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Category learning is an essential cognitive fumcti&mpirical evidence and
theoretical reasons suggest existence of multigsodiable category learning systems.
Here, a proposal is made that different categagnieg tasks are dominated by different
category learning systems. A dual system theorgatégory learning COVIS proposes
dissociation between an explicit, hypothesis-tgssgstem, and an implicit, procedural
learning system. Two studies testing this dissmmedre presented, supporting the notion
that hypothesis testing, utilizing working memorgdaexplicit reasoning, mediates
learning in rule-based tasks, while gradual andoraatic S-R learning mediates
information-integration tasks. Inconsistent findsng the literature regarding a prototype
learning task suggest that two versions of thik, tdee A/nonA, single prototype task and
the A/B, two prototype task, are mediated by dddticategory learning mechanisms. A

novel methodology for studying the A/nonA task aheé A/B task is proposed and
iii



utilized in a functional magnetic resonance imagtgly. The study reveals that the A/B
task is mediated by declarative memory while theoAA task is mediated by perceptual
learning. We conclude that at least four categeayrriing systems exist, based on four
memory systems of the brain: working memory, procadmemory, declarative memory

and perceptual memory. The four category learnysgesns compete or cooperate during
learning, each system dominating in a differenégaty learning task. Category learning

tasks provide a useful tool to understand learaimgy memory systems of the brain.



Table of Contents

LISt O TADIES ... e et e e e eeeeeeeees X
IS o ) T [ PSR Xi
Chapter 1: Dissociable category learning SyStems..........cccoevveeeeiiiiiiieeeeeiiiinnnns 1
INEFOAUCTION ...t e e 1
Overview of the diSsertation .............oeviceeeriiiiiiie e 2.
Drawing from history: Basic approaches to categuien and real world
(070 07T o KSR TUPPPT 3
ClaSSICal VIEW ......ooiiiiiiiiiiiieeee st a e e e e e 4...
Prototype thEOIY .......vieeeee e 7
=T 4] o] F= g £ =T o] o 10
Knowledge-based VIEW............coooiiiiiiiiiiieeeee e 12
Decision bound approach...........cceeeiiiiicceee e 13
The need for consolidation: the multiple systemragph ................. 15
Memory systems in category learning tasks ... .cceeeeeeeeeeeereeennnnnnnnn. 16
Rule-based tasks..........oooiiiiiiiii 17
Working memory and the prefrontal system in ruleduhlearning
....................................................................................... 19
Information-integration taskS...............ccemmmeceeeeee e e e e eeeeeeeeeeevis 20
Procedural memory and the striatum in informatiotegration
1= 14 1] o RSP 22
Dissociation between rule-based and informatioagrdtion
(o= 1=T0 [0 VAN (== 14 o110 To 23
Prototype learning taskS..........ccoouoe oo e e 25
Perceptual memory and the cortical system in pypttearning26
And what about declarative memory? Completing tbtauge ........... 27
Chapter 2: Dual task interference in category e@rn............ccccovvvvvvvvncciinnnennn. 30
Review of Waldron and Ashby (2001) ... 31
e d 0 1= .41 | S RS 34



1Y/ 111 [0 To IR 35

PartiCIPaNTS.........ccoviiiiiiieiiir i e 35
Stimuli and apparatus............oooeiiiiiis e 35
PrOCEAUIE ...ttt 37
RESUIS .. 38
Stroop task performance ..............eeeiiieereeeeiiciie e, 38
Category learning performance............ccoceeeevveiiinnneeeeeeeeenn, 38
DISCUSSION ...ttt ettt e e e e e e e e e e 41.
EXPEIMENT 2. ittt ettt e e e e e aaaeas 41
1Y 171 Lo o [P PPPPRPPPRPPPR 43
PartiCIPaNntS........cooiiiiiiieiee e e 43
Stimuli and apparatus............cooeevvvivs e 43
ProCEAUIE .. ..o eeeeeeeees 44
RESUILS ...t 45
Stroop task performance. ............ueeeiiieermmmeiiiee e 45
Categorization task performance .............cccccceeevvvvveviiiiinnnnnns 45
[ o U 1] o] PP a7.
General diSSCUSSION......uuuiiiiiiiiiiiee e 48
(O 1 S TSP 48
Rule versus SiMilarity .............euuveeiiicce e 51
Single versus multiple systems in category learning.................... 53
Chapter 3: Working Memory in Category Learning...........c..eeeeeeveeieeeeeennnnnnnnns 56
Working memory role in the hypothesis testing amatpdural learning system
.................................................................................................... 56
Overview of the current StUdIES .........cooiieeceeeeiie e 59
e d 0 1= .41 | S R 65
METNOA ... e 65
Participants and DeSigN........ccoooeeeeeee s e s eeeeeeee 65
Stimuli and ApParatus..........oooeeeiiiiiiiiceeee e 66
PrOCEAUIE ...ttt 67



Results and Discussion

................................................................. 68
Working memory task performance. .............commmeeeeeeeenee.....68
Category learning performance............cooceeeevviiiiinnneeeeeeeeenn, 68
Brief SUMMANY ....ovviiie e 72
EXPEIMENT 2A ..ot 73
1Y 111 Lo o TP PPPPPRPPPPPPRP 73
Participants and DeSigN........ccoooeieeeiiscommme e 73
Stimuli and ApPParatus...........cceeeeviiiiiicceee e 74
ProCEAUIE ... eeeeeeees 75
RESUILS ...ttt 76
Working memory task performance .............commeeeeeeeeeennn... 76
Category learning performance............cooeeeeeeeuviiiiieeeeeeeeeeenn, 76
EXPErMENT 2B ... . e 79
1Y 111 Lo o [T PPPPRPPPRPPPP 79
Participants and DeSigN.......ccoooeeeeeeiiicommme e 79
Stimuli, Apparatus and Procedure ..........cccceeeeeeeevieiieeeeninnnns 79
RESUIS .. 80
Working memory task performance ..............ommmeeeeeeeennnnn...80
Category learning performance............coocceeevviiiiiinneeeeeeeeenn 80
Brief SUMMANY ....oviiiie e 83
GeNEral DISCUSSION .....oiiiiiieieieii ettt s s s e e e e e e e e e eeeeeeeesesnnees 85

Category Structure Effects on the Distribution afcAracy Scores ...86
Working Memory Task Effects on Rule-based Accur&cgre

D11 1] 01U 11 o] 0 SRS 87
Interaction between the hypothesis testing andguho@l system under
secondary task

Dissociating Visuo-spatial and Verbal Working Memé&iffects on Rule-
Based Category Learning

Comparison of Maddox et al. (2004) and Experiment.1.....90
The effect of the cardinality of a categorizatioiterion

The role of verbal working memory in category leam

Vii



The role of visuo-spatial working memory in categl@arning93

SUMMAIY ..t erre e e e e et e e e et e e e e e e e eaa e e e eaa e eeees 4.9
Supplemental Data: Description of the Model Fittitrgpcedure Applied to the
Score Distributions From Experiments 1 and 2A...........ccccceeeennnn. 96
Model deSCIIPLION ......ceeeeiiiiiieee e 96
RESUILS ...ttt 97
Best fitting models in Experiment 1. .........coeeeeveiiniiinnnn.. 97
Best fitting models in Experiment 2A. ........ccceeeeeiiieeeeeeeeeee, 98
Chapter 4: Prototype learning is not a uniform PESC.............ccevvvvvivvviennninnennnn 99
Versions of the prototype learning studi€S.....ccccoooveeeeeeeiiiiveeeeeeiiiiiies 101
Limited comparability across existing Studi€S.............coovvvvvvvveiiiiinnnnnnn. 104
Overview of the studies in Chapter 5 and Chapter.6.............cccceeeennn... 106
Chapter 5. Exploring prototype learning tasks: Gamiscategory structures in
different training variantsS..............coovvvriieeiiiiiiics e 109
Constant category StTUCIUIE.........cooviuiiiee e 110
Different training variantS..........c.coeeeeeeeeiiii e 112
METNOAS. ... e 131
PartiCiPaNntS..........ccoiiiiiiiiieeeieii e cmmmmm s e e e e e e e e e 113
Stimuli and apParatus...........coooiiveeees e 114
PrOCEAUIE ...t 115
RESUIS .. e 117
Proportion of COrrect reSPONSES ..........vvveeeeeemevrvrrinniiiieeeenns 117
Category endorsement as a function of the distanoethe
PIrOTOLYPE .. s et e e ees 119
Accuracy and reaction time as a function of théalice from the
POUNAArY ... 120
Asymmetric category representation ...........cccceeeeeeeeeeeeeenn. 121
DISCUSSION ..ttt ettt mmmeee ettt e et e e e e e e e e e e e e e e e e s 212
Chapter 6. Neural correlates of prototype learnamgfMRI study .................... 125
1Y 171 Lo o [T PPPPPPRPPPRPPRP 271
PartiCIPaNtS.........oooiiiiieieieeieet i cmmmmm e 127



SUMUIT L e 127

Experimental deSign..........uuueeiiiiiiiiccceeeeii e 128
MRI acquisition, processing and analysis......ccccc.eucieennn.. 130
RESUILS ...t 131
Behavioral performance.............oooouiiiiceciiieeeieiin 131
Common Neural regiONS..........uuueeeueees s e eeeeennnnnneeaeeeas 133
Distinct neural regionS ...........oooviiiiiiimmmmmme e ee e 137

Neural regions predictive of accuracy ........emeeeeeeeeeennnn... 139

D o U 1] o] o [P UUUP 214

The role of the medial temporal lobe in prototyparhing .....143

The role of striatum in prototype learning ....cccce..eecceeeeeennen. 145

The role of learning mode in the A/nonA task ................... 147
GeNEraliZatioN .........oiieei e 147
Future dir€CtioNS .......oooeiiiiiiiiii e 148

Conclusion — the interplay of learning systems.................. 150

Chapter 7: General diSCUSSION ...........oovimmmmmeiiiiiiiiiiie e 152

Multiple category learning SYSteMS .........occceeeeiiiiiiiiee e 152

Characteristics of the learning systems.... .o ooeeeeevvveeeeeeiiiiiiiennnnnn.... 155

Interactive category learning SYSteMS.......ccceeciiiiie e 156
The striatal procedural system and the medial teatpieclarative
SYSTEIM .o 156
The striatal procedural system and the frontal bypsis testing
SYSEEIM L. 157
And the questions for future research .......ccccceecvvvviiiiennnnn. 159
] (=] €= o =T U 162

YL PP PPPI o 0



List of Tables

Table 2.1. Distribution parameters for categoryatires used in Experiment 1. .......... 36

Table 2.2. Distribution parameters for the conjwctategory structure used in

EXPEIMENT 2. ...ttt e e e e e e e e e e e e e e e beenrnnnnneeee 44
Table 3.1. Distribution parameters for the ruleebasd information-integration category
structures used in EXPeriment 1. ........ccoooeeiiiiiiiieeere e 66
Table 5.1. Linear fit parameters for the four ptgp@ training types. .........ccceeeeeeeeeee. 120
Table 6.1. Regions commonly activated in both A8 A/nonA task...........ccccceee... 134
Table 6.2. Regions commonly deactivated in both &8 A/nonA task..................... 136
Table 6.3. Regions from whole brain and regiomtdriest analysis that activated
differentially during the A/B task and the A/non@sk...............ccccvvieeennnn. 137
Table 6.4. Regions that exhibited greater activatioring correct than incorrect trials.
.............................................................................................................. 140
Table 7.1. Multiple memory systems in categoryn@ay tasks.............ccceevvvvvvvvnnnnnnnn. 152



List of Figures

Figure 1.1. Prototype Category SITUCLUIES. . eeeeeeeeeeeiiiiiiiiiaaaae e e e e e e e e eeeeeeeeeeaeeeeens 9
Figure 1.2. Category structures proposed by thesidecbound theory............cccccveeenn. 15
Figure 1.3. Rule-based category StrUCIUIES. ...ccceeeieeeeeeeiiieeeeeee e 18
Figure 1.4. Information-integration category StEB. ...........cooveviiieeiieiiiiieiiene e 22
Figure 2.1. Results from Waldron and Ashby (2001)...........cceeeiiiinnieiiiiiiiiiiiiiiiiees 33
Figure 2.2. Category structures used in EXperiment................veiiiiiniieieeeeeee s 36
Figure 2.3. Distribution of the overall scores xpEriment 1..............c.cceevvevvennnnn. 37
Figure 2.4. Mean block categorization accuracidsxperiment 1..........cccccvvvvvnninnnnnnn. 40
Figure 2.5. Conjunctive category structure useXperiment 2.............ccceeeeeevveeeeieninns 44
Figure 2.6. Mean block accuracies in EXperiment.2...............ooouviiiiiniinnieeeeeeeens 46
Figure 2.7. Comparison of categorization accuraaoesss Experiments 1 and 2.......... a7
Figure 3.1. Trial design in Maddox et al. (2004) &xperiment L...........cooeeviviieeeiininns 58
Figure 3.2. Distribution of the final accuracy s®in Experiment 1....................... 69
Figure 3.3. Results of EXPEriMENt L. ........comeeeeruniiiiaieeeeeeeeseereeeeeessnnnnnnnnnnesnnnnnn 71
Figure 3.4. Category structures used in EXperirBent............ccccccvveeiiieiiieeeeeeeees e, 75
Figure 3.5. Distribution of the final block accuyascores in Experiment 2. .................. 77
Figure 3.6. Results of EXPeriment 2A. ... e 78
Figure 3.7. Results of EXPeriment 2B........ oo eeeeuiiiiiiianieee e eeeeeevivvveeeaeeeeeeens 81
Figure 3.8. Trials to criterion in EXperiment 2B..............cvciiiiiiiiiiee e 83

Figure 3.9. Effect size comparison of the secongayo-spatial and verbal working

MEMOTY ASK. ...t e e e e e e e e e e eeeeeeeennees 91
Figure 5.1. Category structures used in A/B taskEA/NONA tasks. ...........cccceevvvvinnne 110
Figure 5.2. Schema of a sphere-like category tract............ccoevvvvviviiiiiiiieee e 112
Figure 5.3. Example stimuli from the prototype taknulus set. .........ccccceeeeivieeeeeennn. 115
Figure 5.4. Mean accuracy in the four prototyperem variants. .............ccccceeeeeenneennn. 118

Figure 5.5. Mean proportion endorsements into cated as a function of the number of

features shared with the A Prototype ........cceeeeerieeeeiiiiiiiiiiee e, 119

Xi



Figure 5.6. Accuracy and reaction time changes thi¢hdistance from the bound. ..... 121
Figure 6.1. Example stimuli from the second stiBWat. ..............cceeeeeeeeevevvvveeeiinnn, 281

Figure 6.2. Endorsement into category A as a fonaf a stimulus distance from

PrOTOTYPE A, e a e e 133
Figure 6.3. Commonly activated regions from bo#ksaversus baseline..................... 135
Figure 6.4. Commonly deactivated regions from lasiks versus baseline................. 136
Figure 6.5. Regions from direct contrast of A/Bktasrsus A/nonA task. ................... 138

Figure 6.6. Regions associated with successfugoateation during the A/B task...... 140
Figure 6.7. Regions associated with successfugoateation during the A/nonA task.141

Figure 6.8. Comparison of MTL regions implicatedhe A/B task and the A/nonA task.

............................................................................................................. 141
Figure 6.9. Predicted parametric modulation of gigitrength in areas supporting A/B
task and A/NONA TASK .......ooeiiiii e 150

Xii



Chapter 1: Dissociable category learning systems

INTRODUCTION

Humans live in a world of categories. Some objectsvents are unique for us -
my mother,my car, my country; but most objects we deal with are gener&nbers of
their category and we do not need to treat themuaty. A cat,a house,a T-shirt - the
article "a" says that we are talking about one mamdf a category but its individual
identity is not important, not relevant for undargding the message.

Categorization is an essential cognitive functiemsisting in assigning entities
into categories/concepts. The term “category” desmoa group of things that have
something in common; the term “concept” refers toental representation of a category.
As an essential cognitive function, categorizape@metrates into every part of our lives.
When we are deciding whether to take a jacket énntlorning or not, we categorize the
weather of the day as "jacket needed" or "jackétneeded." A doctor who looks for the
best treatment for his patient needs to make andgg - category assignment - and
prescribe a medicine or therapy that has provitiedbiest therapeutic effect in similar
cases in the past. Social stereotypes are anather df categorization. Whenever we
perceive, we perceive something as a member aegagy.

Concepts and categorization serve a number of itr@pofunctions, among them
communication, cognitive economy, and inferencedie Tobvious function of
categorization is providing us with a label thah dae shared with others, enabling
communication. However, the usefulness of the labdétermined by the structure of the
categories and goes well beyond communication.rApgsed by Rosch (1978), concepts
promote "cognitive economy.” We encounter a largeoant of entities every day.
Without concepts, the quantity of information we ulb have to perceive, remember,
communicate and learn about would exceed our ldniteognitive capacity.
Categorization divides and organizes experienaermganingful chunks. To categorize a

stimulus means a) to consider it as equivalentherastimuli in the same category, b) to
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consider it as different from stimuli not presemthat category. The ability of a category
label to provide us with information leads us toter function of categorization, its role
in induction and inferences. We often use conceylten we reason about entities.
Concepts are basic constituents of human thoughthow us to make inferences about

properties that are not perceptible.

OVERVIEW OF THE DISSERTATION

Given the function that categorization serves ignitoon, we want to know more
about the process. How do we categorize new obijetctknown categories? How do we
learn new categories? Why do we categorize the weaydo? Is there a structure in
natural categories? Can we reproduce it in the r&boy? What is the mental
representation of categories? What neural systamppost category learning? Are all
categories treated equally or are there kinds te#graies? In the past five years, | have
been studying category learning with the hope tp haswer some of these questions. In
this dissertation, | will present some results bisteffort. The main goal of this
dissertation is twofold: first, to present eviderior dissociation between different kinds
of categorization tasks; and second, to proposenaection between processes involved
in these tasks and general learning and memoryersgstas proposed in memory
literature. If valid, this connection could proveeful for both categorization research and
memory research. On one hand, it would allow ugréatly increase our understanding
of the cognitive process of categorization by galeing what we know about learning
and memory systems; one the other hand, it wouded aiemory researchers new tasks as
diagnostic tools. The connections between categioiz and learning and memory
research has been often neglected or implicitlyurassl without testing. | hope the
research presented in this dissertation can hehblesh these connections on a more
solid basis.

Chapter 1 will start with a review of theories atfing to explain human
categorization and category learning. We will de&t tcategorization has been studied
under several different paradigms and explainedgudifferent theories. We will draw a
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conclusion that different theories may be addreggdifferent categorization tasks and are
complementary, rather than exclusive to each offteat will lead us from the question
of which theory is true into a question of how drfnt theories may be combined to fully
explain human categorization behavior. We will doll with a proposal of dissociation
between at least three types of categorizationstagkd a corresponding dissociation
between three types of cognitive and neural preseisat subserve them. The three types
of tasks discussed will be: a rule-based task thgiroposed to rely on an explicit
hypothesis testing system; an information-integratiask that is proposed to rely on a
procedural learning based system; and a prototgplke that is proposed to rely on a
perceptual learning system. The first half of tissertation (Chapters 1-3) will focus on
the rule-based and information-integration catedeayning, as they afford themselves to
the use of similar types of stimuli, category stanes and analytic tools. The second half
of this dissertation (Chapters 4-6) will focus b prototype learning task. We will note
two types of a prototype learning task that havenbesed in literature, propose a
dissociation between them, and test it. We willddode the dissertation in Chapter 7
with a discussion of how different kinds of categation tasks may be supported by
different cognitive and neural systems. We willisgvthe outline of the dissertation later
in this chapter, during the description of differerategorization tasks and learning

systems.

DRAWING FROM HISTORY: BASIC APPROACHES TO CATEGORIZATION AND REAL WORLD

CONCEPTS

Things around us can be categorized in a numberagk. The existing human
categorization systems emerged from the interachietween real-world stimuli and
human cognitive processes. The study of the pdatiouay of categorizing the world can
help us to understand these processes. Cognitjkeh@iegists have therefore aimed to
reveal the inner structure of categories, to uridatsthe process of concept acquisition,
and to grasp and predict actual human categorizgoformance. We will first focus on
categorization approaches whose emergence was rpyinmaspired by the aim to

3



understand real world categories, almost at a phydhical level. Throughout the history,
five major views of category learning and categatian have emerged: 1) classical, rule-
based approach, 2) prototype approach, 3) exermaparoach, 4) theory-based or
knowledge-based categorization, and 5) decisiomtb@pproach. We will now give an

overview of the basic approaches and discussitiepirations and possible weaknesses.

Classical view

Classical, rule-based approach began in the eadpties and was elaborated in
the fifties and sixties. It proposes that humansvdea categorization rule during the
process of category learning on the basis of hygsihtesting, and then use this rule
when categorizing new stimuli into categories. Gatees can be specified by a small
number of necessary and sufficient properties.dxample,a squareis a polygon with
four equal sides. When something meets these eagaitts, it is a member of a category,
otherwise it is not. The boundary is strict.

In the early twenties, one of the first experimeaddressing concept learning was
Hull's experiment with “Chinese” characters (HWB20). For Hull, as a behaviorist, a
concept was simply the learned association betwaéegory stimuli and the category
label. In his experiment, Hull used sets of cardth & “Chinese” character on it. Each set
(category) had a particular pattern in common; gagern Hull called a concept. In the
learning phase, participants were to learn a l@abnsense syllable) for a set of training
cards. In the test phase, the participants weredasé novel cards with the correct
concept names. Because participants were ablarsfér their knowledge from training
to test stimuli, they had learned to associate ldieels with the defining patterns
(concepts). However, when the participants wereecégsk draw the particular element
which a card had to contain to be labeled with iqadar name, it turned out that many
participants were able to categorize the stimulirexily even when they were not
explicitly aware of any such common element. Holhduded that the hypothesis testing

process can occur implicitly.



In line with Hull, Vygotsky (1962) used a set of @2bes which differed in color,
shape, height and size. On the bottom side, foursemse words were written: "lak",
"bik", "mur", "cev". During the experiment, the esqimenter always showed one label at
a time and asked the participants to find otheresuthat might have the same word
written on them. Step by step, names of other cuwber® also uncovered, until the
participants completed the classification of alltlé cubes correctly. They should then
verbalize, what characteristics "lak" had, how tlkfyer from "bik", and so on. The
height and size were the relevant dimensions ferdbncepts, while color and shape
proved irrelevant.

Vygotsky identified three stages of category leagnin the first stage, categories
are ill-formed unstructured sets. Categorizatiobased mainly on an impression. In the
second stage, categories are complexes of conttestes, their grouping based on
objective relations between the items. Howeversehelations are factual (as a family
name), not abstract as in real concepts, or thepgng is based on a whole number of
relations which have no logical connection. Thedhstage is one of real concept
formation. Items in a category belong there becaateone logically consistent
characteristic (the definition of the concept) whiesembles the relation objectively
existing between the items. Vygotsky concluded thatbasic constituent of a concept is
the process of abstraction of the definition. Thenmative approach to what “real”
concepts are is clear.

In the fifties, Bruner, Goodnow and Austin (195@cudised on the process of
concept attainmentAccording to Bruner et al., concept attainmeseférs to the process
of finding predictive defining attributes that digjuish exemplars from nonexemplars of
the class one seeks to discriminate” (p. Z2)ncept formatiorthen refered to sorting
items into any meaningful set of classes.

The authors assumed that concepts are attaineleirpriocess of hypotheses
formulations and hypotheses testing. In their expents, Bruner et al. used a set of
cards with four to six dimensions varying along twothree values. The participants
were instructed as to the form of the sought-adefmition (conjunctive, disjunctive, or
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relational). They were either shown a sequencénefcards or were allowed to choose
whichever card from the set they wished. With eeatd they were notified whether it

does or does not exemplify the intended concepterAdach notification, the subjects
were encouraged to make their best guess as tothdatoncept is. Bruner at al. were
interested in the strategies the participants tsetluln general, certain sub-optimalities
of the hypothesis testing were observed. The adopteategies were much more
appropriate and efficient for the conjunctive thére disjunctive concepts, and the
participants sought positive instances and confionaather than falsification.

In all the experiments that are now under the @absiew, the concepts were
defined by a set of necessary properties, whichenmpresent, were sufficient for the
concept membership. The concepts were expected &zduired by forming hypotheses
and their testing. In Hull's experiments, the psscef hypotheses testing was rather
passive and automatic — the participants were watethey were learning a concept. In
Bruner et al.’s experiments, the process was acna conscious, but as such it was
forced by the experimenters' instructions. Vygotsky acknowledge that participants
went through pre-definition stages of concept fdrom but concluded that the final
stage of learning is a formation of a concept dedin.

The main objection against the classical view heenlihat it does not account for
most natural categories (Rosch & Mervis, 1975)e@aties rarely have strict boundaries
and cannot be simply defined by sets of necessatysafficient properties. The divorce
with the philosophical attempt to find such projeertfor at least some concepts is
illustrated by a comment of Edward E. Smith (1988t many categories (mainly the
natural-kind categories) "may have necessary affttisat conditions, but because no
one knows them, they are not part of anyone's gah¢p. 29). From the perspective of
Vygotsky, we would have to say that the majoritycoimmon natural concepts never
reached the third stage of attainment. The atterdfaesearchers therefore shifted to the
studies of ill-defined categories and alternativadels - prototype and exemplar theories

- were proposed.



Prototype theory

The prototype, sometimes also called feature-btssmty, was first introduced in
the seventies, after several studies had shownthleatlassical view failed to explain
some empirical phenomena observed for natural-lkand artifact categories. First,
linguists, philosophers, and psychologists, whoeairto demonstrate the classical view,
were unable to find definitions for the most natwancepts (E. E. Smith, 1995). Second,
people disagreed with each other or even with tleéras during the time, as to what is
and what is not a member of a category (McCloske@l&cksberg, 1978). Third, the
classical view fails to explain typicality and pobtpe effect. The typicality effect means
that people do not consider all members of a cayegs equally good members (Rosch
& Mervis, 1975). For example, some birds are mardlike than others. The prototype
effect is manifested by the fact that people cfassistimulus very quickly — even when
they had never perceived it before as a member adtegory — if it possesses typical
features shared by category exemplars or congtimteentral tendency of the presented
exemplars (Posner & Keele, 1970).

The leading proponent of the prototype view of rataategories was Rosch. In a
series of studies, Rosch and her colleagues (Me@Gadlin, & Rosch, 1976; Rosch,
1975a, 1975b, 1978; Rosch & Mervis, 1975) studiexksal phenomena that converge
and provide a measure of prototypicality: 1) theodjgess of membership, assigned
reliably by participants to members of a categ@)y reaction times in categorization
tasks, 3) accuracy of categorization, 4) easinédsaoning artificial categories, 5) free
recall of the members of natural categories, andp@gsibility to substitute for a
superordinate term. For some categories, such lasscor numbers, prototypes may
precede the category (Rosch, 1975a). For most damtiey are abstracted from the
category exemplars.

The prototype, or feature-based theory, emphasthes family-resemblance
principle proposed by Wittgenstein (1953). Wittgens analyzed such concepts as
"game" or "tool" and argued that although thererardeatures common to all members

of a category, the members are somewhat alikeijnatas. Members of a category, like
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members of a family, share a number of common feafinone of them necessary or
sufficient. Members are generally more similar tcle other than to non-members,
however, the boundaries are fuzzy. In a categaoizatlecision, a new example is
compared to a prototype and if it is similar enquighs classified as a member of the
category.

But what exactly is a prototype? There are two apghnes to this question. It may
be either an ideal exemplar of a category, or daraktendency of a category. These two
approaches are sometimes confused. Rosch conspletedypes as the clearest cases or
best examples of the category, even when not déRosch, 1973, 1975a). For instance,
categories such as “tall people, short people” imayepresented by the ideals (extreme
values) rather than central tendencies. The cetgralency approach has been usually
applied in studies of artificial categories (PosgeKeele, 1968, 1970; Reed, 1972).
Recently, Goldstone (Goldstone, 1996; Goldstoney\v&trs, & Rogosky, 2003) justified
the validity of both approaches and showed thatgmates tend to be represented by their
central tendency when acquired as isolated conceptshey tend to emphasize extreme
values when acquired as contrasting concepts. ®oldgeserved the term “prototype”
for the central tendency and used the term “carreétto describe the representation that
over-emphasizes the differentiating features.

Two types of stimuli are typically used in protogypearning research (Figure
1.1). One type draws from the tradition of the seahiwork of Rosch (1976) and Reed
(1972). In this line of research, inspired by Wattgtein’s notion of family-resemblance,
the stimuli consist of sets of features, giving s the alternative prototype theory name,
the feature-based theory. Prototypes are repraségta certain combinations of features
(Figure 1.1.a) and exemplars are derived from tltop/pes by altering some of the
prototypical features (Figure 1.1.b). The origiaaibition of this type of research was to
mimic internal structure of natural categories. c8irthen, many family-resemblance
categories were constructed with the primary gdate@monstrating better fit of one
categorization model against another (Murphy et 2005), with less concern about
ecological validity of the category structures.
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The second type of stimuli is dot-pattern stimBliototypes are represented by a
certain dot configuration (Figure 1.1.c) and catggexemplars are derived from the
prototypes by small changes in the position of dio¢s (“distortions”, Figure 1.1.d).
These stimuli were used in the seminal work of Bosand Keele (1968, 1970). The
primary goal of their research was to use novagates in order to address the question
of how abstract representations can arise frongoayeexemplars. The dot patterns have

been used ever since as novel stimuli, withoutintention to represent the structure of

the real world categories.
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FIGURE 1.1. PROTOTYPE CATEGORY STRUCTURES. Left (a,b): Binary-valued dimension
stimuli forming family-resemblance structure. a.tégpry prototype. b. Category
exemplars. Right (c,d): Dot-pattern stimuli. c. €giry prototype. d. Category
exemplars.

The prototype theory has a number of limitatiora ffrevent us from accepting it
as the sole theory of either natural concepts ¢egoaization. The central tendency
(prototype) cannot be the only information absweeddn the process of category learning.
There are other information people are sensitivesiae of the category, variability of its

members, and within-category correlation of feay#enderson & Fincham, 1996; Chin-

9



Parker & Ross, 2002; Stewart & Chater, 2002). Secant all categories have a family
resemblance structure. For instance, consider ¢tineept of a prey. To protect from
predators, it is a good adaptation for a prey toabmored or to live in trees. But an
animal that is both armored and lives in trees wqubbably not be better protected than
an animal having just one of these properties. Maopype of a well-protected prey can
be offered in this case. Finally, the simple prgpet theory that assumes a single
prototype for each category implies that a categergarnable only when it is linearly
separable, but many experiments have shown thaahsiitan learn complex, nonlinear
categorization rules (Ashby & Maddox, 1992; MedirS&hwanenflugel, 1981; Shepard,
Hovland, & Jenkins, 1961). The assumption of a Isingrototype can be however
relaxed, leading to clustering and multiple propetynodels (Love, Medin, & Gureckis,
2004; Verbeemen, Vanpaemel, Pattyn, Storms, & Merg2007) that can account for
learnability of nonlinear bounds. We will returnttee prototype theory-inspired research

in the second half of this dissertation in det@ihgépters 4-6).

Exemplar theory

The exemplar theory was first presented by Medid &haffer (1978) as an
alternative to the prototype theory and hithertma@ed an influential approach to
categorization. Exemplar theory assumes that pemgpeesent categories by storing
individual exemplars in memory. When categorizingeav object, people retrieve these
exemplars and compare similarity of the new objecthe exemplars of the particular
category with its similarity to the exemplars dieahative categories. If the similarity to a
particular category is higher than that to exampliesther considerable categories, the
object is classified into that category. Preseotatrf examples is a common way of
concept learning in childhood — parents teach tti@idren various concepts by showing
instances (“look, this is a dog”) or by listing iasces (“examples of furniture include a
chair, a table, a bed, and such things”). Protogmgroach assumes that these examples

only serve in the generation of an abstract coneceptesentation - the prototype.
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Exemplar approach assumes that these examples dhesisare the concept
representation.

One of the most widely cited exemplar models otgatization is Nosofsky's
generalized context model (Nosofsky, 1986). Nosptstcepts the geometrical model of
similarity, where stimuli are represented as pointsnultidimensional psychological
space and their similarity is a function of thetamse in the psychological space.
Attention may stretch or shrink the psychologigadee along its axes. This means that
the similarity of two objects differing substanljain color and a little in shape may be
high when the shape is the more attended dimersidrcolor the less attended one, but
low when attention is on the color dimension. Nemwst@type models often adopt this
geometrical model of similarity (Minda & Smith, 200and the geometrical model of
perceptual space is also used in decision bounctim@lshby & Gott, 1988).

