 correct in the last block of trials. 

We choose .65 correct as it appears to be a natural cut-off in the score distributions (see 

Figure 3.3, left panel) and constitutes an average between the means of the chance 

distribution (.5) and the high performance distribution (.8) for the rule-based groups. The 

results are depicted in Figure 3.3 (left panel).  

In the RB control group, 32 out of 46 participants learned. There were 

significantly fewer learners in both the RB long (23 out of 51, χ(1)=5.897, p=.015) and 

RB short conditions (26 out of 53, χ(1)=4.26, p=.039), compared to the RB control 

condition. In the II control group, 30 out of 38 participants learned. The proportions of 

learners in II long (36 of 52) and II short (36 of 53) conditions were not significantly 

different from that observed in the II control condition [long vs. control: χ(1)=1.060, 

p=.303; short vs. control: χ(1)=1.350, p=.245]. It is worth noting that these proportions of 

learner analyses for the information-integration groups were included for completeness, 

and to compare with the analyses for the rule-based conditions. This learning criterion is 
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less meaningful for the information-integration conditions as it cuts the distribution of 

scores at an arbitrary value. 

 

 

FIGURE 3.3. RESULTS OF EXPERIMENT 1. Left panel: Proportion of learners in 
Experiment 1. RB = rule-based groups, II = information-integration groups. Right panel: 
Mean accuracy (proportion correct) for each group in Experiment 1. Unidimensional 
rule-based (RB) groups are denoted with square symbols and solid lines, information-
integration (II) groups with diamond symbols and broken lines. Error bars denote 
bootstrapped 68% confidence intervals (equivalent to a standard error of mean). 
 

 Mean proportion correct. Unlike proportion of learners, mean accuracy 

(proportion of correct responses), is a more suitable performance measure for the 

information-integration groups. For the rule-based groups, mean accuracy is also 

applicable, but reflects the relative proportion of two populations of participants rather 

than reflecting performance of a typical participant. We decided to use bootstrapping 

procedures (Efron & Tibshirani, 1993) that are more appropriate than traditional 

parametric statistics when the distribution shape is non-normal or unknown. 

Categorization accuracy for each group in each block of trials is presented in Figure 3.3 

(right panel).  

We found a significant effect of the secondary visuo-spatial task on rule-based 

category learning but not on information-integration category learning. Average final 

block performance in the RB long group dropped by .10 relative to the RB control group 
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(bootstrapped p(control = long) = .002). Performance in the RB short group dropped by 

.084 relative to the RB control (p(control = short) = .009).11  

There were no significant differences among the three information-integration 

category learning groups in any block of trials or in overall accuracy. Average 

performance in the final block from the II control group was only .015 higher than that 

observed in the long group (bootstrapped p(control=long) = .602), and was only .022 

higher than that observed in the II short group (p(control=short) = .415).  

Brief summary 

To summarize the results, we found an adverse effect of the visuo-spatial working 

memory task on rule-based, but not information-integration category learning. The lack 

of interference between the visuo-spatial working memory and the information-

integration category learning task is interesting, as both tasks use visual stimuli and are 

thought to rely on basal ganglia (visuo-spatial working memory: e.g. Lawrence, 

Sahakian, Hodges, & Rosser, 1996; Lawrence, Watkins, Sahakian, Hodges, & Robbins, 

2000; discrimination and category learning: e.g. Packard & McGaugh, 1992; Poldrack, 

2002). This result, together with that observed in Maddox et al. (2004) with a verbal 

working memory task, provides support for the assumption that learning of the 

information-integration category structure is mediated by a procedural system which 

processes feedback automatically, without relying on attention or working memory.  

The significant effect of visuo-spatial working memory on rule-based category 

learning replicates the effect observed in Maddox et al. with a verbal working memory 

task, and extends it to a visuo-spatial working memory task. The effect of the verbal 

working memory task on rule-based learning found in Maddox et al. (2004) was 

expected, because attention and (verbal) working memory have been implicated in rule 

generation, rule maintenance, rule selection and rule switching (Ashby, Alfonso-Reese, 

Turken, & Waldron, 1998; Dougherty & Hunter, 2003). On the surface, none of these 

                                                 
11 The tested null hypothesis is mean1 – mean2 = 0. All bootstrapped p-values for the difference in means 
reflects a conservative, two-tailed hypothesis and may be converted to one-tailed values when divided by 2. 
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processes appears to require visuo-spatial working memory, yet visuo-spatial working 

memory affected rule-based category learning.  

As outlined in the introduction, visuo-spatial working memory task may affect 

rule-based learning indirectly via cognitive resources shared with verbal working 

memory or may have a direct effect through mechanisms other than those impacted by 

the verbal working memory task. We will discuss this issue in more detail in the General 

Discussion. Let us now turn to Experiment 2 that examines the generalizability of the 

working memory effects in rule-based learning and may add evidence in favor of one or 

the other explanations of the visuo-spatial working memory effects observed in 

Experiment 1. 

EXPERIMENT 2A 

 

In Experiment 2A, we tested the effects of a sequentially presented visuo-spatial 

or verbal working memory task on rule-based learning when the optimal categorization 

rule was to “respond A when the orientation of the stimulus is larger than 70 degrees 

from horizontal, respond B when the orientation of the stimulus is smaller than 70 

degrees from horizontal.” We compared a control condition with a short feedback 

processing visuo-spatial working memory condition (as in Experiment 1), and with a 

short feedback processing verbal working memory condition (as in Maddox et al, 2004). 

We dropped the long feedback processing condition because its effects were modest in 

Maddox et al. (2004). 

 

Method 

Participants and Design 

 Seventy-two students at The University of Texas at Austin participated in the 

experiment in partial fulfillment of a class requirement or for pay. All participants were 
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tested for 20/20 vision. Each participant completed one of 3 experimental conditions: (1) 

control (no secondary task); (2) visual (each category learning trial was immediately 

followed by a visuo-spatial working memory task trial); or (3) verbal (each category 

learning trial was immediately followed by a Sternberg verbal working memory trial). 

There were 24 participants in each condition. 

Stimuli and Apparatus 

 Category learning task. The stimuli were Gabor patches that varied across trials in 

spatial frequency and orientation. A rule-based category structure was used with the 

optimal rule being “respond A if the orientation of the Gabor is larger than 70 degrees, 

respond B if the orientation of the Gabor is smaller than 70 degrees.” The stimuli were 

randomly sampled from two bivariate normal distributions both with a mean spatial 

frequency of 3.13 cycles per degree and a standard deviation of 0.95 cycles per degree. 

Category A stimuli had a mean orientation of 75.8º with a standard deviation of 3.1º. 

Category B stimuli had a mean orientation of 64.2º with a standard deviation of 3.1º. 

Orientation and spatial frequency of the Gabors were uncorrelated. Forty category A and 

forty category B stimuli were generated. A schematic representation of the category 

structure is depicted in Figure 3.4, left panel. The apparatus was identical to that from 

Experiment 1. 
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FIGURE 3.4. CATEGORY STRUCTURES USED IN EXPERIMENT 2. Left: Experiment 2A 
(Orientation 70); Right: Experiment 2B (Orientation 90). Open circles denote category A 
stimuli, filled squares denote category B stimuli. cpd = cycles per degree 

 

 

 Working memory tasks. The visuo-spatial task was identical to that used in 

Experiment 1 (Figure 3.1.C). The verbal working memory task (Figure 3.1.B) was taken 

from Maddox et al. (2004). On each trial, four digits (memory set) were randomly 

selected without replacement from the set of digits from 1 to 9. The memory set was 

displayed for 500 ms in a horizontal array centered on the screen and spanning 

approximately 8 degrees of visual angle horizontally and 4 degrees of visual angle 

vertically. A blank screen followed for 1000 ms. Finally, a single digit (probe) was 

presented in the center of the screen and the participant was asked to indicate whether the 

probe was a part of the memory set. The probability that the probe was a member of the 

memory set was .5. 

Procedure 

 The procedure was similar to that used in Experiment 1 with the exception that we 

equated the duration of the inter-trial interval across conditions and added a fixation cross 

to prepare participants for the next trial. Each condition consisted of four blocks of eighty 

randomly ordered trials. The participants were informed that there were two equally 

likely categories and that their task was to learn which pattern goes into which category 
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via corrective feedback. In the control condition, each trial started with a 500 ms fixation 

cross (a plus sign) to prepare the participant for the upcoming trial. A categorization 

stimulus was then presented and remained on the screen for 1000 ms or until the 

participant categorized it in either category A or category B. Corrective feedback was 

provided for 500 ms followed by 2500 ms inter-trial interval (blank screen).  

 The two working memory (visual and verbal) conditions were similar to the 

“short” condition from Experiment 1. Each trial also started with a 500 ms fixation cross, 

followed by a categorization stimulus presented for 1000 ms or until the participant 

responded. Corrective feedback was presented for 500 ms after a response was made and 

a working memory task trial immediately followed (verbal, Figure 3.1.B or visuo-spatial, 

Figure 3.1.C). After the participant responded, a 2500 ms inter-trial interval (blank 

screen) concluded the trial, and no working memory task feedback was provided. As in 

Experiment 1, after each block of 80 trials, participants were given a short self-paced 

break during which they were informed how many trials had passed and were urged to 

keep their working memory task accuracy high.  

 

Results 

Working memory task performance 

 The mean percent correct was 95.5% in the visuo-spatial task (sd = 4.5%) and 

96.6% in the verbal task (sd = 3.4%). This difference was not statistically significant 

(t(46) = .940, p = .352). 

Category learning performance 

 Distribution of scores and proportion of learners. As expected from Experiment 1, 

the distribution of scores in the final block of trials violated normality (Kolmogorov 

Smirnov D(72)=.221, p=.002), and instead was bimodal (Figure 3.5, left panel). Using 

the same procedure applied in Experiment 1 (Supplemental Data), we found that the 
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score distribution for each of the three conditions was best fit by a mixture of two 

underlying distributions, one with mean at .5 (chance) and one with mean around .9. The 

effect of both secondary working memory tasks was again in decrease of the proportion 

of participants who discovered the rule (learners) and constituted the .9 accuracy modus, 

from 83.3% in the control group to 50.0% in the visual and 50.0% in the verbal condition. 

Compared to Experiment 1, both the mean performance level for the learners and relative 

proportion of learners in the observed score distribution was higher. Specifically, whereas 

the mean performance level for learners in Experiment 1 was about .8, it was .9 in 

Experiment 2A. Similarly, whereas the relative proportion of learners was 69.6% in 

Experiment 1 control condition, it was 83.3% in Experiment 2A control condition. Taken 

together, these data suggest that the rule on the orientation of the Gabor stimuli was 

somewhat easier to learn.  

 

 

FIGURE 3.5. DISTRIBUTION OF THE FINAL BLOCK ACCURACY SCORES IN EXPERIMENT 2. 
Orientation 70: Experiment 2A; Orientation 90: Experiment 2B. Scores collapsed over 
the three working memory conditions (control, visual, verbal). 
 

We also analyzed the proportion of learners in each group using the same 

criterion as in Experiment 1 (at least .65 correct in the last block). The results are 

depicted in Figure 3.6 (left panel). There were 20 learners (out of 24) in the control 
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condition, which is significantly more than 12 learners (out of 24) in either the visual or 

the verbal condition (χ2(1) = 6.0, p=.014).12 

 

 

FIGURE 3.6. RESULTS OF EXPERIMENT 2A. Left panel: Proportion of learners. Right 
panel: Mean accuracy in each block. Error bars denote bootstrapped 68% confidence 
intervals (equivalent to a standard error of mean). 

 

 Mean proportion correct. Block accuracies in Experiment 2A are presented in 

Figure3.6 (right panel). We found that both the visuo-spatial and verbal working memory 

tasks significantly disrupted category learning. Specifically, the average final block 

performance dropped by .134 in the visual condition relative to the control condition 

(bootstrapped p(control = visual) = .017), and by .139 in the verbal condition relative to 

the control condition (bootstrapped p(control=verbal) = .009).  

 

To summarize, we found an adverse effect of both visuo-spatial and verbal 

working memory tasks on rule-based category learning when the criterion was on an 

(arbitrary) oblique orientation. As expected, these results are similar to those found when 

the criterion was on spatial frequency of a Gabor, suggesting that these working memory 

                                                 
12 The learner criterion of .7, which is the average of the .5 chance score distribution and .9 high 
performing score distribution in Experiment 2A, gives identical results, as no subject had final block 
accuracy between .65 and .70 (see Figure 6, left panel). 
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effects generalize. We now turn to Experiment 2B that tests more fully the generality of 

these effects.  

 

EXPERIMENT 2B 

 

In Experiment 2B, we used a category structure that was formally identical to that 

in Experiment 2A, except that the criterion was shifted from 70 degrees to 90 degrees, a 

cardinal orientation (Figure 3.4, right panel). As stated in the Introduction to Experiment 

2, we suspect that this slight manipulation may have a substantial effect on rule-based 

category learning under both the control condition and when a sequentially presented 

working memory task is included. The two main aims of Experiment 2B were to 

investigate whether cardinal orientations are conceptually special and whether we find 

evidence for dissociability of the visuo-spatial and verbal working memory effects. 

 

Method 

Participants and Design 

 Seventy-two students at The University of Texas at Austin participated in the 

experiment in partial fulfillment of a class requirement or for pay. All participants were 

tested for 20/20 vision. Each participant completed one of 3 experimental conditions: (1) 

control, (2) visual, or (3) verbal. There were 24 participants assigned into each condition. 

No student participated in both Experiment 2A and Experiment 2B. 

Stimuli, Apparatus and Procedure 

 Category learning task. The stimuli, apparatus and category structure were 

identical to that from Experiment 2A except that the optimal categorization rule was to 

“respond A if the orientation of the Gabor is larger than 90 degrees (is left-tilted), 

respond B if the orientation of the Gabor is smaller than 90 degrees (is right-tilted).” The 
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stimuli were randomly sampled from two bivariate normal distributions that both had a 

mean spatial frequency of 6.25 cycles per degree with a standard deviation of 2.14 cycles 

per degree. Category A stimuli had a mean orientation of 95.8º with a standard deviation 

of 3.1º. Category B stimuli had a mean orientation of 84.2º with a standard deviation of 

3.1º. The orientation and spatial frequency of the Gabors were uncorrelated. Forty 

category A and forty category B stimuli were generated. A schematic representation of 

the category structure is depicted in Figure 5 (right panel). The secondary working 

memory tasks and experimental procedure were identical to those from Experiment 2A. 

Results 

Working memory task performance 

 The mean percent correct was 95.8% in the visuo-spatial task (sd = 3.2%) and was 

96.6% for the verbal task (sd = 2.9%). This difference was not statistically significant 

(t(46) = .898, p = .374). These accuracies are very similar to those obtained in 

Experiment 2A. 

Category learning performance 

 Distribution of scores, proportion of learners and mean proportion correct. The 

distribution of scores in the final block of trials deviated from normality (Kolmogorov-

Smirnov D(72)=.373, p<.001), but unlike in Experiments 1 and 2A, it did not appear 

bimodal (Figure 3.5, right panel). Rather, the vast majority of participants learned the 

correct categorization rule and performed at a high rate of accuracy (above .90 correct). 

In addition, there were no differences among groups in the proportion of learners (Figure 

3.7, left panel). Only 2 participants in the control condition, 3 participants in the visual 

condition and 4 participants in the verbal condition did not reach .65 proportion correct in 

the last block of trials. Block accuracies in Experiment 2B are presented in Figure 3.7 

(right panel). As is apparent from the figure, there were small and nonsignificant 

differences among the groups during the final block of trials (bootstrapped 



 81 

p(control=visual)=.270, p(control=verbal)=.232) and performance was high. There were 

performance differences in the initial block of trials. In the first block, performance in the 

visual condition dropped by .148 compared to the control condition 

(p(control=visual)=.004) and performance in the verbal condition dropped by .108 

compared to the control condition (p(control=verbal)=.008). 

 

 

FIGURE 3.7. RESULTS OF EXPERIMENT 2B. Left panel: Proportion of learners. Right 
panel: Mean accuracy in each block. Error bars denote bootstrapped 68% confidence 
intervals (equivalent to a standard error of mean). 

 

A comparison of the control conditions from Experiment 2A and Experiment 2B 

suggests that cardinal orientations are special both perceptually and conceptually. The 

higher asymptotic accuracy for learners in Experiment 2B compared to Experiment 2A 

(e.g. compare left and right panels in Figure 3.5) supports the notion that cardinal 

orientations are perceptually special. A comparison of early control performance in 

Experiment 2A and Experiment 2B (e.g. compare Block 1 in Figure 3.6, right panel with 

Block 1 in Figure 3.7, right panel) supports the notion that cardinal orientations are also 

conceptually special and constitute a highly salient categorization rule. High accuracy in 

the control condition starting at Block 1 suggests that a majority of the participants 

selected the correct categorization rule very early on. 

In Experiments 1 and 2A, the secondary working memory task led primarily to a 

decrease of the proportion of learners compared to the control condition. This pattern did 
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not replicate in Experiment 2B because the proportion of learners was high and 

approximately equal in all conditions by the end of training. Because there were no 

differences in the proportion of learners among the conditions and almost every 

participant learned the rule, we turned to an alternative measure of performance that may 

be more sensitive to detect an effect of a secondary task, if there was any. We turned to a 

measure often used in categorization research – the number of trials needed to reach an 

accuracy criterion (trials to criterion). As the vast majority of participants in Experiment 

2B succeeded in learning the task, using trials to criterion is suitable to characterize the 

speed of learning in all conditions. The trials to criterion measure is not suitable in 

Experiment 1 and Experiment 2A, as half or more of the participants in the visual and 

verbal working memory conditiontions failed to reach any reasonable learning criterion, 

whereas the majority of the participants in the control conditions did.  