According to the exemplar theory, categorizatiom stimulus into a category is a
probabilistic function of the similarity of the stulus to all exemplars of the given
category compared to its similarity to all exemplaf alternative categories. Such a
model gets over many weaknesses of the prototygayh- it accounts well for a wide
variety of observed data, is sensitive to correfainformation and can be successfully
applied to modeling nonlinearly separable categorkredictions based on exemplar
models seem to account better for the observedtsebian the prototype predictors do
(Nosofsky, 1987, 1992b), but this advantage male&® general than once thought. First,
exemplar models are often superior to prototype efsodhen a testing phase follows
soon after learning phase. After a sufficient defagtotype models outperform exemplar
models (Reed, 1972). Several studies suggestedstim¢ kind of abstraction occurs
during learning and seems itself more stable owee than are individual exemplars
(Homa, 1973; Homa & Little, 1985; Posner & Keel&,7@). Also, for well-established
concepts, such as “dogs”, it seems more likely preaiple retrieve an already pre-stored
abstraction (prototype) than all encountered dognglars. Second, only a very limited
set of category structures has been actually use@rmonstrate superiority of exemplar

models, mostly using categories that were ill-strredd, represented by a handful of
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exemplars varying on small number of binary dimens{Medin & Schaffer, 1978;
Medin & Smith, 1981; Nosofsky, 1987, 1992b). Fotegmries with larger number of
stimuli, prototype models outperform exemplar medgioma, 1973; Minda & Smith,
2002; J. D. Smith & Minda, 2000). Another critiwisdirectly addresses the central
concept of both prototype and exemplar theory 4lanity. Categorization of an item is
supposed to be a function of its similarity eitte®la central tendency of a category or to
stored exemplars. Rips and Collins (1993), howeaggue that resemblance (similarity)
is not sufficient to account for categorization.eTiheory-, or knowledge-based view of

categories was born.

Knowledge-based view

Although the majority of this dissertation focus®s category learning when no
background knowledge is available, it is importemtote that alternatives to this focus
have been proposed. Recall that the prototype aechgar approaches assume that the
basic factor for categorization is similarity. Thsbelong to the same category because
they are alike. However, this notion has been questl. An alternative, called
knowledge-based (or theory-based) view, proposas dbncepts are organized around
personal theories about the world. These theoniesige an explanation of the set of
properties displayed by an instance. We group hagetany classes of objects on the
basis of their deeper aspects. In the process tefjeazation, background knowledge
plays a major role regardless of the surface sityjla

The role of background knowledge and participahtsories about the world was
primarily demonstrated by a line of research confrogn psycholinguistics (Barsalou,
1987; Labov, 1973; Lakoff, 1986; Rips, 1989; RipL&llins, 1993) and focus primarily
on categorization into concepts well known to thatipipants. Although something
round and flat with 2 inch diameter may be moreilgsinto a quarter than to a pizza,
people still categorize it more likely to be a gizhan a quarter, because they know that

qguarterscannotbe 2 inch in diameter (Rips, 1989).
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Understanding the role of background knowledge pedsonal theories of the
world in categorization is one part of the pictufe. understand the other part, a divorce
of the cognitive psychological tradition and theglistics tradition is necessary. The
boom of categorization research in the last thexsades is characterized by a diversion
from the original aim of studying real world cateigs and a shift to a focus on
understanding category learning of novel artificcategories in carefully controlled
laboratory conditions. The clear oversimplificatie counterweighted by a complete
control over participant's experience with categayemplars and elimination (or
control) of the background knowledge. In this ditsteon, we will focus on
understanding category learning under these cdedrolconditions, studying
categorization when no background knowledge islabig. Although we are aware that
such research offers just a part of the picturepeleeve this approach enables us to gain
a wealth of information about learning mechanishat take part in complex real world

concept learning.

Decision bound approach

Decision bound theory is different from the thesridescribed above, as its
current contribution to the categorization reseaschainly that of methodology and a
data analysis approach, rather than as a theoryatégory representation and
categorization processes. Decision bound theorhifps1992; Ashby & Gott, 1988;
Ashby & Townsend, 1986), also called general rettamn theory, developed as an
extension of signal detection theory (Green & Sw&866). The theory assumes that
stimuli can be represented as points in the peneépspacé. The perceptual
representation of a single stimulus can vary fraal to trial due to perceptual noise, just
as assumed in signal detection theory. In the poécategorization, a classifier divides
the perceptual space into regions and associategegory label with each region. A

particular stimulus is then classified based onciwhiegion of the perceptual space it falls

1 This assumption seems valid for perceptual butoaoteptual categories (Tversky & Hutchinson, 1986)
and the application of the decision bound theoy/tieen indeed largely limited to perceptual categor
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into. The border that separates the regions igdale decision bound, analogous to the
decision criterion as used in signal detection tpedn its original formulation, the
decision bound theory assumed that people maythirespresent decision bounds and
only retrieve response label of the region (the sifithe bound) that a stimulus falls into
(Ashby & Maddox, 1998; Maddox & Ashby, 1993), rathiean computing the similarity
of a stimulus to category prototypes (as assumetthdyrototype theory) or computing
similarity to all category exemplars (as assumedhayexemplar theory). Currently, the
concept of decision bound is used primarily aslastract description of the character of
a category structure or as a description of a@pent’s behavior, without implicating its
ontological status. At least for some types of gatg structures, ontological status is
however attributed to the representation of caiegas regions in perceptual space and
the process of categorization is assumed to invdiresval of a response associated with
that particular region of the perceptual space bB&shAlfonso-Reese, Turken, &
Waldron, 1998; Ashby & Waldron, 1999).

Coming from the signal detection framework, anotimeportant proposition of
the decision bound theory was to model categosemsaltivariate normal distributions
(Ashby & Gott, 1988, see Figure 1.2), with a pagdht unlimited number of unique
stimuli representing each category. This was anontapt step from using categories
consisting of small number of exemplars varyinghgla few binary dimensions, as was a
tradition in exemplar and prototype theory inspiredearch. Using the new category
structures, Maddox and Ashby (1993) showed thatisaec bound models can
outperform exemplar models. This questioned the ofiexemplar models, with their
seemingly unbeatable ability to predict 90% or mofeaesponse variance (Nosofsky,
1986), and proved that there is still much unanedan category learning research.
Although originally proposed primarily for the camnience of characterizing different
kinds of decision bounds and for its ability to stisiate predictions of competing
categorization theories, the notion of categorissnaultivariate normal distributions
seems to have a merit as a reasonable represanthtivany natural categories (Ashby,
1992; Ashby & Maddox, 1998; Flannagan, Fried, & yéak, 1986). The use of normally
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distributed stimuli as the experimental categoryctires and the mathematical modeling
tools of the general recognition theory played gomeole in further development of the
category learning field. We will discuss the noscemd methods of the decision bound
theory in more detail as we will draw heavily frdhis tradition of research in the first
half of this dissertation (Chapters 2-3).

f(xy)

v

FIGURE 1.2. A SCHEMA OF CATEGORY STRUCTURES PROPOSED BY THE DECISION BOUND
THEORY. Left: Categories represented by bivariate normigtridutions in a two-
dimensional space. x and y axis represent stimalusensions, f(x,y) represents
probability density function for (x,y) afand § represent the probability density functions
of categories A and B. From Ashby and Gott, 1988hR Possible categories and
stimuli used in a decision bound theory experim&aich symbol represents a stimulus
with a particular value on each of two dimensiohsasiations (x,y). Open circles denote
category A exemplars, stars denote category B ebeempDashed line represents the
optimal decision bound.

The need for consolidation: the multiple system approach

Classical theory, prototype and exemplar theoaes, the decision bound theory
have all offered models of category learning thatehbeen successful in predicting a
wide array of category learning data. Researcheppating one theory have been
coming up with clever manipulations showing thatitimodel accounts for empirical
observations better than a competing model. Becallsef them were successful in
beating their competitors in at least some casesgl@ar winner has arisen from the

competition. Where does that leave us?
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The first important step was to realize that ratiwn being based on a specific
representation or process, categorization is likelged on a number of complementary
processes. Both empirical evidence and our intuitiell us that in the process of
categorization, people: can use rules, can abstemtral tendencies, are affected by
individual category exemplars, and learn associatioetween classes of stimuli and an
appropriate response. The particular category tsireicised seems to play a major role in
determining which categorization processes becoomeirthnt. Counterexamples are no
longer used to disprove a particular theory, btitenato find conditions and limitations of
it. A large body of research followed this linetbbught and demonstrated that humans
have available multiple mechanisms that can be wkethg categorization (Allen &
Brooks, 1991; Erickson & Kruschke, 1998; Kemler-$¢el, 1984; Nosofsky, Palmeri, &
McKinley, 1994).

The second important step was to start considehagmplementation level of
categorization, the neural systems that suppoNeatiropsychological and neuroimaging
findings provided further dissociations betweenfeddént category learning tasks and
suggested that many learning and memory systertieedfrain are involved in category
learning (Ashby & Maddox, 2005; Folstein & Van Rett 2004; Keri, 2003; Nomura et
al., 2007; E. E. Smith, Patalano, & Jonides, 19@8jginally inconsistent findings now
seem to be reconcilable when we assume that ditfeagnitive and neural mechanisms
may be better suited for different kinds of catézgiron tasks. The first taxonomies of
different categorization tasks and the correspapdiearning systems have been
proposed. In the next few pages, we review the geegp associations between different

categorization tasks and the memory systems tlhaeswve them.

MEMORY SYSTEMSIN CATEGORY LEARNING TASKS

Categorization tasks used in the literature cawclassified in a number of ways.
The stimuli used differ in the number of dimensi@isng which they vary and in the
character of those dimensions (e.g. binary-valuetbatinuous). The category structures

used differ in the number of exemplars they consikt and whether they are:
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overlapping or nonoverlapping, normally or nonndiyndistributed, linearly separable
or nonlinearly separable, probabilistic or detelistin. A well developed taxonomy of
categorization tasks is currently lacking. In arnrexe case, we may need a separate
categorization theory for every category learniagkt That could perhaps provide us
with the most accurate theories, but with littledarstanding of the underlying principles
and hard-to-generalize, compartmentalized knowledgealternative is to try to find a
taxonomy of the existing tasks based on the presessd memory systems that they may
involve. One such taxonomy has been proposed bpyAahd colleagues (Ashby & Ell,
2001; Ashby & Maddox, 2005; Ashby & Spiering, 200Zhey differentiate between
three types of tasks, supported by three memoriesys a rule-based task, based on
working memory and reasoning; an information-inéigin task, based on the procedural
learning system; and a prototype-distortion tasisglol on the perceptual learning system.
We will now review the proposed task dissociatiassve will use this taxonomy as the

starting working hypothesis in our own investigago

Rule-based tasks

Rule-based tasks are those in which the rule ftegoay membership is easy to
describe verbally. As such, the rule is likely te Hiscovered and applied by the
participants in the process of learning. Examplesute-based category structures are
presented in Figure 1.3. On the left panel, an gtarof a rule-based category structure
that uses binary-dimension stimuli is shown. The&garization rule that determines
membership in category A and category B is “if Heekground color is blue, it is A; if
the background color is yellow, it is B.” The righéinel shows an example of a rule-
based category structure that uses normally digeth categories with continuous-value
stimuli. Each point denotes a stimulus, for instamc Gabor patch varying in spatial
frequency and orientatich.The categorization rule that determines membership

category A and category B is “if the spatial freqese is low, it is A; if the spatial

2 Gabor patch is a sinewave grading enclosed inus$an envelope (see examples on Figure 1.3, right
panel)
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frequency is high, it is B.” Note that the word I&l is used here in two different
meanings. First, for most category structure, thereome formal description of how
category membership can be determined. This déeris often called a categorization
rule, no matter of its character. However, theegaty structures are only called rule-
based if this categorization rule is likely to beplkitly learned by the participants. Most
unidimensional rules involving separable dimensidogonstitute rule-based categories;
most rules that are of higher level complexity tl@anonjunctive rule do not (Ashby &
Maddox, 2005).

A
S X
® o
o= O
A 5 gb !
©
B S
m ) @
@ o o ° ‘%_
@ [
® . 3] ~ Spatial Frequency

FIGURE 1.3. RULE-BASED CATEGORY STRUCTURES. Left: Stimuli varying along four
binary-dimensions. The categorization rule is “blobackground stimuli belong to
category A, yellow background stimuli belong toegmiry B.” From Ashby and Ell,
2001. © 2008 Elsevier Ltd. All rights reserved. Refed with permission. Right:
Normally distributed categories with large numbéreaemplars and stimuli varying
along two continuous dimensions. Each point denatedgimulus (Gabor patch), two
example stimuli are presented. The categorizatubm is “low spatial frequency stimuli
are category A, high spatial frequency stimuli eaegory B.”

Although on the surface, the two tasks presenteHignre 1.3 may look quite
different for a participant, they both can be lesirby the same hypothesis testing
process. The classical approach to categorizaoanger, Goodnow, & Austin, 1956)
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and most multiple systems approaches postulatéegarization system that is based on
such extraction of a categorization rule via hypsth testing and explicit reasoning (e.g.
Anderson & Betz, 2001; Ashby & EIll, 2001; Ericks@nKruschke, 1998; Nosofsky,
Palmeri, & McKinley, 1994; Patalano, Smith, Jonid&sKoeppe, 2001; E. E. Smith,
Patalano, & Jonides, 1998). The hypothesis testystem involves working memory and
attentional processes and is thought to rely onptieérontal working memory system
(Ashby & O'Brien, 2005; Tracy et al., 2008).

Working memory and the prefrontal system in ruled®d learning

Working memory is a short-term ability to maintaamd manipulate limited
amount of information (Baddeley, 1995). Prefrortattex has been implicated as the
crucial neural structure supporting working memanyl attention (D'Esposito & Postle,
1999; D'Esposito, Postle, Stuss, & Knight, 2002;|d8@n-Rakic, 1987, 1990;
Narayanan et al., 2005), with anterior striatuncjpecally connected to the prefrontal
cortex, being part of the working memory networkk@$aka, Sakamoto, & Usui, 1989;
R. Levy, Friedman, Davachi, & Goldman-Rakic, 199¢hultz et al., 1995).

Although working memory is a limited time memorygtra long-term memory, it
can mediate learning in a rule-based task sincealehas a structure simple enough to
be discovered quickly by a reasoning process (Astl®y'Brien, 2005; E. E. Smith &
Grossman, 2008). Limited working memory capacityedaines the complexity of
stimuli and rules that can be learned. The rolahef prefrontal cortex in rule-based
learning has been reported by several neuroimasfingies (E. E. Smith, Patalano, &
Jonides, 1998; Tracy et al., 2003), and also sedémmsly established in the
neuropsychological research as the Wisconsin carting test (a rule-based task) is
widely used for neuropsychological diagnosis ofntad lesions (Robinson, Heaton,
Lehman, & Stilson, 1980). The notion of the workingemory basis of rule-based
learning is more recent (Ashby & O'Brien, 20058 Smith & Grossman, 2008) and has

3 Other names used for the hypothesis testing syatemerbal system, reflecting its role in learning of
verbalizable rulesexplicit system, reflecting the explicit, conscious awassraccessible nature; ande-
basedsystem, somewhat tautological name reflectingithiata mechanism for learningles
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been supported by only a few studies. The goaheffirst half of the dissertation is to
increase our understanding of the working memotg no category learning. We will

return to a theory of rule-based and informatiaiegmation learning later in this chapter.
Chapter 2 and Chapter 3 will then provide behavVievadence for the preferential role of

working memory in rule-based learning.

I nfor mation-integration tasks

Information-integration tasks are those tasks inctvinformation from multiple
dimensions need to be integrated at some pre-deeisstage. This can be done, for
instance, by a linear combination of dimensiondliea or by treating each stimulus as a
gestalt rather than analyzing it into its constitueomponents (Ashby, Ell, & Waldron,
2003). Figure 1.4 shows two examples of informatidagration category structures,
using the same stimuli as the rule-based structioretarify the differences. On the left
panel, an information-integration category struetuvith stimuli varying along four
binary dimensions is presented. The rule for categeembership is not immediately
obvious: “if a stimulus has at least two out of ttheee following features - blue
background, two embedded symbols, embedded syndjolgreen color - it is A;
otherwise, it is B.” Recall the dual meaning of thiord “rule”, with its narrow meaning
in the context of “rule-based structure.” Althoutjirere exists a rule that separates
category A exemplars from category B exemplars, tihlie is rather complex, and as such
is not likely to be explicitly discovered, repressh and applied by participants in this
form. The category structure is thus not consideodetbased. The right panel presents a
category structure based on bivariate normally ridisted stimuli. The rule that
determines category membership is “if orientatisrbigger than spatial frequency, it is
A; if spatial frequency is bigger than orientatidris B.” Again, although an optimal rule
exists, it is not likely to be discovered and esitlly used by the participant as it requires

combination of incommensurable units.
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The use of the category structure on right panelush more popular and will be
primarily used here because using alternative, infovmation-integration strategies is
made difficult. The large number of unique stimmiakes memorization inefficient and
the elongation of the categories along the decibionnd ensures that unidimensional
rules provide poor accuracy (compare with the rigabel on Figure 1.2 where the
optimal bound location is the same, but a unidinoerad rule (some decision bound
perpendicular to one of the axes) could yield aacyronly marginally worse). The
category structure on the left panel can be sol&@dg a number of strategies, among
them exemplar memorization or use of a rule-plusepons verbal strategy (Erickson &
Kruschke, 1998) being most common.

Another popular information-integration task is tiveather prediction task in
which participants need to integrate informatioonirseveral probabilistic cues in order
to predict which of two outcomes (rain or shine)ikely to occur. Although we will
include results of the weather prediction task he discussion of the information-
integration task, it is important to note that mapants in this task are often found to use
a mix of non-information integration as well. Commis the use of unidimensional rules,
especially early in the learning (Gluck, ShohamyM§ers, 2002) and memorization of
the limited set of stimuli (14), especially later the learning (Knowlton, Squire, &
Gluck, 1994y

4 Note also that most prototype-based category tsire require integration of
information across several stimulus dimensions @#nu$ can be (and sometimes are)
viewed as a subtype of the information-integrastmictures. However, it seems that the
prototype structures promote additional learningima@isms, and we will thus consider
them separately.

21



| &
1]
A
. 2 " ]
5 - i :
- Spatial Frequency

FIGURE 1.4. INFORMATION-INTEGRATION CATEGORY STRUCTURES. Left: Stimuli
varying along four binary-value dimensions. Fromhig & Ell, 2001. © 2008 Elsevier
Ltd. All rights reserved. Reprinted with permissioRight: Normally distributed
categories with stimuli varying along two contingalimensions. No simple verbalizable
rule separates category A stimuli and categoryirBust.
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In the current view, it is assumed that particigantthe information-integration
task learn the associations between regions irp#neeptual space (groups of stimuli)
and the category label, rather than deriving anpliex categorization rules. The
mechanism of learning is thought be implicit, pidwel learning-based and dependent
on the posterior striatum (Ashby, Alfonso-Reesetk&n, & Waldron, 1998; Ashby &
Waldron, 1999; Nomura et al., 2007).

Procedural memory and the striatum in informatiomiegration learning

Procedural memory, also called thabit memory, is a form of nondeclarative
memory. It is memory for “how to” — how to ride &é, ski, play tennis, play the piano,
etc. The characteristic feature of procedural mgmsrthat it is acquired gradually
through practice and is not easily communicatedbaler to others (e.g., try to describe
how you tie shoe laces). It is now studied in tbatext of acquisition of both motor
skills and cognitive skills. Popular paradigms &udying procedural learning are, for
example, a serial reaction time task (Nissen & &ukr, 1987; Reber & Squire, 1994,

1999; Willingham, Nissen, & Bullemer, 1989) and tohof complex systems (Berry &
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Broadbent, 1984, 1988). The key neural structumaamy kinds of procedural learning is
the striatum (Curran, 1995; Mishkin, Malamut, & Bawalier, 1984; Westwater,
McDowall, Siegert, Mossman, & Abernethy, 1998).

In the context of category learning, the procedayatem is assumed to gradually
and incrementally learn to associate specific regjio the perceptual space with category
assignments (Ashby & Waldron, 1999; Knowlton, MadegeX Squire, 1996). The
proposed circuit (Ashby, Alfonso-Reese, Turken, &l@von, 1998; Ashby & Waldron,
1999) starts with stimulus representation in intemgporal cortex. Many-to-one
convergence of inferotemporal cells onto the pasteraudate (Wilson, 1995) creates a
low-resolution representation of the perceptualcepaithin the caudate. The striatum
then functions to associate a pattern of corticdivation with a motor response, by
strengthening recently activated synapses aftelamope-mediated reward (Wickens,
1993). The striatum has been implicated in linkangtimulus with classification response
in both human and animal research (for a reviewthi§ research, see Packard &
Knowlton, 2002). Patients with striatal damage ianpaired on information-integration
tasks (Filoteo, Maddox, & Davis, 2001a; Knowltonaiyels, & Squire, 1996; Knowlton,
Squire, Paulsen, Swerdlow, & Swenson, 1996), butemmac patients are not (Eldridge,
Masterman, & Knowlton, 2002; Filoteo, Maddox, & Dev2001b; Knowlton, Squire, &
Gluck, 1994).

Dissociation between rule-based and informationegration category learning

Ashby and colleagues (Ashby, Alfonso-Reese, Turekyaldron, 1998; Ashby
& Waldron, 1999) proposed a formal model called G®YCOmpetition between Verbal
and Implicit Systems), describing how the hypotéssting system and the procedural
system interact in the process of category learnitgey proposed that both learning
systems attempt to acquire and solve every categjmn task encountered. However, the
relative weight of each system in the category megt depends on the relative success
of each system in category learning, which in tdepends on the type of category
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structure to be acquired. The dissociation betwakrbased and information-integration
categorization tasks comes from the tradition afislen bound theory. The nature of the
decision bound — whether it is easy to describ&albr or not — discriminates the rule-
based structures from the information-integratiaructures. The hypothesis-testing
system searches for and applies explicit rulesabaeasy to verbalize; it thus dominates
in learning of rule-based category structures. Pphecedural learning-based system
learns to associate a category response with arr@giperceptual space without deriving
any explicit rule. Although slower, the procedussistem dominates learning in the
information-integration category structures because simple rule is likely to be
discovered by the hypothesis-testing system. Irirast) category structures acquired by
the procedural system may be very complex (e.gbpghMaddox, 1992, 2005).

As a consequence of the proposed learning mechangrd the underlying
neurobiology of the two systems, manipulations #fégct one but not the other system
should differentially affect rule-based and infotroa-integration learning. This has been
confirmed in a number of studies (see Maddox anlklb#s2004 for a review). Several
experiments have introduced manipulations thatcafigormation-integration, but not
rule-based category learning. First, because fexddieediated dopamine release is
thought to play a crucial role in strengthening toetico-striatal synapses mediating the
stimulus-response associations, timely feedbackuldhde crucial for information-
integration learning. When the feedback is delayled,recently activated synapses may
return to baseline and the stimulus-response aggmti may not be strengthened
(Arbuthnott, Ingham, & W.ickens, 2000; Kerr, & Wiake 2001). Maddox and
colleagues (Maddox, Ashby, & Bohil, 2003; MaddoxI&g, 2005) indeed showed that
with a five second delay between a response ardbéek, learning of an information-
integration category structure becomes impossillbile learning of a rule-based
structure is minimally affected. Second, the pracad component of information-
integration learning should be critically dependam consistent stimulus-response
mapping. Most category learning experiments usesistent stimulus-response
mappings. In a typical paradigm, the participardsked to press button “A” with the left

24



hand and button “B” with the right hand to indicatgegory A and category B stimulus
(A-B training). Maddox, Bohil and Ing (2004; seesalAshby, Ell, & Waldron, 2003)
used a variable stimulus-response mapping. Thecipamts were asked to press either
button “Yes” or button “No” to a stimulus in resganto a question “Is this an A?” or “Is
this a B?” (Yes-No training). As the stimulus-respe-outcome mapping was
inconsistent, the Yes-No training impaired inforioatintegration category learning
compared to A-B training, but had no effect onriile-based category learning.

The previous studies show that the procedural sysiiffers from the hypothesis-
testing system in that it requires timely feedbarid a consistent stimulus-response
mapping. When these are not provided, learning Hey itnplicit system is adversely
affected. These manipulations have minimal effectrule-based learning because the
hypothesis-testing system utilizes consciously s&ibée working memory that can hold
the feedback information over the delay and usegsictty represented categorization
rule that can be flexibly tested and applied wibthbA-B training and Yes-No training.

One may argue that the disruption of informatioregnation category learning
but not rule-based learning in the previous studielie to differences in complexity and
therefore difficulty of simple (usually one-dimeosal) verbalizable rules in the rule-
based condition versus complex nonverbalizablesrutte the information-integration
condition. To provide evidence for the existencetwb alternative systems, double
dissociation should be demonstrated. A manipulatiat affects working memory load
should affect the hypothesis-testing, but not pdacal learning system. Chapter 2 and

Chapter 3 are dedicated to discussing and demtingtthis dissociation.

Prototype lear ning tasks

Prototype learning tasks, inspired by the prototyy®ry, represent categories as
collections of stimuli that are generated fromragk prototype by various alterations of
the prototypical values. Category exemplars arenoftalled “prototype distortions”.
Recall the two examples of prototype-based categwouctures presented in Figure 1.1.
The left panels (Figure 1.1.a,b) show a prototype @ collection of category exemplars,
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using binary-valued stimuli. These types of categgorepresent the traditional family-
resemblance based natural categories as proposittgenstein (Wittgenstein, 1953)
and promoted by Rosch (Rosch & Mervis, 1975). Tigktipanels (Figure 1.1.c,d) show
a prototype and a collection of category exemplaiag dot-pattern stimuli. One pattern
of dots is the prototype, and category exemplagscaeated by randomly moving the
location of each dot in the prototype. These typesategories follow the research of
prototype theorists who focused on prototype abstna in novel artificial categories
(Posner & Keele, 1968, 1970; Reed, 1972).

The prototype can be learned by extracting the comfeatures or the common
structure from the category exemplars. It is thaubht this extraction depends on the
perceptual representation memory mediated by legyrelated changes in the visual
cortex (Ashby & Casale, 2003; Casale & Ashby, iesst Reber & Squire, 1999).

Perceptual memory and the cortical system in prgfme learning

The perceptual representation memory system is @n faf implicit
(nondeclarative) memory, manifested by an improwamm the perception and
processing of a repeated stimulus (Dosher & Lu9i®thacter, 1990, 1994; Tulving &
Schacter, 1990). Perceptual memory has been phlmsiudied in the context of
perceptual repetition priming (Schacter, 1994; $tdra Cooper, & Delaney, 1990), a
phenomenon of speeded identification of a receetlgountered stimulus even in the
absence of explicit memory for the prior expos&epetition priming has been shown to
be independent of declarative (medial temporal dodeed) memory (Schacter, Cooper,
& Delaney, 1990; Schacter, Cooper, Tharan, & Rup&891), but also independent of
nondeclarative striatal memory (Knowlton, SquirguBen, Swerdlow, & Swenson,
1996; Reber & Squire, 1999). Priming and the pdr@pmemory are mediated by
stimulus related changes within the sensory conpexparily by a reduction of activity
for repeated stimuli (Schacter & Buckner, 1998; &tér, Wig, & Stevens, 2007;
Slotnick & Schacter, 2006; Wiggs & Martin, 1998).
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Perceptual memory can be elicited not only for iobah, but also perceptually
similar stimuli (Biederman & Cooper, 1992; Coop8chacter, Ballesteros, & Moore,
1992; Wagner, Gabrieli, & Verfaellie, 1997). Pertggpp memory seems thus ideally
suited for prototype extraction from a set of catggexemplars as all category stimuli
are typically perceptually similar. Keri and coligees (Keri et al., 2002) proposed a
computational model of prototype learning basedfast synaptic changes of lateral
connections within the sensory cortex, followingl@bbian rule. These synaptic changes
can support prototype formation in a self-orgargzmanner, without external feedback.
The neurobiological plausibility of this model ispported by an observation that such
fast synaptic changes occur in the primary visuatex of rat (Varela et al., 1997).
Priming-like changes in the visual cortex were gdiéound in several fMRI studies of
prototype learning (Aizenstein et al., 2000; Rel&tgrk, & Squire, 1998a, 1998b) and
steep typicality gradients in prototype learningoéamsize the role of perceptual similarity
for the perceptual memory system (Casale & Ashhypriess; J. D. Smith & Minda,
2002). We will return to prototype learning in tbecond half of the dissertation in detail
(Chapters 4-6).

And what about declarative memory? Completing the picture

In the quest for understanding category learning Rave arrived at the
conclusion that different category learning taskens to be tapping into different
learning and memory systems. The taxonomy dissogiatule-based, information-
integration, and prototype category structureseddpnt on working memory, procedural
memory, and perceptual representation memory ragpgc(Ashby & Ell, 2001; Ashby
& Maddox, 2005; Ashby & Spiering, 2004) seems vselpported and is covering the
majority of the category structures used. Howewee important memory system — the
explicit, declarative memory system mediated byrtteelial temporal lobe — has not been
mentioned. Categorization tasks are often consideren-declarative, hippocampus-
independent forms of learning. Indeed, many neyapsogical studies have contrasted
category learning with recognition in amnesic pageand found spared category
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learning in rule-based Wisconsin Card Sorting Téahowsky, Shimamura, Kritchevsky,
& Squire, 1989; Leng & Parkin, 1988), in an infotima-integration task with large
categories (Filoteo, Maddox, & Davis, 2001b), ie theather prediction task (Knowlton,
Mangels, & Squire, 1996; Knowlton, Squire, & Gluck994) and in the prototype
learning task (Bozoki, Grossman, & Smith, 2006; Whon & Squire, 1993). Based on
these findings, Ashby and Waldron (2000) argued thedial temporal lobe structures
are not critical for most forms of category leamirOn the opposite side, exemplar
models assuming declarative memory keep providimgpdg fits to a range of
categorization data (Nosofsky, 1992a; Nosofsky &aksen, 2000; Shin & Nosofsky,
1992; Stanton, Nosofsky, & Zaki, 2002). Nosofskyd afaki (1998) argued that all
category learning is ultimately dependent on examplemory mediated by the medial
temporal lobe, and the seeming dissociation betweeagnition and categorization is
solely due to lower sensitivity of the categorieatitasks compared to the recognition
tasks. So, is there a role for declarative memoigategory learning?

Probably neither extreme is correct. First, everemwlthe neuropsychological
findings indicate that an intact medial temporabdois not necessary for many
categorization tasks, the current view is that gdam memory plays at least a
complementary role in many category learning tasksrmal participants (Ashby & Ell,
2001; J. D. Smith & Minda, 2001). Knowlton (1999) response to Nosofsky and Zaki
acknowledged the role of (declarative) exemplar wrgnbesides other category learning
mechanisms, but suggested that exemplar knowlextgesition and category knowledge
acquisition should not be considered as mutuallgiuskwve mechanisms of category
learning. Rather, future research should focushenctrcumstances under which one or
the other is more likely to occur. In line withdhroposal, many experiments focused on
identifying conditions suited for exemplar memotiaa. They identified its preferential
role when categories are small, consisting of afgw exemplars (Homa, Sterling, &
Trepel, 1981; Minda & Smith, 2001), when categora&s poorly structured (Lei &
Zhansheng, 2003; J. D. Smith & Minda, 2000), whetvidual exemplars are repeatedly
presented (Knowlton, Squire, & Gluck, 1994; J. Inith & Minda, 1998) and when an
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exemplar constitutes a salient exception to thegmatzation rule (Erickson & Kruschke,
1998; Nosofsky & Palmeri, 1998; Nosofsky, Palmé&riMcKinley, 1994).

The paragraph above suggests that there is a d@gtarcomponent to many
categorization tasks. However, is there a categboiz task that may berimarily
dependent on the declarative memory? Recentlyspigan turned surprisingly to one
version of the prototype task. A closer look at literature shows that two versions of
the prototype tasks exist, A/nonA version and A@sion. In the A/nonA version, only
one category exists, consisting of distortions fil@ingle prototype, and the participants
need to distinguish categorical (A) from noncateggdnnonA) items. In the A/B version,
two categories exist, derived from two distinct tptgpes, and the participants need to
distinguish category A exemplars from category Breglars. Ashby and Casale (2003)
discussed the role of the perceptual representaystem in prototype learning and
pointed out that while a feeling of perceptual fieamity (mediated by the perceptual
memory) can support performance of the A/nonA tésk,not, by itself, sufficient in the
A/B task, as both A exemplars and B exemplars waalidit familiarity. Zaki and
colleagues (Zaki, Nosofsky, Jessup, & Unversagf32Qested both A/B and A/nonA
prototype task in amnesiac patients and found ird&awonA learning, but impaired A/B
learning. Based on this finding, Ashby and collessy(Ashby & Maddox, 2005; Ashby
& O'Brien, 2005) proposed that while the A/nonA tpitgpe task may be mediated by
perceptual memory, the A/B prototype task may baliated by explicit, declarative
memory. The second half of this dissertation isicidd to examination of this notion
(Chapters 4-6).
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Chapter 2: Dual task interferencein category learnings

In Chapter 1, we discussed the COVIS model propbgefishby and colleagues
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Bgh& Waldron, 2000). COVIS
postulates two systems that compete throughouniteg— a hypothesis-testing system
that uses logical reasoning and depends on workiegory and selective attention, and
a procedural learning-based system, that gradlediys associations between regions in
the perceptual space and a category label throtagttige, without deriving explicit rules.
COVIS proposes that the hypothesis-testing systemirthtes learning of rule-based
category structures while the procedural system idat®s learning of information-
integration category structures. Behavioral dissiomn between the hypothesis-testing
system and the procedural learning system can libusemonstrated by manipulations
that selectively affect rule-based learning or infation-integration learning.

Recall that several studies demonstrated manipulatihat affected information-
integration, but not rule-based learning using yledlafeedback or inconsistent stimulus-
response mapping (Ashby, Ell, & Waldron, 2003; MaxidAshby, & Bohil, 2003;
Maddox, Bohil, & Ing, 2004; Maddox & Ing, 2005). ®may argue that information-
integration is more complex than rule-based legnso the reverse dissociation needs to
be demonstrated as well. Recent studies began pimrexconditions that affect rule-
based, but not information-integration learning ngsi working memory load
manipulations (Maddox, Ashby, Ing, & Pickering, 200Maddox, Filoteo, Hejl, & Ing,
2004). Waldron and Ashby (2001) introduced a comeur attention demanding task that
should affect the hypothesis-testing, but not pdoacal system. They used binary-valued
stimuli and found large dual task interference andimensional rule-based learning and
small dual task interference on (multidimensiomaiprmation-integration learning. The

authors concluded that their study demonstrateddieeof the hypothesis testing system

5 Major portions of this chapter have been previogsiglished as an article Zeithamova & Maddox
(2006). Memory & Cognition, 34(2), 387-398. Copyri@006 Psychonomic Society, Inc
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and working memory in rule-based learning and stippothe multiple system view of
categorization.

In this chapter, we explore the role of a dual taskategory learning in more
detail. We begin by reviewing the study of Waldrand Ashby (2001), noting a few
possible shortcomings and presenting an alternattpéanation of their results suggested
by Nosofsky and Kruschke (2002). We then presentdwperiments offering additional
evidence for the dissociation between the rule-thasel information-integration category
learning. In the first experiment, we test and edtehe generality of Waldron and
Ashby’s results when applied to a uni-dimensiondé4based and (two-dimensional)
information-integration category learning task gsia large number of perceptually
similar continuous-value dimension stimuli. Seconsle examine the dual task
interference in two-dimensional, conjunctive ruksed learning and provide a critical

test of Nosofsky and Kruschke’s single system engtian of the original results.

REVIEW OF WALDRON AND ASHBY (2001)

Recall that COVIS postulates that the hypothestitg system relies on working
memory and selective attention to solve rule-bassdgory tasks, whereas learning in
the procedural-learning system is essentially aatmm Waldron and Ashby (2001)
provided an empirical test of this prediction bymgmaring rule-based and information-
integration category learning under dual task comas with that in a single-task control.
They chose a numerical analog of the Stroop task gfdetailed review of the Stroop
task, see MacLeod, 1991) to serve as a dual tdsk.SEroop task is known to require
working memory and selective attention, and torgjlp activate the anterior cingulate
and prefrontal cortex (Bench, Frith, Grasby, & s 1993), neural structures
associated with the explicit, hypothesis-testingtay, but not with the implicit
procedural-learning system proposed in COVIS.

Waldron and Ashby had participants learn to caiegatimuli that varied on four
binary dimensions (see the left panels of Figur&sahd 1.4 in Chapter 1). In the uni-
dimensional rule-based condition, one dimension redsvant and the remaining three
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were irrelevant (Figure 1.3, left panel). In theformation-integration condition,
information from three dimensions had to be integgtaand one dimension could be
ignored (Figure 1.4, left panel). Under the contcohditions, the participant simply
categorized each stimulus on every trial and recefeedback after each response. In the
dual task conditions, the participant had to penfar numerical analog of the Stroop task
during each trial of categorization. The Stroop ktastimulus was presented
simultaneously with the categorization stimulus 280 ms. The Stroop stimulus was
then masked and the categorization stimulus rerdaonethe screen until the participant
categorized it. After categorization feedback, pheticipant was to respond to the Stroop
stimulus they had seen at the beginning of thd. tiiaerefore, the participant was
required to hold a representation of the Stroomgtis in the working memory during
the process of categorization and while receiviegdback. Performance in the Stroop
task was emphasized over the categorization tamkicipants were tested on four rule-
based tasks and four information-integration tadkatticipants performed each task
either until they reached the learning criterion8ofrials in a row correct or until they
reached 200 trials.

Waldron and Ashby found that the dual Stroop taskipced greater interference
for the unidimensional rule-based task than forittiermation-integration task (Figure
2.1). These findings support the COVIS predictitrattthe working memory and
attention requiring hypothesis testing system suppoule-based learning, while the

(automatic) procedural system supports informatnegration learning.
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FIGURE 2.1. RESULTS FROM WALDRON AND AsSHBY (2001). Early: Results from the first

half of the experiment. Late: Results from the selcbalf of the experiment. RB: rule-
based; II: information-integration. Copyright 20B$ychonomic Society, Inc. Reprinted
with permission.

We found the results compelling, but a few possitaknesses need to be noted.
First, examine the results presented on Figure Bhé. category structure x condition
interaction was present only during the first lwdlthe experiment. Additionally, because
of the different baseline performance, the smatlaal task effect on information-
integration learning could be a result of the flagffect. Second, the eight correct
responses in a row learning criterion might be l@ment. We conducted a series of
simulations with the original Waldron and Ashbyratius sequences (in these sequences
each stimulus was presented once in each blocg tfdls) and found that the eight-in-a-
row criterion could be reached through random redpa within two hundred trials with
probability .33. Also, a participant using a uni@insional rule to solve the information-
integration tasks could respond correctly on eaxtividual trial with probability .75.
Third, as we discussed in Chapter 1, exemplar mieatarn is likely to be operative with
so few stimuli. This may have involved differentun& structures than the authors

assumed and thus may have influenced the resultsrinnknown way. The goal of
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Experiment 1 is test the role of working memoryrite-based learning using the dual
task methodology while avoiding these possible tslonings.

A different criticism of Waldron and Ashby’'s exp@ment came from Nosofsky
and Kruschke (2002), who questioned its interpi@tatThey claimed that a single
system exemplar model can account for the largal tdisk interference in the rule-based
task when a selective attention parameter (sughrgmsed in Kruschke, 1992) is varied
between the control and the dual (Stroop) condithmonly one dimension is relevant in
the rule-based task, the selective attention rement for good performance is high.
Selective attention requirement is low in the infation-integration task, as attention can
be spread across all dimensions without affectiegopmance. Experiment 2 tests this

notion.

EXPERIMENT 1

The main aim of Experiment 1 was to test the gdizetality of Waldron and
Ashby’s (2001) results while avoiding their possiBhortcomings, using a large number
of unique stimuli varying along continuous-valudchénsions. The stimuli were Gabor
patches that varied across trials in spatial fraque and spatial orientation.
Unidimensional (UD) rule-based and information-greion (II) category learning were
examined under control and dual Stroop conditidime scatter plots of the stimuli used
in the UD and Il category learning conditions ah@wn in Figure 2.2 along with the
optimal decision bound. Each point in the scattdrgenotes the spatial frequency and
spatial orientation of a single stimulus. In thédimensional condition, spatial frequency
was the relevant and spatial orientation was treewvant dimension. The optimal rule
required participants to respond A when the spétgjuency was low and to respond B
when the spatial frequency was high. Both dimerssigare relevant in the information-
integration condition. The optimal rule requiredrtwdpants to respond A when the
difference of the value on spatial frequency dinmmsand the value on the spatial
orientation dimension was low and to respond B wthendifference of the values on the
two dimensions was high. Such a rule is not likelype explicitly learned and verbalized
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by the participants because it compares values ifferent units. The category
discriminabilities (d’) in the physical space weté for unidimensional and 10.3 for

information-integration category structifre.
Method

Participants

One hundred seventy students at The Universityeah$ at Austin participated in
the experiment in partial fulfilment of a clasgjurement or for pay. All observers were
tested for 20/20 vision, and no observer completeck than one experimental condition.
Each participant completed one of four experimentaiditions: unidimensional rule-
based, control (UDC), unidimensional rule-basedal d8troop (UDS), information-

integration, control (IIC), and information-inte¢jan, dual Stroop (IIS).

Stimuli and apparatus

The categorization stimuli were Gabor patches Waaied across trials in spatial
frequency and spatial orientation. The experimesgduthe randomization technique
introduced by Ashby and Gott (1988). Forty categarand forty category B stimuli
from the unidimensional categories were generatedsdmpling randomly from two
bivariate normal distributions (Figure 2.2, leftng). The stimuli for the information
integration categories were generated by rotatieg80 rule-based stimuli clockwise by
45° around the center of the spatial frequencyt@patientation space and then shifting
the spatial frequency and spatial orientation bymuount that resulted in the appropriate
d’ (Figure 2.2, right panel). The category distribntparameters for both structures are
listed in Table 2.1.

6 These discriminabilities were chosen to avoidingieffects in the UD conditions and floor effeatsthe

Il conditions. In addition, we hoped to approxintatequate performance across these two category
structures in the control condition. To anticipate® were not successful in equating control cooditi
performance. The Il control condition performancasvwworse than UD control condition performance.
However, if the two conditions differed only in filiulty, as sometimes suggested, we would expect a
larger dual task interference effect on Il thanldh category learning. COVIS, on the other haneédfats

a larger dual task interference effect on UD catgdgarning.
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FIGURE 2.2. CATEGORY STRUCTURES USED IN EXPERIMENT 1. UD (left panel):
Unidimensional rule-based; 1l (right panel): infation-integration. Open circles denote
category A, filled squares denote category B. Ddgdimes represent the optimal decision
bound.

Category structure s Moa M Mo Ot 0o  COMo
Unidimensional rule-based 293 45 3.32 45 0.087 3a
Information-integration 281 56 3.44 34 0.674 24 16

TABLE 2.1. CATEGORY DISTRIBUTION PARAMETERS FOR THE CATEGORY STRUCTURES
USED IN EXPERIMENT 1. p= mean;c = standard deviation; cov = covariance; f = spatia
frequency (cycles per degree); o = orientation (eleg); A = category A parameters; B =
category B parameters.

Each Gabor patch was generated using Matlab (Matk§VaNatick, MA)
routines from the Psychophysics Toolbox (Braind@B7; Pelli, 1997). The size of each
stimulus was 200 x 200 pixels, covering about fdagrees of visual angle and was

centered on a computer screen with gray backgrobatlowing Waldron and Ashby
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(2001), the Stroop task stimuli used in the dusk taere two whole numbers sampled
without replacement from the range 2-8. On 85%iafg, the numerically larger number
was physically smaller (95 pixels tall vs. 180 pexe&ll). The stimuli were presented on

gray background.

Procedure

Each condition consisted of 5 80-trial blocks aélg. In the control conditions,
the participants were told that there were twogates of stimuli and that these are to be
learned via corrective feedback. On each triahtagorization stimulus was presented on
the screen and remained there until the participateégorized the stimulus into either
category “A” by pressing button “Z” on the keyboavith their left hand or into category
“B” by pressing button “?” on the keyboard with thaght hand. Corrective feedback
was then provided for 1000 ms followed by a 1000 daky and 1000 ms inter-trial
interval.

In the dual, Stroop conditions, a categorizatiomsius was presented centered
on the screen, with the Stroop task stimuli presgiconcurrently to the left and right of
the categorization stimulus for 200 ms followedabsectangular white masks for another
200 ms. The categorization stimulus remained on gsbeeen until the participant
categorized it into one of the two categories lgsping “Z” or “?” on the keyboard. The
categorization response was followed by 1000 mective feedback and 1000 ms blank
screen delay. Then either the word “value” or wtside” appeared on the screen. The
participant then indicated on which side the numbin the larger value or larger size
was presented. The response was followed by 100€omsctive feedback and 1000 ms
inter-trial interval. The timing of each trial wadentical to that used in Waldron and
Ashby (2001).
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Results

Stroop task performance

Fifty and forty-five participants completed the dimnensional Stroop and
information-integration Stroop conditions, respeely. The overall proportion correct
for the Stroop task was .84. There was no diffezencStroop task accuracy between the
unidimensional (mean = .831, se = .022) and infdionaintegration conditions (mean =
.849, se = .019) groups (t(93) = 0.582, p = .56aYgesting that the effort and cognitive
resources allocated to the Stroop task were equiabth groups. Fifteen participants in
the UDS condition and thirteen participants is H& condition did not reach the 80%
required accuracy minimum on the Stroop task aed thata were excluded from further

analyses.

Category learning performance

For each participant, we computed the proportiomecd for each block and the
overall proportion correct. We began by examining shape of the Il and UD overall
score distributions collapsed across control amdopt The distribution of overall scores
for the unidimensional category structure deviatgidnificantly from normality
(Kolmogorov-Smirnov test (KS) D(76) = .212, p=.00@hile the distribution of overall
scores for the information-integration categorydtnre did not (KS D(66) = .097, p =
.557). This pattern held in each block as well. illiestrate, histograms of the overall
accuracy distributions for the UDC and IIC condiscare shown in Figure 2.3. While the
Il distribution is unimodal and close to normale tiD distribution is bimodal, with one
modus close to the chance level of accuracy 0.5amather at a much higher level of

performance.
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FIGURE 2.3. DISTRIBUTION OF THE OVERALL SCORES IN EXPERIMENT 1. UDC: control
unidimensional group; IIC: control information-igi@tion group. Abscissa denotes
midpoints of the bins, except the left .5 bin tiatludes all subjects bellow .55. No
subject reached accuracy above .95.

Figure 2.4 presents the mean accuracy scores (pi@poorrect) for each group.
The experimental hypothesis predicts the dual taskhave a bigger impact on
unidimensional rule-based than on information-irdéign category learning. To assess
the effect of the dual task on underlying distribng with such different shapes provided
a challenge as ANOVA, like most standard statitioceethods, assumes normal
distributions. We used a “bootstrappifgprocedure to compare the drop in mean
performance across the control and Stroop conditiordetermine whether this drop was
larger for the unidimensional than for the inforiaatintegration category structures.
Specifically, the test design was verifying thae t85% confidence interval for the
difference in performance drops [(UDC - UDS) — (HQIS)] was reliably bigger than
zero. We found that the 15.2% drop in overall penfance in the unidimensional rule-

based category learning dual task, relative tactmdrol task, was reliably bigger than the

7 Bootstrap analysis is a statistical method foraotihg an estimate of reliability or error, such as
confidence intervals, without a priori assumpti@mut population distribution. The sample distritit
and variability is used as a model for the popafatilistribution and simulations carried out on attu
samples are used to draw inference. Bootstrap@irgppropriate to use when the distribution shape is
unknown (Efron & Tibshirani, 1993).
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6.1% drop in the overall performance observed @ittiormation-integration dual task

relative to the control tagk.
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FIGURE 2.4. MEAN CATEGORIZATION BLOCK ACCURACIES (PROPORTION CORRECT)
FOR EACH GROUP IN EXPERIMENT 1. The control groups are denoted with solid lined an
filled marks, dual Stroop task groups with brokere$ and open marks. Unidimensional
rule-based groups are marked with squares, infeomattegration groups with triangles.
Error bars denote bootstrapped 68% confidenceviale(equivalent to a standard error
of mean).

8 The difference between the median drop in perfoceaacross the two category structures was even
stronger. The median performance drop for the omedisional category observers was 29.0% in the §troo
compared to the control condition which is relialbigger (bootstrapped 95% confidence interval) than
6.8% median performance drop for the informaticiegmation category observers. For an interestederea
the category structure x condition interaction vedected also using a parametric method (ANOVA
interaction [F(1,138) = 4.006, MSE = 0.367, p =7p4
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Discussion

Experiment 1 yielded several interesting resulistfFand foremost, including the
dual Stoop task had a large effect on unidimensianla-based, but not information-
integration category learning. This finding reptesthat observed in Waldron and Ashby
(2001) and extends it to a situation in which agéanumber of normally distributed
continuous-valued dimension stimuli were used. drtgmtly, this pattern holds even
though performance is best in the unidimensionakrob condition and is worst in the
unidimensional Stroop condition, ruling out a coaxily explanation of the results.
Second, the results suggested that unidimensiat@lbased category learning (under
control and dual task conditions) differed qualaly from information-integration
category learning. Specifically, whereas the disiiion of scores observed in the
information-integration conditions was unimodal adse to normal, the distribution of
scores observed in the rule-based conditions wamdal, suggesting an all-or-none
character to category acquisition (for a similasute see J. D. Smith, Minda, &
Washburn, 2004).

The qualitative difference in the performance pesfiacross unidimensional rule-
based and information-integration conditions is sistent with the multiple-system
notion. Rule-based category learning involves tlgpothesis-testing system. In this
system, different rules are tested and are eitbeeed or rejected. When the correct
categorization rule is identified, categorizatiortaracy improves dramatically. When
incorrect rules are applied, categorization acgua@ear chance, resulting in a bimodal
performance distribution. Information-integrationategory learning involves the
procedural learning based system that learns ghigduscrementally and automatically,

leading to a normal, unimodal distribution of ssore

EXPERIMENT 2
One potential weakness of Experiment 1 and Waldwah Ashby (2001) is that
the number of dimensions relevant for optimal catgtion differs across conditions.
Nosofsky and Kruschke (2002) pointed out, that rdsults of Waldron and Ashby are
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consistent with a single system approach which apser on a single exemplar
representation with normal (control) or limited r(&1p) selective attention. To elaborate,
Nosofsky and Kruschke (2002) argued that the Sttasg would disrupt ALCOVE's
(Kruschke, 1992) selective attention learning pat@m Failure to attend to the single
relevant dimension in the unidimensional rule-basedk would cause strong
interference, because attending to the three Vmele dimensions would waste vast
amounts of processing capacity. In the complexpringtion-integration category
structure, three dimensions are relevant and onéyigelevant. Thus, a wide variety of
attentional weights would lead to reasonable parémce and only a little processing
capacity would be wasted on the one irrelevant dsioa.

Ashby and Ell (2002) demonstrated that ALCOVE, aligh able to account for
the qualitative pattern found in Waldron and AsK{g901), could not account for the
guantitative pattern. ALCOVE either underestimaties observed difference between
unidimensional control and information-integrati@ontrol category learning, or it
assumes no attention learning in the Stroop camdifleading participants in the
unidimensional Stroop condition to be unaware ¢ghsihgle dimension was relevant).

In Experiment 2, we decided to investigate thearotif Nosofsky and Krushke’s
using a conjunctive rule-based category structurerer both dimensions are relevant for
optimal categorization (see Method section for ittaNosofsky and Kruschke would
predict none or small dual task interference beesaasdimension is irrelevant in this task
and a wide range of attentional weights can proadegh level of performance. Also,
because the attention learning mechanism is dedyttention should be spread over
both dimensions throughout the course of learnl@@VIS, however, would predict
stronger dual task interference because the comyentask, unlike the information-
integration task, is solved under control conditioy the hypothesis testing system.
Under the dual Stroop task condition, use of coctjue rules (attending to both
dimensions) is less likely and use of sub-optinmatlimensional rules (selective attention
to one dimension while ignoring the other) is mékely, because conjunctive rules
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require more working memory capacity than unidinemal rules. Experiment 2 aims to

provide a test of these two alternatives.
Method

Participants

Sixty students at The University of Texas at Augimticipated in the experiment
in partial fulfillment of a class requirement or foay. Thirty completed the conjunctive
control (CJC) condition and thirty completed thajomctive Stroop (CJS) condition. All

participants were tested for 20/20 vision.

Stimuli and apparatus

The stimuli, stimulus generation procedure and egipa were identical to those
used in Experiment 1. The only difference was i@ tiature of the category structures.
Eighty stimuli were generated by sampling randorfigm four bivariate normal
distributions. Three were assigned to category A ane to category B. The four
distributions parameters and the number of stigetierated from each are displayed in
Table 2.2. A scatter plot of the stimuli and théimjal rule is presented in Figure 2.5. The
optimal rule required participants to respond B wkige spatial frequency was high and
the orientation was steep, and to respond A otlserwiote that both dimensions are
relevant for correct categorization. The number sbimuli generated from each
distribution was chosen to equate the number ofidtiin both categories and in an

attempt to reduce the usage of unidimensional toleslve the task.
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FIGURE 2.5. CONJUNCTIVE (CJ) CATEGORY STRUCTURE USED IN EXPERIMENT 2. Open
circles denote category A, filled squares denotegmay B. Dashed line represents the
optimal decision bound.

Distribution s Ho Of Go COVy N

A 295 35 0.21 3.12 O 8
Az 3.30 35 0.21 3.12 O 16
A3 295 55 0.21 3.12 O 16
B 3.30 55 0.21 3.12 O 40

TABLE 2.2. DISTRIBUTION PARAMETERS FOR THE CONJUNCTIVE CATEGORY
STRUCTURE USED IN EXPERIMENT 2. N: number of stimuli derived from each
distribution. Stimuli from the distributions;AA,, Az were all members of category A.

Procedure

The procedure was identical to that in Experimemixdept that there were four

rather than five blocks of 80 trials. Participamtere told that perfect performance is
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possible and that they should certainly achieveval®0% correct before the end of

training.

Results

Stroop task performance.

Mean Stroop task accuracy was .862 (sem = .026¢. participants did not reach
required 80% Stroop task accuracy, and their data wxcluded from further analyses.

Categorization task performance

We first inspected the distribution of scores idesrto compare them to those in
Experiment 1 (data not shown). Although there wasralency toward bimodality, the
Kolmogorov-Smirnov test did not show a significaletviation from normality for either
condition nor collapsed across the control anddilned condition in any block (KS D(55)
=.153, p = .153 for the collapsed data and overate distribution).

Mean categorization accuracy for each block ofidria shown in Figure 2.6.
Overall categorization accuracy was 70.2% in th&rob group and 60.6% in the Stroop
group. Thus, the Stroop task produced a 9.6% drogaiegorization accuracy that was
significant (bootstrapped 95% confidence interealthe drop (CJC — CJS)).
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FIGURE 2.6. MEAN BLOCK ACCURACIES IN EXPERIMENT 2 (CONJUNCTIVE TASK).
Control group is denoted with solid line and fillddmonds, dual Stroop task group with
broken line and open diamonds. Error bars denotasistrapped 68% confidence
intervals (equivalent to a standard error of mean).

To examine response strategies, we fit a generahiiclassifier, a conjunctive
and a unidimensional decision bound model to eaatigpant’s responses in the last
block (the details of these models can be foundie.yladdox, Ashby, & Bohil, 2003).
We found that the proportion of participants wheedisa strategy employing both
dimensions dropped from 77% in the control to 44f4hie dual task condition and the
proportion of participants using a unidimensionderfor categorization increased from

7% in control to 17% in the dual task conditfon.

9 The responses of the rest of the participants Wweseaccount by a flat response strategy thatrassu
that the response is independent from the stimedlises.
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Discussion
The results from Experiment 2 supported the COVI&digtion that

categorization based on the combination of bothedsions is less likely and using
unidimensional strategies more likely under duakta&ondition than under control
condition; a prediction that is opposite of thatnfr Nosofsky and Kruschke’s (2002)
account of Waldron and Ashby’s (2001) results. Twnpare the observed drop in
performance in the conjunctive rule-based conditigiin those from Experiment 1, we
computed the average performance across thedustilocks of trials (since Experiment
2 concluded four rather than five blocks of triais)each condition. The results are
displayed in Figure 2.7. Figure 2.7 suggests thatimpact of the dual Stroop task was
indeed larger on conjunctive rule-based than orormétion-integration category
learning, as predicted by COVIS, and opposite fithiat predicted by Nosofsky and
Kruschke (2002).

0.80
B uUD

@
= 0.70 myy
3
8 0.65
§ 0.60

0.55

0.50 N

control Stroop

Condition

FIGURE 2.7. COMPARISON OF MEAN CATEGORIZATION ACCURACIES ACROSS
EXPERIMENTS 1 AND 2. Only data from the first four blocks were used.

47



Both the shape of the score distributions and thal dask effect on the
conjunctive task were intermediate between thosendoin Experiment 1 for
unidimensional rule-based and information-integatiThe results suggest that a number
of strategies may be used to resolve the conjunttisk and each of these strategies may
be influenced by the dual task differently. Detdileiscussion of the dual task

interference for the three category structuressenved for the General Discussion.

GENERAL DISSCUSSION

The theoretical framework which gave rise to theezkments reported in this
article was the COVIS model of category learningt{By, Alfonso-Reese, Turken, &
Waldron, 1998). COVIS builds upon a body of reskatieat identified alternative
strategies of category learning and extends it dgntifying the underlying neural
structures. This line of research contrasts withotles assuming a single system of
category learning. In this discussion, we will fifscus on the COVIS account of the
observed pattern of data, then review alternativeltiple-system approaches to
categorization, and finally ask whether a singlstem approach to categorization may be

sufficient in accounting for the results observedehand elsewhere.

COVIS

COVIS assumes the existence of at least two catelparning systems: an
initially favored hypothesis-testing system thatkseexplicit rules and relies on working
memory and selective attention, and an implicitesysthat is procedural—-learning-based
and essentially automatic. Two predictions resutimf this notion. First, category
learning by the hypothesis testing system whemnglsi correct categorization rule exists
that yields nearly perfect performance (such asumigdimensional rule-based category
structure) should have an all-or-none characteigvidarning by the procedural-learning

based system is gradual and incremental. Secotdalaask requiring limited cognitive
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resources, working memory and selective attensbould impair the hypothesis testing
system, but not the procedural system.

The three category structures used in the two esudiported in this paper differ
in their level of attainability by the two systemdnidimensional rule-based category
learning resulted in a bimodal, all-or-none disitibn of scores and was affected most by
the dual task, suggesting a strong reliance ommypethesis-testing system in solving the
task. The unidimensional category structure is eéadeell acquired by the hypothesis-
testing system, because a simple rule can yieldstlperfect accuracy. However, if the
correct rule is not found, alternative rules yipktformance at chance levels of accuracy.
The procedural learning based system may exhilwt poquisition of such a structure
because the variance along the relevant dimensiemall while the variance along the
irrelevant dimension is high. The high convergense connections from the
inferotemporal cortex to the tail of caudate nuslewtay cause the same striatal units to
be activated by stimuli coming from different caiggs but sharing similar value on the
irrelevant dimension, making the stimulus-respamsg@ping within the caudate difficult.
Thus, although this task was easiest under thealarandition, the need to find the one
correct rule by the hypothesis-testing system withited resources and unreliable
responses from the implicit system made it modicdit under the dual task condition.

Neuroimaging study by Bench et al. (1993) showed tthe anterior cingulate and
frontal cortex are structures strongly activatedlevperforming a Stroop task. The fact
that the presence of the Stroop task most affegtedimensional rule-based category
learning provides an empirical support for the CO\Wroposition that the explicit,
hypothesis testing system, but not the procedysiem, relies on working memory and
attentional processes and on these same undebsanystructures (i.e. anterior cingulate
and frontal cortex). The dual Stroop task may ierfice several stages of the hypothesis-
testing system. It may make selective attentiometevant dimension more difficult to
achieve because selective attention is needechéiStroop task. Its working memory
load may make it harder to remember the curreettaube tested and which rules did not
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work previously. It may impair the ability to deteonflict and evaluate performance and
select and switch to a new rule (anterior cingulatetions).

Information-integration category learning was thesidifficult in the control
condition, but exhibited the smallest decremermarformance in the dual task condition,
becoming the easiest. The information-integratiategory structure is better acquired by
the procedural system than the hypothesis-testystes. COVIS predicts that after
trying unsuccessfully all salient rules, the weight the hypothesis-testing system
decreases and the responses become dominated fteoréythe procedural system. The
procedural system learns the stimulus-response imgpadually and incrementally,
yielding a normal distribution of scores. The stiusdresponse mapping in the caudate is
facilitated by the larger distance of the stimubrh the two categories in the stimulus
space (d prime in the physical space of 10.3 coetp&w 4.5 for the unidimensional
structure). The dual Stroop task may influencerimfation-integration category learning
in two opposite ways: It may hurt performance beeail reduces cognitive resources
needed for initially biased hypothesis testing anglows down the shift in favor of the
implicit system, or it may facilitate performancedause the limited capacity hypothesis-
testing system becomes less initially biased arttiooverall system shifts faster towards
the implicit system. We found a slight performamiyep in the dual compared to the
control condition, suggesting that the first infige or a combination of both is more
likely. Because the implicit system itself is ureaffed by the dual task, once the weight
of that system increases sufficiently, accuracy ldidae expected to be essentially the
same under the control as under the dual condition.

The conjunctive rule-based category structure usethe Experiment 2 has
properties intermediate between those used in EHrpat 1, yielding intermediate
difficulty and performance drop under the two caiotis. The optimal conjunctive rule
yields the highest accuracy (100% possible), howeweidimensional rules on either
dimension can provide accuracy up to 80%, and mébion-integration strategies may
be successful as well due to relative high seplrabf the four underlying distributions.
The proportion of participants using a combinatioh both dimensions (spreading
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attentional weights in terms of ALCOVE (Kruschk&92)) for categorization decision
decreased and the proportion of participants ugatiges on a single dimension increased
under the dual task condition, contrary to the ANEO prediction (Nosofsky &
Kruschke, 2002) and with agreement to the prediciesuming two learning systems.
The results of Experiment 2 also argue for duab@irtask interference on performance
evaluation and rule switching, in addition to waorgcimemory load, because participants
were more likely to stick with the suboptimal umidinsional rules despite corrective
feedback.

Ruleversussimilarity

There has been a long tradition in cognitive psiaiy research of focusing on
the distinction between perceptual categorizatit ts based on a rule application and
that based on overall similarity to previously seestances (Allen & Brooks, 1991,
Brooks, 1978; Folstein & Van Petten, 2004; Kemleiddn, 1984; J. D. Smith &
Shapiro, 1989). Rule versus similarity distinctipnovides an alternative theory of
multiple strategies of categorization. Rule appiarainvolves a high working memory
load and requires analytic, serial processing afercal attributes with differential
weighting of attributes, while similarity-based pessing involves a low working
memory load and holistic, parallel, automatic pesteg with equal weighting of
attributes (E. E. Smith, Patalano, & Jonides, 1998)

The theories assuming alternative strategies ofegoaization involving
qualitatively distinct processes of rule applicat@and similarity judgment are strikingly
similar to the computational level description bé&tCOVIS model. The rule application
is assumed to involve working memory and selecattention to criterial attributes,
similar to the explicit, hypothesis testing systdihe similarity judgment is an automatic,
holistic process that does not have a high workimgmory load, comparable to the
implicit, procedural learning based system. A diask reduces the likelihood of using

analytical rules in categorization (J. D. Smith Bapiro, 1989).
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Rule versus similarity distinction theories wouldetefore predict a similar
pattern of results as obtained here, because thstihistrategies promoted over the
analytic strategies under the dual task have differrelative utilities for correct
categorization. However, direct application of #helseories to the results from our two
experiments is complicated by the dissimilarity tife experimental paradigms.
Experiments illustrating the dissociation betweeles and similarity often use a unitary
category structure where category membership cadebermined perfectly from rule
application_orsimilarity-based processes and induction of eiffrecess is achieved by
instruction manipulation (e.g. explicit formulatiaf the rule versus feedback training
only in Allen and Brooks, 1991). An alternative asgperiments using real world
categories for which the existence or nonexisteocenecessary attributes (rules) is
known to participants (e.g. size of a quarter irppRi1989). In our experiments,
participants have no prior knowledge about the neatf the category structure and
training is based on feedback only for all categstsuctures. Category structures
themselves, rather than instruction or prior knalgks promote or inhibit the use of
either system. The process of rule discovery astingg is of equal importance to rule
application in the COVIS model, and the interactaord relative weighting of the two
systems is explicitly stated. On the other handdiss in which use of a rule versus a
similarity judgment is addressed in conditions ihiah both strategies are available at
any given trial may help to shed more light on htve competition between the
hypothesis testing and the implicit system is neswl Also, while the rule versus
similarity distinction may be widely valid acrossodalities and extend to higher level
cognition, such as language, COVIS has a narroweusf on visual perceptual
categorization and, because of the specified uyidgrl neurobiology, cannot be
automatically applied outside its original domdim.sum, despite some methodological
and terminological differences, the neuropsychaalgCOVIS model and the cognitive
psychology based theories of alternative rule andlaity strategies of categorization
are more likely to complement than to oppose orothem.
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Single ver sus multiple systemsin category learning

The alternative to the notion of multiple systemgategorization is the notion of
a single categorization system. First we have t&kemdear whata systemmeans. In
COVIS, the two category learning systems operaimgparallel differ both in the
computational and implementation level of desaniptione system coding for explicit
rules in frontal structures using selective atmmtend working memory, the other
encoding instances in the inferotemporal cortex pnodedural learning-based stimulus-
response mapping in the striatum. Both systemsdaberpete (or cooperate) to determine
the response of the overall system (the organi$ifijen arguing against the multiple
system account of Waldron and Ashby (2001) resitssofsky and Kruschke (2002)
accept that other processes, such as selectiveiatido relevant dimension, may take
place in category learning. However, they emphatsiaedifferent processes operate on a
single exemplar category representation. What seékes a distinction between
categorization based on a rule application verstesatl similarity evaluation is then the
same exemplar-based categorization when all abtentieight is on one diagnostic
dimension versus when attention weight is spreaditaéqually across many dimensions.
A similar idea was recently presented by Potho0%20nvho argues that rules and
similarity represent two extremes on a single cantm of similarity operations, with no
need to model rule and similarity processes seglgraRule application is a similarity
evaluation process where only a single or smalllmemof object’s features are involved.

These are compelling ideas and the imperative dfipany requires accepting
the single system notion (a single representatiibh &/ single process) unless we have a
sufficient body of evidence that a single systenplaxation cannot account for the
empirical data available.