Trials to criterion. As one trials-to-criterion measure, we recorded for each 

participant the trial on which the accuracy over the last 80 trials first reached or exceeded 

.65 correct (the learning criterion used in the previous experiments). This analysis is 

presented in Figure 3.8 (C6580; i.e. criterion of .65 correct over previous 80 trials). 

Participants in the visuo-spatial working memory condition needed significantly more 

trials to reach the criterion (bootstrapped p(control=visual)=.013) than participants in the 

control condition, whereas there was no difference in the trials-to-criterion between the 

verbal working memory group and the control group (bootstrapped 

p(control=verbal)=.859). Because a large proportion of participants reached the .65 

correct criterion right at the trial number 80 (i.e, discovered the rule during the first 80 

trials of the experiment), we examined a number of other performance criteria and 

smaller window sizes to ensure that the results were robust. We typically found a large 

and significant effect of the visuo-spatial working memory task and a small and non-

significant effect of the verbal working memory task relative to the control condition. For 

example, for the criterion of .75 correct over the last 40 trials (Figure 3.8, C7540), we 

found that the visuo-spatial working memory group needed on average 48 more trials 

than the control group to reach the criterion (bootstrapped p(control=visual) = .002), 
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while the verbal working memory group needed on average only 12 more trials than the 

control group (bootstrapped p(control=verbal) = .127).13  
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FIGURE 3.8. TRIALS TO CRITERION IN EXPERIMENT 2B. Mean number of trials to reach 
the criterion of .65 correct over last 80 trials (C6580; left half) and the criterion of .75 
correct over last 40 trials (C7540; right half). Error bars denote 68% confidence interval 
(equivalent to a standard error of mean). 

Brief summary 

To summarize, we examined visuo-spatial and verbal working memory effects in 

rule-based category learning when the criterion to be learned was on a cardinal 

orientation. The results differed from those obtained for a formally identical task that 

used an oblique orientation as the criterion. We found that the task was much easier to 

learn and that neither the visuo-spatial nor the verbal working memory task had 

significant effect on the proportion of learners or final (asymptotic) accuracy. We found 

adverse effects of both the visuo-spatial and the verbal working memory tasks on mean 

accuracy during the early stages of learning but we found a significant effect of the visuo-

                                                 
13 For an interested reader: The general pattern of results remains similar even if we exclude outliers (so the 
effect is not driven by extreme values) or include non-learners by assigning them 320 trials to criterion 
(maximum possible). 
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spatial, but not the verbal working memory task on the speed of learning as measured by 

the mean number of trials to reach an accuracy criterion. 

How do these results address the hypotheses outlined in the introduction? First, 

the control data support the hypothesis that cardinal orientations are special both 

perceptually (leading to higher asymptotic accuracy for learners) and conceptually 

(leading to high proportion of learners, even early in the experiment). Second, the 

difference between the visuo-spatial and verbal working memory effects suggests that 

they may affect different processes associated with rule-based learning. The minimal 

effect of the verbal working memory task fits with the hypothesis that cardinal 

orientations are conceptually special, as supported by the control data. The high salience 

of the cardinal orientation rule leads participants to select the rule early in learning, 

bypassing much of the working memory demanding hypothesis testing process. The 

effect of the visuo-spatial working memory task was larger and significantly affected the 

speed of learning. These results are not likely if the visuo-spatial working memory task 

was primarily affecting domain non-specific resources (central executive), because the 

results would be similar to those from the verbal condition. In addition, these results are 

not likely if visuo-spatial working memory is only involved in learning and 

representation of the optimal categorization criterion. Because cardinal orientation seems 

conceptually special (from the control and the verbal condition data), cardinal orientation 

criterion does not need to be learned in the same way as an oblique orientation and thus 

should require minimal visuo-spatial working memory resources. Rather, the results seem 

in accordance with the hypothesis that the visuo-spatial working memory task disrupts 

the analytic perception of stimuli and leads the participant to take longer to notice the 

variation of the stimuli around the cardinal orientation. However, as the first attempt to 

address the visuo-spatial working memory role in category learning, this notion needs to 

be taken as a working hypothesis only.  We elaborate on this possibility below. 
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GENERAL DISCUSSION 

Many categorization theories assume that an effortful, working memory 

demanding process of hypothesis testing is involved in at least some types of category 

learning (e.g. Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Bruner, Goodnow, & 

Austin, 1956; Erickson & Kruschke, 1998; Feldman, 2000; Nosofsky, Palmeri, & 

McKinley, 1994). Previous research (Maddox, Ashby, Ing, & Pickering, 2004) and our 

Experiment 1 showed that a sequentially presented verbal or visuo-spatial working 

memory task disrupt rule-based learning, confirming the existence of the effortful 

hypothesis testing based category learning. Importantly, Maddox et al. (2004) and 

Experiment 1 also demonstrated that effortful, working memory demanding hypothesis 

testing is not the only existing process of category learning, because information-

integration category learning was not affected at all by a secondary verbal (Maddox, 

Ashby, Ing, & Pickering, 2004) or visuo-spatial task (present Experiment 1). The lack of 

the visuo-spatial working memory task effect on information-integration category 

learning is nontrivial, as both tasks use visual stimuli and are thought to rely on basal 

ganglia (Filoteo, Maddox, Salmon, & Song, 2005; Lawrence, Sahakian, Hodges, & 

Rosser, 1996; Lawrence, Watkins, Sahakian, Hodges, & Robbins, 2000; Maddox & 

Filoteo, 2001; Packard & McGaugh, 1992; Poldrack, 2002; Postle, Jonides, Smith, & 

Corkin, 1997). Based for example on the COVIS theory of category learning (Ashby, 

Alfonso-Reese, Turken, & Waldron, 1998), we speculate that visuo-spatial working 

memory and information-integration learning may rely on different subregions of the 

caudate: visuo-spatial working memory on the head of the caudate nucleus (R. Levy, 

Friedman, Davachi, & Goldman-Rakic, 1997) while information-integration category 

learning on the posterior caudate nucleus (Nomura et al., 2007; Seger & Cincotta, 2005). 

The data from Experiment 1 indeed indicate that there is no interference between the two 

(at least with respect to the current tasks). Taken together, these results support the notion 

that both visuo-spatial and verbal working memory tasks impact the processes involved 

in the hypothesis testing system that mediates rule-based category learning, but neither 
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visuo-spatial nor verbal working memory is crucial for procedural system that mediates 

information-integration category learning.  

Experiment 2 tested the generality of working memory effects in rule-based 

learning by investigating the effects of a visuo-spatial and a verbal working memory task 

on rule-based category learning when the criterion was on an oblique orientation (70 

degrees) or on the cardinal orientation (90 degrees) of a Gabor stimulus, instead of on 

spatial frequency. Experiment 2 demonstrated that not all rule-based categories are 

treated equally. When the criterion was on an oblique orientation, the results replicated 

those from Maddox et al. and Experiment 1 for which the criterion was on spatial 

frequency. When the criterion was on a cardinal orientation, we found faster learning 

with a higher asymptotic accuracy in the control condition. This result confirmed that 

cardinal orientations are perceptually special (as has been previously established, see 

e.g.Campbell & Kulikowski, 1966; Furmanski & Engel, 2000). Furthermore, this result 

suggested that cardinal orientations are also conceptually special, meaning that cardinal 

orientations constitute salient, spontaneously used categorization boundaries that create 

intuitive concepts (e.g. right-tilted vs. left-tilted in the present study). Additionally, when 

the criterion was on a cardinal orientation, we found significantly slower learning when 

the visuo-spatial task was present, but minimally slower learning when the verbal 

working memory task was present. These results suggest that visuo-spatial and verbal 

working memory effects on rule-based learning may be due to dissociable mechanisms. 

In the remainder of the General Discussion, we will discuss these issues in more detail. 

Category Structure Effects on the Distribution of Accuracy Scores 

One important result observed in the present studies was the existence of 

qualitatively different distributions of accuracy scores for the rule-based and the 

information-integration category structures (see e.g. Figure 3.2). Whereas the accuracy 

scores in the information-integration conditions were normally distributed, a bimodal 

distribution was observed in the rule-based conditions, with one modus at chance and a 

second modus at a high level of accuracy. This pattern held regardless of whether a 
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secondary working memory demanding task was present or absent, and replicates the 

pattern observed in Chapter 2 that used a dual-task procedure. 

These findings provide evidence that rule-based and information-integration 

category learning is mediated by separate systems. We argue that rule-based category 

learning is mediated by a hypothesis-testing system whose processing is effortful and 

attention demanding. Hypothesis-testing systems of this sort are known to have an all-or-

none characteristic to their learning that has been studied since the 1960s (Bower & 

Trabasso, 1963; Trabasso & Bower, 1964). The bimodality observed in our rule-based 

score distributions is consistent with this hypothesis. We also argue that information-

integration category learning is not mediated by a hypothesis-testing system, and instead 

is mediated by a procedural-based system whose processing is automatic and does not 

require attention. The fact that the information-integration score distributions were 

normally distributed and were not affected by a secondary working memory task follows 

from this hypothesis. 

Working Memory Task Effects on Rule-based Accuracy Score Distributions 

As outlined earlier, the results from Experiment 1, along with those from Maddox 

et al (2004) suggest that a sequential verbal or visuo-spatial working memory task has no 

effect on the distribution of information-integration scores, but has a large effect on the 

distribution of rule-based scores. The same effect on rule-based learning holds in 

Experiment 2A that focused on a rule with an oblique orientation criterion. In this 

section, we elaborate on the nature of the working memory effect on rule-based learning, 

leaving a discussion of the “cardinal orientation” results from Experiment 2B for later.  

As outlined in the previous section, the distributions of accuracy scores in the 

rule-based conditions were bimodal, with one modus at chance (nonlearners, .50 correct) 

and a second modus at a high level of accuracy (learners, .80 correct in Experiment 1 and 

.90 correct in Experiment 2A). One of the most interesting findings from the present 

study was the fact that the accuracy achieved by learners remained constant across the 

control and working memory conditions. Rather, the effect of the working memory task 
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was to increase the proportion of participants who fell under the chance (nonlearner) 

modus relative to the proportion of participants who fell under the higher accuracy 

(learner) modus. Thus, both the visuo-spatial and verbal working memory tasks seemed 

to disrupt primarily the process of rule discovery leading fewer participants to discover 

the correct rule. However, once the correct rule was discovered, participants were just as 

accurate in applying the rule as learners in the control condition. This finding is 

important, especially given the general focus on learning curves in category learning 

research. The typical interpretation of a performance deficit is to assume a shallowing of 

the learning curve and thus a general effect on average performance. What the current 

data suggest is that the effect is not general, but rather increases the probability that a 

participant will fail to discover the correct rule. 

Interaction between the hypothesis testing and procedural system under secondary 

task 

One reasonable prediction from the COVIS model (Ashby, Alfonso-Reese, 

Turken, & Waldron, 1998), and perhaps also implicit expectation in other multiple 

system models of learning, is that the procedural system would take over and dominate 

rule-based category learning when the hypothesis testing system is disrupted by a 

working memory task. COVIS assumes that both category learning systems (the 

hypothesis testing system and the procedural system) aim to learn every categorization 

task and that the two systems compete to generate the response on each trial. If the 

procedural system is unaffected by the presence of a working memory task then it should 

dominate the hypothesis testing system. This did not seem to be the case in the current 

studies because we found no compensation in the rule-based task by the procedural 

system – the accuracy scores remained low and were not normally distributed – when the 

working memory task was present. In Chapter 2 (Zeithamova & Maddox, 2006), we 

similarly found that participants learning a more complex conjunctive rule-based 

categorization task under the dual Stroop task interference tended to use (rule-based) 
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unidimensional strategies or guessing rather than converting to information-integration 

strategies.  

There are at least two possible explanations for this finding. First, the current rule-

based category structures may be unfavorable for learning in the procedural system; for 

instance, because of their relatively high intra-category variability and low inter-category 

variability. Second, the procedural system may be learning the task, but the participant 

may be highly biased towards the (unsuccessful) hypothesis testing system by the 

secondary working memory task. COVIS assumes that there is an initial bias toward the 

hypothesis-testing system. Participants may never abandon this bias under the secondary 

working memory task conditions, perhaps because also because processing of the 

feedback regarding each system’s performance is compromised. Given the lack of 

research that directly examines system level interactions these hypotheses should be 

considered speculative at this time. 

Dissociating Visuo-spatial and Verbal Working Memory Effects on Rule-Based 

Category Learning 

Visuo-spatial and verbal working memory are behaviorally and neurally 

dissociable (e.g. Baddeley, 1995; Goldman-Rakic, 1998; Shah & Miyake, 1996). It is 

thus reasonable to consider the possibility that although both visuo-spatial and verbal 

working memory tasks adversely affect rule-based learning, the locus of their effect may 

differ. The effect of the verbal working memory task on rule-based category learning 

reported in Maddox et al. (2004) and replicated in Experiment 2A would be expected by 

any hypothesis testing model. The effect of the visuo-spatial working memory task on 

rule-based category learning observed in the present studies is less straightforward, 

because no existing category learning theory addresses the possible role of visuo-spatial 

working memory. We speculated that the observed visuo-spatial task effect in rule-based 

category learning may act indirectly via some kind of general attention or control 

mechanism common to both visuo-spatial and verbal working memory (e.g. central 

executive in Baddeley & Logie, 1999) or may be mediated by a different, independent 
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mechanism. Two pieces of evidence argue against the notion of an indirect effect via 

commonly shared resources and instead support the notion of two different mechanisms 

for visuo-spatial and verbal working memory task effects. We will now discuss the two 

pieces of evidence in more detail.  

Comparison of Maddox et al. (2004) and Experiment 1  

Although qualitatively similar, the verbal working memory task effect reported in 

Maddox et al. (2004) seem to differ in magnitude from the visuo-spatial working memory 

task effect found in Experiment 1. To compare the working memory effects on rule-based 

learning across the two experiments, we computed effect sizes (Cohen, 1988)14 for the 

final block performance drop in each experimental condition compared to the associated 

control condition (Figure 3.9, left panel). These analyses should be interpreted with 

caution bearing in mind that Cohen’s effect size measure is derived from means and the 

means in these experiments represent a relative mixture of two populations of participants 

rather than an average participant. Nevertheless, these analyses are suggestive and seem 

to shed some light on the nature of the working memory effects. As is apparent from 

Figure 3.9, left panel, the verbal working memory task had a large effect when 

immediately following categorization feedback, but only a small effect when participants 

were first allowed to process the categorization feedback for 2500 ms. The visuo-spatial 

working memory task had an intermediate effect when immediately following 

categorization feedback, but continued to disrupt performance even when the participant 

was first allowed to process the categorization feedback for 2500 ms. Although by itself 

this finding is inconclusive, it favors the notion that verbal and visuo-spatial working 

memory tasks have at least partially dissociable effects on rule-based category learning. 

 

 

                                                 
14 Effect size measures the magnitude of an effect independent of sample size (number of participants in a 
study). A frequently used measure of effect size is Cohen’s D that is computed as the difference in means 
divided by the pooled standard deviation (d prime). As a rule of thumb, D above .2 is considered a small 
effect, D above .5 is considered a medium effect and D above .8 is considered a large effect (Cohen, 1988). 
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FIGURE 3.9. EFFECT SIZE COMPARISON OF THE SECONDARY VISUO-SPATIAL AND 
VERBAL WORKING MEMORY TASK. Left panel: Effect size (rule-based category learning 
performance decrement in Cohen’s d) of a secondary visuo-spatial or verbal working 
memory task following categorization task feedback after 2500 ms delay (“long:” black 
bars) or immediately (“short:” gray bars). Data for visuo-spatial working memory effects 
are from Experiment 1, data for verbal working memory effects were computed from 
Maddox et al. (2004). Right panel: Effect size of moving criterion from 70 to 90 degrees. 
Data were obtained by comparing Experiment 2A and Experiment 2B. 

 

The effect of the cardinality of a categorization criterion 

One goal of this Chapter was to investigate the effect of cardinality of a criterion 

on rule-based category learning. We asked whether cardinal orientations are conceptually 

special and whether working memory effects observed with a general (arbitrary) criterion 

rule-based learning replicate for a cardinal criterion. The pattern of results for the cardinal 

criterion exhibited several differences from those observed when the criterion was on an 

oblique orientation or on spatial frequency. First, in the control condition, performance 

reached asymptote much earlier and at a higher proportion correct for learners than for 

the formally identical structure using criterion on oblique orientation. The results suggest 

that a criterion on cardinal orientation is easier to learn than a criterion on an oblique 

orientation not only perceptually, but also conceptually; it seems that cardinal orientation 

plays a role in cognition as an intuitive, salient categorization rule. Second, the speed of 
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learning was adversely affected only by the visuo-spatial working memory task, with 

minimal effect of the verbal working memory task. This finding implies that the salience 

of the cardinal criterion may be occluded by a secondary visuo-spatial working memory 

task, perhaps because it disrupts memory traces of previously seen stimuli. In Figure 3.9 

(right panel), we accentuate this by examining the effect of the cardinality of a criterion 

throughout the learning process. For each block and each condition, we computed the 

effect size (Cohen’s D) of changing the categorization criterion from 70 to 90 degrees 

(i.e. the difference between scores in Experiment 2A and Experiment 2B). The advantage 

for the cardinal orientation was large, mainly early in the experiment and of about the 

same magnitude for the control and the verbal condition. On the other hand, the 

advantage for the cardinal orientation was much smaller for the visual condition, 

especially early in the learning, consistent with the trials-to-criterion analysis. This 

finding further contributes to the notion that visuo-spatial and verbal working memory 

effects in rule-based category learning may be due to different mechanisms. Next we 

discuss the possible role of verbal and visuo-spatial working memory in category learning 

separately.  