Several lines of evidence lead us to believe thahgle system explanation is not
sufficient to account for the data observed intao experiments and, most importantly,
in the complex of a broad range of other studidsst,Fwe already discussed how
Nosofsky and Kruschke (2002) account of Waldron astiby (2001) is inconsistent
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with the results of our Experiment 2 (see also Ashhd Ell, 2002, for evaluation of
Nosofsky and Kruschke).

Second, single system models, such as ALCOVE (Kikesc 1992) do not
specifically address the underlying neural substfat the exemplar storage and the
neural mechanism of categorization. A number ofdistkl focused on differential
activation of the brain in different categorizatiparadigms and suggest that at least
humans have available more than one system inypldifferent neural circuits and
category representations (E. E. Smith, Patalanor&dés, 1998; Seger & Cincotta, 2002;
see Keri, 2003, for a review of studies includidmical neuropsychology findings,
functional neuroimaging, and single cell studieBd. address specifically the single
versus multiple representations issue, Keri (208@nmarizes a number of studies
showing that inferotemporal cortex is responsiladle dategory instances representation,
while prefrontal cortex encodes abstract rules.hSadinding supports at least two-fold
category representation, one is the representafi@pecific instances (exemplars), the
other of rules. Because an organism behaves asntagral system, different
representations and processes will interact andnaconcordance in order to produce
meaningful behavior. Pothos’ (2005) putative camtim from rules to similarity may
thus reflect relative contribution of each systenthe overall response of an organism,
such as postulated in COVIS, by the relative weiglof the two subsystems’ responses
in producing the final decision.

Third, even if a single system model could accofont the pattern of data
observed in our two experiments, we may still goestvhether that provides us with a
valid and more parsimonious explanation. First,ngxar models are often viewed as
highly flexible. Recently, Olsson, Wennerholm angzen (2004) showed that exemplar
and other mathematical models often suffer fronrfittieg, i.e. accounting perfectly for
noise as well as actual variance due to cognitreegsses. Second, with respect to the
issue of parsimony, it is unclear whether a sisgltem model that requires different sets
of assumptions (and parameter values) about theriym processes to account for the
wide array of “multiple systems” data is more parsnious than a multiple systems
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model thata priori predicts the patterns observed in the multipleesys data. For
instance, Nosofsky and Kruschke (2002) claim: “&sd as the sensitivity parameteis
not too high, ALCOVE predicts far greater interfeze on the simple one-dimensional
task than on the complex three-dimensional taskl'A}p). Thec parameter measures the
overall discriminability of the stimuli anghouldbe high for such highly discriminable
stimuli as used in Waldron and Ashby (2001). We cbatie that the dual task
interference effects found here provide evidencdlfe existence of at least two category
learning systems, one that utilizes working memang attention and dominates in
learning of the rule-based category structuresaralthat does not require these limited

resources and dominates in learning of the infalonantegration category structures.

55



Chapter 3: Working Memory in Category L ear ningo

WORKING MEMORY ROLE IN THE HYPOTHESIS TESTING AND PROCEDURAL LEARNING

SYSTEM

Most multiple systems models of category learningtplate a hypothesis-testing
(or rule-based) component. These include models mhake no claims about the
neurobiological underpinnings, such as RULEX (Nekgf Palmeri, & McKinley, 1994)
or ATRIUM (Erickson & Kruschke, 1998), as well asumobiologically-inspired models
like COVIS (Ashby, Alfonso-Reese, Turken, & Waldrd®98; see also Patalano, Smith,
Jonides, & Koeppe, 2001). COVIS postulates two gmte learning systems: a
hypothesis-testing system that seeks verbalizalds rand is mediated primarily by the
prefrontal cortex, and a procedural learning systdrat learns stimulus-response
associations primarily mediated by striatum. Adestaexplicitly in COVIS (and perhaps
implicitly assumed in RULEX and ATRIUM), processimgf the feedback in the
hypothesis testing system is effortful and requivesrking memory and attentional
capacity. Following feedback on an incorrect trialnumber of events occur in the
hypothesis testing system: (1) The salience otthieent rule decreases; (2) A decision is
made about whether to re-use the current rule get@rate and select a new one; (3) If
applicable, attention is switched from the old rtdethe new rule. These events in the
hypothesis testing system require both time andladbibty of the limited resources
(working memory and attention: Maddox, Ashby, Ii&gPickering, 2004; Waldron &
Ashby, 2001). On the other hand, the procedurdkesysequires the feedback to follow
the categorization response immediately (Maddoxjb4s & Bohil, 2003; Maddox &
Ing, 2005), but feedback is then processed autoaigtiand does not require working

memory or attention (Maddox, Ashby, Ing, & Pickey,ii2004).

10 Major portions of this chapter have been previppsiblished as an article Zeithamova & Maddox
(2007). The role of visuospatial and verbal workingmory in perceptual category learning. Memory and
Cognition, 35(6), 1380-1398. Copyright 2007 Psyamait Society, Inc
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Maddox et al. (2004) tested the prediction thatlieek processing is effortful
and time consuming for the hypothesis-testing systaut not for the procedural system.
They contrasted rule-based and information-intégmatcategory learning using the
category structures depicted in Figure 2.2 (previothapter) across the three
experimental conditions displayed in Figure 3.1\the control condition, participants
viewed a stimulus, generated a categorization respand received 500 ms of corrective
feedback followed by a 2000 ms (blank screen) itrtat interval. In the “long” feedback
processing condition, the categorization resporeseldack was followed by 2500 ms
blank screen delay display to allow feedback prsiogs after which a trial of a
Sternberg’syerbalworking memory task was presented. Trial was agfesdl with a 2000
ms inter-trial interval. As the verbal working memadask, the Sternberg (1966) memory
scanning task was used (Figure 3.1.B). In the B&ghmemory scanning task, four
digits between 1 and 9 were presented for 500 nesn@ny set). Next, a 1000 ms delay
(blank screen) was presented followed by a singj# (probe). The participants had to
indicate whether this digit was a part of the meys®t or not. In the “short” condition,
the categorization response feedback was followedadiately by the working memory

task.
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FIGURE 3.1. TRIAL DESIGN IN MADDOX ET AL. (2004) AND EXPERIMENT 1. (A) Schema

of three conditions: Control = control conditioony = long feedback processing time
condition, short = short feedback processing tiraedd¢ion; WM = working memory
task. (B) Verbal working memory task design. (Cyl-spatial working memory task

design.

Maddox et al. found a large disruption of rule-lwheategory learning in the
“short” condition compared to the control conditiaand a small (and not statistically

significant) disruption of rule-based category feag in the “long” condition. Presence

of the Sternberg task had no effect on informatidaagration category learning.
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OVERVIEW OF THE CURRENT STUDIES

Maddox et al. (2004) provided evidence that workngmory and attention are
necessary for accurate feedback processing inbaged category learning, but not
information-integration category learning. They dise version of Sternberg’s memory
scanning task to tax working memory and attentiopdcesses. However, several
guestions remain to be answered.

In the working memory literature, a distinctiommsde between at least two kinds
of working memory: verbal and visuo-spatial (e.gdBeley & Logie, 1999; Jonides et
al., 1996). This distinction holds behaviorally @chini, Logie, Sala, MacPherson, &
Baddeley, 2002; Logie, Zucco, & Baddeley, 1990; I5&aMiyake, 1996), and there is
also evidence that verbal and visuo-spatial workimgmory rely on different neural
systems (Goldman-Rakic, 1998; E. E. Smith, Joni@eKoeppe, 1996). However, the
existing models of the hypothesis testing systematcaddress the distinction and do not
make any a priori prediction regarding the effefte. secondary verbal vs. visuo-spatial
working memory task on category learning. The Sterg task is a standancerbal
working memory task (Raghavachari et al., 2001¢, gluestion remains how\asuo-
spatial working memory task affects rule-based and infdgiomaintegration category
learning. In this section, we discuss a seriegasonable predictions.

Maddox et al. (2004) showed that a sequential Vexioaking memory task did
not affect information-integration category leanirOne hypothesis is that this result
would be replicated with a visuo-spatial workingmaey task. The logic is as follows: if
the information-integration task is primarily leathvia the procedural learning system
and the procedural system processes feedback aitalyawithout the need for (any
kind of) working memory or attentional resourcdsre should be no effect of visuo-
spatial working memory on information-integratiorategory learning. A second
hypothesis is that the presence of a visuo-spatiakin memory task will affect
information-integration category learning. The bgs as follows: processing in the
procedural system depends critically on the viss@ulus representation in the

inferotemporal cortex (Freedman, Riesenhuber, Rogd@ Miller, 2003). This
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representation may be disrupted by the presence wkuo-spatial task because the
stimuli of the visuo-spatial task are visually peted and difficult to encode verbally.
Additionally, the procedural system is assumedely on basal ganglia (e.g. Filoteo,
Maddox, Salmon, & Song, 2005; Poldrack, 2002), milikh visuo-spatial working
memory is assumed to depend on the basal gangliaaps even to a larger extend than
other types of working memory (Lawrence, Watkingh&kian, Hodges, & Robbins,
2000; Postle, Jonides, Smith, & Corkin, 1997).

In the hypothesis-testing system, working memorynéeded for holding the
currently active rule, comparing the rule with tterrent feedback, and selecting and
switching to a new rule if necessary. Because ridasned by the hypothesis-testing
system are usually verbalizable (Ashby, Alfonso4eed@urken, & Waldron, 1998), one
reasonable prediction is that a sequential verbakiwg memory task will adversely
affect rule-based category learning, but a seqalenisuo-spatial working memory task
will not. This prediction assumes that rule-baseariing involves generating a verbal
representation of the stimulus, response and fe&dBdus, placing a load on a separate
visuo-spatial working memory store will not affeittese verbal processes. Although
verbal and visuo-spatial working memory storessagarable, a second possibility is that
a sequential visuo-spatial working memory task adVersely affect rule-based category
learning. Two general mechanisms may underlie sudlsruption. First, a visuo-spatial
working memory task may affect rule-based learmialiyectly, because it, like the verbal
working memory task, relies on the central exeeutds a common, limited-capacity
resource (Baddeley, 1995; Baddeley & Logie, 1989pad on the visuo-spatial working
memory store would thus influence rule-based catelgarning via the central executive
or general attention demand. Second, visuo-spatéking memory may be involved in
some aspect of rule-based category learning thas dwt require verbal working
memory.

To conceive which aspects of rule-based learning Ineadifferentially influenced
by the secondary verbal and visuo-spatial workirgmory tasks, we need to consider
what steps or processes may possibly be partsleflearning and discovery. With
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unidimensional rules on stimuli that vary alongraited number of continuously varied
dimensions (as used in our experiments), the psoceay include the following
intertwined steps: (1) selection and focused dtienbn onestimulus dimensiorfe.g.
“spatial frequency”); (2) generation, representatand testing of &ategorization rule
(in the narrow sense of the meaning) along thatedsion (e.g. “narrow stripes are
category A, wide stripes are category B”); (3) feag, storing and application of a
categorization criterion(e.g. the optimal spatial frequency distinguishibgtween
narrow and wide stripes). Verbal working memory \datinen seem critical primarily for
rule generation, maintenance and testing (StepvRi)e visuo-spatial working memory
may then be critical for learning and representatbthe actual categorization criterion
(image of a particular spatial frequency: Step ¥)/ar for identification of individual
stimulus dimensions (analytical decomposition @& $stimulus) that is a basis for Step 1.
A second reasonable prediction is thus that theovspatial working memory may
disrupt rule-based learning, either in a similahiag to a verbal working memory task,
or differently.

The goal of Experiment 1 was to test these hypethesing the same procedure
as Maddox et al. (2004), but replacing the verlatrberg working memory task with a
visuo-spatial working memory analog. The basic expental design is depicted in
Figure 3.1.A, the design of the verbal Sternbesk tand our visuo-spatial analog are
presented in Figure 3.1.B and 3.1.C. To anticipatefound no effect of the sequential
visuo-spatial working memory task on informatiomeigration category learning, but we
did find an effect on rule-based category learning.

Experiment 2 explored the generality of the workingmory effects in perceptual
category learning. Whereas Maddox et al. (2004) Eaxygeriment 1 examined a rule on
the spatial frequency of a Gabor patch stimulugydexment 2 examined rules on the
orientation of a Gabor patch stimulus. Gabor pastimuli have several desirable
properties for perceptual category learning reseasc For example, they have a known
dimensional structure with two separable dimensidiie two dimensions have simple
verbal labels, are measured in different units laanke no emergent properties. However,
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orientation has two special properties that spdt&juency does not have. First, it is
periodic with zero degrees being equivalent to 86frees. Second, it contains special
values, called “cardinal” orientations. Cardinalkotations — vertical and horizontal— are
processed differently from other values at bothrtberal and behavioral level. People are
more sensitive and more accurate when asked toejwdgntations around cardinal
orientations (Campbell & Kulikowski, 1966; Heeley &imney, 1988; Orban,
Vandenbussche, & Vogels, 1984). This is likely daethe fact that more neurons in
primary visual cortex are tuned to cardinal oriéintes (Furmanski & Engel, 2000).

In Experiment 2, we examined the effect of bothusispatial and verbal working
memory tasks on rule-based learning when the optiai@gorization rule required the
participant to separate orientations above andwél® degrees from horizontal (oblique
— Experiment 2A), or orientations above and beld@vd@grees (cardinal — Experiment
2B). When the criterion is set at 70 degrees, waeeixthe findings to replicate those
observed when spatial frequency was relevant, Iseckarning a rule on the (arbitrary)
orientation of 70 degrees likely requires the sarecesses needed to learn a rule on
spatial frequency. In both cases, there are twaools\dimensions (spatial frequency and
orientation) along which to generate explicit rulésese rules need to be tested, the
irrelevant dimension ignored and the optimal ciiteron the relevant dimension needs to
be learned. We will test this prediction in Expegimh 2A.

The processes involved in cardinal orientation dassegory learning may be
however different. As we noted above, people extgkeater sensitivity to orientation
changes near cardinal orientations (Campbell & kavliski, 1966; Heeley & Timney,
1988; Orban, Vandenbussche, & Vogels, 1984). Wetlal cardinal orientations are
perceptually specialThis well established higher perceptual sensytimay likely lead
to more precise categorization (leading to higtlssmaptotic accuracy for learners) once a
correct rule is discovered. In other words, pengalpadvantage for cardinal orientations
should improvecategorization criteriorlearning.

Furthermore, it is possible that cardinal oriemtasi do not simply constitute an
easiercategorization criterionvalue on the generaategorization rule“respond A if
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orientation is greater than a criterion, responfl ®@ientation is smaller than a criterion.”
Rather, as soon as the participant notices thatufitivary in orientation, the cardinal
orientations may constitute salient, spontaneouskd categorization rules that create
intuitive categories (e.g. right-tilted, left-titte We say that cardinal orientations may be
conceptually specialn other words, cardinal orientations may constita highly salient
categorization ruleper se, with Step 2 and Step 3 being merged tegeifo our
knowledge, no categorization studies explicitly teds this assumption. However,
Huttenlocher, Hedges and Duncan (1991) reportedtkigar participants used cardinal
orientations as reference points in location ediona If cardinal orientations are
conceptually special, people may tend to use thadg in learning as a rule of the first
choice and most of the categorization rule discpwage of learning may be skipped.
This possible conceptual significance of cardinalergations may lead to higher
proportion of learners and much more rapid learmity minimal working memory load
(and thus minimal effect of a secondary working ragmtask) as most participants
would simply select the correct categorization ageheir first choice.

Now let us consider possible effects of a workingnmory task when learning a
rule on a cardinal orientation. First consider anvorking memory effects. If cardinal
orientations are special perceptually, but not eptually, all the effortful hypothesis-
testing processes still need to take place totfedcorrect rule, and we would expect to
observe a verbal working memory task effect. Ifdozal orientations are special
perceptuallyand conceptually, the highly salient cardinal rulelviié chosen early and
much of the hypothesis testing process will be bgpd. Under these conditions, we
would expect to see no or a minimal effect of tedyal working memory task.

Second, consider visuo-spatial working memory ¢ffelf the mechanism of the
visuo-spatial working memory task effect is the saas that for the verbal working
memory task (e.g. through the central executiventwe predict the same effect (or lack
of effect) for both types of working memory taskshe mechanisms of visuo-spatial and
verbal working memory task effects differ, then firedictions will differ depending on
the role of the visuo-spatial working memory inedllased category learning.
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Let us return to the three steps that take a pamnidimensional rule-based
learning: (1) selection and focused attention one ostimulus dimension, (2)
categorization rule generation, representation sesting, and (3) criterion learning,
representation and application. In order for tingt §tep to occur, the participant needs to
notice how the stimuli vary between one another d@dedompose them into their
individual constituent dimensions. If visuo-spatirking memory is necessary for such
analytic perception of individual stimulus dimensothe participant may have difficulty
identifying the dimensions along which the stimuhasies and how they vary, interfering
with the first step of rule-based learning and iegdo a learning deficit in the visual
condition (even if the verbal working memory tasikdhno effect). If visuo-spatial
working memory is crucial for learning and represen of the categorization criterion
(Step 3), a cardinal orientation criterion may ldadtwo opposing scenarios. First,
learning of a criterion on the cardinal orientatimay lead to little or no visuo-spatial
working memory effect. This may follow either frofa) the existing higher perceptual
sensitivity around cardinal orientation which stibaiake learning of cardinal orientation
criterion easier and less working memory demandingb) from possible conceptual
significance of the cardinal orientation, i.e. drsng based on a cardinal orientation
criterion constitutes an intuitive, highly salietategorization rule per se and does not
need to be actually learned the same way as aguabtiriterion. Second, and making an
opposite prediction, a criterion on a cardinal ot@&ion may be more working memory
demanding because the increased perceptual ségsitivorientations around cardinal
would lead participants to consider and test langember of possible criteria. This
argument assumes that cardinal orientations areomateptually special and a criterion
on a cardinal orientation needs to be learned iy nich the same way as on an oblique
orientation. In other words, it assumes that aigipeint would equally likely consider a
criterion e.g. on 88 degrees as a criterion on 8@reks. We will test the working

memory effects on cardinal orientation based caiegfon in Experiment 2B.
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EXPERIMENT 1

The goal of Experiment 1 was to test a number pblhyeses regarding the effect
of a visuo-spatial working memory task on rule-lmhsnd information-integration
category learning. To achieve this goal, we repdiddMaddox et al.’s (2004) procedure,
but replaced the Sternberg (verbal) working mentask with a visuo-spatial working
memory task (Figure 3.1). We were interested iemeining whether the effects on rule-
based and information-integration category learnoiiserved for a verbal working
memory task replicated when it was replaced witlisao-spatial working memory task.
If the pattern was not replicated, we wanted teeine how the pattern changed.

Method

Participants and Design

Two hundred ninety three students at The Univwersit Texas at Austin
participated in the experiment in partial fulfillmeof a class requirement or for pay. All
participants were tested for 20/20 vision. The expental design was 2 category
structures (rule-based vs. information-integration)3 sequential working memory
conditions (control, long feedback processing tirskort feedback processing time).
Each participant completed one of the 6 experimeaataditions: rule-based control (RB
control: 46 participants), rule-based long feedbgokcessing time (RB long: 51
participants), rule-based short feedback procestimg (RB short: 53 participants),
information-integration control (Il control: 38 genipants), information-integration long
feedback processing time (Il long: 52 participanis) information-integration short

feedback processing time (Il short: 53 participants
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Stimuli and Apparatus

Category learingThe stimulus dimensions and category structura® wientical

to those from Maddox et al. (2004). The categowraistimuli were Gabor patches
(sinewave gratings enclosed in a Gaussian envelbpé)varied across trials in spatial
frequency and orientation. For the rule-based amdrmation-integration category
structures, forty category A and forty category tBnsli were obtained by randomly
sampling from two bivariate normal distributions.hel rule-based task was
unidimensional, with spatial frequency being théewvant dimension and orientation
being the irrelevant dimension. The optimal rulesw@a “respond A if the frequency of
the Gabor is small (below 3.13 cycles per degrezgpond B if the frequency of the
Gabor is large (above 3.13 cycles per degree).hRlinensions were relevant in the
information-integration task and no simple verbalerdiscriminated between the two
categories. A schematic representation of the tategory structures is depicted in
Figure 2.2 (Chapter 2); the category distributi@mgoneters for both category structures

are listed in Table 3.1.

Category structure Mia  Moa Mie Mo Ot 0o COMo
Rule-based 29745 3.28 45 0.087 34 O
Information-integration 2.84 55 3.41 35 0.674 24 16

TABLE 3.1. CATEGORY DISTRIBUTION PARAMETERS FOR THE RULE-BASE AND
INFORMATION-INTEGRATION CATEGORY STRUCTURES USED IN EXPERIMENT 1. U =
mean;c = standard deviation; cov = covariance; f = spéteguency (cycles per degree);
0 = orientation (degrees); A = category A parangetBr= category B parameters.

Each Gabor stimulus was generated and presented datlab (MathWorks,
Natick, MA) running Psychophysics Toolbox (Brainal®97; Pelli, 1997). The stimuli
were 200 x 200 pixels, centered on a computer scra@vering about four degrees of
visual angle.

Visuo-spatial working memoryA visuo-spatial working memory task that was

analogous to the Sternberg working memory task uselladdox et al. (2004) was
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created (Figure 3.1.C). The participant was askedemember 4 locations out of 9
possible (analogous to remembering four numeriggitsd sampled from 9 possible

digits). First, nine locations were randomly plagedan imaginary 9 x 9 grid, with the

restriction that there is one location in each imagy row and one location in each
imaginary column. The nine locations were markeddlayk gray circles each with a
radius of 48 pixels and remained visible throughbetvisuo-spatial task trial. After 500
ms, four out of the nine locations were highlighteda white circle with radius of 40

pixels for 500 ms (memory set). The participantdegketo remember those four locations.
Next, all nine locations were highlighted for 10808 (delay period). Finally, only one

location (probe) was highlighted and the partictfgatask was to indicate whether that
location was one of the four initially highlightédcations. The probability of a probe

being one of the memory set was .5.

Procedure

The procedure was identical to that of Maddox |e{2004). There were three
conditions: control, long and short (Figure 3.1.&ach condition consisted of four
randomly ordered 80-trial blocks. The participamsre informed that there were two
equally likely categories and that their task isléarn which patterns go into which
category via corrective feedback. In the contraidition, a categorization stimulus was
presented on each trial and remained on the séoeefD00 ms or until the participant
categorized it in either category A or categoryfBhe participant did not respond during
the 1000 ms, the Gabor stimulus disappeared andtloalresponse prompt (“Categorize
the pattern as A or B”) remained on the screen. péaicipant had as much time as
needed to make a response. Corrective feedbackheagrovided for 500 ms followed
by a 2000 ms inter-trial interval (blank screen).

In the long feedback processing time conditiore ttategorization response
feedback was followed by a 2500 ms blank screealltw feedback processing, after
which a trial of visuo-spatial working memory tasks presented. The visuo-spatial task
response was followed by a 2000 ms blank screen-inal interval and no feedback was
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provided. The short feedback processing time candivas similar to the long feedback
processing time condition, however, the categdonatesponse feedback was followed
immediately by the visuo-spatial working memoryktaand the 2500 ms delay was
placed after the working memory task response.rAsaeh block of 80 trials, participants
were given a short self-paced break during whigy twere informed how many trials

had passed and were urged to keep their visuoaspadk accuracy high.

Results and Discussion

Working memory task performance

The mean percent correct in the working memori tass high, 96.0% for RB
long (sd = 7.0%); 94.1% for RB short (sd = 7.6%4;096 for Il long (sd = 7%); 93.2%
for 1l short (sd = 9.8%) groups. There were noatdhces between rule-based (mean =
95.0%, sd = 7.3%) and information-integration (mea®4.5%, sd = 8.6%) category
structure groups (t(207) = 0.413, p = .680), sugggshat the resources allocated to the
working memory task were distributed about equallgere was a difference between
participants in long (mean = 96.0%, sd = 7.0%) ahdrt (mean = 93.6%, sd = 8.7%)
feedback processing time conditions collapsed twetwo category structures (t(207) =
2.125, p = .035).

Category learning performance

Distribution of accuracy scorel Chapter 2, we identified substantial differemce

between the distributions of accuracy scores ie-balsed and information-integration
category learning. We found a bimodal distributadrscores in rule-based learning and a
normal distribution of scores in information-intagon learning. Thus, we began our
analysis of category learning performance by exargirthe distribution of accuracy
scores. The distribution of scores for the ruleeldagroups and information-integration
groups (collapsed over the three working memoryditamns) from the final block of
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trials are presented in Figure 3.2. As is appaftemh Figure 3.2, the score distribution
for the rule-based category structure participaetgates from normality (Kolmogorov-
Smirnov D(150) = .156, p = .001), while the scoistribution for the information-
integration category structure participants dodsdewiate from normality (KS D(143) =
.056, p = .510). The same pattern holds for eadchefvorking memory groups (control,
long and short) within each category structurehvilie rule-based groups appearing
bimodal and the information-integration groups aupey normal. These results suggest
that different processes underlie rule-based afwinmation-integration category learning

that lead to very different performance profiles.
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FIGURE 3.2. DISTRIBUTION OF THE FINAL BLOCK ACCURACY IN EXPERIMENT 1. Scores
of rule-based (RB) and information-integration @8tegory learning groups collapsed
over the three feedback processing conditions (chrghort and long).

To gain further insight into the nature of the bduabty in the rule-based score
distributions, we applied a series of models sepbr#o the control, long and short score
distributions. Each model assumes that the obseseede distribution results from a
mixture of two underlying distributions. A detailetescription of the models and the
results are presented in Supplemental Data. To suine) the score distribution for each
of the three rule-based category learning groups test fit by a mixture of two

underlying distributions, one with mean at .5 (at®rand one with a mean around .8. As
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suggested by this analysis, there were two typepaoficipants in each condition:
learners, who discovered the appropriate categmizaule, and chance performers, who
failed to discover the rule. The difference betwdenthree rule-based groups was in the
relative weight of the two distributions, i.e. theoportion of participants that fell under
the .5 modus (nonlearners) and under the .8 mo@asnérs). More specifically, the
effect of the secondary visuo-spatial working meyrtask was to decrease the proportion
of learners (participants who discovered the rulé eonstituted the .8 accuracy modus)
from 69.2% in the RB control group to 44.0% in &kB long and 48.8% in the RB short
group.
Proportion of learners.The distributional analyses suggest that the score

distributions in the rule-based conditions are cosega of a mixture of two populations
of participants (chance performers and learners),that the relative ratio of learners to
chance performers decreases when a sequentialngomkemory task is included. As a
further test, we compared the proportion of leanier each condition by defining
“learners” as participants who reached .65 corasxt higher in the last block of trials
and “nonlearners” as participants who failed tache#®5 correct in the last block of trials.
We choose .65 correct as it appears to be a natutalff in the score distributions (see
Figure 3.3, left panel) and constitutes an averag®veen the means of the chance
distribution (.5) and the high performance disttibua (.8) for the rule-based groups. The
results are depicted in Figure 3.3 (left panel).

In the RB control group, 32 out of 46 participariesarned. There were
significantly fewer learners in both the RB lon@ (@ut of 51,x(1)=5.897, p=.015) and
RB short conditions (26 out of 53(1)=4.26, p=.039), compared to the RB control
condition. In the Il control group, 30 out of 38rpeipants learned. The proportions of
learners in Il long (36 of 52) and Il short (36 ®8) conditions were not significantly
different from that observed in the Il control cdmah [long vs. control:x(1)=1.060,
p=.303; short vs. controy(1)=1.350, p=.245]. It is worth noting that thesegortions of
learner analyses for the information-integratioougps were included for completeness,
and to compare with the analyses for the rule-baseditions. This learning criterion is
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less meaningful for the information-integration daions as it cuts the distribution of

scores at an arbitrary value.
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FIGURE 3.3. RESULTS OF EXPERIMENT 1. Left panel: Proportion of learners in
Experiment 1. RB = rule-based groups, Il = inforim@integration groups. Right panel:
Mean accuracy (proportion correct) for each grompEkperiment 1. Unidimensional
rule-based (RB) groups are denoted with square slgmdnd solid lines, information-
integration (1) groups with diamond symbols andkan lines. Error bars denote
bootstrapped 68% confidence intervals (equivaleiat $tandard error of mean).

Mean proportion correct.Unlike proportion of learners, mean accuracy

(proportion of correct responses), is a more sldtgierformance measure for the
information-integration groups. For the rule-basgebups, mean accuracy is also
applicable, but reflects the relative proportiontwb populations of participants rather
than reflecting performance of a typical participaWe decided to use bootstrapping
procedures (Efron & Tibshirani, 1993) that are maepropriate than traditional
parametric statistics when the distribution shage non-normal or unknown.
Categorization accuracy for each group in eachkbtddrials is presented in Figure 3.3
(right panel).

We found a significant effect of the secondary sispatial task on rule-based
category learning but not on information-integraticategory learning. Average final
block performance in the RB long group droppedlifyrelative to the RB control group
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(bootstrapped p(control = long) = .002). Perforneaircthe RB short group dropped by
.084 relative to the RB control (p(control = shart)009)11

There were no significant differences among thedhinformation-integration
category learning groups in any block of trials iar overall accuracy. Average
performance in the final block from the Il contgrloup was only .015 higher than that
observed in the long group (bootstrapped p(contmaly) = .602), and was only .022
higher than that observed in the Il short grougdp(rol=short) = .415).

Brief summary

To summarize the results, we found an adversetedfébe visuo-spatial working
memory task on rule-based, but not informationgraéion category learning. The lack
of interference between the visuo-spatial workingmmory and the information-
integration category learning task is interestiag,both tasks use visual stimuli and are
thought to rely on basal ganglia (visuo-spatial kimy memory: e.g. Lawrence,
Sahakian, Hodges, & Rosser, 1996; Lawrence, WatBakakian, Hodges, & Robbins,
2000; discrimination and category learning: e.cck@ed & McGaugh, 1992; Poldrack,
2002). This result, together with that observedviaddox et al. (2004) with a verbal
working memory task, provides support for the agstion that learning of the
information-integration category structure is méselilaby a procedural system which
processes feedback automatically, without relyingttention or working memory.

The significant effect of visuo-spatial working meimy on rule-based category
learning replicates the effect observed in Maddbalewith a verbal working memory
task, and extends it to a visuo-spatial working roentask. The effect of the verbal
working memory task on rule-based learning foundMaddox et al. (2004) was
expected, because attention and (verbal) workinmong have been implicated in rule
generation, rule maintenance, rule selection atal switching (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Dougherty & Hunter, 2008)n the surface, none of these

11 The tested null hypothesis is meanl — mean2 3l Gobtstrapped p-values for the difference in nsean
reflects a conservative, two-tailed hypothesis iag be converted to one-tailed values when diviged.
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processes appears to require visuo-spatial workiegiory, yet visuo-spatial working
memory affected rule-based category learning.

As outlined in the introduction, visuo-spatial wioix memory task may affect
rule-based learning indirectly via cognitive resms shared with verbal working
memory or may have a direct effect through mechmasisther than those impacted by
the verbal working memory task. We will discusstisisue in more detail in the General
Discussion. Let us now turn to Experiment 2 thatmes the generalizability of the
working memory effects in rule-based learning arad/radd evidence in favor of one or
the other explanations of the visuo-spatial workimgmory effects observed in

Experiment 1.

EXPERIMENT 2A

In Experiment 2A, we tested the effects of a setjay presented visuo-spatial
or verbal working memory task on rule-based leaymren the optimal categorization
rule was to “respond A when the orientation of gtienulus is larger than 70 degrees
from horizontal, respond B when the orientationtlo¢ stimulus is smaller than 70
degrees from horizontal.” We compared a controlddmn with a short feedback
processing visuo-spatial working memory conditias {n Experiment 1), and with a
short feedback processing verbal working memonyditmm (as in Maddox et al, 2004).
We dropped the long feedback processing conditecabse its effects were modest in
Maddox et al. (2004).

Method

Participants and Design

Seventy-two students at The University of Texadhastin participated in the
experiment in partial fulfillment of a class reqnment or for pay. All participants were
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tested for 20/20 vision. Each participant compleded of 3 experimental conditions: (1)
control (no secondary task); (2) visual (each aatgdearning trial was immediately
followed by a visuo-spatial working memory taskalyj or (3) verbal (each category
learning trial was immediately followed by a Steznip verbal working memory trial).

There were 24 participants in each condition.

Stimuli and Apparatus

Category learning tasR he stimuli were Gabor patches that varied admas in

spatial frequency and orientation. A rule-basecegaty structure was used with the
optimal rule being “respond A if the orientation tbie Gabor is larger than 70 degrees,
respond B if the orientation of the Gabor is smalen 70 degrees.” The stimuli were
randomly sampled from two bivariate normal disttibns both with a mean spatial

frequency of 3.13 cycles per degree and a stardiarition of 0.95 cycles per degree.
Category A stimuli had a mean orientation of 7a8h a standard deviation of 3.1°.

Category B stimuli had a mean orientation of 64v&h a standard deviation of 3.1°.

Orientation and spatial frequency of the Gaborswarcorrelated. Forty category A and
forty category B stimuli were generated. A schemaéipresentation of the category
structure is depicted in Figure 3.4, left panele dpparatus was identical to that from

Experiment 1.
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FIGURE 3.4. CATEGORY STRUCTURES USED IN EXPERIMENT 2. Left: Experiment 2A
(Orientation 70); Right: Experiment 2B (Orientati®@). Open circles denote category A
stimuli, filled squares denote category B stimgid = cycles per degree

Working memory tasksThe visuo-spatial task was identical to that used

Experiment 1 (Figure 3.1.C). The verbal working noeyntask (Figure 3.1.B) was taken
from Maddox et al. (2004). On each trial, four t8g(memory set) were randomly
selected without replacement from the set of diffiisn 1 to 9. The memory set was
displayed for 500 ms in a horizontal array centeoed the screen and spanning
approximately 8 degrees of visual angle horizoptalhd 4 degrees of visual angle
vertically. A blank screen followed for 1000 msn&lly, a single digit (probe) was
presented in the center of the screen and thecipamit was asked to indicate whether the
probe was a part of the memory set. The probaliligy the probe was a member of the

memory set was .5.

Procedure

The procedure was similar to that used in Expeantrewith the exception that we
equated the duration of the inter-trial intervaloss conditions and added a fixation cross
to prepare participants for the next trial. Eachdition consisted of four blocks of eighty
randomly ordered trials. The participants were rimfed that there were two equally
likely categories and that their task was to leahich pattern goes into which category
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via corrective feedback. In the control conditieach trial started with a 500 ms fixation
cross (a plus sign) to prepare the participanttifier upcoming trial. A categorization
stimulus was then presented and remained on theerscior 1000 ms or until the
participant categorized it in either category Aaategory B. Corrective feedback was
provided for 500 ms followed by 2500 ms inter-tirgkerval (blank screen).

The two working memory (visual and verbal) corahi8 were similar to the
“short” condition from Experiment 1. Each trial alstarted with a 500 ms fixation cross,
followed by a categorization stimulus presented X000 ms or until the participant
responded. Corrective feedback was presented fdniEafter a response was made and
a working memory task trial immediately followede(bal, Figure 3.1.B or visuo-spatial,
Figure 3.1.C). After the participant responded, @ ms inter-trial interval (blank
screen) concluded the trial, and no working mentask feedback was provided. As in
Experiment 1, after each block of 80 trials, p@pants were given a short self-paced
break during which they were informed how manyldriaad passed and were urged to

keep their working memory task accuracy high.

Results

Working memory task performance

The mean percent correct was 95.5% in the visatisgdptask (sd = 4.5%) and
96.6% in the verbal task (sd = 3.4%). This diffeemwas not statistically significant
(t(46) = .940, p = .352).

Category learning performance

Distribution of scores and proportion of learnés.expected from Experiment 1,

the distribution of scores in the final block ofats violated normality (Kolmogorov
Smirnov D(72)=.221, p=.002), and instead was birh¢Bmure 3.5, left panel). Using
the same procedure applied in Experiment 1 (Supgéah Data), we found that the
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score distribution for each of the three conditiomas best fit by a mixture of two
underlying distributions, one with mean at .5 (adgrand one with mean around .9. The
effect of both secondary working memory tasks wgarain decrease of the proportion
of participants who discovered the rule (learnarg] constituted the .9 accuracy modus,
from 83.3% in the control group to 50.0% in thewalkand 50.0% in the verbal condition.
Compared to Experiment 1, both the mean performbaves for the learners and relative
proportion of learners in the observed score thistion was higher. Specifically, whereas
the mean performance level for learners in Expeminie was about .8, it was .9 in
Experiment 2A. Similarly, whereas the relative pdjn of learners was 69.6% in
Experiment 1 control condition, it was 83.3% in Exment 2A control condition. Taken
together, these data suggest that the rule on rieatation of the Gabor stimuli was

somewhat easier to learn.
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FIGURE 3.5. DISTRIBUTION OF THE FINAL BLOCK ACCURACY SCORESIN EXPERIMENT 2.
Orientation 70: Experiment 2A; Orientation 90: Expeent 2B. Scores collapsed over
the three working memory conditions (control, viswarbal).

We also analyzed the proportion of learners in egobup using the same
criterion as in Experiment 1 (at least .65 correctthe last block). The results are

depicted in Figure 3.6 (left panel). There werel@&rners (out of 24) in the control
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condition, which is significantly more than 12 lears (out of 24) in either the visual or

the verbal conditiony?(1) = 6.0, p=.014}2
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FIGURE 3.6. RESULTS OF EXPERIMENT 2A. Left panel: Proportion of learners. Right
panel: Mean accuracy in each block. Error bars webootstrapped 68% confidence
intervals (equivalent to a standard error of mean).

Mean proportion correctBlock accuracies in Experiment 2A are presented in

Figure3.6 (right panel). We found that both theugispatial and verbal working memory
tasks significantly disrupted category learning.e8fically, the average final block
performance dropped by .134 in the visual conditielative to the control condition
(bootstrapped p(control = visual) = .017), and 180. in the verbal condition relative to

the control conditiobootstrapped p(control=verbal) = .009).

To summarize, we found an adverse effect of botuosspatial and verbal
working memory tasks on rule-based category legrnhen the criterion was on an
(arbitrary) oblique orientation. As expected, thessults are similar to those found when

the criterion was on spatial frequency of a Gabuoggesting that these working memory

12 The learner criterion of .7, which is the avera§énhe .5 chance score distribution and .9 high
performing score distribution in Experiment 2A, gdvidentical results, as no subject had final block
accuracy between .65 and .70 (see Figure 6, leftlpa
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effects generalize. We now turn to Experiment 2& tests more fully the generality of

these effects.

EXPERIMENT 2B

In Experiment 2B, we used a category structure et formally identical to that
in Experiment 2A, except that the criterion wadteli from 70 degrees to 90 degrees, a
cardinal orientation (Figure 3.4, right panel). #ated in the Introduction to Experiment
2, we suspect that this slight manipulation mayehavsubstantial effect on rule-based
category learning under both the control conditeodd when a sequentially presented
working memory task is included. The two main aiofs Experiment 2B were to
investigate whether cardinal orientations are cptuadly special and whether we find

evidence for dissociability of the visuo-spatiatiarerbal working memory effects.

Method

Participants and Design

Seventy-two students at The University of Texadhastin participated in the
experiment in partial fulfillment of a class reqenment or for pay. All participants were
tested for 20/20 vision. Each participant compleded of 3 experimental conditions: (1)
control, (2) visual, or (3) verbal. There were Zttjripants assigned into each condition.

No student participated in both Experiment 2A angdfiment 2B.

Stimuli, Apparatus and Procedure

Category learning taskThe stimuli, apparatus and category structureewer

identical to that from Experiment 2A except that thptimal categorization rule was to
“respond A if the orientation of the Gabor is larghan 90 degrees (is left-tilted),

respond B if the orientation of the Gabor is smiahan 90 degrees (is right-tilted).” The
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stimuli were randomly sampled from two bivariatemal distributions that both had a
mean spatial frequency of 6.25 cycles per degrée avstandard deviation of 2.14 cycles
per degree. Category A stimuli had a mean orieamati 95.8° with a standard deviation
of 3.1°. Category B stimuli had a mean orientatdi84.2° with a standard deviation of
3.1°. The orientation and spatial frequency of Gabors were uncorrelated. Forty
category A and forty category B stimuli were getedla A schematic representation of
the category structure is depicted in Figure 5hfriganel). The secondary working
memory tasks and experimental procedure were icldrid those from Experiment 2A.

Results

Working memory task performance

The mean percent correct was 95.8% in the visatisdpgask (sd = 3.2%) and was
96.6% for the verbal task (sd = 2.9%). This diffexe was not statistically significant
(t(46) = .898, p = .374). These accuracies are \@nyilar to those obtained in
Experiment 2A.

Category learning performance

Distribution of scores, proportion of learners andan proportion correcthe

distribution of scores in the final block of triadleviated from normality (Kolmogorov-

Smirnov D(72)=.373, p<.001), but unlike in Expermee 1 and 2A, it did not appear
bimodal (Figure 3.5, right panel). Rather, the vastjority of participants learned the
correct categorization rule and performed at a &gk of accuracy (above .90 correct).
In addition, there were no differences among grangke proportion of learners (Figure
3.7, left panel). Only 2 participants in the cohttondition, 3 participants in the visual
condition and 4 participants in the verbal conditibd not reach .65 proportion correct in
the last block of trials. Block accuracies in Expwnt 2B are presented in Figure 3.7
(right panel). As is apparent from the figure, thewere small and nonsignificant
differences among the groups during the final blook trials (bootstrapped
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p(control=visual)=.270, p(control=verbal)=.232) gperformance was high. There were
performance differences in the initial block ofts. In the first block, performance in the
visual condition dropped by .148 compared to thentrmd condition

(p(control=visual)=.004) and performance in the batrcondition dropped by .108

compared to the control condition (p(control=vejb#)08).
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FIGURE 3.7. RESULTS OF EXPERIMENT 2B. Left panel: Proportion of learners. Right
panel: Mean accuracy in each block. Error bars webootstrapped 68% confidence
intervals (equivalent to a standard error of mean).

A comparison of the control conditions from Expegimh 2A and Experiment 2B
suggests that cardinal orientations are specidl petceptuallyand conceptually. The
higher asymptotic accuracy for learners in Expentr2B compared to Experiment 2A
(e.g. compare left and right panels in Figure J&pports the notion that cardinal
orientations are perceptually special. A comparisbrearly control performance in
Experiment 2A and Experiment 2B (e.g. compare Blbdk Figure 3.6, right panel with
Block 1 in Figure 3.7, right panel) supports theiom that cardinal orientations are also
conceptually special and constitute a highly saleategorization rule. High accuracy in
the control condition starting at Block 1 suggestat a majority of the participants
selected the correct categorization rule very eanly

In Experiments 1 and 2A, the secondary working memiask led primarily to a

decrease of the proportion of learners comparedeaontrol condition. This pattern did
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not replicate in Experiment 2B because the proportof learners was high and
approximately equal in all conditions by the endt@ining. Because there were no
differences in the proportion of learners among twonditions and almost every
participant learned the rule, we turned to an aiteve measure of performance that may
be more sensitive to detect an effect of a secgndak, if there was any. We turned to a
measure often used in categorization research Auhwer of trials needed to reach an
accuracy criteriontfials to criterion). As the vast majority of participants in Experimhe
2B succeeded in learning the task, using trialsriterion is suitable to characterize the
speed of learning in all conditions. The trials ddterion measure is not suitable in
Experiment 1 and Experiment 2A, as half or morghef participants in the visual and
verbal working memory conditiontions failed to rbaamy reasonable learning criterion,
whereas the majority of the participants in thetaarconditions did.

Trials to criterion As one trials-to-criterion measure, we recorded d¢ach

participant the trial on which the accuracy ovex st 80 trials first reached or exceeded
.65 correct (the learning criterion used in thevymes experiments). This analysis is
presented in Figure 3.8 (C6580; i.e. criterion @6 correct over previous 80 trials).
Participants in the visuo-spatial working memonryndition needed significantly more
trials to reach the criterion (bootstrapped p(acaatrisual)=.013) than participants in the
control condition, whereas there was no differeimcthe trials-to-criterion between the
verbal working memory group and the control groupboogstrapped
p(control=verbal)=.859). Because a large proportadnparticipants reached the .65
correct criterion right at the trial number 80 (idésscovered the rule during the first 80
trials of the experiment), we examined a numberothfer performance criteria and
smaller window sizes to ensure that the resultsewebust. We typically found a large
and significant effect of the visuo-spatial workingemory task and a small and non-
significant effect of the verbal working memorykaslative to the control condition. For
example, for the criterion of .75 correct over thst 40 trials (Figure 3.8, C7540), we
found that the visuo-spatial working memory growgeded on average 48 more trials
than the control group to reach the criterion (btrapped p(control=visual) = .002),
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while the verbal working memory group needed orraye only 12 more trials than the

control group (bootstrapped p(control=verbal) =712
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FIGURE 3.8. TRIALSTO CRITERION IN EXPERIMENT 2B. Mean number of trials to reach

the criterion of .65 correct over last 80 trials6880; left half) and the criterion of .75

correct over last 40 trials (C7540; right half)rdrbars denote 68% confidence interval
(equivalent to a standard error of mean).

Brief summary

To summarize, we examined visuo-spatial and vesloaking memory effects in
rule-based category learning when the criterionbto learned was on a cardinal
orientation. The results differed from those oledirfor a formally identical task that
used an oblique orientation as the criterion. Wenébthat the task was much easier to
learn and that neither the visuo-spatial nor thebale working memory task had
significant effect on the proportion of learnersfioal (asymptotic) accuracy. We found
adverse effects of both the visuo-spatial and #mbal working memory tasks on mean

accuracy during the early stages of learning butoued a significant effect of the visuo-

13 For an interested reader: The general patterasefits remains similar even if we exclude outl{gsthe
effect is not driven by extreme values) or inclmga-learners by assigning them 320 trials to dater
(maximum possible).
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spatial, but not the verbal working memory taskitoe speed of learning as measured by
the mean number of trials to reach an accuracgruit.

How do these results address the hypotheses aliliméhe introduction? First,
the control data support the hypothesis that catdorientations are special both
perceptually (leading to higher asymptotic accurdgy learners) and conceptually
(leading to high proportion of learners, even edrlythe experiment). Second, the
difference between the visuo-spatial and verbalkiwgr memory effects suggests that
they may affect different processes associated witk-based learning. The minimal
effect of the verbal working memory task fits withe hypothesis that cardinal
orientations are conceptually special, as suppdijethe control data. The high salience
of the cardinal orientation rule leads participatdsselect the rule early in learning,
bypassing much of the working memory demanding thg®s testing process. The
effect of the visuo-spatial working memory task Magier and significantly affected the
speed of learning. These results are not likebhéf visuo-spatial working memory task
was primarily affecting domain non-specific res@asqcentral executive), because the
results would be similar to those from the verlaidition. In addition, these results are
not likely if visuo-spatial working memory is onlynvolved in learning and
representation of the optimal categorization doterBecause cardinal orientation seems
conceptually special (from the control and the aedondition data), cardinal orientation
criterion does not need to be learned in the sameag an oblique orientation and thus
should require minimal visuo-spatial working memoggources. Rather, the results seem
in accordance with the hypothesis that the viswdigpworking memory task disrupts
the analytic perception of stimuli and leads thetip@ant to take longer to notice the
variation of the stimuli around the cardinal oregidn. However, as the first attempt to
address the visuo-spatial working memory role itegary learning, this notion needs to

be taken as a working hypothesis only. We elabaratthis possibility below.
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GENERAL DisCUSSION

Many categorization theories assume that an etflprtfvorking memory
demanding process of hypothesis testing is involvedt least some types of category
learning (e.g. Ashby, Alfonso-Reese, Turken, & Waid 1998; Bruner, Goodnow, &
Austin, 1956; Erickson & Kruschke, 1998; Feldmam0@, Nosofsky, Palmeri, &
McKinley, 1994). Previous research (Maddox, Ashimg, & Pickering, 2004) and our
Experiment 1 showed that a sequentially presenetbal or visuo-spatial working
memory task disrupt rule-based learning, confirmihg existence of the effortful
hypothesis testing based category learning. ImptiytaMaddox et al. (2004) and
Experiment 1 also demonstrated that effortful, iggkmemory demanding hypothesis
testing is not the only existing process of catggl@arning, because information-
integration category learning was not affected |laby a secondary verbal (Maddox,
Ashby, Ing, & Pickering, 2004) or visuo-spatialkgpresent Experiment 1). The lack of
the visuo-spatial working memory task effect onomifation-integration category
learning is nontrivial, as both tasks use visuahusli and are thought to rely on basal
ganglia (Filoteo, Maddox, Salmon, & Song, 2005; kemce, Sahakian, Hodges, &
Rosser, 1996; Lawrence, Watkins, Sahakian, Hod§e&obbins, 2000; Maddox &
Filoteo, 2001; Packard & McGaugh, 1992; PoldraddQ2 Postle, Jonides, Smith, &
Corkin, 1997). Based for example on the COVIS theafr category learning (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998), we speeuldnat visuo-spatial working
memory and information-integration learning mayyreh different subregions of the
caudate: visuo-spatial working memory on the hefthe caudate nucleus (R. Levy,
Friedman, Davachi, & Goldman-Rakic, 1997) whileomhation-integration category
learning on the posterior caudate nucleus (Nomueh ,2007; Seger & Cincotta, 2005).
The data from Experiment 1 indeed indicate thatetih® no interference between the two
(at least with respect to the current tasks). Tdkgeather, these results support the notion
that both visuo-spatial and verbal working memasgks impact the processes involved

in the hypothesis testing system that mediatesbased category learning, but neither
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visuo-spatial nor verbal working memory is crud@a procedural system that mediates
information-integration category learning.

Experiment 2 tested the generality of working memeffects in rule-based
learning by investigating the effects of a visuatsgd and a verbal working memory task
on rule-based category learning when the criteri@s on an oblique orientation (70
degrees) or on the cardinal orientation (90 degreks Gabor stimulus, instead of on
spatial frequency. Experiment 2 demonstrated thwt all rule-based categories are
treated equally. When the criterion was on an olgligrientation, the results replicated
those from Maddox et al. and Experiment 1 for whtble criterion was on spatial
frequency. When the criterion was on a cardinag¢rddtion, we found faster learning
with a higher asymptotic accuracy in the controhdibon. This result confirmed that
cardinal orientations are perceptually special fas been previously established, see
e.g.Campbell & Kulikowski, 1966; Furmanski & Eng@000). Furthermore, this result
suggested that cardinal orientations are also @inaky special, meaning that cardinal
orientations constitute salient, spontaneously usd#dgorization boundaries that create
intuitive concepts (e.g. right-tilted vs. left-al in the present study). Additionally, when
the criterion was on a cardinal orientation, wenisignificantly slower learning when
the visuo-spatial task was present, but minimallywer learning when the verbal
working memory task was present. These resultsesigfat visuo-spatial and verbal
working memory effects on rule-based learning maydbe to dissociable mechanisms.

In the remainder of the General Discussion, we @ifltuss these issues in more detail.

Category Structure Effectson the Distribution of Accuracy Scor es

One important result observed in the present studwas the existence of
gualitatively different distributions of accuracycoses for the rule-based and the
information-integration category structures (seg €igure 3.2). Whereas the accuracy
scores in the information-integration conditionsreveormally distributed, a bimodal
distribution was observed in the rule-based coow#j with one modus at chance and a
second modus at a high level of accuracy. Thisepatheld regardless of whether a
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secondary working memory demanding task was preseiabsent, and replicates the
pattern observed in Chapter 2 that used a dualgiasiedure.

These findings provide evidence that rule-based emidrmation-integration
category learning is mediated by separate syst¥esargue that rule-based category
learning is mediated by a hypothesis-testing systdrase processing is effortful and
attention demanding. Hypothesis-testing systenthisfsort are known to have an all-or-
none characteristic to their learning that has bgtewied since the 1960s (Bower &
Trabasso, 1963; Trabasso & Bower, 1964). The bititgdabserved in our rule-based
score distributions is consistent with this hypsitee We also argue that information-
integration category learning is not mediated bypothesis-testing system, and instead
is mediated by a procedural-based system whoseegsing is automatic and does not
require attention. The fact that the informatiotegration score distributions were
normally distributed and were not affected by aoséary working memory task follows

from this hypothesis.

Working Memory Task Effects on Rule-based Accuracy Score Distributions

As outlined earlier, the results from Experimenalbng with those from Maddox
et al (2004) suggest that a sequential verbalsarosspatial working memory task has no
effect on the distribution of information-integi@ti scores, but has a large effect on the
distribution of rule-based scores. The same effactrule-based learning holds in
Experiment 2A that focused on a rule with an ol#iqurientation criterion. In this
section, we elaborate on the nature of the workiegnory effect on rule-based learning,
leaving a discussion of the “cardinal orientatioeSults from Experiment 2B for later.

As outlined in the previous section, the distribot of accuracy scores in the
rule-based conditions were bimodal, with one maatushance (nonlearners, .50 correct)
and a second modus at a high level of accuracyn@es, .80 correct in Experiment 1 and
.90 correct in Experiment 2A). One of the most resting findings from the present
study was the fact that the accuracy achieved agnées remained constant across the
control and working memory conditions. Rather, d¢fiect of the working memory task
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was to increase the proportion of participants Viglb under the chance (nonlearner)
modus relative to the proportion of participantsomell under the higher accuracy
(learner) modus. Thus, both the visuo-spatial aerdbal working memory tasks seemed
to disrupt primarily the process of rule discovéegding fewer participants to discover
the correct rule. However, once the correct ruls digcovered, participants were just as
accurate in applying the rule as learners in thatrob condition. This finding is
important, especially given the general focus aarimg curves in category learning
research. The typical interpretation of a perforogadeficit is to assumeshallowingof
the learning curve and thus a general effecteerageperformance. What the current
data suggest is that the effect is not generalréimer increases the probability that a

participant will fail to discover the correct rule.

I nteraction between the hypothesistesting and procedural system under secondary
task

One reasonable prediction from the COVIS model MshAlfonso-Reese,
Turken, & Waldron, 1998), and perhaps also implexpectation in other multiple
system models of learning, is that the procedwsiesn would take over and dominate
rule-based category learning when the hypothessnge system is disrupted by a
working memory task. COVIS assumes that both cajedearning systems (the
hypothesis testing system and the procedural sysa@m to learn every categorization
task and that the two systems compete to genenategesponse on each trial. If the
procedural system is unaffected by the preseneevadrking memory task then it should
dominate the hypothesis testing system. This didseem to be the case in the current
studies because we found no compensation in treebaged task by the procedural
system — the accuracy scores remained low and ne¢neormally distributed — when the
working memory task was present. In Chapter 2 f&eitova & Maddox, 2006), we
similarly found that participants learning a moremplex conjunctive rule-based

categorization task under the dual Stroop taskrference tended to use (rule-based)
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unidimensional strategies or guessing rather tlanverting to information-integration
strategies.

There are at least two possible explanations ferfiiding. First, the current rule-
based category structures may be unfavorable &nileg in the procedural system; for
instance, because of their relatively high intreegary variability and low inter-category
variability. Second, the procedural system maydzeriing the task, but the participant
may be highly biased towards the (unsuccessful)otingsis testing system by the
secondary working memory task. COVIS assumes Heaaetis an initial bias toward the
hypothesis-testing system. Participants may nelvandon this bias under the secondary
working memory task conditions, perhaps because hlscause processing of the
feedback regarding each system’s performance ispaomised. Given the lack of
research that directly examines system level intemas these hypotheses should be

considered speculative at this time.

Dissociating Visuo-spatial and Verbal Working Memory Effects on Rule-Based
Category Learning

Visuo-spatial and verbal working memory are behalip and neurally
dissociable (e.g. Baddeley, 1995; Goldman-Raki®@81%hah & Miyake, 1996). It is
thus reasonable to consider the possibility thtdtoalgh both visuo-spatial and verbal
working memory tasks adversely affect rule-basadnieg, the locus of their effect may
differ. The effect of the verbal working memory kasn rule-based category learning
reported in Maddox et al. (2004) and replicatedExperiment 2A would be expected by
any hypothesis testing model. The effect of thaisdspatial working memory task on
rule-based category learning observed in the ptesermies is less straightforward,
because no existing category learning theory addsethe possible role of visuo-spatial
working memory. We speculated that the observedovepatial task effect in rule-based
category learning may act indirectly via some kiofd general attention or control
mechanism common to both visuo-spatial and verbalkiwng memory (e.g. central

executive in Baddeley & Logie, 1999) or may be ragsti by a different, independent
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mechanism. Two pieces of evidence argue againshatien of an indirect effect via
commonly shared resources and instead supportat@nrof two different mechanisms
for visuo-spatial and verbal working memory taskeets. We will now discuss the two

pieces of evidence in more detail.

Comparison of Maddox et al. (2004) and Experiment 1

Although qualitatively similar, the verbal workimgemory task effect reported in
Maddox et al. (2004) seem to differ in magnitudefrthe visuo-spatial working memory
task effect found in Experiment 1. To compare tloekimg memory effects on rule-based
learning across the two experiments, we computtattesizes (Cohen, 1988)for the
final block performance drop in each experimentaidition compared to the associated
control condition (Figure 3.9, left panel). Thesealgses should be interpreted with
caution bearing in mind that Cohen’s effect sizeasuee is derived from means and the
means in these experiments represent a relativeiraigf two populations of participants
rather than an average participant. Neverthelbgsetanalyses are suggestive and seem
to shed some light on the nature of the working wmneffects. As is apparent from
Figure 3.9, left panel, the verbal working memonsk had a large effect when
immediately following categorization feedback, lbaty a small effect when participants
were first allowed to process the categorizatiedback for 2500 ms. The visuo-spatial
working memory task had an intermediate effect whemmediately following
categorization feedback, but continued to disrigstggmance even when the participant
was first allowed to process the categorizationlbaek for 2500 ms. Although by itself
this finding is inconclusive, it favors the notidinat verbal and visuo-spatial working

memory tasks have at least partially dissocialfleces on rule-based category learning.

14 Effect size measures the magnitude of an effetspandent of sample size (number of participanss in
study). A frequently used measure of effect siZz8aken’s D that is computed as the difference iamse
divided by the pooled standard deviation (d primde)a rule of thumb, D above .2 is considered dlsma
effect, D above .5 is considered a medium effedt@mbove .8 is considered a large effect (Coh@a8}L

90



1.2 16
Elong —m— contral
1.0 4| &short 1.4 1 —o—visual
—— verbal

1.2 1
0.8 +
1.0 A

0.6 - 0.8

Cohen's D

04 - 0.6 1

04 4
0.2 4

0.2
0.0 T

0.0 T T T

visual verbal
Secondary task 1 2 Block 3 4

Cohen's D

FIGURE 3.9. EFFECT SIZE COMPARISON OF THE SECONDARY VISUO-SPATIAL AND
VERBAL WORKING MEMORY TASK. Left panel: Effect size (rule-based category leayn
performance decrement in Cohen’s d) of a secondayo-spatial or verbal working
memory task following categorization task feedbafter 2500 ms delay (“long:” black
bars) or immediately (“short:” gray bars). Data ¥suo-spatial working memory effects
are from Experiment 1, data for verbal working meyneffects were computed from
Maddox et al. (2004). Right panel: Effect size aivimg criterion from 70 to 90 degrees.
Data were obtained by comparing Experiment 2A axgeEment 2B.

The effect of the cardinality of a categorizatiomit@rion

One goal of this Chapter was to investigate thecefdf cardinality of a criterion
on rule-based category learning. We asked whetreliral orientations are conceptually
special and whether working memory effects obsewiglal a general (arbitrary) criterion
rule-based learning replicate for a cardinal daoter The pattern of results for the cardinal
criterion exhibited several differences from thakserved when the criterion was on an
oblique orientation or on spatial frequency. Fiistthe control condition, performance
reached asymptote much earlier and at a higheroprop correct for learners than for
the formally identical structure using criterion oblique orientation. The results suggest
that a criterion on cardinal orientation is ead@idearn than a criterion on an oblique
orientation not only perceptually, but also conaafly; it seems that cardinal orientation

plays a role in cognition as an intuitive, salieategorization rule. Second, the speed of
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learning was adversely affected only by the vispatial working memory task, with

minimal effect of the verbal working memory taskig finding implies that the salience
of the cardinal criterion may be occluded by a sdeoy visuo-spatial working memory
task, perhaps because it disrupts memory tracpsesfously seen stimuli. In Figure 3.9
(right panel), we accentuate this by examiningdfiect of the cardinality of a criterion

throughout the learning process. For each block eawh condition, we computed the
effect size (Cohen’s D) of changing the categowzatriterion from 70 to 90 degrees
(i.e. the difference between scores in Experiménad Experiment 2B). The advantage
for the cardinal orientation was large, mainly gan the experiment and of about the
same magnitude for the control and the verbal d¢mmdi On the other hand, the
advantage for the cardinal orientation was much llsmdor the visual condition,

especially early in the learning, consistent wilie ttrials-to-criterion analysis. This
finding further contributes to the notion that \asspatial and verbal working memory
effects in rule-based category learning may be tdudifferent mechanisms. Next we
discuss the possible role of verbal and visuo-apatdrking memory in category learning

separately.

The role of verbal working memory in category leang

Previous literature implied verbal working memory hypothesis generation,
selection and testing (Ashby, Alfonso-Reese, TurkerwWaldron, 1998; Dougherty &
Hunter, 2003). The presented results are all ctargisvith this notion. An effect of
verbal working memory task was observed when ppaits were presented with two
generally equally salient dimensions and set ¢#égans along those dimensions, but not
when a highly salient rule was offered in Experim2B. The minimal effect of the
verbal working memory task in cardinal orientatiute learning suggests that cardinal
orientations are special not only perceptually, &lsb conceptually (i.e. they serve as
highly salient categorization rules). Specificallihe values along the orientation
dimension seems to naturally fall into two dististasses (right tilted stimuli, left tilted
stimuli) when orientation varies around a cardidalection. Thus, verbal working
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memory may not be needed when selecting and appbyihighly salient rule, because

much of the effortful hypothesis testing processkipped.

The role of visuo-spatial working memory in categdearning

What may be the possible role of visuo-spatial waykmemory in rule-based
category learning? One notion outlined in the idirction was that visuo-spatial working
memory may be needed to represent the opticagédgorization criterion while the
verbal working memory may be needed to represemtdtegorizationrule. In other
words, visuo-spatial working memory may be impadrtanrepresenting the criterion of
70 degrees (in Experiment 2A) or 90 degrees (ineirpent 2B), but may not be needed
to represent the rule: “respond A if the orientatis greater than the criterion and
respond B if the orientation is less than the dgot€. The proportion of learners is a
measure of the proportion of participants that @liec the correctule. The specific
accuracy of these learners depends on how well leayy and remember the optimal
criterion, i.e. find a particular value of the orientatidvat best discriminates between the
high orientation and the low orientations. If visspatial working memory is needed only
to hold the optimal categorization criterion, batnot crucial in the process of rule
discovery, we would expect the proportion of leasne Experiment 1 and Experiment
2A to be about the same in the visual conditioma$e control condition, but for their
accuracy to be lower, due to noisier categorizatioterion representation. Contrary to
this hypothesis, we observed a lower proportiorieafners, but their accuracy to be
about the same as in the control condition. In Exrpent 2B, we would expect minimal
effect of the visuo-spatial working memory taskcdngse representing a criterion on
cardinal orientation — a highly learned natural maary — should require minimal
working memory resources. Contrary to this predictwe found an adverse effect of the
visuo-spatial task on the speed of learning.

Another notion was that visuo-spatial working meynaonay be needed for
analytic evaluation of a stimulus and its individdanensions. The present results are
quite consistent with this notion. If the visuo-spaworking memory task disrupts
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analytical perception of the stimuli, it may makdifficult to identify the dimensional
structure of the stimulus and thus to generate ilplessules in Experiment 1 and
Experiment 2A. Disrupting analytic processing ot tetimuli may also disrupt the
perception of variation around a cardinal orieotatiperhaps by disrupting the visual
memory representation of previous stimuli, and ttelaying the time when the rule on
cardinal orientation may be selected. On the otterd, the secondary visuo-spatial
working memory task had no effect on informatiotegration category learning in
Experiment 1 because information-integration catgdearning requires holistic rather
than analytic perception of a stimulus. Althouginsistent with the presented results, the
proposed role of visuo-spatial working memory iralgtic evaluation of categorization

stimuli remains speculative until further reseaadidresses this issue.

Summary

The results presented in this Chapter extend odenstanding of the role of
working memory in category learning by examining #ffects of sequentially presented
visuo-spatial and verbal working memory tasks de-hased and information-integration
category learning. In line with the results from ddax et al. (2004) that used a verbal
working memory task, we found no effect of a vispatial working memory task on
information-integration category learning, but gnsficant effect on rule-based category
learning when the categorization criterion was patial frequency of a Gabor stimulus.
We also replicated the effect of both visuo-spadiadl verbal working memory tasks on
rule-based learning with a categorization critermman oblique orientation of a Gabor
stimulus. These results add to the evidence foexigence of multiple category learning
mechanisms. When examining the effect of the seamyridsks on rule-based learning in
more detail, we interestingly found that the pregenf both visuo-spatial and verbal
working memory tasks affected primarily the propmrtof participants who discovered
the rule by the end of training; the accuracy afsthlearners remained the same across
conditions. A different pattern of working memorffeets was observed when the rule-
based categorization criterion was on a cardinahtation. We found a minimal effect of
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the verbal working memory task, but a large eftddhe visuo-spatial working memory
task on the speed of learning. These results sutfysthe cardinal orientation serves as
a highly salient, natural categorization boundand g&hat visuo-spatial and verbal
working memory effects on rule-based category legrare at least partially dissociable.
A plausible role for visuo-spatial working memomgnsistent with the presented results is

analytic evaluation of individual stimulus dimensso
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SUPPLEMENTAL DATA. DESCRIPTION OF THE MODEL FITTING PROCEDURE APPLIED
TO THE SCORE DISTRIBUTIONS FROM EXPERIMENTS 1 AND 2A

A visual inspection of the accuracy score distitmng from the Experiment 1 and
2A rule-based groups suggested that these distitsutire bimodal (see Figure 3.2, left
panel and Figure 3.5, left panel). In this sectiwa,describe a method for characterizing
the nature of these bimodal distributions and fifecethat the verbal and visuo-spatial
working memory tasks had on these distributions.