The role of verbal working memory in category learning 

Previous literature implied verbal working memory in hypothesis generation, 

selection and testing (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Dougherty & 

Hunter, 2003). The presented results are all consistent with this notion. An effect of 

verbal working memory task was observed when participants were presented with two 

generally equally salient dimensions and set of criterions along those dimensions, but not 

when a highly salient rule was offered in Experiment 2B. The minimal effect of the 

verbal working memory task in cardinal orientation rule learning suggests that cardinal 

orientations are special not only perceptually, but also conceptually (i.e. they serve as 

highly salient categorization rules). Specifically, the values along the orientation 

dimension seems to naturally fall into two distinct classes (right tilted stimuli, left tilted 

stimuli) when orientation varies around a cardinal direction. Thus, verbal working 
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memory may not be needed when selecting and applying a highly salient rule, because 

much of the effortful hypothesis testing process is skipped.  

The role of visuo-spatial working memory in category learning  

What may be the possible role of visuo-spatial working memory in rule-based 

category learning? One notion outlined in the introduction was that visuo-spatial working 

memory may be needed to represent the optimal categorization criterion, while the 

verbal working memory may be needed to represent the categorization rule. In other 

words, visuo-spatial working memory may be important in representing the criterion of 

70 degrees (in Experiment 2A) or 90 degrees (in Experiment 2B), but may not be needed 

to represent the rule: “respond A if the orientation is greater than the criterion and 

respond B if the orientation is less than the criterion”. The proportion of learners is a 

measure of the proportion of participants that discover the correct rule. The specific 

accuracy of these learners depends on how well they learn and remember the optimal 

criterion, i.e. find a particular value of the orientation that best discriminates between the 

high orientation and the low orientations. If visuo-spatial working memory is needed only 

to hold the optimal categorization criterion, but is not crucial in the process of rule 

discovery, we would expect the proportion of learners in Experiment 1 and Experiment 

2A to be about the same in the visual condition as in the control condition, but for their 

accuracy to be lower, due to noisier categorization criterion representation. Contrary to 

this hypothesis, we observed a lower proportion of learners, but their accuracy to be 

about the same as in the control condition. In Experiment 2B, we would expect minimal 

effect of the visuo-spatial working memory task, because representing a criterion on 

cardinal orientation – a highly learned natural boundary – should require minimal 

working memory resources. Contrary to this prediction, we found an adverse effect of the 

visuo-spatial task on the speed of learning. 

Another notion was that visuo-spatial working memory may be needed for 

analytic evaluation of a stimulus and its individual dimensions. The present results are 

quite consistent with this notion. If the visuo-spatial working memory task disrupts 
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analytical perception of the stimuli, it may make it difficult to identify the dimensional 

structure of the stimulus and thus to generate possible rules in Experiment 1 and 

Experiment 2A. Disrupting analytic processing of the stimuli may also disrupt the 

perception of variation around a cardinal orientation, perhaps by disrupting the visual 

memory representation of previous stimuli, and thus delaying the time when the rule on 

cardinal orientation may be selected. On the other hand, the secondary visuo-spatial 

working memory task had no effect on information-integration category learning in 

Experiment 1 because information-integration category learning requires holistic rather 

than analytic perception of a stimulus. Although consistent with the presented results, the 

proposed role of visuo-spatial working memory in analytic evaluation of categorization 

stimuli remains speculative until further research addresses this issue.  

Summary 

 The results presented in this Chapter extend our understanding of the role of 

working memory in category learning by examining the effects of sequentially presented 

visuo-spatial and verbal working memory tasks on rule-based and information-integration 

category learning. In line with the results from Maddox et al. (2004) that used a verbal 

working memory task, we found no effect of a visuo-spatial working memory task on 

information-integration category learning, but a significant effect on rule-based category 

learning when the categorization criterion was on spatial frequency of a Gabor stimulus. 

We also replicated the effect of both visuo-spatial and verbal working memory tasks on 

rule-based learning with a categorization criterion on an oblique orientation of a Gabor 

stimulus. These results add to the evidence for the existence of multiple category learning 

mechanisms. When examining the effect of the secondary tasks on rule-based learning in 

more detail, we interestingly found that the presence of both visuo-spatial and verbal 

working memory tasks affected primarily the proportion of participants who discovered 

the rule by the end of training; the accuracy of those learners remained the same across 

conditions. A different pattern of working memory effects was observed when the rule-

based categorization criterion was on a cardinal orientation. We found a minimal effect of 
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the verbal working memory task, but a large effect of the visuo-spatial working memory 

task on the speed of learning. These results suggest that the cardinal orientation serves as 

a highly salient, natural categorization boundary and that visuo-spatial and verbal 

working memory effects on rule-based category learning are at least partially dissociable. 

A plausible role for visuo-spatial working memory consistent with the presented results is 

analytic evaluation of individual stimulus dimensions. 
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SUPPLEMENTAL DATA. DESCRIPTION OF THE MODEL FITTING PROCEDURE APPLIED 

TO THE SCORE DISTRIBUTIONS FROM EXPERIMENTS 1 AND 2A 

 

A visual inspection of the accuracy score distributions from the Experiment 1 and 

2A rule-based groups suggested that these distributions are bimodal (see Figure 3.2, left 

panel and Figure 3.5, left panel). In this section, we describe a method for characterizing 

the nature of these bimodal distributions and the effect that the verbal and visuo-spatial 

working memory tasks had on these distributions. 

We fit a series of five models of various degrees of generality to the distribution 

of accuracy scores from the final block of trials, separately for each condition. After best 

fitting parameters for each model were estimated using maximum likelihood method, we 

used the BIC measure (Schwarz, 1978) to compare the models and to determine the best 

fitting model.  

Model description 

 

Model 1: Model 1 is the most general model. This model assumes that the score 

distribution is bimodal, with each modus being best described by a normal distribution. 

This model has five free parameters: the mean and standard deviation of the first normal 

distribution, the mean and standard deviation of the second distribution, and the relative 

weight of the second distribution (with the relative weight of the first distribution being 

1-relative weight of the second distribution). The relative weight of each distribution 

represents the proportion of participants whose accuracy scores contributed to that 

distribution (modus). 

Model 2: Model 2 is a special case of Model 1 for which the mean of one distribution is 

fixed at chance (.5). This model instantiates the hypothesis that one group of participants 

did not discover the correct rule and that their mean accuracy is at chance level of .5. This 

model has four free parameters. 
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Model 3: Model 3 is a special case of Model 2 for which the chance distribution is 

assumed to be binomial (rather than normally distributed), with the probability of success 

being .5 on each of the 80 trials that constituted the final block. Because the standard 

deviation of a binomial distribution is derived from the mean and the number of trials, 

there are no free parameters associated with the “chance distribution” leaving the three 

free parameters associated with the second distribution to be estimated. 

Model 4: Model 4 is a special case of Model 3 for which the non-chance distribution is 

also assumed to be binomial. This model has two free parameters: the mean and relative 

weight of the second distribution. 

Model 5: Model 5 was included as an additional check of the Kolmogorov-Smirnov test 

of normality. This model assumes that the distributions of scores are best characterized 

by one normal distribution. This model has two free parameters: the mean and standard 

deviation of the normal distribution. This model provided poor fits in all cases. 

 

Results 

Best fitting models in Experiment 1. 

 

RB control – Model 3: 

Distribution 1: binomial (mean = .5, relative weight = .318) 

Distribution 2: normal (mean = .814, sd = .065, relative weight=.692) 

 

RB long – Model 4: 

Distribution 1: binomial (mean = .5, relative weight = .560) 

Distribution 2: binomial (mean = .788, relative weight = .440) 

 

RB short – Model 4: 

Distribution 1: binomial (mean = .5, relative weight = .512) 
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Distribution 2: binomial (mean = .786, relative weight = .488) 

Best fitting models in Experiment 2A. 

 

Control – Model 3: 

Distribution 1: binomial (mean = .5, relative weight = .167) 

Distribution 2: normal (mean = .897, sd = .046, relative weight=.833) 

 

Visual – Model 3: 

Distribution 1: binomial (mean = .5, relative weight = .500) 

Distribution 2: normal (mean = .907, sd = .058, relative weight=.500) 

 

Verbal – Model 2: 

Distribution 1: normal (mean = .5, sd = .032, relative weight = .500) 

Distribution 2: normal (mean = .879, sd = .058, relative weight=.500) 
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Chapter 4: Prototype learning is not a uniform process 

 

In the previous two chapters, we focused on one family of category learning tasks, 

demonstrating dissociation between the rule-based task and the information-integration 

task. We concluded that the rule-based task is supported by frontally mediated reasoning 

system while the information-integration task is supported by striatum mediated 

procedural learning system. We will now transition into a domain of another type of 

categorization task – the prototype learning task – that has been traditionally regarded as 

a third type of task, relying on yet different, perceptual learning system.  Chapter 4 will 

review the basic concepts from the prototype literature and propose dissociation within a 

realm of prototype learning. 

Recall that prototype is a collection of characteristic features of a category, or the 

ideal exemplar of the category. Prototypes are thought to provide the abstract 

representation for many natural categories and concepts (Rosch, 1973, 1975b; Rosch & 

Mervis, 1975). Prototype theory assumes that the central tendency (or prototype) of a 

category is abstracted during encounters with category exemplars. Category members are 

centered around prototypes based on family resemblance principle (Wittgenstein, 1953), 

meaning that most of them share a number of characteristic features (like members of a 

family), but none of the features is necessary or sufficient for category membership. 

While category membership in formal concepts is all-or-none, based on presence or 

absence of defining features, category membership in natural concepts have been shown 

to be graded, based on the comparison of an instance to the category prototype 

(McCloskey & Glucksberg, 1978; Rosch, 1973, 1975b). The closer an instance matches 

the category prototype, the faster and more reliable it can be verified as a category 

member. For example, people are faster to verify that “Robin is a bird” than “Penguin is a 

bird” (Rosch & Mervis, 1975) and agree more reliably with others and with themselves 
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over time that “apple is a fruit” than “pumpkin is a fruit” (McCloskey & Glucksberg, 

1978).  

Prototype effects have been repeatedly demonstrated for novel concept learning as 

well. In their seminal work, Posner and Keele (1968; , 1970) used dot patterns as 

prototypes and their distortions as category exemplars. A number of studies followed 

them and showed that participants were able to classify unseen prototypes with higher 

accuracy than other category exemplars, and the prototypes were less susceptible to 

forgetting after a one week delay than the actual training patterns (Homa & Little, 1985; 

Posner & Keele, 1970; W. Strange, Keeney, Kessel, & Jenkins, 1970). Reed (1972) was 

one of the pioneers who explicitly compared models that assume prototype abstraction 

with a number of other models proposed for classification learning and found that the 

prototype model outperforms other models when subjects are presented with the category 

exemplars sequentially, limiting thus individual exemplars availability during retrieval. 

Reed suggested that prototype representation optimizes cognitive economy when 

memory limitations come to play.  

Alternative accounts of prototype effects have been proposed as well. The most 

prominent is exemplar theory (Medin & Schaffer, 1978; Nosofsky, 1986, 1988; 

Nosofsky, Clark, & Shin, 1989; Nosofsky, Kruschke, & McKinley, 1992; Zaki & 

Nosofsky, 2004). Exemplar theory assumes that in the process of category learning, 

people represent and store each encountered category exemplar. In other words, 

categories are represented by all their exemplars rather than a single prototype. The 

prototype – the central tendency of the category – not only does not serve as a 

representation of the category, it is actually never abstracted. In the process of 

categorization, a novel stimulus is compared to the retrieved exemplars from all relevant 

categories and assigned to a category based on the summed similarity of that stimulus to 

the category exemplars. The reason why prototypes are categorized faster and more 

accurately than non-central exemplars is because they are more similar to the stored 

exemplars of a category. Although exemplar theory does not address the question of the 
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neural substrate supporting the exemplar representation, the medial temporal lobe would 

be the likely candidate to support exemplar memorization. 

Prototype and exemplar models do not stand sharply against each other. Both 

prototype and exemplar models can account well for a wide range of empirical data. In 

general, exemplar models provide better fits when training involves smaller number of 

stimuli, small number of stimulus dimension, and frequent exemplar repetitions; 

prototype models provide better fits when training involves larger number of stimuli, that 

vary along several dimensions and are presented infrequently (Minda & Smith, 2001; J. 

D. Smith & Minda, 1998). Newer “clustering” models propose that category knowledge 

is represented at an intermediate level of abstraction, with exemplar clusters being more 

abstract than individual exemplars, but less general than a single central prototype (Love, 

Medin, & Gureckis, 2004; Verbeemen, Vanpaemel, Pattyn, Storms, & Verguts, 2007). 

Moreover, if exemplar representations are stored across distributed neural network, the 

clusters and prototypes arise from the network as an emergent property, and the 

exemplar, clustering and prototype models become equivalent to each other, differing 

only in the level of description. For the purpose of this dissertation, we will assume that 

prototype abstraction is a cognitive process involved in novel concept learning as well as 

a part of natural concept representation, leaving out the discussion of its ontological 

status. In the reminder of this Chapter, we review existing prototype learning studies, 

propose dissociation between two types of prototype tasks, and discuss limits of the 

existing literature in addressing this dissociation. Chapters 5 and 6 will then explore 

cognitive and neural properties of two prototype learning tasks using a novel 

methodology overcoming these limits. 

VERSIONS OF THE PROTOTYPE LEARNING STUDIES 

When exploring prototype literature, we realize that prototype learning studies 

come in various flavors. One of the most pronounced differences across studies is 

between a multiple category/multiple prototype learning task, here referred to as an “A/B 

task”, and a one category/one prototype learning task, here referred to as an “A/nonA 
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task”. In the A/B task, participants learn to classify exemplars into two (or more) 

contrasting categories. This version may be representative of concept learning in children 

when a parent may walk around with a child, pointing out different exemplars from 

different concepts. “Look, this is a cow, this is a horse, this is a goat.” In the A/nonA 

task, only one category exists and participants learn to classify exemplars as members or 

nonmembers of that category. This version may be representative of concept learning in 

children based on an exposure to a large number of exemplars of one concept. “Look, a 

flock of chickens. These all are chickens.” 

In most studies, the information about which prototype task (A/B or A/nonA) was 

used is typically buried deep in the method section and conclusions derived from one 

version of the prototype task are readily generalized to the other version. However, one 

could argue that structure of these two task types may yield recruitment of different 

cognitive and neural processes. In the A/nonA task, participants are likely to form a 

representation of a single prototype and then compare each test item to this single 

prototype. If the new stimulus is sufficiently similar to the prototype representation, it 

will be endorsed to the category; otherwise it will be categorized as a non-member. 

Novelty or familiarity signals from early processing areas may be used as a basis for 

successful categorization.  In the A/B task, participants are likely to form representations 

of two distinct categories centered on two prototypes. Each new stimulus is then 

compared to both of these prototypes and endorsed to the category of the prototype which 

is closer to the current stimulus. Familiarity or novelty signals are not sufficient for 

successful performance.  

Indeed, some evidence suggests that the processes involved in these two types of 

tasks differ. First, a few behavioral studies compared A/B and A/nonA task directly. 

Goldstone and colleagues (Corneille, Goldstone, Queller, & Potter, 2006; Goldstone, 

1996; Goldstone, Steyvers, & Rogosky, 2003) compared prototype representations that 

participants acquired in the A/B task with those acquired in the A/nonA task. In the A/B 

task, symmetric representations of two contrasting categories were formed and features 

that best differentiated between categories were emphasized. Participants found 
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caricatures – stimuli that overemphasized the distinctive feature – as the most typical 

exemplars of the categories. In the A/nonA task, representation of the categories was 

asymmetric and category A prototype included all characteristic features of category A, 

whether or not they were diagnostic for category membership. Prototypes, rather than 

caricatures, were found to be the most typical exemplars of the category. Another study 

that directly compared behavioral performance in the A/nonA task with the A/B task was 

by Casale and Ashby (in press). They compared performance in the A/B version and the 

A/nonA version of the traditional dot pattern task. In Experiment 1, they found that 

learning in the A/nonA task is more sensitive to the exemplar distortion level than is in 

the A/B task, but they failed to equate baseline accuracy in the two tasks, so the 

conclusion should be taken with caution. In Experiment 2, they found that A/B 

performance is highly affected by a removal of feedback while A/nonA performance is 

less affected. They argued that the A/nonA task is supported by the perceptual 

representation system (Schacter, 1990), a learning system that plays a role in perceptual 

priming (Wiggs & Martin, 1998), while the A/B task is supported by a different 

(unspecified) learning system. 

Second, indirect evidence comes from the neuropsychological literature. 

Prototype learning task has been a traditional example of nondeclarative learning, intact 

in amnesic patients (Knowlton & Squire, 1993). This view has been recently challenged 

by Zaki and colleagues (Zaki, Nosofsky, Jessup, & Unversagt, 2003) that argued that 

prototype task appears intact because it is too simple (ceiling effect), but becomes 

impaired when made more challenging. As the simple version, Zaki and colleagues used 

the A/nonA task, as was used in the seminal Knowlton and Squire (1993) paper; for the 

challenging version, they asked participants to learn two categories, or what we call A/B 

task. Indeed, the simple (A/nonA) task was not impaired while the challenging task (A/B) 

was. Alternatively, this dissociation may be based on the qualitative rather than 

quantitative differences between the two tasks. Ashby and colleagues (Ashby & Maddox, 

2005; Ashby & O'Brien, 2005) noted that impaired prototype learning was reported in 

amnesia when the A/B task was used  (Zaki, Nosofsky, Jessup, & Unversagt, 2003) while 
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intact prototype learning was reported in amnesia when the A/nonA task was used 

(Bozoki, Grossman, & Smith, 2006; Keri, Kalman, Kelemen, Benedek, & Janka, 2001; 

Knowlton & Squire, 1993). They suggested that A/B learning is mediated by declarative 

memory processes while A/nonA learning is mediated by nondeclarative, perceptual 

learning processes.  

Third, a wide range of results reported in the neuroimaging literature also 

indicates that prototype learning is not a single process. Some studies revealed 

dependence on brain networks associated with episodic memory (Reber, Gitelman, 

Parrish, & Mesulam, 2003), while others revealed involvement of other networks, 

including those associated with perceptual learning (Reber, Stark, & Squire, 1998a), 

visuospatial attention (Little & Thulborn, 2005), and visual reasoning (Seger et al., 2000). 