We fit a series of five models of various degreegemerality to the distribution
of accuracy scores from the final block of triadeparately for each condition. After best
fitting parameters for each model were estimatedgusiaximum likelihood method, we
used the BIC measure (Schwarz, 1978) to comparetitels and to determine the best

fitting model.

Model description

Model I Model 1 is the most general model. This modeluaes that the score
distribution is bimodal, with each modus being bdsscribed by a normal distribution.
This model has five free parameters: the mean tamtlard deviation of the first normal
distribution, the mean and standard deviation efgbcond distribution, and the relative
weight of the second distribution (with the relatiweight of the first distribution being
1-relative weight of the second distribution). Tiedative weight of each distribution
represents the proportion of participants whoseuraoy scores contributed to that
distribution (modus).

Model 2 Model 2 is a special case of Model 1 for whickh thean of one distribution is
fixed at chance (.5). This model instantiates tyygothesis that one group of participants
did not discover the correct rule and that theiamaccuracy is at chance level of .5. This

model has four free parameters.
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Model 3 Model 3 is a special case of Model 2 for whicle thance distribution is
assumed to be binomial (rather than normally digted), with the probability of success
being .5 on each of the 80 trials that constitutesl final block. Because the standard
deviation of a binomial distribution is derived fnothe mean and the number of trials,
there are no free parameters associated with th@nte distribution” leaving the three
free parameters associated with the second distibto be estimated.

Model 4 Model 4 is a special case of Model 3 for whick tion-chance distribution is
also assumed to be binomial. This model has twe figameters: the mean and relative
weight of the second distribution.

Model 5 Model 5 was included as an additional check efKlmlmogorov-Smirnov test
of normality. This model assumes that the distidng of scores are best characterized
by one normal distribution. This model has two fpegameters: the mean and standard

deviation of the normal distribution. This modebywided poor fits in all cases.

Results

Best fitting models in Experiment 1.

RB control — Model 3:
Distribution 1: binomial (mean = .5, relative weigh.318)
Distribution 2: normal (mean = .814, sd = .065atiek weight=.692)

RB long — Model 4:
Distribution 1: binomial (mean = .5, relative weigh.560)

Distribution 2: binomial (mean = .788, relative glei = .440)

RB short — Model 4:

Distribution 1: binomial (mean = .5, relative weigh.512)
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Distribution 2: binomial (mean = .786, relative glei = .488)

Best fitting models in Experiment 2A.

Control — Model 3:
Distribution 1: binomial (mean = .5, relative weigh.167)

Distribution 2: normal (mean = .897, sd = .046atiek weight=.833)

Visual — Model 3:
Distribution 1: binomial (mean = .5, relative weigh.500)

Distribution 2: normal (mean = .907, sd = .058atiek weight=.500)
Verbal — Model 2:

Distribution 1: normal (mean = .5, sd = .032, reltveight = .500)
Distribution 2: normal (mean = .879, sd = .058atiek weight=.500)
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Chapter 4: Prototypelearning isnot a uniform process

In the previous two chapters, we focused on onelyashcategory learning tasks,
demonstrating dissociation between the rule-baaskl &nd the information-integration
task. We concluded that the rule-based task is@tgy by frontally mediated reasoning
system while the information-integration task ispported by striatum mediated
procedural learning system. We will now transitiomo a domain of another type of
categorization task — the prototype learning taskat has been traditionally regarded as
a third type of task, relying on yet different, peptual learning system. Chapter 4 will
review the basic concepts from the prototype liteand propose dissociation within a
realm of prototype learning.

Recall that prototype is a collection of charastirifeatures of a category, or the
ideal exemplar of the category. Prototypes are ghbuto provide the abstract
representation for many natural categories andegsgRosch, 1973, 1975b; Rosch &
Mervis, 1975). Prototype theory assumes that thdraletendency (or prototype) of a
category is abstracted during encounters with cayegxemplars. Category members are
centered around prototypes based on family resemblprinciple (Wittgenstein, 1953),
meaning that most of them share a number of clarstit features (like members of a
family), but none of the features is necessary wficgent for category membership.
While category membership in formal concepts isoalhone, based on presence or
absence of defining features, category membershiaiural concepts have been shown
to be graded, based on the comparison of an irestéamcthe category prototype
(McCloskey & Glucksberg, 1978; Rosch, 1973, 1979lhe closer an instance matches
the category prototype, the faster and more raiablcan be verified as a category
member. For example, people are faster to verdy ‘tRobin is a bird” than “Penguin is a
bird” (Rosch & Mervis, 1975) and agree more reljabith others and with themselves
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over time that “apple is a fruit” than “pumpkin &sfruit” (McCloskey & Glucksberg,
1978).

Prototype effects have been repeatedly demonsti@tedvel concept learning as
well. In their seminal work, Posner and Keele (19681970) used dot patterns as
prototypes and their distortions as category exarsplA number of studies followed
them and showed that participants were able tcsifyasnseen prototypes with higher
accuracy than other category exemplars, and thtotgpes were less susceptible to
forgetting after a one week delay than the actaahing patterns (Homa & Little, 1985;
Posner & Keele, 1970; W. Strange, Keeney, Kesselegkins, 1970). Reed (1972) was
one of the pioneers who explicitly compared mode& assume prototype abstraction
with a number of other models proposed for clasaiion learning and found that the
prototype model outperforms other models when sibjare presented with the category
exemplars sequentially, limiting thus individualeexplars availability during retrieval.
Reed suggested that prototype representation @gsmicognitive economy when
memory limitations come to play.

Alternative accounts of prototype effects have bpeyposed as well. The most
prominent is exemplar theory (Medin & Schaffer, 89 MNosofsky, 1986, 1988;
Nosofsky, Clark, & Shin, 1989; Nosofsky, Kruschk&, McKinley, 1992; Zaki &
Nosofsky, 2004). Exemplar theory assumes that e pglocess of category learning,
people represent and store each encountered categ@mplar. In other words,
categories are represented by all their exemplatser than a single prototype. The
prototype — the central tendency of the categormot only does not serve as a
representation of the category, it is actually mewabstracted. In the process of
categorization, a novel stimulus is compared torédteeved exemplars from all relevant
categories and assigned to a category based @utheed similarity of that stimulus to
the category exemplars. The reason why prototypescategorized faster and more
accurately than non-central exemplars is becausg #ine more similar to the stored
exemplars of a category. Although exemplar theargsdnot address the question of the
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neural substrate supporting the exemplar represemtdhe medial temporal lobe would
be the likely candidate to support exemplar menabion.

Prototype and exemplar models do not stand shagimnst each other. Both
prototype and exemplar models can account welbfarde range of empirical data. In
general, exemplar models provide better fits whraming involves smaller number of
stimuli, small number of stimulus dimension, anckginent exemplar repetitions;
prototype models provide better fits when trainimgplves larger number of stimuli, that
vary along several dimensions and are presenteequéntly (Minda & Smith, 2001; J.
D. Smith & Minda, 1998). Newer “clustering” modedsopose that category knowledge
is represented at an intermediate level of absbractvith exemplar clusters being more
abstract than individual exemplars, but less gértlbaam a single central prototype (Love,
Medin, & Gureckis, 2004; Verbeemen, Vanpaemel,yRatStorms, & Verguts, 2007).
Moreover, if exemplar representations are storedsacdistributed neural network, the
clusters and prototypes arise from the network masemergent property, and the
exemplar, clustering and prototype models becomavakgnt to each other, differing
only in the level of description. For the purpogdhos dissertation, we will assume that
prototype abstraction is a cognitive process in@dlin novel concept learning as well as
a part of natural concept representation, leaviogtbe discussion of its ontological
status. In the reminder of this Chapter, we revesusting prototype learning studies,
propose dissociation between two types of prototigsks, and discuss limits of the
existing literature in addressing this dissociati@hapters 5 and 6 will then explore
cognitive and neural properties of two prototyperteng tasks using a novel

methodology overcoming these limits.

VERSIONS OF THE PROTOTYPE LEARNING STUDIES

When exploring prototype literature, we realizettpeototype learning studies
come in various flavors. One of the most pronoundéterences across studies is
between a multiple category/multiple prototype teag task, here referred to as an “A/B

task”, and a one category/one prototype learnisg,there referred to as an “A/nonA
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task”. In the A/B task, participants learn to clgssexemplars into two (or more)
contrasting categories. This version may be reptatee of concept learning in children
when a parent may walk around with a child, pomtout different exemplars from
different concepts. “Look, this is a cow, this idarse, this is a goat.” In the A/nonA
task, only one category exists and participantsléa classify exemplars as members or
nonmembers of that category. This version may peegentative of concept learning in
children based on an exposure to a large numbekahplars of one concept. “Look, a
flock of chickens. These all are chickens.”

In most studies, the information about which prgpettask (A/B or A/nonA) was
used is typically buried deep in the method sectiod conclusions derived from one
version of the prototype task are readily geneedlito the other version. However, one
could argue that structure of these two task typey yield recruitment of different
cognitive and neural processes. In the A/nonA taskiicipants are likely to form a
representation of a single prototype and then coengach test item to this single
prototype. If the new stimulus is sufficiently slari to the prototype representation, it
will be endorsed to the category; otherwise it viné categorized as a non-member.
Novelty or familiarity signals from early procesgimareas may be used as a basis for
successful categorization. In the A/B task, paréints are likely to form representations
of two distinct categories centered on two protesypEach new stimulus is then
compared to both of these prototypes and endocstiek tcategory of the prototype which
is closer to the current stimulus. Familiarity asvelty signals are not sufficient for
successful performance.

Indeed, some evidence suggests that the procesgdgad in these two types of
tasks differ. First, a few behavioral studies coradaA/B and A/nonA task directly.
Goldstone and colleagues (Corneille, Goldstone,ll@ues Potter, 2006; Goldstone,
1996; Goldstone, Steyvers, & Rogosky, 2003) conpgamtotype representations that
participants acquired in the A/B task with thosguaed in the A/nonA task. In the A/B
task, symmetric representations of two contrastiaggories were formed and features
that best differentiated between categories weregphasized. Participants found
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caricatures — stimuli that overemphasized the riisitie feature — as the most typical
exemplars of the categories. In the A/nonA taskrasentation of the categories was
asymmetric and category A prototype included a#rahteristic features of category A,
whether or not they were diagnostic for categoryninership. Prototypes, rather than
caricatures, were found to be the most typical etara of the category. Another study
that directly compared behavioral performance sAlnonA task with the A/B task was
by Casale and Ashby (in press). They compared pedoce in the A/B version and the
A/nonA version of the traditional dot pattern task. Experiment 1, they found that
learning in the A/nonA task is more sensitive te #xemplar distortion level than is in
the A/B task, but they failed to equate baselineueacy in the two tasks, so the
conclusion should be taken with caution. In Expenm 2, they found that A/B
performance is highly affected by a removal of festk while A/nonA performance is
less affected. They argued that the A/nonA tasksugpported by the perceptual
representation system (Schacter, 1990), a leasyatgm that plays a role in perceptual
priming (Wiggs & Martin, 1998), while the A/B tasis supported by a different
(unspecified) learning system.

Second, indirect evidence comes from the neuromdgglital literature.
Prototype learning task has been a traditional @k@mf nondeclarative learning, intact
in amnesic patients (Knowlton & Squire, 1993). Thisw has been recently challenged
by Zaki and colleagues (Zaki, Nosofsky, Jessup, d@vévsagt, 2003) that argued that
prototype task appears intact because it is toglsinjceiling effect), but becomes
impaired when made more challenging. As the simplsion, Zaki and colleagues used
the A/nonA task, as was used in the seminal Knowd#tod Squire (1993) paper; for the
challenging version, they asked participants tonleéavo categories, or what we call A/B
task. Indeed, the simple (A/nonA) task was not imgohwhile the challenging task (A/B)
was. Alternatively, this dissociation may be basmu the qualitative rather than
guantitative differences between the two tasksb#sind colleagues (Ashby & Maddox,
2005; Ashby & O'Brien, 2005) noted that impairedtptype learning was reported in
amnesia when the A/B task was used (Zaki, Nosof#ssup, & Unversagt, 2003) while
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intact prototype learning was reported in amneskerwthe A/nonA task was used
(Bozoki, Grossman, & Smith, 2006; Keri, Kalman, &®len, Benedek, & Janka, 2001;
Knowlton & Squire, 1993). They suggested that A¢Brhing is mediated by declarative
memory processes while A/nonA learning is medidigdnondeclarative, perceptual
learning processes.

Third, a wide range of results reported in the oeoaging literature also
indicates that prototype learning is not a singl®cpss. Some studies revealed
dependence on brain networks associated with dpismémory (Reber, Gitelman,
Parrish, & Mesulam, 2003), while others revealedoimement of other networks,
including those associated with perceptual learr{iRgber, Stark, & Squire, 1998a),
visuospatial attention (Little & Thulborn, 2005)davisual reasoning (Seger et al., 2000).
However, unlike the results from learning in amageghe results from neuroimaging
studies do not become cohesive even when taskigyjaé&en into account. For example,
medial temporal lobe involvement has been repdst#t in some studies that employed
A/B task (DeGutis & D'Esposito, 2007; Little, Shiisco, & Thulborn, 2006), and in
some studies that employed A/nonA task (Aizenstdiral.,, 2000; Reber, Gitelman,
Parrish, & Mesulam, 2003). Thus, the nature of th&sociation between A/B and

A/nonA prototype learning remains unanswered.

LIMITED COMPARABILITY ACROSSEXISTING STUDIES

Direct comparison of the results from the A/B anth@aA experiments in the
existing literature is complicated by a number o&qtient differences in both
methodology and data analysis applied. First, iegrmode often differs between the
two tasks. The A/B task always involves intentiole@rning — the participants are aware
of the goal of the experiment from the beginningl antentionally try to learn the
characteristics of the categories based on prasergtegory labels and/or corrective
feedback. In the A/nonA task, learning is oftenidieatal — participants passively view
category exemplars during the study phase withaimgo aware of the goal of the
experiment. After that, participants are instructddht all the previously viewed
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exemplars come from a single category and are askethssify new items as either
coming from the same category or not.

Intentionality of learning has a profound effect what kind of categories are
typically learned. In her influential work, Kemldtelson (1984) found that people
typically represent learned categories in termscuferial attributes or rules when
learning intentionally while acquire family-resermbte-based representation when
learning is incidental. Two fMRI studies comparegural activation in both incidental
and intentional version of an A/nonA task (Aizemstet al., 2000; Reber, Gitelman,
Parrish, & Mesulam, 2003). Aizenstein and colleagfmund decreased activation in
occipital cortex for prototypical (“A”) versus ngrototypical (“non-A”) items in the
incidental version while increased activation ire thccipital cortex, and decreased
activation in medial temporal lobe, parietal lolmel drontal regions in the same contrast
during the intentional version of the task. Rebed @olleagues also found occipital
deactivation in the incidental task, and increasettvation in prefrontal cortex, occipital
cortex and precuneus during intentional versiorve®ithe importance of the learning
mode, it is not obvious whether this factor alormarmt account for the differences
observed between the studies that employ the (ioteal) A/B task versus the (often
incidental) A/nonA task.

Second, category structures typically used diffetwieen the two tasks. In the
A/B task, each category is generated as a colleatio distortions from a category
prototype, with prototypes varying between categgriEach category has an internally
consistent structure, forming a coherent clustetered in the perceptual space around
the category prototype. In the A/nonA task, asrbhme suggests, only the A category
items are generated by a distortion from a pro®tygrming a coherent cluster. The non-
A items are typically randomly generated stimuditthave no consistent structure and are
only defined negatively, as items that are notodigins from the A prototype. This
difference between A and non-A stimuli constitueegpotential flaw of the A/nonA
studies that argue for implicit learning in amne€§iategory A exemplars are necessarily
perceptually more similar to each other than aeenibn-A items to each other. Exemplar
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similarity to recent stimuli have been show to sly influence category performance
(A. S. Levy & Heshka, 1973) and similarity amongegmry A exemplar against the
background of unrelated non-A stimuli may suppornintended “learning” during
transfer phase (Zaki & Nosofsky, 2007). If we awentake the distinction between the
A/B task and the A/nonA task, we need to eliminhi confounding factor of stimulus
differences.

Third, in the neuroimaging literature, different R¥icontrasts have been used in
A/B studies and A/nonA studies. In A/B studies, tBOLD signal was typically
contrasted between the prototype task and fixabaseline (Little & Thulborn, 2005;
Seger et al., 2000), whereas in A/nonA studiesB@&D signal was contrasted between
categorical (A) items and non-categorical (nonAgms, both being a part of the
prototype task (Reber, Stark, & Squire, 1998b; Re¥d#ong, & Buxton, 2002). Even if
both tasks were supported by identical brain arpagprming identical functions, the
difference in contrasts used could by itself pradidferential patterns of activation. For
example, areas that may support performance inrAthenA task, but do not directly
differentiate between A items and nonA items, wodokdsubtracted out in the A versus
nonA contrast, but may be identified in the A/B ktagersus baseline contrast.
Additionally, the differential activation to categmal versus noncategorical items in the
traditional A/nonA task may reflect simple sequahtiontrast effect (as categorical items
are more likely to be similar to their immediateegecessor), rather than reflecting
category membership. Again, the conclusion fromehisting studies is limited as long

as actual stimuli and fMRI constrast are not eqliate

OVERVIEW OF THE STUDIESIN CHAPTER 5 AND CHAPTER 6

The goal of Chapter 5 and Chapter 6 is to expjic#tudy similarities and
differences between the multiple category learnjAgB) task and the one-category
learning (A/nonA) task using behavioral and neulmying methods. For a more reliable

comparison, we eliminate the common external diffiees between the two tasks
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outlined above. First, we use intentional learningde in both tasks. Besides equating
the learning mode, this manipulation will allow te test individual participants
repeatedly and use within subject comparison infaimetional MRI study presented in
Chapter 6. Second, we use identical underlyinggoayestructures in both tasks. An A/B
task can be converted into an A/nonA task by rafgrto “B” items as “non-A” items.
The meaningfulness and effectiveness of such mkatipn was shown by Goldstone
(1996). Goldstone tested whether asymmetric cayegepresentation, typical for the
A/nonA task, can be achieved with A/B category dtites when the category B label is
simply changed to nonA label. Using a simple changastructions (e.g. “Press “N” for
a painting by Noogan” in the A/B task versus “PrébE for a painting NOT by
Yarpleaux” in the A/nonA task), he found that resig category representation was
similar to that normally found in the A/nonA tadksing identical category structures for
a direct comparison of the two tasks is especiatiyortant in neuroimaging studies, as
stimulus effects may drive any observed differenbesween the two tasks. No
neuroimaging or neuropsychological study however pleyed the label-only
manipulation before. Last but not least, we wileus common baseline and a direct
contrast in our fMRI study (Chapter 6) to identtiymmonalities and differences between
neural activation in the two tasks. In all of theidses, we will use novel category
structures that are based on family resemblancemitaic a character commonly
attributed to natural categories.

In Chapter 5, we will examine basic behavioral ebteristics of four different
versions of the prototype learning task used inlitieeature — two versions of the A/B
task and two versions of the A/nonA task — whilaamg category structures and stimuli
used in each. We will demonstrate that variousoila\of the prototype learning task can
all show typical prototype effects and can be oerage about equally difficult. In
Chapter 6, we will examine the neural underpinninfjshe A/B task and the A/nonA
task in an fMRI study, using methodology that hobtdsstant the category structures,
learning mode, and the fMRI contrasts. Behavioeghdvill show that the performance
profile in the within subject design replicates thsults from the between subject design,
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demonstrating viability of our ambition to direcitpmpare neural activation in the two
tasks within subject. Additionally, we will showaththe two tasks are poorly correlated
within subject, providing first behavioral evidenteat they may be supported by
different cognitive processes. Neuroimaging dath stiow that the A/B task and the
A/nonA task involve both common and dissociablerakregions, with the dissociation
mapping relatively well, but not perfectly, on tldeclarative versus nondeclarative

distinction suggested by previous neuropsycholdgitelies.
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Chapter 5. Exploring prototype lear ning tasks: Constant category

structuresin different training variants

In the previous chapter, we discussed two versobriBe prototype learning task,
the A/B task and the A/nonA task. A proposal hasnbmade that processes involved in
the performance of the two tasks may differ, banumber of methodological issues limit
the conclusions that we can do based on the eyitarature. The most serious one is
that prototype effects in the traditional A/nonAskaare confounded with exemplar
similarity and/or sequential effects. In the A/noresk, participants first view a set of
exemplars that all come from one category (ar@dishs of a single prototype) and later
need to classify new stimuli as members of thegmieor nonmembers. Traditionally,
the non-categorical stimuli are unrelated not dwolythe original prototype, but also to
each other. Because categorical stimuli are sinolaach other while noncategorical are
not, one may argue that the A/nonA task appeal t&pared in amnesia not because any
learning has occurred during training, but becapa#gicipant may rely on working
memory during the test and indicate whether oranstimulus seems similar to one or
two previous ones. In order to rigorously compae A/B task and the A/nonA task, we
need to equate category structures used in theasks, while preserving characteristics
of each task. Chapter 5 has two related goalspngpare behavioral profiles of the A/B
task and the A/nonA task when the confounding facéme limited and to develop a new
procedure that would allow a direct comparison loé two tasks using functional
magnetic resonance (applied latter in Chapter 6)adhieve these goals, we propose a
methodology that equates category structures amailstbetween different versions of
the prototype task, but preserves the relationbbipreen the categories as they exist in
the traditional A/B and A/nonA tasks.



Constant category structure

The first challenge is to find category structurasd stimuli that could be
meaningfully used in both tasks. In the A/B taskp unique prototypes exists, prototype
A and prototype B, and their features are paracadlyi distorted to create exemplars of
category A and exemplars of category B. Prototypmoty assumes that a stimulus is
assigned to the category whose prototype is chas#re stimuli in the perceptual space
(Homa, Sterling, & Trepel, 1981; Posner & Keele/Q@9Reed, 1972). In the A/nonA
task, only one prototype exists and its distortioosstitute category A exemplars. With
dot-pattern and similar stimuli, the non-categdri@g@n-A) stimuli are generating by
random selection of dot locations or by setting sdrmary features to random values.
Prototype theory assumes that a stimulus is assignéhe category A if its distance to
the category A prototype is smaller than some tiolekscriterion (Casale & Ashby, in
press; J. D. Smith & Minda, 2002). A graphical d#ipn of the structure of the two tasks
is presented in Figure 5.1. The boundaries betwhencategories for both A/B and
A/nonA tasks are considered “fuzzy” (McCloskey &uGksberg, 1978, 1979; Roth &
Mervis, 1983), meaning that category membership prebabilistic rather than

deterministic.

a b not A
B notA .- . not A
A A B SR
A B B iOA A % notA
A . . not A i .
A i LA 9
- B A S
AR A B B notA . A."notA
hot A

FIGURE 5.1. CATEGORY STRUCTURES USED IN (A) A/B TASKS, (B) A/NONA TASKS. The
black circles represent category prototopes, thteeddines represent “fuzzy” category
boundaries.
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In order to equate category structures and stimuhe two tasks, we need to find
a structure where category B stimuli are the saseoa A stimuli. One possibility is to
use traditional A/B category structure, using tworalated stimuli as category A
prototype and category B prototype, but changeddhel of the category B stimuli into
“not A” for the A/nonA task (Goldstone, 1996). Howves, the specific circular character
of the boundary between the A and the non-A spamddibe lost. One way to preserve
the character of the boundary in both tasks isst® a category structure that is like a
sphere (Figure 5.2.a). On the sphere, the north smdh poles represent the two
prototypes, the equator represents the categorgdaoy, and the category membership
of an exemplar depends on its latitude on the gpfidre category B and not-category A
stimuli are naturally equated as the further onesgaway from the North Pole (prototype
A), the close one gets to the South Pole (protoBpeDepending on the view, the two
categories have a straight or circular boundargufe 5.2. b,c). To create such a sphere-
like category structure, we use stimuli that vagng multiple binary-valued dimensions
and category structures defined based on familgnmétance, with one set of values
along all dimensions representing category A pym®tand the opposite set of values
along all dimensions representing category B pyp®t(Figure 5.3). The binary value
dimensions provide a unique opportunity to natyraljuate category B members with
non-A members, as the farther a stimulus is froencitegory A prototype, the closer it is
to the category B prototype. More details of thensti and category structure used are

presented in the method section.
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D

FIGURE 5.2. SCHEMA OF A SPHERE-LIKE CATEGORY STRUCTURE. a) The outside view of
the structure; b) The A/B task view of the struetuc) the A/nonA task view of the
structure.

Different training variants

Four different versions of a prototype learningktase used in the literature — two
variants of the A/B task and two variants of th@@dA task. The two variants of the A/B
task are feedback training A/B task and observatidraining A/B task. The feedback
training version of the A/B task is the most comnvaniant of the A/B task (Little, Shin,
Sisco, & Thulborn, 2006; Little & Thulborn, 2006;iMla & Smith, 2001; Posner &
Keele, 1968, 1970; Reed, 1972; Seger et al., 208QYiring the participant on each trail
to indicate category membership of a stimulus amehtproviding him a corrective
feedback. An alternative training method is to jpdeva participant with a category label

simultaneously with the category exemplar. Obsémat learning has been shown to
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sometime alter how categories are learned (Ashkadddx, & Bohil, 2002; Cincotta &
Seger, 2007; Daphna Shohamy et al., 2004), we wamed to assess how prototype
learning may differ under the two training regimes.

The two variants of the A/nonA task included intenél learning and incidental
learning. The mode of learning have been showingtafeantly alter both what category
representations are acquired (Kemler-Nelson, 1B84e, 2003; Zeithamova & Maddox,
under review) and which neural structures are rsmyAizenstein et al., 2000; Reber,
Gitelman, Parrish, & Mesulam, 2003). We thus wantedassess whether equating
learning mode of the A/nonA task to that of the A&3k would not yield the prototype
representation in the A/nonA task identical to thiathe A/B task.

The main goal of this chapter was to assess thie bakavioral characteristics,
such as prototype effects and difficulty, of tharfeariants of the prototype learning task
when identical category structures and test stirargdi used. Each condition included a
training phase and a testing phase. Only the ctaaraaf a training phase was
manipulated, differentially for each task versitime testing phase was identical across
conditions. The study was run as four separate rerpats, one for each prototype
learning variant. Because majority of the procedurgere identical in all four

experiments, we report them here together, notieglifferences as needed.

Methods

Participants

Ninety-seven University of Texas at Austin studemgarticipated in the
experiment, either as a partial fulfillment of as3 requirement or for pay. Twenty-three
participants completed the feedback A/B task, 23tigpants completed the
observational A/B task, 27 participants completied intentional A/nonA task and 24
completed the incidental A/nonA task. Three pgraais (2 from the feedback A/B task
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and 1 from the intentional A/nonA task) reacheduaacy significantly below chance

(less than .36 proportion correct, or 15 or fewerrect responses out of 42, p < .05,
binomial test, two-sided). As data from these paréints also constituted outlying values
on the accuracy and several other performance desiang measures (more than 2.5
standard deviations from the group means), we deduhem from further analysis. The

exclusion did not change pattern of results in @fntyre reported analyses.

Stimuli and apparatus

The stimuli were cartoon animals that varied al@fcpoinary dimensions, such as
body shape (round or parallelogram), head posttiacing forward or downward), tail
shape (curled or straight), etc (Figure 5.3), agldgtom a prototype learning study of
Bozoki and colleagues (Bozoki, Grossman, & SmiftQ&). We chose high-dimensional
stimuli to discourage rule-based or exemplar meration strategies (Minda & Smith,
2001). Categories were based on family resemblancbaracteristics typical of natural
categories (Rosch & Mervis, 1975; Wittgenstein, 3)95For each participant, one
stimulus served as the category A prototype with18l of its feature values being
referred to as prototypical features. All othemmstii can be defined relative to the
prototype and can differ on 1 — 10 of the protatgpifeature values. The stimulus with
all 10 non-prototypical features is the B prototyjpethe A/B task) and the anti-prototype
(in the A/nonA task). The number of non-prototypidaatures in each stimulus
determines its distance from the prototype (searEic.1.). Category A stimuli were
defined as those with a distance of 0 — 4 fromAhmrototype and category B (or non-A)
stimuli were defined as those with a distance ef 60 from the A prototype. Stimuli
equidistant from the two prototypes were excludeomf the study. Binary value
dimensions allow to naturally equate category B imers with non-A members, as the
fewer features a stimulus shares with the categopyototype (the farther it is from A),
the more features is shares with the category Bofyjee (the closer it is to B). Identical

stimuli were thus used in the test phase for bo¢hA/nonA and the A/B tasks.
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Category A Category B/nonA
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0 2 4 6 g 10
Prototype A Distance from the A prototype Prototype B =
Antiprototype

FIGURE 5.3. EXAMPLE STIMULI FROM THE PROTOTYPE TASK STIMULUS SET USED IN
THE EXPERIMENT. The left most stimulus represents the prototypeadégory A, stimuli
to the right from the prototype represent exampliestimuli with increasing distances
from the A prototype. The right most stimulus resanats a category B prototype (or anti-
prototype). Stimuli having a distance 0 to 4 frohe tprototype A were considered
category A members, stimuli at the distance 6 tovéfe considered category B (non-A)
members.

Procedure

Training phase
Prototype learning variant&ach participant completed 20 training trials loé t

prototype learning task, presented successivelylynene in a random order. In the
feedback A/B task, participants were trained toegatize category A stimuli from
category B stimuli via corrective feedback. On etiedl, 2 seconds after stimulus onset,
the participant was prompted to give an A or B oese. After each response, the
participant was informed whether they were cormcivrong. In the observational A/B
task, participants were trained to categorize @aied stimuli from category B stimuli
by observing the stimuli together with their catgglabel. On each trial, a stimulus was

presented and its category label was displayed roedth. After 2 seconds, the
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participant was prompted to press any key to advaodhe next stimuli. In both A/B
tasks, 10 A stimuli and 10 B stimuli were presentedhin each category, 2 training
stimuli differed from the category prototype on dature, 3 differed on 2 features, 3
differed on 3 features and 2 differed on 4 featufesoss all 10 stimuli within each
category, the category typical features were pteseid or 8 times and the opposite
category typical features were presented 2 or 8dirNeither prototype was presented. In
the intentional A/nonA task, participants were mfed that they would be shown
examples of category A members and that they wiaidal need to discriminate members
of a category (A) from nonmembers (nonA). In theidental A/nonA, participants were
informed that they will be shown some images aridrlae tested on how well they
remember them. After the presentation was complgiadicipants were informed that
all of the stimuli they saw were members of oneegaty and they now need to
discriminate members from nonmembers. In both Afntasks, participants were shown
stimuli from category A only. The stimuli were pasdy viewed one by one for a
minimum of 2 seconds, after which a prompt askedicipant to press any button to
proceed to a next stimulus. There were 5 trainigudi that differed from the A
prototype on one feature, 5 differed on two feauge differed on three features and 5
differed on four features. Across all 20 stimutie prototypical value on each dimension
was presented 15 times and the non-prototypicalevah each dimension was presented
5 times.

Testing phase
The testing phase was identical in all tasks, woitily the label of the second

category (B or nonA) differing between the taskartiéipants were presented with 42
stimuli, one at a time. The stimuli included botbtptypes and five stimuli selected from
each distance from the prototype (except distaneafmbiguous stimuli). None of the
stimuli were previously used in the training phagech trial started with a 500 ms
fixation cross, followed by a stimulus. The stingiwas presented until the participant

11¢



indicated the category membership of the stimulpgpiessing one of two buttons. No

feedback was provided and inter-trial interval iasecond.

Results

Proportion of correct responses

First, we compared difficulty of different variant$ the prototype learning task.
The correct response was to indicate category #titouli with distance 0 to 4 features
from the A prototype and to indicate category Bstionuli with distance 6 to 10 features
from the A prototype. Although this definition isrmewhat arbitrary for the A/nonA task
(as one may argue that higher distances from thgrototype simply represent higher
distortions from the A prototype, or peripheral nirs of category A), participants were
a priori informed that there would be equal numiieexemplar who do and who do not
belong to the A category and the pattern of thesponses indicates that they did adopt

this definition. The results are presented in Feghie.



0.8

0.7

Mean proportion correct

0.5
feed A/B obs A/B int A/nonA inc A/lnonA

Training variant

FIGURE 5.4. MEAN ACCURACY IN THE FOUR PROTOTYPE LEARNING VARIANTS. feed
A/B: Feedback training A/B task; obs A/B: Obsergatl training A/B task; int A/nonA:
Intentional learning A/nonA task; inc A/nonA: Inedtal A/nonA learning. The error
bars represent the standard error of mean.

As Figure 5.4 suggests, control accuracy was caayracross the four tasks,
about .70 proportion correct in feedback A/B, ititemal A/nonA and incidental A/nonA
training tasks, and .73 proportion correct in obagonal A/B training task® The
equivalent difficulty of the feedback A/B task aige intentional A/nonA task are
especially encouraging with respect to our goall@feloping a version of the A/B task
and the A/nonA task that use the same learning raock testing stimuli and yield

comparable performance.

15 Because the data from different tasks were ntgated in one experiment, it is not appropriatéréat
them as different levels of the “task” factor.
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Category endorsement as a function of the distaffrcen the prototype

A characteristic feature of categorization basegmtotype representation is that
category membership is graded rather than all-oer{®cCloskey & Glucksberg, 1978).
We thus calculated proportion endorsement intogoateA as a function of the distance
from the prototype A).The mean endorsements for the four training vasiaate
presented in Figure 5.5.
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FIGURE 5.5. MEAN PROPORTION ENDORSEMENTS INTO CATEGORY A ASA FUNCTION OF
THE NUMBER OF FEATURES SHARED WITH THE A PROTOTYPE.

The first thing to note on Figure 5.5 is that thegmrtions endorsement show a
rather nice linear relationship with the distancenf the A prototype. We verified that
this relationship exists on individual participantbasis and is not a by-product of
averaging across subject by fitting linear trendso iindividual endorsements and

calculating correlation coefficient between thetalige from the prototype and the
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proportion endorsemeit.We found that 72 out of 94 participants acrosgsahowed
significant linear trend, with median correlationiry r = .825. The parameters of the

linear fits for each experiment and each condiimnpresented in Table 5.1.

slope intercept Proportion fit
feed A/B 0.073 (0.010) 0.102 (0.048) 0.62
obs A/B 0.083 (0.011) 0.078 (0.053) 0.70
int A/nonA 0.074 (0.006) 0.204 (0.040) 0.70
inc A/nonA 0.080 (0.005) 0.142 (0.032) 0.75

TABLE 5.1. LINEAR FIT PARAMETERS (STANDARD ERRORS) FOR THE FOUR TRAINING
TYPES. Proportion fit denotes proportion of participatist showed significant linear
trend.

Accuracy and reaction time as a function of the thace from the boundary

Performance in prototype learning tasks is charaet by advantage for more
prototypical over less prototypical stimuli in batélscuracy and speed of classification.
Figure 5.6 shows the relationship between distainoen the category bound and
accuracy (left panel) and reaction time (right parfer the four tasks. In all tasks,
proportion correct increased as the distance frbenliound increased (feed A/B b =
0.061, t(20) = 4.99, p < .001; obs A/B b = 0.0422) = 3.74, p = .001; int A/nonA b =
0.070, t(25) = 7.11, p <.001; inc A/nonA b = 0.06@3) = 10.42, p < .001). In all tasks
except the feedback A/B task, reaction time deeeas the distance from the bound
increased (feed A/B b = -0.011, t(20) = 0.34, 735, obs A/B b = - 0.213, t(22) = 3.29,

16 Because 0 shared features (B prototype/anti-proédtand 10 shared features (A prototype) exemplars
were shown to each participant only once each,endlilother distances from the A prototype 5 tintks,
endorsement of prototype and anti-prototype weotuebed from the calculation of the endorsementesdop
and correlations.
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p =.003; int A/nonA b =-0.172, t(25) = 3.22, pG94; inc A/nonA b =-0.117, t(23) =
2.75, p =.012y7
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FIGURE 5.6. ACCURACY AND REACTION TIME CHANGES WITH THE DISTANCE FROM THE
BOUND. Left: Proportion correct as a function of the diste from the bound. Right:
Reaction time as a function of the distance froenltbund.

Asymmetric category representation

Figure 5.5 and Table 5.1 suggest that the endorgeimercepts are smaller (and
close to zero) in both A/B task variants while tteee larger (and above zero) in both
A/nonA task variants. Non-zero intercept can beseduboth by flatter endorsement
slopes (reflecting poorer learning) and/or by awang shift of the endorsement curve
(reflecting category bias). Because category biamuldv embody the asymmetric
representation for the two categories typicallyidun the A/nonA task (Casale &
Ashby, in press; Corneille, Goldstone, Queller, &ttBr, 2006; Goldstone, 1996), we

wanted to test for it explicitly. We calculated postion A responses for each participant

17we used median reaction time to characterize paditipant’s reaction time at each distance from t
bound. Using mean correct reaction time revealedymally significant slope in the feedback A/B tgfk
= -0.064, t(20) = -1.96, p = .065).
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and then calculated mean proportion of A respopé&kin each task. The proportion of
A responses was about half in both A/B variantedback A/B: p(A) = .48, t(22) = 1.58,
p = .128; observational A/B: p(A) = .49, t(11) =0, p = .455), but significantly more
than half in both A/nonA variants (intentional Afi p(A) = .57, t(26) = 4.13, p < .001;
incidental A/nonA: p(A) = .55, t(23) = 2.70, p =13). These results suggest that our
design can accomplish symmetric representationhim A/B task and asymmetric
representation in the A/nonA task even when theahcategory structures were equated
between the tasks.

Discussion

The results provide three interesting findings dbparformance patterns in
different variants of the prototype learning taBkst, all four training methods yielded
graded category membership typical for categoonratiased on prototype representation
(McCloskey & Glucksberg, 1978; Rosch, 1975a; Ro&ctMervis, 1975; Rosch &
Moore, 1973). The relationship was well describgdablinear function between the
number of prototypical features and the proportemdorsement. Both accuracy and
reaction time also showed a relationship with shirayrototypicality, with stimuli closer
to either prototype being categorized faster andenaccurately than stimuli further from
the prototypes (close to the boundary).

Second, the average difficulty (proportion correggs the same irrespective of
the training variant. In fact, it was even numdtcaquivalent in three training variants —
feedback A/B, intentional A/nonA and incidental AMA (with a small numerical
advantage for observational A/B training). Thighe first explicit comparison of these
training methods. The equivalent difficulty of #lur tasks is interesting since it suggests
that participants were able to learn just as mumbuaitwo categories when trained to
distinguish between them using exemplars from batien intentionally trying to learn
characteristics of just a single category, and ewenen incidentally learning

122



characteristics of a single category by being padsiexposed to its exemplars. From the
methodological perspective, comparable difficultyimportant as well as it allows us to
draw conclusions about the differences betweenasie variants without the danger that
these differences are attributable to differerfiaifty of different versions.

Third, both tested variants of the A/B task yieldgsnmetrical and both tested
variants of the A/nonA task yielded asymmetricalegary representation, reproducing
characteristics traditionally associated with theasks (Casale & Ashby, in press;
Corneille, Goldstone, Queller, & Potter, 2006; Gttohe, 1996). Additional behavioral
signature of the A/nonA task was proposed by Camate Ashby (in press). Casale and
Ashby argued that if the A/nonA task is supportgdabperceptual learning system, it
should exhibit itself by steeper typicality gradighan the A/B task, meaning that
accuracy should fall off faster with the distancant a prototype in the A/nonA task than
in the A/B task. This follows from the dependenéehe perceptual learning system on
perceptual similarity. They indeed found steepeueacy gradients in their A/nonA task
(where the noncategorical patterns were randonfadotations, unrelated to both the A
prototype and each other), however, the performantteeir A/nonA task was lower than
their A/B task at all levels of exemplar distortso\lternative explanation thus remained
plausible that the steeper gradients are solelyedrby greater difficulty of their A/nonA
task than their A/B task. Finding accuracy gradidifterences here would constitute
stronger evidence as both actual stimuli used aedadl difficulty of the two tasks were
equated. Interestingly, the accuracy slopes obddmeee were indeed somewhat steeper
for both A/nonA variants and flatter for both A/Binants, suggesting that this property
of the A/nonA task may be preserved even when oayestructures of both tasks are
equated. Further research is however needed tarothiis observation.

To summarize, Chapter 5 had two intertwined gdalst, we wanted to compare
behavioral characteristics of performance in th& Adsk and the A/nonA task when
confounding differences between them are limiteeco®d, we wanted to develop an
alternative methodology for studying the A/B tasiddhe A/nonA task that would allow

their comparison using brain imaging technique.atbhieve these goals, we compared
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learning and categorization performance in twoargs of the A/B task and two variants
of the A/nonA task using identical stimuli and apiey structures in all tasks. We found
all four training variants to be of comparable idiiity and showing characteristic graded
category membership. Importantly, we also found the& new methodology can preserve
characteristic profiles and differences between #iB task and the A/nonA task

traditionally associated with these tasks. We amtelthat the novel method is a viable
alternative to the traditional prototype tasks ghatvides a new means of comparing the
A/B task and the A/nonA task while eliminating conhding differences between them.
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Chapter 6. Neural correlates of prototype learning: an fMRI study

Studies of prototype learning have a long tradiiilorcognitive research (Posner
& Keele, 1968, 1970). Despite its importance in rggay cognition, the neural
underpinnings of prototype learning are unclear aadtradictory findings exist. For
example, one critical learning system is episod&mary and examinations of prototype
learning in amnesiac patients, with damage togiééem, have so far been mixed. Some
studies with amnesiacs suggest that prototype itggrns intact (Knowlton & Squire,
1993), whereas others suggest a prototype leawhfigit (Zaki, Nosofsky, Jessup, &
Unversagt, 2003). The picture in the neuroimagitgydture is equally inconclusive.
Some studies revealed dependence on brain netwsddiated with episodic memory
(Reber, Gitelman, Parrish, & Mesulam, 2003), whotbers revealed involvement of
other networks including those associated with guetieal learning (Reber, Stark, &
Squire, 1998a), visuospatial attention and learifintjle & Thulborn, 2005), and visual
reasoning (Seger et al., 2000).

In a review of the prototype literature, Ashby avidddox (2005) suggested that
the use of A/nonA tasks in some studies and A/Bstas other studies explains the
contradictory results. They suggested that A/Brigay is mediated by medial temporal
lobe based explicit episodic memory processes whif®nA learning is mediated by
nondeclarative, perceptual learning processesei@ifitial involvement of hippocampus
in the two tasks can be expected from their cogmiiemands. In the A/nonA task,
participants are likely to form an isolated repreéagon of a single prototype (Goldstone,
1996) and then compare each test item to this esipgbtotype. If the new stimulus is
sufficiently similar to the prototype representatiat will be endorsed to the category;
otherwise it will be categorized as a non-membehar@es in representation of
categorical items within visual cortex may be uasd basis for successful categorization
(Reber, Stark, & Squire, 1998b). In the A/B taslartigipants are likely to form

representations of two distinct categories centeretivo prototypes. Each new stimulus
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is then compared to both of these prototypes ardbreed to the category of the
prototype that is closer to the current stimuluss@dciations among characteristic features
of each category must be formed, together withdéegory label. Hippocampus has
been shown to mediate such learning of arbitranyehassociations (Moss, Mahut, &
Zola-Morgan, 1981; Wirth et al., 2003).

Existing literature offers only partial support fahe declarative versus
nondeclarative memory for the A/B versus A/nonAkta®ne one hand, impaired
prototype learning was reported in amnesia when Al® task was used (Zaki,
Nosofsky, Jessup, & Unversagt, 2003) but sparedofyme learning was reported in
amnesia when the A/nonA task was used (Bozoki, $bnas, & Smith, 2006; Keri,
Kalman, Kelemen, Benedek, & Janka, 2001). The t&$tdm neuroimaging studies are
less cohesive. Hippocampus involvement has beeortegp in some studies that
employed an A/B task (DeGutis & D'Esposito, 200#tlé, Shin, Sisco, & Thulborn,
2006), but not uninamously (Little & Thulborn, 2Q@D06). Additionally, hippocampal
or medial temporal lobe involvement has also begpomed in some studies that
employed an A/nonA task (Aizenstein et al., 2008b&, Gitelman, Parrish, & Mesulam,
2003).

Direct comparison of the results from the existhti3 and A/nonA studies is
complicated by a number of methodological diffeesicFirst, as outlined above, the
category structures differ across tasks. In the A#dBk, each category is internally
consistent and consists of a collection of exenspli@rived from the category prototype.
In the A/nonA task, one category is internally detent, and the other is not. Second, the
A/B task involves intentional learning where thetg#pants are instructed to learn the
characteristics of the categories based on coveeddedback. The A/nonA task often
involves incidental learning where participantsgpaaly view category exemplars first,
and are assessed on discrimination of categonoai hon-categorical exemplars later.
Third, different fMRI contrasts have been usedha A/B studies and A/nonA studies. In
A/B studies, the BOLD signal was typically contexstoetween the prototype task and
fixation cross viewing (Little & Thulborn, 2005; &er et al., 2000), whereas in A/nonA
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studies, the BOLD signal was contrasted betweeegoacal (A) items and non-
categorical (nonA) items, both being a part of phatotype task (Reber, Stark, & Squire,
1998b; Reber, Wong, & Buxton, 2002).

The goal of this study is to examine the neuralewpichnings of A/B and A/nonA
prototype learning using experimental methodololgt tholds constant the category
structures, learning mode, and fMRI contrast. Wdl feicus on early learning (20
training trials) as most prototype learning studiest we discussed so far used a small
number of training trials. We hypothesize that AgBrformance is mediated by the
medial temporal lobe while A/nonA performance inmed nondeclarative learning.
Differences in learning mode, category structurd #8RI contrasts between the A/B
and A/nonA task could account for a number of @pancies in the existing literature
and must be controlled. Rather than being drivemhleyspecific category structures, we
expect that the context of learning — learning @siing categories or learning
characteristics of a single category — can by fitpebduce the dissociation between

declarative and nondeclarative based learning.

Method

Participants

Twenty-seven young adult (age 18-30) volunteersféb®ales) participated in the
study. Data from 3 participants (1 female) werel@ked from analysis due to excessive
head motion, leaving 24 participants for analygésch participant read and signed
informed consent with participation in an fMRI syudVolunteers received $50

compensation for a 2-hour session.

Stimuli

Two sets of stimuli were used in the study. Thstfget was identical to the set
used in Chapter 5 (Figure 5.3). A second set afooaranimal stimuli with different
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dimensions was also generated (Figure 6.1), and maxtotype learning task was tested
with both sets of stimuli. Note that in this studwlike in a typical A/nonA experiment,

all nonA stimuli were internally consistent and styacted from a fixed prototype. Thus
the only difference between the A/nonA and A/B taskas in stimuli presented during
training (only A stimuli in the A/nonA task, andad B stimuli in the A/B task), and the
category labels used during the testing phaseacalht, the same stimuli were used in the
test phase for both the A/nonA and A/B tasks. Tlarg; differences observed in the
A/nonA and A/B brain activations cannot be attrdumlitto differences between the

structures of nonA category versus B categorytmany stimulus-specific differences.

Category A Category BfnonA

L.
—
0 2 4 6 8 10

Prototype A Distance from the A prototype Prototype B =
Antiprototype

Figure 6.1. Example stimuli from the second stirsidat.

Experimental design

A within subject design was employed. Each paraotpcompleted an A/nonA
and an A/B run with each stimulus set (4 runs Jotghch participant completed two runs
of one task, a 10 minute structural scan, and twerruns of the second task. The order
of stimulus sets and the order of the tasks wermtesbalanced between participants.

Each run consisted of a training and test phaspottantly, although the training phase
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differed across tasks, the test phase was idenfcactional MRI scans were acquired

during the testing phase only.

Training design (not scanned)

The A/B task procedure was identical to the feekb®&® training variant from
Chapter 5. Participants were asked to categorizA a@d 10 B items, using corrective
feedback to learn the category labels. The A/noagk torocedure was identical to the
intentional A/nonA training variant from Chapter Brior to A/nonA training,
participants were informed that they will need éarh to discriminate members of a
category (A) from nonmembers (nonA). During A/norraining, participants were
shown 20 stimuli from category A only. The trainisigmuli were presented in a random
order.

Test design (scanned)

The testing phase was identical for both taskd) wrily the label of the second
category (B versus nonA) differing between the $askarticipants were presented with
42 stimuli, one at a time, that included both ptygpies and five stimuli selected from
each distance from the prototype (except distaneafmbiguous stimuli). None of the
stimuli were previously used in the training pha&e.event-related design was utilized
to study the neural activity during the testing gdaFour possible orders of A and B
stimuli and their onsets including 30% of null tint® interject temporal jitter) were
predetermined using “optseq2” program (http://sunfar.mgh.harvard.edu/optseq, Dale,
1999). Each stimulus onset time and order was usexhe experimental run. On each
trial, a stimulus was presented for a maximum & 8ec, during which time the
participant needed to indicate the category menhigeef the stimulus. No feedback was
provided. A fixation cross was presented betweeah aimulus onset lasting either 0.5,

2.5, or 4.5 seconds.



MRI acquisition, processing and analysis

Functional and structural images were acquired gugin3T GE Signha MRI
scanner. Functional images were acquired duringtebng phase of each task only,
using a multiecho GRAPPA parallel imaging EPI| semeethat reduces typical EPI
distortions and susceptibility artifacts. Imagesreveollected utilizing whole head
coverage with slice orientation to reduce artifa@pprox 20 degrees off the AC-PC
plane, TR = 2 sec., 3 shot, TE = 30 msec., 35 &tie¢s oriented for best whole head
coverage, acquisition voxel size = 3.125 X 3.128 ¥im with a .3 mm inter-slice gap).
The first four EPI volumes were discarded to alleeans to reach equilibrium. Stimuli
were viewed through a back projection screen andreor mounted on the top of the
head coil. Responses were collected with an MR etitnlp button box that was placed
under the right hand.

In addition to collecting EPI images during taskfpemance, one or two high
resolution T1 SPGR scans that have been empiriagdymized for high contrast
between gray matter (GM) and white matter (WM), &Ml and cerebrospinal fluid
(CSF) were acquired. These images were acquiredeirsagital plane using a 1.3 mm
slice thickness with 1 square mm in-plane resotutio

Pre-processing and data analysis were conductedy WtAT (FMRI Expert
Analysis Tool) Version 5.63, part of FSlwiw.fmrib.ox.ac.uk/fs) software. Pre-

processing included motion correction using MCFLIRQEnkinson, Bannister, Brady, &
Smith, 2002), non-brain removal using BET (S. Smi#®02), high-pass temporal
filtering with a 60 second cut-off, and spatial @ttong with a Gaussian kernel of 5 mm
FWHM. Data from each run of each participant weralgzed separately at a first level
of analysis. Each category stimulus time onset wasvolved with a canonical

hemodynamic response function and was entered @®dictor into a general linear
model to estimat@-weights together with their temporal derivativBsta from all four

runs from each participant were combined at a st@rel using a fixed effects analysis.
Combined data from each participant were then stdgleto the third level random

effects analysis using OLS. For all analyses, iggdial voxels were considered active
13C



when reaching Z > 2.3. Whole brain cluster-sizeshold was set at p < .05 (Worsley,
2001). Additionally, we defined two regions of irgst (ROI), medial temporal lobe
(MTL) and striatum. We were especially interestedtiea MTL because its involvement
in prototype learning has been controversial andstimatum because it has been
implicated in other kinds of category learning amthought to operate complementary to
area MTL (Poldrack et al., 2001; Poldrack & Pack&@D3). The MTL ROI consisted of
FSL Harvard-Oxford atlas defined right and left goppampus and right and left
parahippocampus, the striatum ROI consisted of H8tvard-Oxford atlas defined right
and left putamen and right and left caudate. Atitvain each ROI was assessed using a
small volume correction at p < .05 based on MontldCsimulation using AFNI,
accounting for both smoothness of the data andstiage and size of each ROI. The
simulation determined a minimal required clusteeof 33 voxels for the MTL ROI and

30 voxels for the striatum ROI.

Results

Behavioral performance

For the main behavioral and fMRI analyses, testsphdata were pooled across
the two runs (the two stimulus sets) of each tddkndorsement functions — observed
probabilities of responding A at each distance friv@ prototype A — are presented in
Figure 6.21° To ensure that the linear trend is not a by-prodcaveraging across
participants (Maddox, 1999), we calculated endoesgnslopes for each participant
separately, excluding the distance 0 (the prototfpeand distance 10 (the prototype

18 There were no differences between accuracies\aahien the two stimulus sets (A/B: .68 vs .71, 23
1.186, p=.248; A/nonA: .67 vs .68, t(23)=0.441,64).

19 Three different participants reached accuracyifiigmtly below change (proportion correct lessitha
.36 (15 or less correct responses out of 42),Gb<hinomial test, two-sided) in one of their founs. For
these runs, we assumed that the participant agtiealined to distinguish between the two categphes
confused the labels during the test, and adjusiedd¢oring accordingly. We also repeated all betnaki
analyses with (1) the original data and with (2 three runs excluded; the pattern of results wéas n
affected in either case.
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B/anti-prototype) as they consisted of only oneagadint. For both tasks, the proportion
of category A endorsements decreased linearly thighdistance from the prototype A,
with mean slopes similar in both tasks (A/B b =530se = 0.008, p <.001, A/nonA b =
0.054, se = 0.007, p < .001; slope difference:)t28.386, p = .703), and with no bias
for either response in the A/B task (proportionfofesponse = .494, t(23) = 0.63, p =
.532), but with a bias towards A response in th@oAA task (proportion of A response =
.580, t(23) = 3.82, p <.001). In both tasks, catezgtion accuracy increased linearly as a
function of a stimulus distance from the categasyrary (A/B: b=0.058, se=0.010, p <
.001, A/nonA: b=0.060, se=0.009, p<.001; slopeedéhce: t(23) = 0.232, p = .818) and
reaction times decreased linearly as a functioa sfimulus distance from the category
boundary (A/B: b=0.029, se = 0.011, p=.020; A/nobA0.028, se=0.013, p=.045; slope
difference: t(23) = 0.082, p = .935). Importantlyere was no difference between overall
accuracy in the A/B (mean = .694, se = .018) amibAA tasks (mean = .673, se = .020;
t(23) = -0.644, p = .526). Interestingly, A/B anéhBnA accuracy rates were moderately
negatively correlated (r = -.362, p = .082), sugiggsthat distinct cognitive processes
may underlie performance in the two tasks. Unlileeusacy, mean reaction times
differed between the two tasks by approximatelys)(&/B: mean = 1.343 sec, se = .095;
A/nonA: mean = 1.545 sec, se = 0.099; t(23) = 3.566 .002) and were positively
correlated within subjects (r=.831, p<.001).
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Figure 6.2. Endorsement into category A as a fonadf a stimulus distance from

prototype A.

Common neural regions

First, we identified regions that showed commortivation or common
deactivation in both the A/B task and the A/nonsktaompared to the fixation baseline,
by creating a conjunction z-map using the minimurthe two tasks’ z-maps. A network
of regions in which both tasks showed significarghgater activation compared to the
fixation baseline (see Figure 6.3, Table 6.1) ideldiareas involved in visual perception
and object identification (occipital and fusiformeas, Figure 6.3.a,b), areas associated
with decision making and response generation (mfefrontal cortex and precentral
gyrus, Figure 6.3.b), as well as bilateral postetigppocampus (Figure 6.3.c) and
bilateral striatum (Figure 6.3.d). A number of g in which both tasks showed
deactivation compared to the fixation baseline (fégure 6.4., Table 6.2.) were

identified as well, consisting primarily of typicalefault-mode network regions
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(Laurienti, 2004; Mason et al., 2007; Raichle et d@D01): inferior parietal cortices,

posterior cingulate, medial temporal cortices aredlial frontal cortices.

Brain region
Whole brain cluster corrected (p < .05)
L lateral occipital (BA 19)
R lateral occipital (BA 19)
Calcarine (BA 17)
L Postcentral (BA 3/40)
R Inferior Parietal (BA 7/40)
R Fusiform/Inferior temporal (BA 37)
L Fusiform (BA 37)
L Inferior frontal (BA 44/48)
Medial frontal (BA 24/32)
R Inferior frontal (BA 44)
R Middle frontal (BA 6)
Small volume corrected (p < .05)
R Hippocampus
L Hippocampus
R Striatum
L Striatum

Size

4719
3387
807
3705
3513
1737
896
2333
1927
1740
489

123
84
130

61

Max Z x

6.93
6.75
3.59
5.71
5.69
6.83
6.73
6.1
5.79
5.61
4.08

5.15
4.56
4.35

3.23

-36

42
10

-44

36

40

-38
-48
4
52
30

20
-20
16

-20

-86
-66
-72
-26
-54

-54

-64
6
8
10
4

-30
-30
16

10

TABLE 6.1. REGIONS COMMONLY ACTIVATED IN BOTH A/B AND A/NONA TASK. L = left,

R =right, BA = Broadman area, Max = maximum. Sjaeen in voxels.
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Task > baseline

FIGURE 6.3. COMMONLY ACTIVATED REGIONS FROM BOTH TASKS VERSUS BASELINE. &,

b: Whole brain 3D rendering with cortical activatioverlay. a. Left hemisphere. b. Right
hemisphere. ¢, d: Coronal slices with activatiomsriays. c. Bilateral hippocampus. d.
Bilateral striatum and medial frontal cortex. Actiwn maps were overlaid upon a
canonical brain using MRIcro softwang/w.mricro.con)
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Brain region Size Max Z X y z
Whole brain cluster corrected (p < .05)

Posterior cingulate (BA 23) 4494 549 -10 -42 40
L Angular gyrus (BA 39) 2008 579 -56 -62 22
R Supramarginal (BA 40) 1880 5.3 58 -48 24
R Middle temporal (BA 20/21) 4887 545 52 -4 -32
L Middle temporal (BA 20/21) 4878 55 -62 -48 -2
Superior frontal (BA 9) 8151 556 -28 26 46
L Orbito frontal (BA 38/11) 1002 475 -52 24  -10
R Orbito frontal (BA 47/11) 686 4.6 50 34 -10
L Medial temporal 804 493 -24 -16 -22
R Medial temporal 636 4.49 22 -12 -30

TABLE 6.2. REGIONS COMMONLY DEACTIVATED IN BOTH A/B AND A/NONA TASK. L =
left, R = right, BA = Broadman area, Max = maximugize given in voxels.

Baseline > Task

FIGURE 6.4. COMMONLY DEACTIVATED REGIONS FROM BOTH TASKS VERSUS BASEL INE.

a, b: Whole brain 3D rendering with cortical actiwa overlay. a. Left hemisphere. b.
Right hemisphere. ¢, Coronal slice showing MTL oagi Activation maps were overlaid
upon a canonical brain using MRIcro softwamsv{v.mricro.comn)
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Distinct neural regions

The primary goal of this research was to directynpare activity during the A/B
task and the A/nonA task, controlling the stimulddearning mode. A number of regions
exhibited increased activity in one task compam@dhie other. The list of identified

regions is provided in Table 6.3., contrast actbramaps are provided in Figure 6.5.

Brain region SizeMaxZ x 'y z
A/B > A/nonA (Whole brain cluster corrected)
R Inferior parietal (BA 40) 746  3.79 58 -386

L Orbito frontal (BA 47/11) 381 3.9 -3654 -16
A/B > A/nonA (Small volume corrected)

L Parahippocampus (BA 36) 53 3.13 26 -30
A/nonA > A/B (Whole brain cluster corrected)

L Inf Lateral Occipital (BA 18) 989 4.88 -2094 0

R Inf Lateral Occipital (BA 19) 776 4.37 38 -82-2

L Sup Parietal (BA 7) 478 4.24 -2070 36

R Sup Parietal (BA 7) 451 3.74 22 -648
A/nonA > A/B (Small volume corrected)

R Putamen 41  3.47 20 10 -8

R Caudate head 33 324 10 10 -2

L Caudate body 32 4.27 -1® 18

TABLE 6.3. REGIONS FROM WHOLE BRAIN AND REGION OF INTEREST (SMALL VOLUME
CORRECTED) ANALYSIS THAT ACTIVATED DIFFERENTIALLY DURING THE A/B TASK AND
THE A/NONA TASK. L = left, R = right, Inf = inferior, Sup = superioBA = Broadman
area, Max = maximum. Size given in voxels.



FIGURE 6.5. REGIONS FROM DIRECT CONTRAST OF A/B TASK VERSUS A/NONA TASK. In
red, A/B > A/nonA; in blue A/nonA > A/B. a, b: Whslbrain cluster corrected contrasts
overlaid on a 3D rendering of a canonical brairLedt hemisphere. b. Right hemisphere.
c, d, e: Coronal sections illustrating small voluomerected contrast maps in regions-of-
interest. c. Left parahippocampus. d. Left caudaidy. e. Right putamen and right
caudate head. Activation maps were overlaid upocamonical brain using MRIcro
software fvww.mricro.con).

The direct contrast revealed that the A/B tasloives to a larger degree areas
that have been implicated in explicit episodic mgmancluding frontal and parietal
cortices and parahippocampus (Figure 6.5, red ayprlBy contrast, regions that

demonstrated greater activity in the A/nonA taskntithe A/B task included those
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previously implicated in perceptual learning, irdihg posterior cortices and striatum

(Figure 6.5, blue overlayy.

Neural regions predictive of accuracy

To identify brain areas predictive of successfategorization, we compared
activity evoked during correct categorization sialith activity evoked during incorrect
categorization trials, separately for each taskntdied regions that exhibited greater
activation during correct than incorrect trials &sted in Table 6.4 and are presented in
Figures 6.6 and 6.7. No region exhibited greatévaiton for incorrect than correct trials
in either task. Regions that were predictive ofrecr categorization during the A/B task
trials included bilateral middle temporal cortic@msterior cingulate cortex and orbito
frontal cortex, as well as bilateral medial tempol@be spanning parts of both
parahippocampus and hippocampus. Only two regioese wpredictive of correct
categorization during the A/nonA task, left putanaga right anterior hippocampus. The
relative location of the right hippocampal regiaentified in the A/nonA task and the
right MTL region identified in the A/B task is pested in Figure 6.8. The A/nonA
region was located anterior to the A/B region ameté was minimal overlap between the

regions (3 voxels).

20 Because reaction times were not perfectly equiatéite two tasks, it is possible that some of tgans
identified in the A/nonA > A/B contrast may refldohger processing times in the A/nonA task thathe
A/B task. Although we cannot rule this possibilitgsed on the current data, two pieces of evidanggest
that it is not the case. First, most regions ideatiin the A/nonA > A/B contrast were either aqgpri
expected (e.g. posterior cortices based on theeptral learning theory) or were identified als@mother
contrast (striatum in the correct > incorrect casty. Second, adding the reaction time differelaces
covariate at the group level analysis did not abathe activation differences.
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Brain region Size Max Z X y z
A/B task (Whole brain cluster corrected)

R Middle temporal (BA 21/22) 373 3.64 62 -14 -16

L Middle temporal (BA 21/22) 263 3.57 -58 -36 4

Posterior cingulate/ Precuneus (BA 23) 1576 4.58 -6 -52 10

Orbito frontal (BA 10/11) 1430 4.1 2 62 -14
A/B task (Small volume corrected)

R Medial temporal (BA 20) 238 4.18 30 -22 -16

L Medial temporal (BA 20) 201 3.69 -32 -22 -14
A/nonA task (Small volume corrected)

L Putamen 177 4.25 -32 -10 -2

R Anterior Hippocampus 38 3.8 28 -10 -22

TABLE 6.4. REGIONS THAT EXHIBITED GREATER ACTIVATION DURING CORRECT THAN
INCORRECT TRIALS. Regions identified for each task separately.

Correct > Incorrect, A/B task

b

FIGURE 6.6. REGIONS ASSOCIATED WITH SUCCESSFUL CATEGORIZATION DURING THE
A/B TASK. a,b: Lateral view of the left and right hemisph&ierendering with activation
overlay. c,d: Medial view of the left and right hiephere. e: Coronal section showing
medial temporal lobe activation.
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Correct > Incorrect, A/nonA task

=-10

FIGURE 6.7. REGIONS ASSOCIATED WITH SUCCESSFUL CATEGORIZATION DURING THE
A/NONA TASK. Coronal section featuring left putamen and righpbcampal activation.

FIGURE 6.8. COMPARISON OF MTL REGIONS IMPLICATED IN THE A/B TASK AND THE
A/NONA TASK. Sagital and horizontal section illustrating retatiocation of the regions
of MTL that showed greater activation in correarhncorrect trials during the A/B task
(red) and the A/nonA task (blue).
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Discussion

Prototype learning is ubiquitous in everyday cdgnit We hypothesized that
prototype learning is not mediated by a single aksystem, but rather that the system
relevant to prototype learning depends criticalpom the circumstances of learning —
whether the task involves learning to discrimiratngle category from other stimuli, or
two categories from each other. Holding constaet larning mode, structure of the
categories, and fMRI contrasts, the results presehere suggest that A/nonA and A/B
prototype learning are supported by dissociablenitig and neural processes. First, we
found a negative correlation between A/nonA and fagk behavioral performance even
when learning was comparable in both tasks. Lackesformance correlation between
two tasks is often used as an indicator the twkstasly on different cognitive processes
(Conway & Engle, 1996; Kane & Engle, 2003; Shah &ake, 1996). Second, we found
dissociable neural systems supporting the two tasksy functional MRI. Although there
were a number of regions commonly activated or tiketed during both the A/nonA
task and the A/B task compared to a fixation basela direct contrast of stimulus
evoked activity during the two tasks revealed saveggions that were preferentially
active during one task versus another,. Most ngtahke A/B task recruited to a larger
degree parahippocampus, inferior parietal and @ffibiintal cortex, while the A/nonA
task recruited to a larger degree lateral occipgtadl posterior parietal cortices, and
striatum. We also identified regions that were ptdee of correct categorization by
contrasting neural activity during correct and imeot trials. We confirmed the role of
the medial temporal lobes and orbito-frontal cortexthe A/B task and the role of
striatum in the A/nonA task.