However, unlike the results from learning in amnesia, the results from neuroimaging 

studies do not become cohesive even when task type is taken into account. For example, 

medial temporal lobe involvement has been reported both in some studies that employed 

A/B task (DeGutis & D'Esposito, 2007; Little, Shin, Sisco, & Thulborn, 2006), and in 

some studies that employed A/nonA task (Aizenstein et al., 2000; Reber, Gitelman, 

Parrish, & Mesulam, 2003). Thus, the nature of the dissociation between A/B and 

A/nonA prototype learning remains unanswered. 

LIMITED COMPARABILITY ACROSS EXISTING STUDIES 

Direct comparison of the results from the A/B and A/nonA experiments in the 

existing literature is complicated by a number of frequent differences in both 

methodology and data analysis applied. First, learning mode often differs between the 

two tasks. The A/B task always involves intentional learning – the participants are aware 

of the goal of the experiment from the beginning and intentionally try to learn the 

characteristics of the categories based on presented category labels and/or corrective 

feedback. In the A/nonA task, learning is often incidental – participants passively view 

category exemplars during the study phase without being aware of the goal of the 

experiment. After that, participants are instructed that all the previously viewed 
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exemplars come from a single category and are asked to classify new items as either 

coming from the same category or not.  

Intentionality of learning has a profound effect on what kind of categories are 

typically learned. In her influential work, Kemler-Nelson (1984) found that people 

typically represent learned categories in terms of criterial attributes or rules when 

learning intentionally while acquire family-resemblance-based representation when 

learning is incidental. Two fMRI studies compared neural activation in both incidental 

and intentional version of an A/nonA task (Aizenstein et al., 2000; Reber, Gitelman, 

Parrish, & Mesulam, 2003). Aizenstein and colleagues found decreased activation in 

occipital cortex for prototypical (“A”) versus non-prototypical (“non-A”) items in the 

incidental version while increased activation in the occipital cortex, and decreased 

activation in medial temporal lobe, parietal lobe and frontal regions in the same contrast 

during the intentional version of the task. Reber and colleagues also found occipital 

deactivation in the incidental task, and increased activation in prefrontal cortex, occipital 

cortex and precuneus during intentional version. Given the importance of the learning 

mode, it is not obvious whether this factor alone cannot account for the differences 

observed between the studies that employ the (intentional) A/B task versus the (often 

incidental) A/nonA task. 

Second, category structures typically used differ between the two tasks. In the 

A/B task, each category is generated as a collection of distortions from a category 

prototype, with prototypes varying between categories. Each category has an internally 

consistent structure, forming a coherent cluster centered in the perceptual space around 

the category prototype. In the A/nonA task, as the name suggests, only the A category 

items are generated by a distortion from a prototype, forming a coherent cluster. The non-

A items are typically randomly generated stimuli that have no consistent structure and are 

only defined negatively, as items that are not distortions from the A prototype. This 

difference between A and non-A stimuli constitutes a potential flaw of the A/nonA 

studies that argue for implicit learning in amnesia. Category A exemplars are necessarily 

perceptually more similar to each other than are the non-A items to each other. Exemplar 
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similarity to recent stimuli have been show to strongly influence category performance 

(A. S. Levy & Heshka, 1973) and similarity among category A exemplar against the 

background of unrelated non-A stimuli may support unintended “learning” during 

transfer phase (Zaki & Nosofsky, 2007). If we are to make the distinction between the 

A/B task and the A/nonA task, we need to eliminate the confounding factor of stimulus 

differences. 

Third, in the neuroimaging literature, different fMRI contrasts have been used in 

A/B studies and A/nonA studies. In A/B studies, the BOLD signal was typically 

contrasted between the prototype task and fixation baseline (Little & Thulborn, 2005; 

Seger et al., 2000), whereas in A/nonA studies, the BOLD signal was contrasted between 

categorical (A) items and non-categorical (nonA) items, both being a part of the 

prototype task (Reber, Stark, & Squire, 1998b; Reber, Wong, & Buxton, 2002). Even if 

both tasks were supported by identical brain areas, performing identical functions, the 

difference in contrasts used could by itself produce differential patterns of activation. For 

example, areas that may support performance in the A/nonA task, but do not directly 

differentiate between A items and nonA items, would be subtracted out in the A versus 

nonA contrast, but may be identified in the A/B task versus baseline contrast. 

Additionally, the differential activation to categorical versus noncategorical items in the 

traditional A/nonA task may reflect simple sequential contrast effect (as categorical items 

are more likely to be similar to their immediate predecessor), rather than reflecting 

category membership.  Again, the conclusion from the existing studies is limited as long 

as actual stimuli and fMRI constrast are not equated. 

 

OVERVIEW OF THE STUDIES IN CHAPTER 5 AND CHAPTER 6 

The goal of Chapter 5 and Chapter 6 is to explicitly study similarities and 

differences between the multiple category learning (A/B) task and the one-category 

learning (A/nonA) task using behavioral and neuroimaging methods. For a more reliable 

comparison, we eliminate the common external differences between the two tasks 
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outlined above. First, we use intentional learning mode in both tasks. Besides equating 

the learning mode, this manipulation will allow us to test individual participants 

repeatedly and use within subject comparison in the functional MRI study presented in 

Chapter 6. Second, we use identical underlying category structures in both tasks. An A/B 

task can be converted into an A/nonA task by referring to “B” items as “non-A” items. 

The meaningfulness and effectiveness of such manipulation was shown by Goldstone 

(1996). Goldstone tested whether asymmetric category representation, typical for the 

A/nonA task, can be achieved with A/B category structures when the category B label is 

simply changed to nonA label. Using a simple change in instructions (e.g. “Press “N” for 

a painting by Noogan” in the A/B task versus “Press “N” for a painting NOT by 

Yarpleaux” in the A/nonA task), he found that resulting category representation was 

similar to that normally found in the A/nonA task. Using identical category structures for 

a direct comparison of the two tasks is especially important in neuroimaging studies, as 

stimulus effects may drive any observed differences between the two tasks. No 

neuroimaging or neuropsychological study however employed the label-only 

manipulation before. Last but not least, we will use a common baseline and a direct 

contrast in our fMRI study (Chapter 6) to identify commonalities and differences between 

neural activation in the two tasks. In all of the studies, we will use novel category 

structures that are based on family resemblance, to mimic a character commonly 

attributed to natural categories. 

In Chapter 5, we will examine basic behavioral characteristics of four different 

versions of the prototype learning task used in the literature – two versions of the A/B 

task and two versions of the A/nonA task – while equating category structures and stimuli 

used in each. We will demonstrate that various flavors of the prototype learning task can 

all show typical prototype effects and can be on average about equally difficult. In 

Chapter 6, we will examine the neural underpinnings of the A/B task and the A/nonA 

task in an fMRI study, using methodology that holds constant the category structures, 

learning mode, and the fMRI contrasts. Behavioral data will show that the performance 

profile in the within subject design replicates the results from the between subject design, 
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demonstrating viability of our ambition to directly compare neural activation in the two 

tasks within subject. Additionally, we will show that the two tasks are poorly correlated 

within subject, providing first behavioral evidence that they may be supported by 

different cognitive processes. Neuroimaging data will show that the A/B task and the 

A/nonA task involve both common and dissociable neural regions, with the dissociation 

mapping relatively well, but not perfectly, on the declarative versus nondeclarative 

distinction suggested by previous neuropsychological studies.  
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Chapter 5. Exploring prototype learning tasks: Constant category 

structures in different training variants  

 

In the previous chapter, we discussed two versions of the prototype learning task, 

the A/B task and the A/nonA task. A proposal has been made that processes involved in 

the performance of the two tasks may differ, but a number of methodological issues limit 

the conclusions that we can do based on the existing literature. The most serious one is 

that prototype effects in the traditional A/nonA task are confounded with exemplar 

similarity and/or sequential effects. In the A/nonA task, participants first view a set of 

exemplars that all come from one category (are distortions of a single prototype) and later 

need to classify new stimuli as members of the category or nonmembers. Traditionally, 

the non-categorical stimuli are unrelated not only to the original prototype, but also to 

each other. Because categorical stimuli are similar to each other while noncategorical are 

not, one may argue that the A/nonA task appears to be spared in amnesia not because any 

learning has occurred during training, but because participant may rely on working 

memory during the test and indicate whether or not a stimulus seems similar to one or 

two previous ones. In order to rigorously compare the A/B task and the A/nonA task, we 

need to equate category structures used in the two tasks, while preserving characteristics 

of each task. Chapter 5 has two related goals, to compare behavioral profiles of the A/B 

task and the A/nonA task when the confounding factors are limited and to develop a new 

procedure that would allow a direct comparison of the two tasks using functional 

magnetic resonance (applied latter in Chapter 6). To achieve these goals, we propose a 

methodology that equates category structures and stimuli between different versions of 

the prototype task, but preserves the relationship between the categories as they exist in 

the traditional A/B and A/nonA tasks. 
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Constant category structure  

The first challenge is to find category structures and stimuli that could be 

meaningfully used in both tasks. In the A/B task, two unique prototypes exists, prototype 

A and prototype B, and their features are parametrically distorted to create exemplars of 

category A and exemplars of category B. Prototype theory assumes that a stimulus is 

assigned to the category whose prototype is closer to the stimuli in the perceptual space 

(Homa, Sterling, & Trepel, 1981; Posner & Keele, 1970; Reed, 1972). In the A/nonA 

task, only one prototype exists and its distortions constitute category A exemplars. With 

dot-pattern and similar stimuli, the non-categorical (non-A) stimuli are generating by 

random selection of dot locations or by setting some binary features to random values. 

Prototype theory assumes that a stimulus is assigned to the category A if its distance to 

the category A prototype is smaller than some threshold criterion (Casale & Ashby, in 

press; J. D. Smith & Minda, 2002). A graphical depiction of the structure of the two tasks 

is presented in Figure 5.1. The boundaries between the categories for both A/B and 

A/nonA tasks are considered “fuzzy” (McCloskey & Glucksberg, 1978, 1979; Roth & 

Mervis, 1983), meaning that category membership is probabilistic rather than 

deterministic. 

 

FIGURE 5.1. CATEGORY STRUCTURES USED IN (A) A/B TASKS, (B) A/NONA TASKS. The 
black circles represent category prototopes, the dotted lines represent “fuzzy” category 
boundaries. 
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In order to equate category structures and stimuli in the two tasks, we need to find 

a structure where category B stimuli are the same as not A stimuli. One possibility is to 

use traditional A/B category structure, using two unrelated stimuli as category A 

prototype and category B prototype, but change the label of the category B stimuli into 

“not A” for the A/nonA task (Goldstone, 1996). However, the specific circular character 

of the boundary between the A and the non-A space would be lost. One way to preserve 

the character of the boundary in both tasks is to use a category structure that is like a 

sphere (Figure 5.2.a). On the sphere, the north and south poles represent the two 

prototypes, the equator represents the category boundary, and the category membership 

of an exemplar depends on its latitude on the sphere. The category B and not-category A 

stimuli are naturally equated as the further one goes away from the North Pole (prototype 

A), the close one gets to the South Pole (prototype B). Depending on the view, the two 

categories have a straight or circular boundary (Figure 5.2. b,c). To create such a sphere-

like category structure, we use stimuli that vary along multiple binary-valued dimensions 

and category structures defined based on family resemblance, with one set of values 

along all dimensions representing category A prototype and the opposite set of values 

along all dimensions representing category B prototype (Figure 5.3). The binary value 

dimensions provide a unique opportunity to naturally equate category B members with 

non-A members, as the farther a stimulus is from the category A prototype, the closer it is 

to the category B prototype. More details of the stimuli and category structure used are 

presented in the method section. 
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FIGURE 5.2. SCHEMA OF A SPHERE-LIKE CATEGORY STRUCTURE. a) The outside view of 
the structure; b) The A/B task view of the structure; c) the A/nonA task view of the 
structure. 
 

Different training variants  

Four different versions of a prototype learning task are used in the literature – two 

variants of the A/B task and two variants of the A/nonA task. The two variants of the A/B 

task are feedback training A/B task and observational training A/B task. The feedback 

training version of the A/B task is the most common variant of the A/B task (Little, Shin, 

Sisco, & Thulborn, 2006; Little & Thulborn, 2006; Minda & Smith, 2001; Posner & 

Keele, 1968, 1970; Reed, 1972; Seger et al., 2000), requiring the participant on each trail 

to indicate category membership of a stimulus and then providing him a corrective 

feedback. An alternative training method is to provide a participant with a category label 

simultaneously with the category exemplar. Observational learning has been shown to 
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sometime alter how categories are learned (Ashby, Maddox, & Bohil, 2002; Cincotta & 

Seger, 2007; Daphna Shohamy et al., 2004), we thus wanted to assess how prototype 

learning may differ under the two training regimes. 

The two variants of the A/nonA task included intentional learning and incidental 

learning. The mode of learning have been shown to significantly alter both what category 

representations are acquired (Kemler-Nelson, 1984; Love, 2003; Zeithamova & Maddox, 

under review) and which neural structures are recruited (Aizenstein et al., 2000; Reber, 

Gitelman, Parrish, & Mesulam, 2003). We thus wanted to assess whether equating 

learning mode of the A/nonA task to that of the A/B task would not yield the prototype 

representation in the A/nonA task identical to that of the A/B task. 

The main goal of this chapter was to assess the basic behavioral characteristics, 

such as prototype effects and difficulty, of the four variants of the prototype learning task 

when identical category structures and test stimuli are used. Each condition included a 

training phase and a testing phase. Only the character of a training phase was 

manipulated, differentially for each task version; the testing phase was identical across 

conditions. The study was run as four separate experiments, one for each prototype 

learning variant. Because majority of the procedures were identical in all four 

experiments, we report them here together, noting the differences as needed. 

 

Methods 

 

Participants 

Ninety-seven University of Texas at Austin students participated in the 

experiment, either as a partial fulfillment of a class requirement or for pay. Twenty-three 

participants completed the feedback A/B task, 23 participants completed the 

observational A/B task, 27 participants completed the intentional A/nonA task and 24 

completed the incidental A/nonA task. Three participants (2 from the feedback A/B task 
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and 1 from the intentional A/nonA task) reached accuracy significantly below chance 

(less than .36 proportion correct, or 15 or fewer correct responses out of 42, p < .05, 

binomial test, two-sided). As data from these participants also constituted outlying values 

on the accuracy and several other performance characterizing measures (more than 2.5 

standard deviations from the group means), we excluded them from further analysis. The 

exclusion did not change pattern of results in any of the reported analyses. 

Stimuli and apparatus 

The stimuli were cartoon animals that varied along 10 binary dimensions, such as 

body shape (round or parallelogram), head position (facing forward or downward), tail 

shape (curled or straight), etc (Figure 5.3), adapted from a prototype learning study of 

Bozoki and colleagues (Bozoki, Grossman, & Smith, 2006). We chose high-dimensional 

stimuli to discourage rule-based or exemplar memorization strategies (Minda & Smith, 

2001). Categories were based on family resemblance, a characteristics typical of natural 

categories (Rosch & Mervis, 1975; Wittgenstein, 1953). For each participant, one 

stimulus served as the category A prototype with all 10 of its feature values being 

referred to as prototypical features. All other stimuli can be defined relative to the 

prototype and can differ on 1 – 10 of the prototypical feature values. The stimulus with 

all 10 non-prototypical features is the B prototype (in the A/B task) and the anti-prototype 

(in the A/nonA task). The number of non-prototypical features in each stimulus 

determines its distance from the prototype (see Figure 5.1.). Category A stimuli were 

defined as those with a distance of 0 – 4 from the A prototype and category B (or non-A) 

stimuli were defined as those with a distance of 6 – 10 from the A prototype. Stimuli 

equidistant from the two prototypes were excluded from the study. Binary value 

dimensions allow to naturally equate category B members with non-A members, as the 

fewer features a stimulus shares with the category A prototype (the farther it is from A), 

the more features is shares with the category B prototype (the closer it is to B). Identical 

stimuli were thus used in the test phase for both the A/nonA and the A/B tasks.  
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FIGURE 5.3. EXAMPLE STIMULI FROM THE PROTOTYPE TASK STIMULUS SET USED IN 
THE EXPERIMENT. The left most stimulus represents the prototype of category A, stimuli 
to the right from the prototype represent examples of stimuli with increasing distances 
from the A prototype. The right most stimulus represents a category B prototype (or anti-
prototype). Stimuli having a distance 0 to 4 from the prototype A were considered 
category A members, stimuli at the distance 6 to 10 were considered category B (non-A) 
members. 
 

Procedure 

 

Training phase 

Prototype learning variants. Each participant completed 20 training trials of the 

prototype learning task, presented successively one by one in a random order. In the 

feedback A/B task, participants were trained to categorize category A stimuli from 

category B stimuli via corrective feedback. On each trial, 2 seconds after stimulus onset, 

the participant was prompted to give an A or B response. After each response, the 

participant was informed whether they were correct or wrong. In the observational A/B 

task, participants were trained to categorize category A stimuli from category B stimuli 

by observing the stimuli together with their category label. On each trial, a stimulus was 

presented and its category label was displayed underneath. After 2 seconds, the 
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participant was prompted to press any key to advance to the next stimuli. In both A/B 

tasks, 10 A stimuli and 10 B stimuli were presented; within each category, 2 training 

stimuli differed from the category prototype on 1 feature, 3 differed on 2 features, 3 

differed on 3 features and 2 differed on 4 features. Across all 10 stimuli within each 

category, the category typical features were presented 7 or 8 times and the opposite 

category typical features were presented 2 or 3 times. Neither prototype was presented. In 

the intentional A/nonA task, participants were informed that they would be shown 

examples of category A members and that they would later need to discriminate members 

of a category (A) from nonmembers (nonA). In the incidental A/nonA, participants were 

informed that they will be shown some images and later be tested on how well they 

remember them. After the presentation was completed, participants were informed that 

all of the stimuli they saw were members of one category and they now need to 

discriminate members from nonmembers. In both A/nonA tasks, participants were shown 

stimuli from category A only. The stimuli were passively viewed one by one for a 

minimum of 2 seconds, after which a prompt asked a participant to press any button to 

proceed to a next stimulus. There were 5 training stimuli that differed from the A 

prototype on one feature, 5 differed on two features, 5 differed on three features and 5 

differed on four features. Across all 20 stimuli, the prototypical value on each dimension 

was presented 15 times and the non-prototypical value on each dimension was presented 

5 times.  

 

Testing phase  

The testing phase was identical in all tasks, with only the label of the second 

category (B or nonA) differing between the tasks. Participants were presented with 42 

stimuli, one at a time. The stimuli included both prototypes and five stimuli selected from 

each distance from the prototype (except distance 5 - ambiguous stimuli). None of the 

stimuli were previously used in the training phase. Each trial started with a 500 ms 

fixation cross, followed by a stimulus. The stimulus was presented until the participant 
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indicated the category membership of the stimulus by pressing one of two buttons. No 

feedback was provided and inter-trial interval was 1 second. 

 

 

Results 

Proportion of correct responses 

First, we compared difficulty of different variants of the prototype learning task. 

The correct response was to indicate category A to stimuli with distance 0 to 4 features 

from the A prototype and to indicate category B to stimuli with distance 6 to 10 features 

from the A prototype. Although this definition is somewhat arbitrary for the A/nonA task 

(as one may argue that higher distances from the A prototype simply represent higher 

distortions from the A prototype, or peripheral members of category A), participants were 

a priori informed that there would be equal number of exemplar who do and who do not 

belong to the A category and the pattern of their responses indicates that they did adopt 

this definition. The results are presented in Figure 5.4. 
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FIGURE 5.4. MEAN ACCURACY IN THE FOUR PROTOTYPE LEARNING VARIANTS. feed 
A/B: Feedback training A/B task; obs A/B: Observational training A/B task; int A/nonA: 
Intentional learning A/nonA task; inc A/nonA: Incidental A/nonA learning. The error 
bars represent the standard error of mean. 
 

As Figure 5.4 suggests, control accuracy was comparable across the four tasks, 

about .70 proportion correct in feedback A/B, intentional A/nonA and incidental A/nonA 

training tasks, and .73 proportion correct in observational A/B training task.15 The 

equivalent difficulty of the feedback A/B task and the intentional A/nonA task are 

especially encouraging with respect to our goal of developing a version of the A/B task 

and the A/nonA task that use the same learning more and testing stimuli and yield 

comparable performance.  

                                                 
15  Because the data from different tasks were not collected in one experiment, it is not appropriate to treat 
them as different levels of the “task” factor. 
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Category endorsement as a function of the distance from the prototype 

A characteristic feature of categorization based on prototype representation is that 

category membership is graded rather than all-or-none (McCloskey & Glucksberg, 1978). 

We thus calculated proportion endorsement into category A as a function of the distance 

from the prototype A). The mean endorsements for the four training variants are 

presented in Figure 5.5.  

 

 

FIGURE 5.5. MEAN PROPORTION ENDORSEMENTS INTO CATEGORY A AS A FUNCTION OF 
THE NUMBER OF FEATURES SHARED WITH THE A PROTOTYPE. 
 

The first thing to note on Figure 5.5 is that the proportions endorsement show a 

rather nice linear relationship with the distance from the A prototype. We verified that 

this relationship exists on individual participant’s basis and is not a by-product of 

averaging across subject by fitting linear trends into individual endorsements and 

calculating correlation coefficient between the distance from the prototype and the 
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proportion endorsement.16 We found that 72 out of 94 participants across tasks showed 

significant linear trend, with median correlation being r = .825. The parameters of the 

linear fits for each experiment and each condition are presented in Table 5.1. 

 

 slope intercept Proportion fit 

feed A/B 0.073 (0.010) 0.102 (0.048) 0.62 

obs A/B 0.083 (0.011) 0.078 (0.053) 0.70 

int A/nonA 0.074 (0.006) 0.204 (0.040) 0.70 

inc A/nonA 0.080 (0.005) 0.142 (0.032) 0.75 

TABLE 5.1. LINEAR FIT PARAMETERS (STANDARD ERRORS) FOR THE FOUR TRAINING 
TYPES. Proportion fit denotes proportion of participants that showed significant linear 
trend. 
 

Accuracy and reaction time as a function of the distance from the boundary 

Performance in prototype learning tasks is characterized by advantage for more 

prototypical over less prototypical stimuli in both accuracy and speed of classification. 

Figure 5.6 shows the relationship between distance from the category bound and 

accuracy (left panel) and reaction time (right panel) for the four tasks. In all tasks, 

proportion correct increased as the distance from the bound increased (feed A/B b = 

0.061, t(20) = 4.99, p < .001; obs A/B b = 0.049, t(22) = 3.74, p = .001; int A/nonA b =  

0.070, t(25) = 7.11, p < .001; inc A/nonA b = 0.090, t(23) = 10.42, p < .001). In all tasks 

except the feedback A/B task, reaction time decreased as the distance from the bound 

increased (feed A/B b = -0.011, t(20) = 0.34, p = .735; obs A/B b = - 0.213, t(22) = 3.29, 

                                                 
16 Because 0 shared features (B prototype/anti-prototype) and 10 shared features (A prototype) exemplars 
were shown to each participant only once each, while all other distances from the A prototype 5 times, the 
endorsement of prototype and anti-prototype were excluded from the calculation of the endorsement slopes 
and correlations.  
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p = .003; int A/nonA b = - 0.172, t(25) = 3.22, p = .004; inc A/nonA b = -0.117, t(23) = 

2.75, p = .012).17 

 

 

FIGURE 5.6. ACCURACY AND REACTION TIME CHANGES WITH THE DISTANCE FROM THE 
BOUND. Left: Proportion correct as a function of the distance from the bound. Right: 
Reaction time as a function of the distance from the bound. 

 

Asymmetric category representation 

Figure 5.5 and Table 5.1 suggest that the endorsement intercepts are smaller (and 

close to zero) in both A/B task variants while they are larger (and above zero) in both 

A/nonA task variants. Non-zero intercept can be caused both by flatter endorsement 

slopes (reflecting poorer learning) and/or by an upward shift of the endorsement curve 

(reflecting category bias). Because category bias would embody the asymmetric 

representation for the two categories typically found in the A/nonA task (Casale & 

Ashby, in press; Corneille, Goldstone, Queller, & Potter, 2006; Goldstone, 1996), we 

wanted to test for it explicitly. We calculated proportion A responses for each participant 

                                                 
17 We used median reaction time to characterize each participant’s reaction time at each distance from the 
bound. Using mean correct reaction time revealed marginally significant slope in the feedback A/B task (b 
= -0.064, t(20) = -1.96, p = .065). 
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and then calculated mean proportion of A responses p(A) in each task. The proportion of 

A responses was about half in both A/B variants (feedback A/B: p(A) = .48, t(22) = 1.58, 

p = .128; observational A/B: p(A) = .49, t(11) = 0.77, p = .455), but significantly more 

than half in both A/nonA variants (intentional A/nonA: p(A) = .57, t(26) = 4.13, p < .001; 

incidental A/nonA: p(A) = .55, t(23) = 2.70, p = .013). These results suggest that our 

design can accomplish symmetric representation in the A/B task and asymmetric 

representation in the A/nonA task even when the actual category structures were equated 

between the tasks. 

 

Discussion 

 

The results provide three interesting findings about performance patterns in 

different variants of the prototype learning task. First, all four training methods yielded 

graded category membership typical for categorization based on prototype representation 

(McCloskey & Glucksberg, 1978; Rosch, 1975a; Rosch & Mervis, 1975; Rosch & 

Moore, 1973). The relationship was well described by a linear function between the 

number of prototypical features and the proportion endorsement. Both accuracy and 

reaction time also showed a relationship with stimulus prototypicality, with stimuli closer 

to either prototype being categorized faster and more accurately than stimuli further from 

the prototypes (close to the boundary).  

Second, the average difficulty (proportion correct) was the same irrespective of 

the training variant. In fact, it was even numerically equivalent in three training variants – 

feedback A/B, intentional A/nonA and incidental A/nonA (with a small numerical 

advantage for observational A/B training). This is the first explicit comparison of these 

training methods. The equivalent difficulty of all four tasks is interesting since it suggests 

that participants were able to learn just as much about two categories when trained to 

distinguish between them using exemplars from both, when intentionally trying to learn 

characteristics of just a single category, and even when incidentally learning 
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characteristics of a single category by being passively exposed to its exemplars. From the 

methodological perspective, comparable difficulty is important as well as it allows us to 

draw conclusions about the differences between the task variants without the danger that 

these differences are attributable to different difficulty of different versions.  

Third, both tested variants of the A/B task yielded symmetrical and both tested 

variants of the A/nonA task yielded asymmetrical category representation, reproducing 

characteristics traditionally associated with these tasks (Casale & Ashby, in press; 

Corneille, Goldstone, Queller, & Potter, 2006; Goldstone, 1996). Additional behavioral 

signature of the A/nonA task was proposed by Casale and Ashby (in press). Casale and 

Ashby argued that if the A/nonA task is supported by a perceptual learning system, it 

should exhibit itself by steeper typicality gradient than the A/B task, meaning that 

accuracy should fall off faster with the distance from a prototype in the A/nonA task than 

in the A/B task. This follows from the dependence of the perceptual learning system on 

perceptual similarity. They indeed found steeper accuracy gradients in their A/nonA task 

(where the noncategorical patterns were random dot formations, unrelated to both the A 

prototype and each other), however, the performance in their A/nonA task was lower than 

their A/B task at all levels of exemplar distortions. Alternative explanation thus remained 

plausible that the steeper gradients are solely driven by greater difficulty of their A/nonA 

task than their A/B task. Finding accuracy gradient differences here would constitute 

stronger evidence as both actual stimuli used and overall difficulty of the two tasks were 

equated. Interestingly, the accuracy slopes observed here were indeed somewhat steeper 

for both A/nonA variants and flatter for both A/B variants, suggesting that this property 

of the A/nonA task may be preserved even when category structures of both tasks are 

equated. Further research is however needed to confirm this observation. 

To summarize, Chapter 5 had two intertwined goals. First, we wanted to compare 

behavioral characteristics of performance in the A/B task and the A/nonA task when 

confounding differences between them are limited. Second, we wanted to develop an 

alternative methodology for studying the A/B task and the A/nonA task that would allow 

their comparison using brain imaging technique. To achieve these goals, we compared 
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learning and categorization performance in two variants of the A/B task and two variants 

of the A/nonA task using identical stimuli and category structures in all tasks. We found 

all four training variants to be of comparable difficulty and showing characteristic graded 

category membership. Importantly, we also found that the new methodology can preserve 

characteristic profiles and differences between the A/B task and the A/nonA task 

traditionally associated with these tasks. We conclude that the novel method is a viable 

alternative to the traditional prototype tasks that provides a new means of comparing the 

A/B task and the A/nonA task while eliminating confounding differences between them. 
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Chapter 6. Neural correlates of prototype learning: an fMRI study  

 

Studies of prototype learning have a long tradition in cognitive research (Posner 

& Keele, 1968, 1970). Despite its importance in everyday cognition, the neural 

underpinnings of prototype learning are unclear and contradictory findings exist. For 

example, one critical learning system is episodic memory and examinations of prototype 

learning in amnesiac patients, with damage to this system, have so far been mixed. Some 

studies with amnesiacs suggest that prototype learning is intact (Knowlton & Squire, 

1993), whereas others suggest a prototype learning deficit (Zaki, Nosofsky, Jessup, & 

Unversagt, 2003). The picture in the neuroimaging literature is equally inconclusive. 

Some studies revealed dependence on brain networks associated with episodic memory 

(Reber, Gitelman, Parrish, & Mesulam, 2003), while others revealed involvement of 

other networks including those associated with perceptual learning (Reber, Stark, & 

Squire, 1998a), visuospatial attention and learning (Little & Thulborn, 2005), and visual 

reasoning (Seger et al., 2000).  

In a review of the prototype literature, Ashby and Maddox (2005) suggested that 

the use of A/nonA tasks in some studies and A/B tasks in other studies explains the 

contradictory results. They suggested that A/B learning is mediated by medial temporal 

lobe based explicit episodic memory processes while A/nonA learning is mediated by 

nondeclarative, perceptual learning processes. Differential involvement of hippocampus 

in the two tasks can be expected from their cognitive demands. In the A/nonA task, 

participants are likely to form an isolated representation of a single prototype (Goldstone, 

1996) and then compare each test item to this single prototype. If the new stimulus is 

sufficiently similar to the prototype representation, it will be endorsed to the category; 

otherwise it will be categorized as a non-member. Changes in representation of 

categorical items within visual cortex may be used as a basis for successful categorization 

(Reber, Stark, & Squire, 1998b). In the A/B task, participants are likely to form 

representations of two distinct categories centered on two prototypes. Each new stimulus 
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is then compared to both of these prototypes and endorsed to the category of the 

prototype that is closer to the current stimulus. Associations among characteristic features 

of each category must be formed, together with the category label. Hippocampus has 

been shown to mediate such learning of arbitrary novel associations (Moss, Mahut, & 

Zola-Morgan, 1981; Wirth et al., 2003).  

Existing literature offers only partial support for the declarative versus 

nondeclarative memory for the A/B versus A/nonA task. One one hand, impaired 

prototype learning was reported in amnesia when the A/B task was used  (Zaki, 

Nosofsky, Jessup, & Unversagt, 2003) but spared prototype learning was reported in 

amnesia when the A/nonA task was used (Bozoki, Grossman, & Smith, 2006; Keri, 

Kalman, Kelemen, Benedek, & Janka, 2001). The results from neuroimaging studies are 

less cohesive. Hippocampus involvement has been reported in some studies that 

employed an A/B task (DeGutis & D'Esposito, 2007; Little, Shin, Sisco, & Thulborn, 

2006), but not uninamously (Little & Thulborn, 2005, 2006). Additionally, hippocampal 

or medial temporal lobe involvement has also been reported in some studies that 

employed an A/nonA task (Aizenstein et al., 2000; Reber, Gitelman, Parrish, & Mesulam, 

2003). 

 Direct comparison of the results from the existing A/B and A/nonA studies is 

complicated by a number of methodological differences. First, as outlined above, the 

category structures differ across tasks. In the A/B task, each category is internally 

consistent and consists of a collection of exemplars derived from the category prototype. 

In the A/nonA task, one category is internally consistent, and the other is not. Second, the 

A/B task involves intentional learning where the participants are instructed to learn the 

characteristics of the categories based on corrective feedback. The A/nonA task often 

involves incidental learning where participants passively view category exemplars first, 

and are assessed on discrimination of categorical from non-categorical exemplars later. 

Third, different fMRI contrasts have been used in the A/B studies and A/nonA studies. In 

A/B studies, the BOLD signal was typically contrasted between the prototype task and 

fixation cross viewing (Little & Thulborn, 2005; Seger et al., 2000), whereas in A/nonA 
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studies, the BOLD signal was contrasted between categorical (A) items and non-

categorical (nonA) items, both being a part of the prototype task (Reber, Stark, & Squire, 

1998b; Reber, Wong, & Buxton, 2002). 

The goal of this study is to examine the neural underpinnings of A/B and A/nonA 

prototype learning using experimental methodology that holds constant the category 

structures, learning mode, and fMRI contrast. We will focus on early learning (20 

training trials) as most prototype learning studies that we discussed so far used a small 

number of training trials. We hypothesize that A/B performance is mediated by the 

medial temporal lobe while A/nonA performance involves nondeclarative learning. 

Differences in learning mode, category structure and fMRI contrasts between the A/B 

and A/nonA task could account for a number of discrepancies in the existing literature 

and must be controlled. Rather than being driven by the specific category structures, we 

expect that the context of learning – learning contrasting categories or learning 

characteristics of a single category – can by itself produce the dissociation between 

declarative and nondeclarative based learning. 

 

Method 

Participants 

Twenty-seven young adult (age 18-30) volunteers (13 females) participated in the 

study. Data from 3 participants (1 female) were excluded from analysis due to excessive 

head motion, leaving 24 participants for analysis. Each participant read and signed 

informed consent with participation in an fMRI study. Volunteers received $50 

compensation for a 2-hour session. 

Stimuli  

Two sets of stimuli were used in the study. The first set was identical to the set 

used in Chapter 5 (Figure 5.3). A second set of cartoon animal stimuli with different 
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dimensions was also generated (Figure 6.1), and each prototype learning task was tested 

with both sets of stimuli. Note that in this study, unlike in a typical A/nonA experiment, 

all nonA stimuli were internally consistent and constructed from a fixed prototype. Thus 

the only difference between the A/nonA and A/B tasks was in stimuli presented during 

training (only A stimuli in the A/nonA task, and A and B stimuli in the A/B task), and the 

category labels used during the testing phase. Critically, the same stimuli were used in the 

test phase for both the A/nonA and A/B tasks. Thus, any differences observed in the 

A/nonA and A/B brain activations cannot be attributed to differences between the 

structures of nonA category versus B category, nor to any stimulus-specific differences. 

 

Figure 6.1. Example stimuli from the second stimulus set.  

Experimental design 

A within subject design was employed. Each participant completed an A/nonA 

and an A/B run with each stimulus set (4 runs total). Each participant completed two runs 

of one task, a 10 minute structural scan, and then two runs of the second task. The order 

of stimulus sets and the order of the tasks were counterbalanced between participants. 

Each run consisted of a training and test phase. Importantly, although the training phase 
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differed across tasks, the test phase was identical. Functional MRI scans were acquired 

during the testing phase only.  