These findings are generally consistent with figdinfrom several prototype
learning studies in amnestic patients. Knowlton &adire (1993) found intact A/nonA
prototype learning in patients with MTL lesion-bdsamnesia; Bozoki et al. (Bozoki,
Grossman, & Smith, 2006) and Keri et al. (Keri, idah, Kelemen, Benedek, & Janka,
2001) found relatively spared A/nonA learning irtipats with Alzheimer’s disease; and

Zaki et al. (Zaki, Nosofsky, Jessup, & Unversa@Q3 found impaired learning in the
14z



A/B task, but not in the A/nonA task, in two grougfsaamnesic patients. The involvement
of the MTL in the A/B task has also been implicateda few neuroimaging studies.
Although some A/B fMRI studies did not report higpmpal activation when contrasting
the A/B task versus baseline (Little & Thulborn,080 Seger et al., 2000), others did
when using more detailed contrasts (low versus Higtortions: DeGutis & D'Esposito,

2007; early versus late learning: Little, Shin,c8is& Thulborn, 2006).

The role of the medial temporal lobe in prototypeEalning

Although largely confirming the notion of Ashby amiaddox (2005) that the
A/B task may rely on declarative learning supporbgdthe structures of the medial
temporal lobe whereas the A/nonA task relies ordeotarative learning, the declarative
versus nondeclarative distinction seems to constan incomplete description of the two
tasks. Using the contrast of correct versus incorteals, we found evidence of
hippocampus involvement in the A/nonA task as welhers also found evidence for
MTL involvement in the intentional A/nonA task byrmtrasting categorical (A) and
noncategorical (non-A) stimulus evoked activity Zé&mstein et al., 2000; Reber,
Gitelman, Parrish, & Mesulam, 2003). So, how cas¢hseemingly paradoxical results
be reconciled? Below, we discuss a number of (nliytuaonexclusive) possible
accounts.

First, a simple explanation may be that althoughLM@n be recruited during the
A/nonA task, it is not critically necessary for thesk performance. It is unlikely that
normal healthy participants would not use all reses to perform a task; from this
perspective, neuroimaging and neuropsychologictd dee complementary rather than
contradictory to each other.

A second (not opposing) explanation is that MTiniolved in both the A/B task
and the A/nonA task, but performs a different fumetin each. Consider that the two
training methods likely lead to different categoepresentations (Goldstone, 1996), and
the two tasks have different demands. The A/B tealls to a formation of a symmetric

representation of two contrasting categories (twatghypes) together with their category
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label, emphasizing their distinct features (GoldstoSteyvers, & Rogosky, 2003).
During the testing phase, each stimulus needs toimpared to both prototypes and the
category that is closer to the current stimuluselected as a response. The A/nonA task
likely leads to a formation of a representatioradfingle category with its characteristic
features (Corneille, Goldstone, Queller, & Pot@006). During the testing phase, the
stimulus is compared to this single representatibnt is sufficiently similar, it is
categorized as a member of the category, if ibissufficiently similar, it is categorized
as a nonmember. Because there are a number afediffes in the cognitive demands of
the two tasks, let us consider how different fumtsi of the MTL could support these
demands.

In order to support episodic memory, MTL needseédgrm two complementary
functions, pattern separation and pattern compigiesner & Hopkins, 2006; O'Reilly
& McClelland, 1994; O'Reilly & Rudy, 2000). Patteseparation refers to the ability to
extract distinct details of a new episode to awmathastrophic interference from highly
similar (overlapping) previous or future episod@attern completion refers to the ability
to recall a complete episode based on a partial@oe can speculate that the participant
may use the ease of pattern completion as a measarstimulus category membership
in the A/nonA task; the more cues (prototypicaltdieas) present in the stimulus, the
easier it is reconciled with the complete patteéhe (prototype). On the other hand, both
pattern separation and pattern completion likegy@ role in the A/B task. The pattern
separation mechanism seems to be integral for ttetéask through its extraction of
discriminative features, creating a representatdnthe two contrasting categories.
Pattern completion may be needed in order to s#thecmore similar prototype and to
extract the category label. Although pattern sdparaand pattern completion
mechanisms seem to be based on different subregiddgd L (Bakker, Kirwan, Miller,

& Stark, 2008; Kirwan & Stark, 2007), it is not y&@ear whether they can account for the
results observed here for the A/B task and the w#ntask. Kirwan, Stark and colleagues

found two hippocampal regions - CA3 and dentateugy biased towards pattern
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separation, and the rest of MTL biased towardsepattompletion, an activation pattern
that does not map clearly on the A/B versus A/ndisdinction observed here.

Another distinction of memory functions is that reicollection, familiarity, and
novelty. Recollection is a retrieval accompanied Specific contextual details, while
familiarity and novelty refers to a feeling that it@m has been (or not been) previously
encountered, without the contextual details of @lte Considering the demands of the
two tasks, one can argue that performance in them task can be supported by
familiarity or novelty alone, as all prototypicadtures should be more familiar than all
non-prototypical features. On the other hand, perémce in the A/B task requires the
participant to recall details of learning in orderextract the appropriate category label as
all features are equally familiar. Recollection Heesen shown to critically depend on
intact hippocampus and posterior parahippocampuke idmiliarity-based judgements
have been shown to be relatively spared in patientth hippocampal and
parahippocampal damage (Holdstock, 2005; Tendadkaal., 1999; Westerberg et al.,
2006). The involvement of anterior hippocampusha A/nonA task may then reflect
novelty detection that has been previously ascrifeethis region (Daselaar, Fleck, &
Cabeza, 2006; B. A. Strange & Dolan, 2006).

The role of striatum in prototype learning

Not fully expected was the role of striatum in #v@onA task. The striatum has
been implicated in nondeclarative category learning number of studies (Nomura et
al., 2007; Poldrack et al., 2001; Seger & Cinco&@02, 2005; D. Shohamy, Myers,
Onlaor, & Gluck, 2004), but it has not been repabriie the A/nonA task before. The
results reported here suggest that the A/nonA taskonly recruits striatum to a larger
extent than the A/B task, but also that it can suppuccessful categorization as early as
after 20 training trials. This is a novel findingtlvrespect to the A/nonA task and one
that needs further investigation. Striatum has beeplicated in gradually learning
stimulus-response-outcome relationships (Knowltdangels, & Squire, 1996; Packard
& Knowlton, 2002; Seger & Cincotta, 2005) and prsiag feedback (Cincotta & Seger,
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2007; Little, Shin, Sisco, & Thulborn, 2006; Madd&xIng, 2005; Seger & Cincotta,
2005). Neither of these functions was of use inAl@onA task, yet striatal activation
was greater during the A/nonA task than A/B taskl avas predictive of a correct
response.

One mechanism by which the striatum may supporonlearning is by its role
in extracting regularities across multiple expecesin probabilistic learning (Poldrack,
Prabhakaran, & Gabrieli, 1999; D. Shohamy, Myersladithi, & Gluck, 2008;
Wilkinson & Jahanshahi, 2007). Because prototypieatures were presented more
frequently than non-prototypical features duringirting, these features could be
extracted and expected during testing. Rodriguet aolleagues (Rodriguez, Aron, &
Poldrack, 2006) found that the activation of velnst@iatum increased parametrically
with prediction error. Such a signal could be uded successful discrimination of
categorical (small prediction error) from noncatécml (large prediction error) stimuli.
In support of this claim, we found two loci in thight ventral striatum that showed
greater activation during noncategorical (nonA) ntha@ategorical (A) stimulus
presentation, although the size of the two loci &2 13 voxels) did not reach the
statistical threshold. The data presented hereesigbat besides its traditional role in
stimulus-outcome learning and feedback processihg, striatum may additionally
support category learning by extracting expectedribution in a set of stimuli in the
absence of outcome or corrective feedback.

The role of the striatum in the A/B task cannotanswered based on the current
data. The striatal learning system for the stimaucome association is considered slow
and incremental (Ashby, Alfonso-Reese, Turken, & ldkan, 1998), typically
dominating performance late in learning, afteritiigal domination by the hippocampal
system (Poldrack et al., 2001; Seger & Cincott&)520Although we did not observe a
striatal contribution to the A/B task here, basedtlee previous literature, it could be

recruited eventually, after enough trials have pdss
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The role of learning mode in the A/nonA task

It is likely that performance in the A/nonA tasksigpported by different learning
systems when the category representation is achuiogdentally than intentionally. For
example, imaging studies including incidental A/Adasks consistently report decreased
occipital activation for categorical patterns (pgdly as the sole activation site) while
findings from intentional A/nonA tasks are less sistent with each other, and usually
different from the incidental findings (Aizensteshal., 2000; Reber, Gitelman, Parrish,
& Mesulam, 2003; Reber, Stark, & Squire, 1998b)g&ding the role of the medial
temporal lobe in the A/nonA task, it is possiblattit is recruited (in addition to other
learning systems) during intentional, but not iecithl learning. To support this claim,
MTL involvement has been reported in neuroimagingdies in intentional, but not
incidental A/nonA tasks (Aizenstein et al., 200@&bier, Gitelman, Parrish, & Mesulam,
2003; Reber, Stark, & Squire, 1998b) and the neydmlogical studies reporting
relatively spared learning in amnesia used incalefgarning conditions (Bozoki,
Grossman, & Smith, 2006; Keri, Kalman, Kelemen, &k, & Janka, 2001; Knowlton
& Squire, 1993). We also found evidence for a rolehe striatum in the intentional
A/nonA task previously unreported in the incidenddhonA task. As a commonality
between the incidental and the intentional A/noas8ki we found some evidence that
perceptual learning, reported consistently in tm@dental version of the A/nonA task,

may also contribute to learning in the intentioA&lonA task.

Generalization

It is important to note that the results presentede provide a snapshot of
application of category knowledge early in learnemgd further research is needed to
determine the generalizability beyond this scopestFwe did not address how the
contrasting A/B or isolated A category representaiare initially generated. Comparing
training in the two tasks directly is complicateg differences in the presentation
methods and stimuli used, so imaging only theriggpthase of the A/nonA task has been
the standard so far (Aizenstein et al., 2000; Reberrk, & Squire, 1998a; Reber, Wong,
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& Buxton, 2002). To help us better understand thigal representation formation, a
manipulation involving only differences in the ogdey label and/or instruction during
training would need to be developed, perhaps ia lnth research of Goldstone and
colleagues (Corneille, Goldstone, Queller, & Pott2006; Goldstone, Steyvers, &
Rogosky, 2003). Second, we studied prototype lagrat a relatively early stage. The
relative contribution of different learning systeiesd their supporting neural structures
likely changes during the course of learning. Fastance, as noted above, several
category learning studies that used feedback trgi(like our A/B task) have shown that
during the course of learning, participants firstyron the medial temporal lobe, but
slowly shift towards the striatal system (Poldratlal., 2001; Poldrack & Packard, 2003;
Seger & Cincotta, 2006). It is possible that th®& Afototype task would exhibit such a
shift after extensive training as well. Third, tetegory structures and stimuli used here
differ from the typical A/nonA task, and we usedfatient contrasts than reported
previously. Previous research on the A/nonA tasniified task-related activations by
contrasting activation for the categorical (A) stimand the non-categorical (non-A)
stimuli. We also tested the contrast of categoriéalstimuli with non-categorical (non-
A) stimuli during the A/nonA task, but no activatidocus exceeded our criterion of
statistical significance. One possibility is thhete were not enough trials (training or
testing) to reveal the distinction. Another podgipthat the previously reported contrast
of categorical (A) and noncategorical (nonA) iteimspecific for the dot pattern stimuli

and/or is present only when non-categorical iterag@andom, unrelated patteris.

Future directions

A strong test of functional relevance of a neuetdion for a cognitive task is
parametric modulation of the region’s activity wghrametric changes in the task. In the
current context, regions supporting the A/B and MieonA prototype learning tasks

should show a modulation of their activity with tiiistance of a stimulus to the category

21t is also important to note that the two studtest included intentional A/nonA task (Aizenstetrag,
2000; Reber, Gitelman, Parrish, & Mesulam, 2008)hlusing dot-pattern stimuli, differed in the rejed
activation sites (there was in fact no overlap).
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prototype. Importantly, two different signaturee @& be expected for the two tasks. In
the A/B task, the representation of the two catiegaiprototypes) is symmetrical, and the
modulation should thus be symmetrical about thegmaty boundary. In the A/nonA task,
only one category exists. Regions supporting caiegion in this task should thus
modulate their activation monotonically with thetdince of a stimulus from the category
A prototype. The graphical representation of theae predictions is depicted in Figure
6.9. Hints of such a relationship have been regdoirtethe literature. For the A/B task,
DeGutis and D’Esposito (2007) have compared easyfidm the boundary) and difficult
(near the boundary) stimuli from category A andegaty B separately. No differences
were found between activation to the A stimuli @imel B stimuli (suggesting symmetrical
representation along the category boundary), butnaber of regions were identified that
were preferentially active for easy or for difficgtimuli on either side of the bound. In
the A/nonA task, differences have been reportedvdsen activation to A stimuli
compared to non A stimuli (Aizenstein et al., 20®eber, Gitelman, Parrish, &
Mesulam, 2003), although no finer-grade parametiaciulation has been reported in the
literature so far. Therefore, it is possible thatere if a neural region supported
performance in both tasks, it may serve a diffefanttion in each. We have attempted
to test these predictions by calculating signalngeaseparately for stimuli at four
distances from the prototype A (distance 0-2, ds#a3-4, distance 6-7 and distance 8-
10) for striatal and MTL loci identified in the gomctive task versus baseline contrast
and in the direct A/B versus A/nonA contrast. Hoeg\due to low number of trials for
each event, these trends were not identifiablefutare research, we would like to

address this question.
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A/B task A/nonA task

Signal strength
Signal strength

Distance from prototype A Distance from prototype A

FIGURE 6.9. PREDICTED PARAMETRIC MODULATION OF SIGNAL STRENGTH IN AREAS
SUPPORTING THE A/B TASK (LEFT) AND A/NONA TASK (RIGHT). Solid line: Signal
decreases as the distance from either prototypB (A#k) or category A prototype
(A/nonA task) increases. Dashed line: Signal ineesaas the distance increases.

Conclusion — the interplay of learning systems

We examined the cognitive and neural processedviegtan A/B and A/nonA
prototype learning using within subject methodolaglyile simultaneously controlling
external variables, such as different categorycsires, learning modes, and fMRI
contrasts that have hindered comparison acrossrexsudies. Based on the current and
existing data, we argue existence of dissociabl@opype learning pathways. The
performance in the A/B task is likely mediated plecit episodic memory processes
based on medial temporal lobe, while performancéhen A/nonA task is mediated at
least in part by a different system, based (inntié@al learning) on striatum and
potentially posterior cortices. Based on the presiditerature, we speculate that
incidental A/nonA learning may differ from both AMBarning and intentional A/nonA
learning and is primarily based on changes in @siog categorical stimuli within the
visual cortex, a form of perceptual learning simitathat observed in perceptual priming
(Schacter & Buckner, 1998). The behavioral enditesf the incidental and intentional

A/nonA learning seem however similar.

15C



One can speculate that all prototype learning systéely play an important and
complementary role in concept acquisition, as edayyprototype learning experience
contains elements of both A/B and A/nonA tasks. Wéed to learn both characteristic
features of a category, as well as features thettdifferentiate that category from related
categories. Each system has its own strengthsienitdtions. The A/nonA learning can
proceed automatically, without intention (inciddniiarning) and without supervision
(Posner & Keele, 1968). Perceptual coherence ot#begory exemplars seems to be a
major limitation in concept learnability (Bozoki,r@&sman, & Smith, 2006; Casale &
Ashby, in press). Acquiring concepts such as casroapple can be supported by the
A/nonA type of learning. The A/B prototype learningquires supervision, but allows
one to form categories that are less perceptualheient and make inferences that are
not based solely on perceptual similarity. The eph®f fruits and vegetables is better
suited for the A/B training. While typically openag in parallel, these prototype learning
systems are dissociable when demands of the taskimed to suit one system versus the
other (as demonstrated here) or when damage tesymtem hinders learning of specific
task versions (as supported by the neuropsychablifierature). Importantly, rather than
the category structure itself, the framing and erntof the task, such as whether a
category is learned in isolation or in contrasaitmther category, plays a crucial role in

recruiting the complementary learning systems.
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Chapter 7: General discussion

MULTIPLE CATEGORY LEARNING SYSTEMS

Throughout this dissertation, we discussed the ebli®ur learning and memory

systems of the brain in category learning. We fothrat different systems seem to be

dominating in different category learning tasks. téntative conclusion about the

relationships between different category learnigks and the four memory systems is

presented in Table 7.1.

Memory type Key

neural

structure
Working Frontal
memory cortex

Procedural habit Striatum
memory

Declarative Medial

memory temporal
lobe

Perceptual Sensory

representation cortex
memory

Cognitive Category
functions/tasks learning task

Category learning
mechanism

Maintenance  Rule-based task Hypothesis testing

and

manipulation of

information

Skills and Information-

habits; integration task

Associative S-R

learning ? Intentional
A/nonA task

Recall and Prototype A/B

recollection task

Priming Incidental
A/nonA task
? Intentional
A/nonA task

Table 7.1. Multiple memory systems in categoryrneay tasks.
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perceptual space and
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During the last decade, a number of studies haygpeththe cognitive and neural
processes involved in rule-based and informatidegration category learning in quite
some detail (Ashby, Alfonso-Reese, Turken, & Watdrb998; Ashby, Ell, & Waldron,
2003; Ashby & Maddox, 2005; Filoteo, Maddox, & DayvR001b; Filoteo et al., 2005;
Maddox & Ashby, 2004; Maddox, Ashby, & Bohil, 2008jaddox, Ashby, Ing, &
Pickering, 2004; Maddox & Ing, 2005; Nomura et @007). In this dissertation, the
empirical studies presented in Chapters 2 and &8h@waova & Maddox, 2006, 2007)
helped to establish and understand the role of wgrknemory in rule-based learning.
The neural and cognitive processes involved ingbype learning are less understood,
and only recently, the dissociation between the AfBtotype task and the A/nonA
prototype task started to set attention. The ewrdistudies presented in Chapters 5 and 6
(Zeithamova, Maddox & Schnyer, in preparation) esent one of the first attempts to
contrast the A/B task and the A/nonA task on thieab@ral and neural level. Although
we could not resolve all antinomies in the existoimgtotype literature, we were at least
partially successful in consolidating some of thék'e demonstrated that the A/B task
and the A/nonA task rely on dissociable cognitivel ameural processes. The A/B task
relies primarily on the medial temporal lobe (MTHgpendent declarative memory
system, whilte the A/nonA task relies primarily thre sensory cortex based perceptual
representation memory and/or the striatum baseckgtoal memory.

Understanding how different learning and memorytesys support different
categorization tasks have several important thiateand practical implications. From
the theoretical standpoint, by accepting that oeffé categorization tasks may be
supported by different learning systems, we werke @b sort through the existing
literature and interpret previously contradictomydings in the new light. We were also
able to propose and conduct new experiments, te#ti@ multiple system theory, and
greatly increasing our understanding of cognitived aneural processes underlying
categorization. Additionally, once the relationshiptween different category learning
tasks and the memory systems that underlie themelisunderstood, the categorization
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tasks themselves can become important tools fodystg the memory systems
themselves. By realizing that category learningustheely on the same mechanisms as
other forms of learning and memory, including tleairal substrate that supports them, a
bridge can be built between the rich categorizafiterature and the rich memory
literature that have been evolving with insuffidiemteraction with one another
(Knowlton, 1999; Poldrack & Foerde, 2008).

The notion of multiple category learning systemsoahas implications from a
practical standpoint. First, we can use the cooedpnce between categorization tasks
and learning systems for neuropsychological diagndSeveral studies have already
embraced this idea. For example, Filoteo et al 7208emonstrated that current
performance in an information-integration task qamadict future cognitive decline in
nondemented patients with Parkinson’s disease;deai (2002) diagnosed early and late
stage of Alzheimer’s disease with the A/nonA taak.the early stage affects primarily
medial temporal lobe (leaving A/nonA task unaffegtdout entire cortex is affected in
the late stage (leading to an impaired A/nonA leeyn Second, we can improve
teaching methods and instruction to utilize alktéag and memory systems rather than
relying exclusively on explicit memorization. Thdsvelopment has already been applied
for some years in second language teaching wheieigxearning of language rules got
de-emphasized while repetition practice receivedewaed attention. Using multiple
memory systems in a given task can greatly impepeed and quality of performance.

Although we have greatly advanced in our understandf different category
learning systems, we need to ask the same qudbktbinas gained recently attention in
the memory systems research: Why do we have nailtiglegory learning systems and
how do they interact? Although advancing the ansmikitake a number of years and is
beyond the scope of this dissertation, we will dssca few promising hints in the next

section.
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CHARACTERISTICSOF THE LEARNING SYSTEMS

Perhaps the easiest answer to the question of whyave multiple category
learning systems is because they evolved facingipfeicategory learning tasks. As we
noted in Chapter 1, each system has its chardatepsoperties — advantages and
disadvantages — that make it more or less suifableertain categorization tasks.

Rule generation, dependent on the frontal cortex, @exemplar memorization,
dependent on the MTL, are explicit processes urdascious control. Because of the
conscious control, they seem to be the defaulthiemans (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Gluck, Shohamy, & Myer€02). Procedural stimulus-
response learning and perceptual learning are thidogoe automatic, implicit forms of
learning that may occur outside awareness (KnowEorFoerde, 2008; Knowlton,
Mangels, & Squire, 1996; Reber & Squire, 1994). Bhéability of different learning
systems to different tasks and learning contexovied from their properties. The explicit,
working and declarative memory provide a flexikdskt representation that can transfer
or generalize easily; the implicit, procedural grdceptual memory is closely tied to the
original context and lacks the flexibility (Ashbill, & Waldron, 2003; Bayley, Frascino,
& Squire, 2005; Casale & Ashby, in press; Gabr&lRackard, 2006; Maddox, Bohil, &
Ing, 2004; Maddox, Filoteo, Lauritzen, Connally, Bejl, 2005; Myers et al., 2003;
Reber, Knowlton, & Squire, 1996). Explicit learniatpo can support fast, even one trial
learning, while procedural learning is gradual,uieqg extensive practice (Ashby & Ell,
2002; Myers et al., 2003; Squire, 2004). Althoulgase properties seem to favor explicit
strategies, the speed and flexibility of expliciiokvledge comes with a price. While
implicit learning occurs essentially automaticallythout effort, explicit strategies are
dependent on limited resources such as attentimrkimg memory, and conscious
awareness (Chapters 2 and 3, Waldron & Ashby, 20@dJlitionally, some category
structures, such as the information-integrationcstires, are not easily acquired by an
explicit strategy.

Besides a particular categorization task, othetofacplay a role in determining

which learning system would dominate in a categtign task. Factors that have
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demonstrated effects on the preferential use derdift category learning systems
include individual differences in the preferredastgy (Gluck, Shohamy, & Myers,
2002), task instruction (E. E. Smith, Patalano, énides, 1998), intention to learn
(Aizenstein et al., 2000; Reber, Gitelman, Parr&hMesulam, 2003; J. D. Smith &
Shapiro, 1989), the length of training (Chang & €&G®003; Seger & Cincotta, 2006),
behavioral manipulations that disfavor one of tgstems (Ashby, Maddox, & Bohil,
2002; Maddox, Ashby, & Bohil, 2003), and neurol@jidimitations involving an
impairment of some systems (Bayley, Frascino, &i®qw2005; Bozoki, Grossman, &
Smith, 2006; Reber, Knowlton, & Squire, 1996). histdissertation, we focused our
attention on the categorization task as the fad&iermining which memory/category
learning system dominates learning. Determining lotiver factors modulate the role of
the categorization task in category learning hanhkmnly touched here (Chapters 2 and
3) and is a topic of future research.

It is important to note that the correspondenceveenh the memory systems, the
category learning mechanisms, and the categorizégks proposed in Table 7.1 should
not be taken as absolute. Rather, | propose tlattain category learning mechanism
and a corresponding memory system is likely dontinaunt not necessarily exclusive, in
mediating learning in a given task. If multiple ®yms are operative in any given task,

how do they interact to support behavior? The segtion discusses this question.

INTERACTIVE CATEGORY LEARNING SYSTEMS

The striatal procedural system and the medial temadaleclarative system

The only two systems whose interaction has beediestuboth in the general
memory systems research and in the context of eatelparning are the striatal
procedural system and the MTL declarative systenthé tradition of memory research,
a number of studies showed that these two systeera $0 be competitive in nature (for

a review, see e.g. Packard & Knowlton, 2002; Paki& Packard, 2003). For instance, a
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rat can solve a maze task based on learning tharded place, an MTL dependent type
of memory, or based on learning the rewarded tgrsgguence (or sometimes learning
the rewarded cue), a striatal dependent type of anerMorris, Garrud, Rawlins, &
O'Keefe, 1982; Packard & Teather, 1999). The neatiominance of each system can be
affected by a lesion or a pharmaceutical interoemtiwith lesions to one system
sometimes leading to amprovementn tasks that rely on the other system (Eichenhaum
Fagan, Mathews, & Cohen, 1988; Morris, Garrud, Rayl& O'Keefe, 1982; Packard &
McGaugh, 1992, 1996; Packard & Teather, 1997; Sden Wingard, & Packard, 2002).
There is also a general strategy shift througheatning, with place (MTL) responses
dominating early in learning and turning (striata$ponses dominating later in learning
(Chang & Gold, 2003).

Recently, several neuroimaging studies in humaplsceged the interaction of the
MTL and the striatum during acquisition of categation tasks. Specifically, the MTL
and striatum seem to be negatively correlated adrnubviduals and across time, with the
activity in MTL decreasing and the activity in thgiatum increasing with time (Poldrack
et al., 2001; Seger & Cincotta, 2006). Both memanyl categorization research thus
suggest that the striatal procedural system andMmé declarative system interact
throughout learning in a competitive manner, with MTL dominating early in learning
and the striatum dominating later in learning.Hrs tdissertation, we studied one task, the
A/B task, primarily dependent on the declarativemmugy. Based on the literature
reviewed above, it is possible that the A/B taskynadso become dependent on the
procedural, striatal system at later stages oilagr As we only included 20 training
trials, we were not able to test for the transitioom the MTL to the striatum based
learning in our data, but future research may axidiieis question.

The striatal procedural system and the frontal hytpesis testing system

Another two systems whose interaction has beenosexp in categorization
literature is the interaction between the hypothdesting system and the procedural
learning systems proposed in COVIS (Ashby, AlforRsese, Turken, & Waldron,
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1998). COVIS assumes that both systems attemptleard each categorization task
encountered. On each trial, both systems generatesponse, with the strength
(confidence) of the response based on the previaisry of success. The systems’
responses then compete to determine the final opel observable response), with the
system producing the strongest response winning Tdut explicit, frontal hypothesis
testing system initially dominates, but when no badizable rule providing good
performance is found, the striatal procedural sysstarts dominating over time as the
gradual trial-by-trial learning increases its acay

Although further research is needed, | did not fiemidence for bilaterally
competitive nature of these two systems. Firstsictar the findings from the memory
literature about competition between the striatal the MTL system. One signature of
the competitive nature of the interaction betwdentivo systems was that impairment to
one system facilitated learning mediated by thewo#ystem. Analogous evidence for the
competition between the hypothesis testing systach sdriatal procedural system has
been found only unidirectionally. When behavioraimpulations adversely affect the
procedural system, the hypothesis testing systemaires dominative throughout learning
even for information-integration category structuf@shby, Maddox, & Bohil, 2002;
Maddox, Ashby, & Bohil, 2003). However, we found emidence that the same would be
true for manipulations affecting the hypothesiditgssystem. In Chapters 2 and 3, we
would expect that in the working memory conditionsarticipants should rely
preferentially on the unaffected procedural syststead, the participants continued to
rely on the unsuccessful hypothesis-testing systeseems the bias towards the explicit
hypothesis-testing strategies is hard to overcomthe future, perhaps a combination of
an information-integration task with an additiomatruction manipulation (such as used
in e.g. Kemler-Nelson, 1984; E. E. Smith, Patajataalonides, 1998; J. D. Smith &
Shapiro, 1989) may be able to promote non-ex@icétegies in such circumstances.

Second finding questioning the competitive natdrthe two systems comes from
computational modeling of the COVIS theory. Consittaal-by-trial resolution of the
competition between the two systems. COVIS propdsaisthe final output (observable
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response) is generated from the responses of theubsystems using a winner-takes-all
method. An alternative is a “cooperative” naturettog resolution. On the level of the
computational model, this can be achieved by deteng the final output as a weighted
sum of the responses of the two subsystems. Acseseral applications of the
computational model COVIS, we found that the impdatation using the weighted sum
(“cooperative”) resolution provided superior modielcompared to the winner-takes-all
(“competitive”) resolution (Maddox, Filoteo, & Zéamova, under review; Zeithamova,
Filoteo, Simmons, Maddox, & Paulus, 2007). In sumynbased on the data currently
available, the frontal hypothesis-testing systerd @re striatal procedural system seem

cooperative rather than competitive in nature.

And the questions for future research

For both interactions discussed above — the déslaranemory with the
procedural memory and the hypothesis-testing systeémthe procedural memory, time
seems of essence, with a shift from explicit sgig® to procedural learning with length
of training. Although in this dissertation we orfigcused on immediate performance
evaluation, it is important to note that the re@mtperiod also plays an important role.
As we discussed in Chapter 1, individual exempbdaly an increasingly smaller role and
the abstracted prototypes or rules an increasirggiaole when category knowledge is
tested with a delay after acquisition (Homa, 198ma & Little, 1985; Posner & Keele,
1970; Reed, 1972). Although the procedural andalenechanism of this shift is not yet
well described, it likely involves changes withindéor between supporting memory
systems. Similarly, working memory cannot suppetention of a categorization rule
from session to session; another long-term memaghanism needs to be involved if
what was learned about categories should last.e@tlyr our understanding of how
category learning and representation changes alen@gs time scales is very incomplete
and further research is needed in this area.

Very little is also known about the interactionstioé perceptual learning system
and any other system. We can speculate that pealapemory contributes to category
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learning, providing support to other category l@agmmechanisms, whenever perceptual
similarity within a category is greater than petoap similarity between categories. The
first computational model of perceptual learningcategorization was proposed by Keri
and colleagues (2002). We may hope that futuregoagdearning models will be able to

incorporate this perceptual learning model as astibo more complex models.

Finally, we can ask whether the list of memory eys in category learning is
now complete. Probably, it is not. Besides the foemory systems that were previously
implicated in category learning and thus considerethis dissertation, other memory
systems exist (see e.g. Squire, 2004, for a reesr@w). Two neural structures that have
a demonstrated role in learning and memory, buewet discussed here, are cerebellum
and amygdala. Cerebellum has been associated vatlairc types of classical
conditioning (McCormick & Thompson, 1984) and mokearning (Ito, 2000). Although
there are currently no theories of category leayivat would involve the cerebellum, we
may find ourselves revising this view in a few yeas recent findings suggest that the
cerebellum may play a previously underappreciabéel in cognition (Paquier & Marien,
2005; Tamminga & Vogel, 2005; Thach, 1998). Sinllathe amygdala has been
traditionally implicated in emotional learning, $uas fear conditioning (Bechara, Tranel,
Damasio, & Adolphs, 1995; Berntson, Bechara, Damabianel, & Cacioppo, 2007).
Recent studies, however, also demonstrated thefdhe amygdala in modulation of the
MTL and striatum contribution to learning and pemi@ance (Mcintyre, Marriott, & Gold,
2003a, 2003b; Packard & Wingard, 2004). Understandihe resolution of the
competition between the MTL and the striatal leagnsystem based on the task context
may thus not be possible unless we include the datggnto the equation.

Even within the four learning systems that we cdex®d, each system may
contribute to category learning via several digtimechanisms. In this dissertation, we
saw two hints of these dissociations within a swysté&irst, in Chapter 6, we found
activation in the medial temporal lobe in both #W& task and the A/nonA task. The
specific locus of this activation, however, différeetween the tasks, probably reflecting
the difference in the specific learning mechaniswcts/e in each task. Second, the striatal
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system has been traditionally implicated in slowal4and-error learning, where feedback
plays an important role (Ashby, Queller, & Berrety999; Seger & Cincotta, 2005;
Daphna Shohamy et al., 2004). However, in Chaptene identified striatum in the
A/nonA task, implying that the striatum can extraggularities in the stimuli without
external feedback. This finding is not entirely mising as novel stimuli have been
reported to induce similar dopamine release irsthatum as a reward (Lind et al., 2005;
Pierce, Crawford, Nonneman, & Mattingly, 1990; \¥iths, Rolls, Leonard, & Stern,
1993), and activation of the striatum in resporsendvely was also found in humans
using neuroimaging (Berns, Cohen, & Mintun, 199%)s thus likely that striatum can
gradually learn regularities and build expectatamnoss a series of stimuli, even in the
absence of external feedback. Such mechanism gamoducategory learning but is
distinct from the feedback mediated stimulus-respormapping implied in the
information-integration learning. Additionally, amior striatum is reciprocially
connected with the prefrontal cortex as a parthef attentional network. It thus likely
plays yet another role in category learning, thmgetin supporting rule-based learning by
mediating attention switches between different sl dimensions (Ashby, Noble,
Filoteo, Waldron, & EIll, 2003; Brown & Marsden, )8 Teasing apart distinct
mechanisms of category learning with striatum anthimw MTL is the next step in

categorization research.
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