 

Training design (not scanned) 

The A/B task procedure was identical to the feedback A/B training variant from 

Chapter 5. Participants were asked to categorize 10 A and 10 B items, using corrective 

feedback to learn the category labels. The A/nonA task procedure was identical to the 

intentional A/nonA training variant from Chapter 5. Prior to A/nonA training, 

participants were informed that they will need to learn to discriminate members of a 

category (A) from nonmembers (nonA). During A/nonA training, participants were 

shown 20 stimuli from category A only. The training stimuli were presented in a random 

order. 

 

Test design (scanned) 

The testing phase was identical for both tasks, with only the label of the second 

category (B versus nonA) differing between the tasks. Participants were presented with 

42 stimuli, one at a time, that included both prototypes and five stimuli selected from 

each distance from the prototype (except distance 5 - ambiguous stimuli). None of the 

stimuli were previously used in the training phase. An event-related design was utilized 

to study the neural activity during the testing phase. Four possible orders of A and B 

stimuli and their onsets including 30% of null time (to interject temporal jitter) were 

predetermined using “optseq2” program (http://surfer.nmr.mgh.harvard.edu/optseq, Dale, 

1999). Each stimulus onset time and order was used in one experimental run. On each 

trial, a stimulus was presented for a maximum of 3.5 sec, during which time the 

participant needed to indicate the category membership of the stimulus.  No feedback was 

provided. A fixation cross was presented between each stimulus onset lasting either 0.5, 

2.5, or 4.5 seconds. 
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MRI acquisition, processing and analysis 

Functional and structural images were acquired using a 3T GE Signa MRI 

scanner. Functional images were acquired during the testing phase of each task only, 

using a multiecho GRAPPA parallel imaging EPI sequence that reduces typical EPI 

distortions and susceptibility artifacts. Images were collected utilizing whole head 

coverage with slice orientation to reduce artifacts (approx 20 degrees off the AC-PC 

plane, TR = 2 sec., 3 shot, TE = 30 msec., 35 axial slices oriented for best whole head 

coverage, acquisition voxel size = 3.125 X 3.125 X 3 mm with a .3 mm inter-slice gap). 

The first four EPI volumes were discarded to allow scans to reach equilibrium. Stimuli 

were viewed through a back projection screen and a mirror mounted on the top of the 

head coil. Responses were collected with an MR compatible button box that was placed 

under the right hand. 

In addition to collecting EPI images during task performance, one or two high 

resolution T1 SPGR scans that have been empirically optimized for high contrast 

between gray matter (GM) and white matter (WM), and GM and cerebrospinal fluid 

(CSF) were acquired. These images were acquired in the sagital plane using a 1.3 mm 

slice thickness with 1 square mm in-plane resolution.  

Pre-processing and data analysis were conducted using FEAT (FMRI Expert 

Analysis Tool) Version 5.63, part of FSL (www.fmrib.ox.ac.uk/fsl) software. Pre-

processing included motion correction using MCFLIRT (Jenkinson, Bannister, Brady, & 

Smith, 2002), non-brain removal using BET (S. Smith, 2002), high-pass temporal 

filtering with a 60 second cut-off, and spatial smoothing with a Gaussian kernel of 5 mm 

FWHM. Data from each run of each participant were analyzed separately at a first level 

of analysis. Each category stimulus time onset was convolved with a canonical 

hemodynamic response function and was entered as a predictor into a general linear 

model to estimate β-weights together with their temporal derivatives. Data from all four 

runs from each participant were combined at a second level using a fixed effects analysis. 

Combined data from each participant were then subjected to the third level random 

effects analysis using OLS. For all analyses, individual voxels were considered active 
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when reaching Z > 2.3. Whole brain cluster-size threshold was set at p < .05 (Worsley, 

2001). Additionally, we defined two regions of interest (ROI), medial temporal lobe 

(MTL) and striatum. We were especially interested in area MTL because its involvement 

in prototype learning has been controversial and in striatum because it has been 

implicated in other kinds of category learning and is thought to operate complementary to 

area MTL (Poldrack et al., 2001; Poldrack & Packard, 2003). The MTL ROI consisted of 

FSL Harvard-Oxford atlas defined right and left hippocampus and right and left 

parahippocampus, the striatum ROI consisted of FSL Harvard-Oxford atlas defined right 

and left putamen and right and left caudate. Activation in each ROI was assessed using a 

small volume correction at p < .05 based on Monte Carlo simulation using AFNI, 

accounting for both smoothness of the data and the shape and size of each ROI. The 

simulation determined a minimal required cluster size of 33 voxels for the MTL ROI and 

30 voxels for the striatum ROI. 

 

Results 

Behavioral performance 

For the main behavioral and fMRI analyses, test phase data were pooled across 

the two runs (the two stimulus sets) of each task.18 Endorsement functions – observed 

probabilities of responding A at each distance from the prototype A – are presented in 

Figure 6.2.19 To ensure that the linear trend is not a by-product of averaging across 

participants (Maddox, 1999), we calculated endorsement slopes for each participant 

separately, excluding the distance 0 (the prototype A) and distance 10 (the prototype 

                                                 
18 There were no differences between accuracies achieved on the two stimulus sets (A/B: .68 vs .71, t(23)= 
1.186, p=.248; A/nonA: .67 vs .68, t(23)=0.441, p=.664). 
19 Three different participants reached accuracy significantly below change (proportion correct less than 
.36 (15 or less correct responses out of 42), p < .05, binomial test, two-sided) in one of their four runs. For 
these runs, we assumed that the participant actually learned to distinguish between the two categories, but 
confused the labels during the test, and adjusted the scoring accordingly. We also repeated all behavioral 
analyses with (1) the original data and with (2) the three runs excluded; the pattern of results was not 
affected in either case. 
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B/anti-prototype) as they consisted of only one data point. For both tasks, the proportion 

of category A endorsements decreased linearly with the distance from the prototype A, 

with mean slopes similar in both tasks (A/B b = 0.059, se = 0.008, p < .001, A/nonA b = 

0.054, se = 0.007, p < .001; slope difference: t(23) = 0.386, p = .703), and with no bias 

for either response in the A/B task (proportion of A response = .494, t(23) = 0.63, p = 

.532), but with a bias towards A response in the A/nonA task (proportion of A response = 

.580, t(23) = 3.82, p < .001). In both tasks, categorization accuracy increased linearly as a 

function of a stimulus distance from the category boundary (A/B: b=0.058, se=0.010, p < 

.001, A/nonA: b=0.060, se=0.009, p<.001; slope difference: t(23) = 0.232, p = .818) and 

reaction times decreased linearly as a function of a stimulus distance from the category 

boundary (A/B: b=0.029, se = 0.011, p=.020; A/nonA: b=0.028, se=0.013, p=.045; slope 

difference: t(23) = 0.082, p = .935). Importantly, there was no difference between overall 

accuracy in the A/B (mean = .694, se = .018) and A/nonA tasks (mean = .673, se = .020; 

t(23) = -0.644, p = .526). Interestingly, A/B and A/nonA accuracy rates were moderately 

negatively correlated (r = -.362, p = .082), suggesting that distinct cognitive processes 

may underlie performance in the two tasks. Unlike accuracy, mean reaction times 

differed between the two tasks by approximately 0.2 s (A/B: mean = 1.343 sec, se = .095; 

A/nonA: mean = 1.545 sec, se = 0.099; t(23) = 3.566, p = .002) and were positively 

correlated within subjects (r=.831, p<.001). 
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Figure 6.2. Endorsement into category A as a function of a stimulus distance from 

prototype A. 

Common neural regions 

 First, we identified regions that showed common activation or common 

deactivation in both the A/B task and the A/nonA task compared to the fixation baseline, 

by creating a conjunction z-map using the minimum of the two tasks’ z-maps. A network 

of regions in which both tasks showed significantly greater activation compared to the 

fixation baseline (see Figure 6.3, Table 6.1) included areas involved in visual perception 

and object identification (occipital and fusiform areas, Figure 6.3.a,b), areas associated 

with decision making and response generation (inferior frontal cortex and precentral 

gyrus, Figure 6.3.b), as well as bilateral posterior hippocampus (Figure 6.3.c) and 

bilateral striatum (Figure 6.3.d). A number of regions in which both tasks showed 

deactivation compared to the fixation baseline (see Figure 6.4., Table 6.2.) were 

identified as well, consisting primarily of typical default-mode network regions 
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(Laurienti, 2004; Mason et al., 2007; Raichle et al., 2001): inferior parietal cortices, 

posterior cingulate, medial temporal cortices and medial frontal cortices.  

 

Brain region Size Max Z x y z 
Whole brain cluster corrected (p < .05) 
 L lateral occipital (BA 19) 4719 6.93 -36 -86 -4 
 R lateral occipital (BA 19) 3387 6.75 42 -66 -12 
 Calcarine (BA 17) 807 3.59 10 -72 6 
 L Postcentral (BA 3/40) 3705 5.71 -44 -26 48 
 R Inferior Parietal (BA 7/40) 3513 5.69 36 -54 46 
 R Fusiform/Inferior temporal (BA 37) 1737 6.83 40 -54 -20 
 L Fusiform (BA 37) 896 6.73 -38 -64 -20 
 L Inferior frontal (BA 44/48) 2333 6.1 -48 6 28 
 Medial frontal (BA 24/32) 1927 5.79 -4 8 46 
 R Inferior frontal (BA 44) 1740 5.61 52 10 24 
 R Middle frontal (BA 6) 489 4.08 30 -4 46 
Small volume corrected (p < .05) 
 R Hippocampus 123 5.15 20 -30 -4 
 L Hippocampus 84 4.56 -20 -30 -8 
 R Striatum 130 4.35 16 16 -2 
 L Striatum 61 3.23 -20 10 -4 
 

TABLE 6.1. REGIONS COMMONLY ACTIVATED IN BOTH A/B AND A/NONA TASK. L = left, 
R = right, BA = Broadman area, Max = maximum. Size given in voxels. 
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FIGURE 6.3. COMMONLY ACTIVATED REGIONS FROM BOTH TASKS VERSUS BASELINE. a, 
b: Whole brain 3D rendering with cortical activation overlay. a. Left hemisphere. b. Right 
hemisphere. c, d: Coronal slices with activations overlays. c. Bilateral hippocampus. d. 
Bilateral striatum and medial frontal cortex. Activation maps were overlaid upon a 
canonical brain using MRIcro software (www.mricro.com) 
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Brain region Size Max Z x y z 
Whole brain cluster corrected (p < .05) 
 Posterior cingulate (BA 23) 4494 5.49 -10 -42 40 
 L Angular gyrus (BA 39) 2008 5.79 -56 -62 22 
 R Supramarginal (BA 40) 1880 5.3 58 -48 24 
 R Middle temporal (BA 20/21) 4887 5.45 52 -4 -32 
 L Middle temporal (BA 20/21) 4878 5.5 -62 -48 -2 
 Superior frontal (BA 9) 8151 5.56 -28 26 46 
 L Orbito frontal (BA 38/11) 1002 4.75 -52 24 -10 
 R Orbito frontal (BA 47/11) 686 4.6 50 34 -10 
 L Medial temporal 804 4.93 -24 -16 -22 
 R Medial temporal 636 4.49 22 -12 -30 
TABLE 6.2. REGIONS COMMONLY DEACTIVATED IN BOTH A/B AND A/NONA TASK. L = 
left, R = right, BA = Broadman area, Max = maximum. Size given in voxels. 
 

 

FIGURE 6.4. COMMONLY DEACTIVATED REGIONS FROM BOTH TASKS VERSUS BASELINE. 
a, b: Whole brain 3D rendering with cortical activation overlay. a. Left hemisphere. b. 
Right hemisphere. c, Coronal slice showing MTL regions. Activation maps were overlaid 
upon a canonical brain using MRIcro software (www.mricro.com) 
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Distinct neural regions 

The primary goal of this research was to directly compare activity during the A/B 

task and the A/nonA task, controlling the stimuli and learning mode. A number of regions 

exhibited increased activity in one task compared to the other. The list of identified 

regions is provided in Table 6.3., contrast activation maps are provided in Figure 6.5. 

 

Brain region Size Max Z x y z 
A/B > A/nonA (Whole brain cluster corrected) 
 R Inferior parietal (BA 40) 746 3.79 58 -38 46 
 L Orbito frontal (BA 47/11) 381 3.9 -36 54 -16 
A/B > A/nonA (Small volume corrected) 
 L Parahippocampus (BA 36) 53 3.13 -20 -6 -30 
A/nonA > A/B (Whole brain cluster corrected) 
 L Inf Lateral Occipital (BA 18) 989 4.88 -20 -94 0 
 R Inf Lateral Occipital (BA 19) 776 4.37 38 -82 -2 
 L Sup Parietal (BA 7) 478 4.24 -20 -70 36 
 R Sup Parietal (BA 7) 451 3.74 22 -64 48 
A/nonA > A/B (Small volume corrected) 
 R Putamen 41 3.47 20 10 -8 
 R Caudate head 33 3.24 10 10 -2 
 L Caudate body 32 4.27 -10 6 18 
 

TABLE 6.3. REGIONS FROM WHOLE BRAIN AND REGION OF INTEREST (SMALL VOLUME 

CORRECTED) ANALYSIS THAT ACTIVATED DIFFERENTIALLY DURING THE A/B TASK AND 
THE A/NONA TASK. L = left, R = right, Inf = inferior, Sup = superior, BA = Broadman 
area, Max = maximum. Size given in voxels. 
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FIGURE 6.5. REGIONS FROM DIRECT CONTRAST OF A/B TASK VERSUS A/NONA TASK. In 
red, A/B > A/nonA; in blue A/nonA > A/B. a, b: Whole-brain cluster corrected contrasts 
overlaid on a 3D rendering of a canonical brain. a. Left hemisphere. b. Right hemisphere. 
c, d, e: Coronal sections illustrating small volume corrected contrast maps in regions-of-
interest. c. Left parahippocampus. d. Left caudate body. e. Right putamen and right 
caudate head. Activation maps were overlaid upon a canonical brain using MRIcro 
software (www.mricro.com).  
 

 

 The direct contrast revealed that the A/B task involves to a larger degree areas 

that have been implicated in explicit episodic memory, including frontal and parietal 

cortices and parahippocampus (Figure 6.5, red overlay). By contrast, regions that 

demonstrated greater activity in the A/nonA task than the A/B task included those 
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previously implicated in perceptual learning, including posterior cortices and striatum 

(Figure 6.5, blue overlay).20  

 

Neural regions predictive of accuracy 

 To identify brain areas predictive of successful categorization, we compared 

activity evoked during correct categorization trials with activity evoked during incorrect 

categorization trials, separately for each task. Identified regions that exhibited greater 

activation during correct than incorrect trials are listed in Table 6.4 and are presented in 

Figures 6.6 and 6.7. No region exhibited greater activation for incorrect than correct trials 

in either task. Regions that were predictive of correct categorization during the A/B task 

trials included bilateral middle temporal cortices, posterior cingulate cortex and orbito 

frontal cortex, as well as bilateral medial temporal lobe spanning parts of both 

parahippocampus and hippocampus. Only two regions were predictive of correct 

categorization during the A/nonA task, left putamen and right anterior hippocampus. The 

relative location of the right hippocampal region identified in the A/nonA task and the 

right MTL region identified in the A/B task is presented in Figure 6.8. The A/nonA 

region was located anterior to the A/B region and there was minimal overlap between the 

regions (3 voxels). 

 

 

 

 

 

                                                 
20 Because reaction times were not perfectly equated in the two tasks, it is possible that some of the regions 
identified in the A/nonA > A/B contrast may reflect longer processing times in the A/nonA task than in the 
A/B task. Although we cannot rule this possibility based on the current data, two pieces of evidence suggest 
that it is not the case. First, most regions identified in the A/nonA > A/B contrast were either a priori 
expected (e.g. posterior cortices based on the perceptual learning theory) or were identified also in another 
contrast (striatum in the correct > incorrect contrast). Second, adding the reaction time differences as a 
covariate at the group level analysis did not abolish the activation differences.  
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Brain region Size Max Z x y z 

A/B task (Whole brain cluster corrected) 

 R Middle temporal (BA 21/22) 373 3.64 62 -14 -16 

 L Middle temporal (BA 21/22) 263 3.57 -58 -36 4 

 Posterior cingulate/ Precuneus (BA 23) 1576 4.58 -6 -52 10 

 Orbito frontal (BA 10/11) 1430 4.1 2 62 -14 

A/B task (Small volume corrected) 

 R Medial temporal (BA 20) 238 4.18 30 -22 -16 

 L Medial temporal (BA 20) 201 3.69 -32 -22 -14 

A/nonA task (Small volume corrected) 

 L Putamen 177 4.25 -32 -10 -2 

 R Anterior Hippocampus 38 3.8 28 -10 -22 

TABLE 6.4. REGIONS THAT EXHIBITED GREATER ACTIVATION DURING CORRECT THAN 
INCORRECT TRIALS. Regions identified for each task separately. 
 

 

FIGURE 6.6. REGIONS ASSOCIATED WITH SUCCESSFUL CATEGORIZATION DURING THE 
A/B TASK. a,b: Lateral view of the left and right hemisphere 3D rendering with activation 
overlay. c,d: Medial view of the left and right hemisphere. e: Coronal section showing 
medial temporal lobe activation. 
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FIGURE 6.7. REGIONS ASSOCIATED WITH SUCCESSFUL CATEGORIZATION DURING THE 
A/NONA TASK. Coronal section featuring left putamen and right hippocampal activation.  
 

 

FIGURE 6.8. COMPARISON OF MTL REGIONS IMPLICATED IN THE A/B TASK AND THE 
A/NONA TASK. Sagital and horizontal section illustrating relative location of the regions 
of MTL that showed greater activation in correct than incorrect trials during the A/B task 
(red) and the A/nonA task (blue). 
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Discussion 

Prototype learning is ubiquitous in everyday cognition. We hypothesized that 

prototype learning is not mediated by a single neural system, but rather that the system 

relevant to prototype learning depends critically upon the circumstances of learning – 

whether the task involves learning to discriminate a single category from other stimuli, or 

two categories from each other. Holding constant the learning mode, structure of the 

categories, and fMRI contrasts, the results presented here suggest that A/nonA and A/B 

prototype learning are supported by dissociable cognitive and neural processes. First, we 

found a negative correlation between A/nonA and A/B task behavioral performance even 

when learning was comparable in both tasks. Lack of performance correlation between 

two tasks is often used as an indicator the two tasks rely on different cognitive processes 

(Conway & Engle, 1996; Kane & Engle, 2003; Shah & Miyake, 1996). Second, we found 

dissociable neural systems supporting the two tasks using functional MRI. Although there 

were a number of regions commonly activated or deactivated during both the A/nonA 

task and the A/B task compared to a fixation baseline, a direct contrast of stimulus 

evoked activity during the two tasks revealed several regions that were preferentially 

active during one task versus another,. Most notably, the A/B task recruited to a larger 

degree parahippocampus, inferior parietal and orbito-frontal cortex, while the A/nonA 

task recruited to a larger degree lateral occipital and posterior parietal cortices, and 

striatum. We also identified regions that were predictive of correct categorization by 

contrasting neural activity during correct and incorrect trials. We confirmed the role of 

the medial temporal lobes and orbito-frontal cortex in the A/B task and the role of 

striatum in the A/nonA task.  

These findings are generally consistent with findings from several prototype 

learning studies in amnestic patients. Knowlton and Squire (1993) found intact A/nonA 

prototype learning in patients with MTL lesion-based amnesia; Bozoki et al. (Bozoki, 

Grossman, & Smith, 2006) and Keri et al. (Keri, Kalman, Kelemen, Benedek, & Janka, 

2001) found relatively spared A/nonA learning in patients with Alzheimer’s disease; and 

Zaki et al. (Zaki, Nosofsky, Jessup, & Unversagt, 2003) found impaired learning in the 
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A/B task, but not in the A/nonA task, in two groups of amnesic patients. The involvement 

of the MTL in the A/B task has also been implicated in a few neuroimaging studies. 

Although some A/B fMRI studies did not report hippocampal activation when contrasting 

the A/B task versus baseline (Little & Thulborn, 2005; Seger et al., 2000), others did 

when using more detailed contrasts (low versus high distortions: DeGutis & D'Esposito, 

2007; early versus late learning: Little, Shin, Sisco, & Thulborn, 2006).  

The role of the medial temporal lobe in prototype learning 

Although largely confirming the notion of Ashby and Maddox (2005) that the 

A/B task may rely on declarative learning supported by the structures of the medial 

temporal lobe whereas the A/nonA task relies on nondeclarative learning, the declarative 

versus nondeclarative distinction seems to constitute an incomplete description of the two 

tasks. Using the contrast of correct versus incorrect trials, we found evidence of 

hippocampus involvement in the A/nonA task as well. Others also found evidence for 

MTL involvement in the intentional A/nonA task by contrasting categorical (A) and 

noncategorical (non-A) stimulus evoked activity (Aizenstein et al., 2000; Reber, 

Gitelman, Parrish, & Mesulam, 2003). So, how can these seemingly paradoxical results 

be reconciled? Below, we discuss a number of (mutually nonexclusive) possible 

accounts. 

First, a simple explanation may be that although MTL can be recruited during the 

A/nonA task, it is not critically necessary for the task performance. It is unlikely that 

normal healthy participants would not use all resources to perform a task; from this 

perspective, neuroimaging and neuropsychological data are complementary rather than 

contradictory to each other.  

A second (not opposing) explanation is that MTL is involved in both the A/B task 

and the A/nonA task, but performs a different function in each. Consider that the two 

training methods likely lead to different category representations (Goldstone, 1996), and 

the two tasks have different demands. The A/B task leads to a formation of a symmetric 

representation of two contrasting categories (two prototypes) together with their category 
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label, emphasizing their distinct features (Goldstone, Steyvers, & Rogosky, 2003). 

During the testing phase, each stimulus needs to be compared to both prototypes and the 

category that is closer to the current stimulus is selected as a response. The A/nonA task 

likely leads to a formation of a representation of a single category with its characteristic 

features (Corneille, Goldstone, Queller, & Potter, 2006). During the testing phase, the 

stimulus is compared to this single representation. If it is sufficiently similar, it is 

categorized as a member of the category, if it is not sufficiently similar, it is categorized 

as a nonmember. Because there are a number of differences in the cognitive demands of 

the two tasks, let us consider how different functions of the MTL could support these 

demands. 

In order to support episodic memory, MTL needs to perform two complementary 

functions, pattern separation and pattern completion (Kesner & Hopkins, 2006; O'Reilly 

& McClelland, 1994; O'Reilly & Rudy, 2000). Pattern separation refers to the ability to 

extract distinct details of a new episode to avoid catastrophic interference from highly 

similar (overlapping) previous or future episodes. Pattern completion refers to the ability 

to recall a complete episode based on a partial cue. One can speculate that the participant 

may use the ease of pattern completion as a measure of a stimulus category membership 

in the A/nonA task; the more cues (prototypical features) present in the stimulus, the 

easier it is reconciled with the complete pattern (the prototype). On the other hand, both 

pattern separation and pattern completion likely play a role in the A/B task. The pattern 

separation mechanism seems to be integral for the A/B task through its extraction of 

discriminative features, creating a representation of the two contrasting categories. 

Pattern completion may be needed in order to select the more similar prototype and to 

extract the category label. Although pattern separation and pattern completion 

mechanisms seem to be based on different subregions of MTL (Bakker, Kirwan, Miller, 

& Stark, 2008; Kirwan & Stark, 2007), it is not yet clear whether they can account for the 

results observed here for the A/B task and the A/nonA task. Kirwan, Stark and colleagues 

found two hippocampal regions - CA3 and dentate gyrus - biased towards pattern 
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separation, and the rest of MTL biased towards pattern completion, an activation pattern 

that does not map clearly on the A/B versus A/nonA distinction observed here. 

Another distinction of memory functions is that of recollection, familiarity, and 

novelty. Recollection is a retrieval accompanied by specific contextual details, while 

familiarity and novelty refers to a feeling that an item has been (or not been) previously 

encountered, without the contextual details of a recall. Considering the demands of the 

two tasks, one can argue that performance in the A/nonA task can be supported by 

familiarity or novelty alone, as all prototypical features should be more familiar than all 

non-prototypical features. On the other hand, performance in the A/B task requires the 

participant to recall details of learning in order to extract the appropriate category label as 

all features are equally familiar. Recollection has been shown to critically depend on 

intact hippocampus and posterior parahippocampus while familiarity-based judgements 

have been shown to be relatively spared in patients with hippocampal and 

parahippocampal damage (Holdstock, 2005; Tendolkar et al., 1999; Westerberg et al., 

2006). The involvement of anterior hippocampus in the A/nonA task may then reflect 

novelty detection that has been previously ascribed to this region (Daselaar, Fleck, & 

Cabeza, 2006; B. A. Strange & Dolan, 2006). 

The role of striatum in prototype learning 

Not fully expected was the role of striatum in the A/nonA task. The striatum has 

been implicated in nondeclarative category learning in a number of studies (Nomura et 

al., 2007; Poldrack et al., 2001; Seger & Cincotta, 2002, 2005; D. Shohamy, Myers, 

Onlaor, & Gluck, 2004), but it has not been reported in the A/nonA task before. The 

results reported here suggest that the A/nonA task not only recruits striatum to a larger 

extent than the A/B task, but also that it can support successful categorization as early as 

after 20 training trials. This is a novel finding with respect to the A/nonA task and one 

that needs further investigation. Striatum has been implicated in gradually learning 

stimulus-response-outcome relationships (Knowlton, Mangels, & Squire, 1996; Packard 

& Knowlton, 2002; Seger & Cincotta, 2005) and processing feedback (Cincotta & Seger, 
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2007; Little, Shin, Sisco, & Thulborn, 2006; Maddox & Ing, 2005; Seger & Cincotta, 

2005). Neither of these functions was of use in the A/nonA task, yet striatal activation 

was greater during the A/nonA task than A/B task and was predictive of a correct 

response.  

One mechanism by which the striatum may support A/nonA learning is by its role 

in extracting regularities across multiple experiences in probabilistic learning (Poldrack, 

Prabhakaran, & Gabrieli, 1999; D. Shohamy, Myers, Kalanithi, & Gluck, 2008; 

Wilkinson & Jahanshahi, 2007). Because prototypical features were presented more 

frequently than non-prototypical features during training, these features could be 

extracted and expected during testing. Rodriguez and colleagues (Rodriguez, Aron, & 

Poldrack, 2006) found that the activation of ventral striatum increased parametrically 

with prediction error. Such a signal could be used for successful discrimination of 

categorical (small prediction error) from noncategorical (large prediction error) stimuli. 

In support of this claim, we found two loci in the right ventral striatum that showed 

greater activation during noncategorical (nonA) than categorical (A) stimulus 

presentation, although the size of the two loci (21 and 13 voxels) did not reach the 

statistical threshold. The data presented here suggest that besides its traditional role in 

stimulus-outcome learning and feedback processing, the striatum may additionally 

support category learning by extracting expected distribution in a set of stimuli in the 

absence of outcome or corrective feedback. 

The role of the striatum in the A/B task cannot be answered based on the current 

data. The striatal learning system for the stimulus-outcome association is considered slow 

and incremental (Ashby, Alfonso-Reese, Turken, & Waldron, 1998), typically 

dominating performance late in learning, after the initial domination by the hippocampal 

system (Poldrack et al., 2001; Seger & Cincotta, 2005). Although we did not observe a 

striatal contribution to the A/B task here, based on the previous literature, it could be 

recruited eventually, after enough trials have passed.  
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The role of learning mode in the A/nonA task 

It is likely that performance in the A/nonA task is supported by different learning 

systems when the category representation is acquired incidentally than intentionally.  For 

example, imaging studies including incidental A/nonA tasks consistently report decreased 

occipital activation for categorical patterns (typically as the sole activation site) while 

findings from intentional A/nonA tasks are less consistent with each other, and usually 

different from the incidental findings  (Aizenstein et al., 2000; Reber, Gitelman, Parrish, 

& Mesulam, 2003; Reber, Stark, & Squire, 1998b). Regarding the role of the medial 

temporal lobe in the A/nonA task, it is possible that it is recruited (in addition to other 

learning systems) during intentional, but not incidental learning. To support this claim, 

MTL involvement has been reported in neuroimaging studies in intentional, but not 

incidental A/nonA tasks (Aizenstein et al., 2000; Reber, Gitelman, Parrish, & Mesulam, 

2003; Reber, Stark, & Squire, 1998b) and the neuropsychological studies reporting 

relatively spared learning in amnesia used incidental learning conditions (Bozoki, 

Grossman, & Smith, 2006; Keri, Kalman, Kelemen, Benedek, & Janka, 2001; Knowlton 

& Squire, 1993). We also found evidence for a role of the striatum in the intentional 

A/nonA task previously unreported in the incidental A/nonA task. As a commonality 

between the incidental and the intentional A/nonA task, we found some evidence that 

perceptual learning, reported consistently in the incidental version of the A/nonA task, 

may also contribute to learning in the intentional A/nonA task. 

Generalization 

It is important to note that the results presented here provide a snapshot of 

application of category knowledge early in learning and further research is needed to 

determine the generalizability beyond this scope. First, we did not address how the 

contrasting A/B or isolated A category representations are initially generated. Comparing 

training in the two tasks directly is complicated by differences in the presentation 

methods and stimuli used, so imaging only the testing phase of the A/nonA task has been 

the standard so far (Aizenstein et al., 2000; Reber, Stark, & Squire, 1998a; Reber, Wong, 
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& Buxton, 2002). To help us better understand the initial representation formation, a 

manipulation involving only differences in the category label and/or instruction during 

training would need to be developed, perhaps in line with research of Goldstone and 

colleagues (Corneille, Goldstone, Queller, & Potter, 2006; Goldstone, Steyvers, & 

Rogosky, 2003). Second, we studied prototype learning at a relatively early stage. The 

relative contribution of different learning systems and their supporting neural structures 

likely changes during the course of learning. For instance, as noted above, several 

category learning studies that used feedback training (like our A/B task) have shown that 

during the course of learning, participants first rely on the medial temporal lobe, but 

slowly shift towards the striatal system (Poldrack et al., 2001; Poldrack & Packard, 2003; 

Seger & Cincotta, 2006). It is possible that the A/B prototype task would exhibit such a 

shift after extensive training as well. Third, the category structures and stimuli used here 

differ from the typical A/nonA task, and we used different contrasts than reported 

previously. Previous research on the A/nonA task identified task-related activations by 

contrasting activation for the categorical (A) stimuli and the non-categorical (non-A) 

stimuli. We also tested the contrast of categorical (A) stimuli with non-categorical (non-

A) stimuli during the A/nonA task, but no activation locus exceeded our criterion of 

statistical significance. One possibility is that there were not enough trials (training or 

testing) to reveal the distinction. Another possibility that the previously reported contrast 

of categorical (A) and noncategorical (nonA) items is specific for the dot pattern stimuli 

and/or is present only when non-categorical items are random, unrelated patterns.21 

Future directions 

A strong test of functional relevance of a neural region for a cognitive task is 

parametric modulation of the region’s activity with parametric changes in the task. In the 

current context, regions supporting the A/B and the A/nonA prototype learning tasks 

should show a modulation of their activity with the distance of a stimulus to the category 

                                                 
21 It is also important to note that the two studies that included intentional A/nonA task (Aizenstein et al., 
2000; Reber, Gitelman, Parrish, & Mesulam, 2003), both using dot-pattern stimuli, differed in the reported 
activation sites (there was in fact no overlap). 
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prototype. Importantly, two different signatures are to be expected for the two tasks. In 

the A/B task, the representation of the two categories (prototypes) is symmetrical, and the 

modulation should thus be symmetrical about the category boundary. In the A/nonA task, 

only one category exists. Regions supporting categorization in this task should thus 

modulate their activation monotonically with the distance of a stimulus from the category 

A prototype. The graphical representation of these two predictions is depicted in Figure 

6.9. Hints of such a relationship have been reported in the literature. For the A/B task, 

DeGutis and D’Esposito (2007) have compared easy (far from the boundary) and difficult 

(near the boundary) stimuli from category A and category B separately. No differences 

were found between activation to the A stimuli and the B stimuli (suggesting symmetrical 

representation along the category boundary), but a number of regions were identified that 

were preferentially active for easy or for difficult stimuli on either side of the bound. In 

the A/nonA task, differences have been reported between activation to A stimuli 

compared to non A stimuli (Aizenstein et al., 2000; Reber, Gitelman, Parrish, & 

Mesulam, 2003), although no finer-grade parametric modulation has been reported in the 

literature so far. Therefore, it is possible that even if a neural region supported 

performance in both tasks, it may serve a different function in each. We have attempted 

to test these predictions by calculating signal change separately for stimuli at four 

distances from the prototype A (distance 0-2, distance 3-4, distance 6-7 and distance 8-

10) for striatal and MTL loci identified in the conjunctive task versus baseline contrast 

and in the direct A/B versus A/nonA contrast. However, due to low number of trials for 

each event, these trends were not identifiable. In future research, we would like to 

address this question. 



 150 

 

FIGURE 6.9. PREDICTED PARAMETRIC MODULATION OF SIGNAL STRENGTH IN AREAS 
SUPPORTING THE A/B TASK (LEFT) AND A/NONA TASK (RIGHT). Solid line: Signal 
decreases as the distance from either prototype (A/B task) or category A prototype 
(A/nonA task) increases. Dashed line: Signal increases as the distance increases. 

 

Conclusion – the interplay of learning systems  

We examined the cognitive and neural processes involved in A/B and A/nonA 

prototype learning using within subject methodology while simultaneously controlling 

external variables, such as different category structures, learning modes, and fMRI 

contrasts that have hindered comparison across existing studies. Based on the current and 

existing data, we argue existence of dissociable prototype learning pathways. The 

performance in the A/B task is likely mediated by explicit episodic memory processes 

based on medial temporal lobe, while performance in the A/nonA task is mediated at 

least in part by a different system, based (in intentional learning) on striatum and 

potentially posterior cortices. Based on the previous literature, we speculate that 

incidental A/nonA learning may differ from both A/B learning and intentional A/nonA 

learning and is primarily based on changes in processing categorical stimuli within the 

visual cortex, a form of perceptual learning similar to that observed in perceptual priming 

(Schacter & Buckner, 1998). The behavioral end-results of the incidental and intentional 

A/nonA learning seem however similar. 
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One can speculate that all prototype learning systems likely play an important and 

complementary role in concept acquisition, as everyday prototype learning experience 

contains elements of both A/B and A/nonA tasks. We need to learn both characteristic 

features of a category, as well as features that best differentiate that category from related 

categories. Each system has its own strengths and limitations. The A/nonA learning can 

proceed automatically, without intention (incidental learning) and without supervision 

(Posner & Keele, 1968). Perceptual coherence of the category exemplars seems to be a 

major limitation in concept learnability (Bozoki, Grossman, & Smith, 2006; Casale & 

Ashby, in press). Acquiring concepts such as carrot or apple can be supported by the 

A/nonA type of learning. The A/B prototype learning requires supervision, but allows 

one to form categories that are less perceptually coherent and make inferences that are 

not based solely on perceptual similarity. The concept of fruits and vegetables is better 

suited for the A/B training. While typically operating in parallel, these prototype learning 

systems are dissociable when demands of the task are tuned to suit one system versus the 

other (as demonstrated here) or when damage to one system hinders learning of specific 

task versions (as supported by the neuropsychological literature). Importantly, rather than 

the category structure itself, the framing and context of the task, such as whether a 

category is learned in isolation or in contrast to another category, plays a crucial role in 

recruiting the complementary learning systems. 
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Chapter 7: General discussion 

MULTIPLE CATEGORY LEARNING SYSTEMS 

Throughout this dissertation, we discussed the role of four learning and memory 

systems of the brain in category learning. We found that different systems seem to be 

dominating in different category learning tasks. A tentative conclusion about the 

relationships between different category learning tasks and the four memory systems is 

presented in Table 7.1.  

 

Memory type Key 
neural 
structure 

Cognitive 
functions/tasks 

Category 
learning task  

Category learning 
mechanism 

Working 
memory 

Frontal 
cortex 

Maintenance 
and 
manipulation of 
information 

Rule-based task Hypothesis testing 

Procedural habit 
memory 

Striatum Skills and 
habits; 
Associative S-R 
learning  

Information-
integration task 
 
? Intentional 
A/nonA task 

Association between 
regions in the 
perceptual space and 
category labels 

Declarative 
memory 

Medial 
temporal 
lobe 

Recall and 
recollection 

Prototype A/B 
task 

Exemplar 
memorization, 
feature binding 

Perceptual 
representation 
memory 

Sensory 
cortex 

Priming Incidental 
A/nonA task 
 
? Intentional 
A/nonA task  

Perceptual memory 
for categorical items 

Table 7.1. Multiple memory systems in category learning tasks. 
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During the last decade, a number of studies have mapped the cognitive and neural 

processes involved in rule-based and information-integration category learning in quite 

some detail (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby, Ell, & Waldron, 

2003; Ashby & Maddox, 2005; Filoteo, Maddox, & Davis, 2001b; Filoteo et al., 2005; 

Maddox & Ashby, 2004; Maddox, Ashby, & Bohil, 2003; Maddox, Ashby, Ing, & 

Pickering, 2004; Maddox & Ing, 2005; Nomura et al., 2007). In this dissertation, the 

empirical studies presented in Chapters 2 and 3 (Zeithamova & Maddox, 2006, 2007) 

helped to establish and understand the role of working memory in rule-based learning. 

The neural and cognitive processes involved in prototype learning are less understood, 

and only recently, the dissociation between the A/B prototype task and the A/nonA 

prototype task started to set attention. The empirical studies presented in Chapters 5 and 6 

(Zeithamova, Maddox & Schnyer, in preparation) represent one of the first attempts to 

contrast the A/B task and the A/nonA task on the behavioral and neural level. Although 

we could not resolve all antinomies in the existing prototype literature, we were at least 

partially successful in consolidating some of them. We demonstrated that the A/B task 

and the A/nonA task rely on dissociable cognitive and neural processes. The A/B task 

relies primarily on the medial temporal lobe (MTL) dependent declarative memory 

system, whilte the A/nonA task relies primarily on the sensory cortex based perceptual 

representation memory and/or the striatum based procedural memory. 

Understanding how different learning and memory systems support different 

categorization tasks have several important theoretical and practical implications. From 

the theoretical standpoint, by accepting that different categorization tasks may be 

supported by different learning systems, we were able to sort through the existing 

literature and interpret previously contradictory findings in the new light. We were also 

able to propose and conduct new experiments, testing the multiple system theory, and 

greatly increasing our understanding of cognitive and neural processes underlying 

categorization. Additionally, once the relationship between different category learning 

tasks and the memory systems that underlie them is well understood, the categorization 
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tasks themselves can become important tools for studying the memory systems 

themselves. By realizing that category learning should rely on the same mechanisms as 

other forms of learning and memory, including the neural substrate that supports them, a 

bridge can be built between the rich categorization literature and the rich memory 

literature that have been evolving with insufficient interaction with one another 

(Knowlton, 1999; Poldrack & Foerde, 2008).  

The notion of multiple category learning systems also has implications from a 

practical standpoint. First, we can use the correspondence between categorization tasks 

and learning systems for neuropsychological diagnosis. Several studies have already 

embraced this idea. For example, Filoteo et al (2007) demonstrated that current 

performance in an information-integration task can predict future cognitive decline in 

nondemented patients with Parkinson’s disease; Keri et al (2002) diagnosed early and late 

stage of Alzheimer’s disease with the A/nonA task, as the early stage affects primarily 

medial temporal lobe (leaving A/nonA task unaffected), but entire cortex is affected in 

the late stage (leading to an impaired A/nonA learning). Second, we can improve 

teaching methods and instruction to utilize all learning and memory systems rather than 

relying exclusively on explicit memorization. This development has already been applied 

for some years in second language teaching where explicit learning of language rules got 

de-emphasized while repetition practice received renewed attention. Using multiple 

memory systems in a given task can greatly improve speed and quality of performance. 

Although we have greatly advanced in our understanding of different category 

learning systems, we need to ask the same question that has gained recently attention in 

the memory systems research: Why do we have multiple category learning systems and 

how do they interact? Although advancing the answer will take a number of years and is 

beyond the scope of this dissertation, we will discuss a few promising hints in the next 

section. 
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CHARACTERISTICS OF THE LEARNING SYSTEMS 

Perhaps the easiest answer to the question of why we have multiple category 

learning systems is because they evolved facing multiple category learning tasks. As we 

noted in Chapter 1, each system has its characteristic properties – advantages and 

disadvantages – that make it more or less suitable for certain categorization tasks.  

Rule generation, dependent on the frontal cortex, and exemplar memorization, 

dependent on the MTL, are explicit processes under conscious control. Because of the 

conscious control, they seem to be the default for humans (Ashby, Alfonso-Reese, 

Turken, & Waldron, 1998; Gluck, Shohamy, & Myers, 2002). Procedural stimulus-

response learning and perceptual learning are thought to be automatic, implicit forms of 

learning that may occur outside awareness (Knowlton & Foerde, 2008; Knowlton, 

Mangels, & Squire, 1996; Reber & Squire, 1994). The suitability of different learning 

systems to different tasks and learning context follows from their properties. The explicit, 

working and declarative memory provide a flexible task representation that can transfer 

or generalize easily; the implicit, procedural and perceptual memory  is closely tied to the 

original context and lacks the flexibility (Ashby, Ell, & Waldron, 2003; Bayley, Frascino, 

& Squire, 2005; Casale & Ashby, in press; Gabriele & Packard, 2006; Maddox, Bohil, & 

Ing, 2004; Maddox, Filoteo, Lauritzen, Connally, & Hejl, 2005; Myers et al., 2003; 

Reber, Knowlton, & Squire, 1996). Explicit learning also can support fast, even one trial 

learning, while procedural learning is gradual, requiring extensive practice (Ashby & Ell, 

2002; Myers et al., 2003; Squire, 2004). Although these properties seem to favor explicit 

strategies, the speed and flexibility of explicit knowledge comes with a price. While 

implicit learning occurs essentially automatically without effort, explicit strategies are 

dependent on limited resources such as attention, working memory, and conscious 

awareness (Chapters 2 and 3, Waldron & Ashby, 2001). Additionally, some category 

structures, such as the information-integration structures, are not easily acquired by an 

explicit strategy.  

Besides a particular categorization task, other factors play a role in determining 

which learning system would dominate in a categorization task. Factors that have 
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demonstrated effects on the preferential use of different category learning systems 

include individual differences in the preferred strategy (Gluck, Shohamy, & Myers, 

2002), task instruction (E. E. Smith, Patalano, & Jonides, 1998), intention to learn 

(Aizenstein et al., 2000; Reber, Gitelman, Parrish, & Mesulam, 2003; J. D. Smith & 

Shapiro, 1989), the length of training (Chang & Gold, 2003; Seger & Cincotta, 2006), 

behavioral manipulations that disfavor one of the systems (Ashby, Maddox, & Bohil, 

2002; Maddox, Ashby, & Bohil, 2003), and neurological limitations involving an 

impairment of some systems (Bayley, Frascino, & Squire, 2005; Bozoki, Grossman, & 

Smith, 2006; Reber, Knowlton, & Squire, 1996). In this dissertation, we focused our 

attention on the categorization task as the factor determining which memory/category 

learning system dominates learning. Determining how other factors modulate the role of 

the categorization task in category learning has been only touched here (Chapters 2 and 

3) and is a topic of future research.  

It is important to note that the correspondence between the memory systems, the 

category learning mechanisms, and the categorization tasks proposed in Table 7.1 should 

not be taken as absolute. Rather, I propose that a certain category learning mechanism 

and a corresponding memory system is likely dominant, but not necessarily exclusive, in 

mediating learning in a given task. If multiple systems are operative in any given task, 

how do they interact to support behavior? The next section discusses this question. 

 

INTERACTIVE CATEGORY LEARNING SYSTEMS 

The striatal procedural system and the medial temporal declarative system 

The only two systems whose interaction has been studied both in the general 

memory systems research and in the context of category learning are the striatal 

procedural system and the MTL declarative system. In the tradition of memory research, 

a number of studies showed that these two systems seem to be competitive in nature (for 

a review, see e.g. Packard & Knowlton, 2002; Poldrack & Packard, 2003). For instance, a 
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rat can solve a maze task based on learning the rewarded place, an MTL dependent type 

of memory, or based on learning the rewarded turning sequence (or sometimes learning 

the rewarded cue), a striatal dependent type of memory (Morris, Garrud, Rawlins, & 

O'Keefe, 1982; Packard & Teather, 1999). The relative dominance of each system can be 

affected by a lesion or a pharmaceutical intervention, with lesions to one system 

sometimes leading to an improvement in tasks that rely on the other system (Eichenbaum, 

Fagan, Mathews, & Cohen, 1988; Morris, Garrud, Rawlins, & O'Keefe, 1982; Packard & 

McGaugh, 1992, 1996; Packard & Teather, 1997; Schroeder, Wingard, & Packard, 2002). 

There is also a general strategy shift throughout learning, with place (MTL) responses 

dominating early in learning and turning (striatal) responses dominating later in learning 

(Chang & Gold, 2003). 

Recently, several neuroimaging studies in humans replicated the interaction of the 

MTL and the striatum during acquisition of categorization tasks. Specifically, the MTL 

and striatum seem to be negatively correlated across individuals and across time, with the 

activity in MTL decreasing and the activity in the striatum increasing with time (Poldrack 

et al., 2001; Seger & Cincotta, 2006). Both memory and categorization research thus 

suggest that the striatal procedural system and the MTL declarative system interact 

throughout learning in a competitive manner, with the MTL dominating early in learning 

and the striatum dominating later in learning. In this dissertation, we studied one task, the 

A/B task, primarily dependent on the declarative memory. Based on the literature 

reviewed above, it is possible that the A/B task may also become dependent on the 

procedural, striatal system at later stages of learning. As we only included 20 training 

trials, we were not able to test for the transition from the MTL to the striatum based 

learning in our data, but future research may address this question.  

The striatal procedural system and the frontal hypothesis testing system 

Another two systems whose interaction has been proposed in categorization 

literature is the interaction between the hypothesis testing system and the procedural 

learning systems proposed in COVIS (Ashby, Alfonso-Reese, Turken, & Waldron, 
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1998). COVIS assumes that both systems attempt and learn each categorization task 

encountered. On each trial, both systems generate a response, with the strength 

(confidence) of the response based on the previous history of success. The systems’ 

responses then compete to determine the final output (the observable response), with the 

system producing the strongest response winning out. The explicit, frontal hypothesis 

testing system initially dominates, but when no verbalizable rule providing good 

performance is found, the striatal procedural system starts dominating over time as the 

gradual trial-by-trial learning increases its accuracy.  

Although further research is needed, I did not find evidence for bilaterally 

competitive nature of these two systems. First, consider the findings from the memory 

literature about competition between the striatal and the MTL system. One signature of 

the competitive nature of the interaction between the two systems was that impairment to 

one system facilitated learning mediated by the other system. Analogous evidence for the 

competition between the hypothesis testing system and striatal procedural system has 

been found only unidirectionally. When behavioral manipulations adversely affect the 

procedural system, the hypothesis testing system remains dominative throughout learning 

even for information-integration category structures (Ashby, Maddox, & Bohil, 2002; 

Maddox, Ashby, & Bohil, 2003). However, we found no evidence that the same would be 

true for manipulations affecting the hypothesis testing system. In Chapters 2 and 3, we 

would expect that in the working memory conditions, participants should rely 

preferentially on the unaffected procedural system. Instead, the participants continued to 

rely on the unsuccessful hypothesis-testing system. It seems the bias towards the explicit 

hypothesis-testing strategies is hard to overcome. In the future, perhaps a combination of 

an information-integration task with an additional instruction manipulation (such as used 

in e.g.  Kemler-Nelson, 1984; E. E. Smith, Patalano, & Jonides, 1998; J. D. Smith & 

Shapiro, 1989) may be able to promote non-explicit strategies in such circumstances. 

Second finding questioning the competitive nature of the two systems comes from 

computational modeling of the COVIS theory. Consider trial-by-trial resolution of the 

competition between the two systems. COVIS proposes that the final output (observable 
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response) is generated from the responses of the two subsystems using a winner-takes-all 

method. An alternative is a “cooperative” nature of this resolution. On the level of the 

computational model, this can be achieved by determining the final output as a weighted 

sum of the responses of the two subsystems. Across several applications of the 

computational model COVIS, we found that the implementation using the weighted sum 

(“cooperative”) resolution provided superior model fit compared to the winner-takes-all 

(“competitive”) resolution (Maddox, Filoteo, & Zeithamova, under review; Zeithamova, 

Filoteo, Simmons, Maddox, & Paulus, 2007). In summary, based on the data currently 

available, the frontal hypothesis-testing system and the striatal procedural system seem 

cooperative rather than competitive in nature. 

And the questions for future research 

For both interactions discussed above – the declarative memory with the 

procedural memory and the hypothesis-testing system with the procedural memory, time 

seems of essence, with a shift from explicit strategies to procedural learning with length 

of training. Although in this dissertation we only focused on immediate performance 

evaluation, it is important to note that the retention period also plays an important role. 

As we discussed in Chapter 1, individual exemplars play an increasingly smaller role and 

the abstracted prototypes or rules an increasing larger role when category knowledge is 

tested with a delay after acquisition (Homa, 1973; Homa & Little, 1985; Posner & Keele, 

1970; Reed, 1972). Although the procedural and neural mechanism of this shift is not yet 

well described, it likely involves changes within and/or between supporting memory 

systems. Similarly, working memory cannot support retention of a categorization rule 

from session to session; another long-term memory mechanism needs to be involved if 

what was learned about categories should last. Currently, our understanding of how 

category learning and representation changes across larger time scales is very incomplete 

and further research is needed in this area. 

Very little is also known about the interactions of the perceptual learning system 

and any other system. We can speculate that perceptual memory contributes to category 
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learning, providing support to other category learning mechanisms, whenever perceptual 

similarity within a category is greater than perceptual similarity between categories. The 

first computational model of perceptual learning in categorization was proposed by Keri 

and colleagues (2002). We may hope that future category learning models will be able to 

incorporate this perceptual learning model as a subunit to more complex models.  

Finally, we can ask whether the list of memory systems in category learning is 

now complete. Probably, it is not. Besides the four memory systems that were previously 

implicated in category learning and thus considered in this dissertation, other memory 

systems exist (see e.g. Squire, 2004, for a recent review). Two neural structures that have 

a demonstrated role in learning and memory, but were not discussed here, are cerebellum 

and amygdala. Cerebellum has been associated with certain types of classical 

conditioning (McCormick & Thompson, 1984) and motor learning (Ito, 2000). Although 

there are currently no theories of category learning that would involve the cerebellum, we 

may find ourselves revising this view in a few years as recent findings suggest that the 

cerebellum may play a previously underappreciated role in cognition (Paquier & Marien, 

2005; Tamminga & Vogel, 2005; Thach, 1998). Similarly, the amygdala has been 

traditionally implicated in emotional learning, such as fear conditioning (Bechara, Tranel, 

Damasio, & Adolphs, 1995; Berntson, Bechara, Damasio, Tranel, & Cacioppo, 2007). 

Recent studies, however, also demonstrated the role of the amygdala in modulation of the 

MTL and striatum contribution to learning and performance (McIntyre, Marriott, & Gold, 

2003a, 2003b; Packard & Wingard, 2004). Understanding the resolution of the 

competition between the MTL and the striatal learning system based on the task context 

may thus not be possible unless we include the amygdala into the equation. 

Even within the four learning systems that we considered, each system may 

contribute to category learning via several distinct mechanisms. In this dissertation, we 

saw two hints of these dissociations within a system. First, in Chapter 6, we found 

activation in the medial temporal lobe in both the A/B task and the A/nonA task. The 

specific locus of this activation, however, differed between the tasks, probably reflecting 

the difference in the specific learning mechanisms active in each task. Second, the striatal 



 161 

system has been traditionally implicated in slow trial-and-error learning, where feedback 

plays an important role (Ashby, Queller, & Berretty, 1999; Seger & Cincotta, 2005; 

Daphna Shohamy et al., 2004). However, in Chapter 6, we identified striatum in the 

A/nonA task, implying that the striatum can extract regularities in the stimuli without 

external feedback. This finding is not entirely surprising as novel stimuli have been 

reported to induce similar dopamine release in the striatum as a reward (Lind et al., 2005; 

Pierce, Crawford, Nonneman, & Mattingly, 1990; Williams, Rolls, Leonard, & Stern, 

1993), and activation of the striatum in response to novely was also found in humans 

using neuroimaging (Berns, Cohen, & Mintun, 1997). It is thus likely that striatum can 

gradually learn regularities and build expectation across a series of stimuli, even in the 

absence of external feedback. Such mechanism can support category learning but is 

distinct from the feedback mediated stimulus-response mapping implied in the 

information-integration learning. Additionally, anterior striatum is reciprocially 

connected with the prefrontal cortex as a part of the attentional network. It thus likely 

plays yet another role in category learning, this time in supporting rule-based learning by 

mediating attention switches between different stimulus dimensions (Ashby, Noble, 

Filoteo, Waldron, & Ell, 2003; Brown & Marsden, 1988). Teasing apart distinct 

mechanisms of category learning with striatum and within MTL is the next step in 

categorization research. 
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