
Evolutionary Decomposition for 3D Printing
Eric A. Yu, Jin Yeom, Cem C. Tutum, Etienne Vouga, Risto Miikkulainen

The University of Texas at Austin, Department of Computer Science

Austin, Texas 78712

[yu.eric,jinyeom]@utexas.edu,[tutum,evouga,risto]@cs.utexas.edu

ABSTRACT
Capabilities of extrusion-based 3D-printers have progressed sig-

ni�cantly, but complex forms are still challenging to print. One

major problem is overhanging surfaces. These surfaces require

extra support structure to be printed, wasting material and time.

Furthermore, delicate parts of the object can be damaged when

these structures are removed. One potential solution is to print

the object in parts, but decomposition is di�cult. This paper pro-

poses an evolutionary approach for determining optimal object

decompositions for 3D printing. Two alternative methods, with dif-

ferent complementary strengths, are tested: Multi-objective Genetic

Algorithm (MOGA) and Covariance Matrix Adaptation Evolution

Strategy (CMA-ES). MOGA is able to evolve a set of decompositions

at variable complexity, i.e. number of pieces, whereas CMA-ES is

able to �nd a limited number of comparable decompositions with

signi�cantly less computational time.

CCS CONCEPTS
•Computingmethodologies→Continuous space search; Ge-
netic algorithms; Shape analysis;

KEYWORDS
Real parameter Genetic Algorithm, Multiobjective Optimization,

CMA-ES, 3D Printing, Decomposition, Support Structure

ACM Reference format:
Eric A. Yu, Jin Yeom, Cem C. Tutum, Etienne Vouga, Risto Miikkulainen.

2017. Evolutionary Decomposition for 3D Printing. In Proceedings of GECCO
’17, Berlin, Germany, July 15-19, 2017, 8 pages.

DOI: http://dx.doi.org/10.1145/3071178.3071310

1 INTRODUCTION
Additive Manufacturing (AM), commonly known as 3D Printing

or Rapid Prototyping, is a �exible fabrication method in which a

3D Computer Aided Design model of a product is digitally sliced

into thin layers that are fused on top of each other to form the �nal

design. Fused Deposition Modeling (FDM) is an extrusion-based

3D printing process that is widely adopted because it is simple

and inexpensive. However, FDM technology also has signi�cant

limitations. Most importantly, the heated and lique�ed material

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4920-8/17/07. . . $15.00

DOI: http://dx.doi.org/10.1145/3071178.3071310

has to be laid down in layers with each layer supported by the

layers beneath it. Therefore, the maximum slope of overhanging

geometry is limited. Often, extra support structures composed of

the same printing material but used in lower density will be printed

alongside the original object to support the overhanging regions

with shallower slope (Fig. 1, Left). This results in a waste of material

since these support structures are removed and discarded after the

printing process. Most signi�cantly, removal of these supports can

be time-consuming and frustrating (Fig. 1, Right), especially when

the support structures are printed in di�cult-to-access, but visible

regions of the part. Moreover, some extra material can remain at-

tached to the printed object after the supports are removed. In many

cases, additional post-processing surface-treatment operations such

as sanding or acetone vapor smoothing need to be applied to re-

move blemishes caused by this extra material. There is also the risk

that delicate parts of the object may break while removing extra

support material. Therefore, the amount of support structures used

in 3D printing plays an important role in post-processing e�orts

and the quality of the �nal print.

Figure 1: Left: 3D printed cowwith support structure. Right:
Some of the basic tools used for removing support material
including pliers, a spatula, and sandpaper.

There are several approaches to avoid problems associated with

the use of support structures in FDM: (1) Water soluble �lament

can be used as the support structures and washed away after the

printing process. However, this approach is not widely available as

it requires a printer with two extruders that can handle multiple

types of �lament. (2) The printing orientation of an object can be

optimized, but this approach can only reduce the use of support

material up to a certain level [12]. (3) More e�cient design of

the support structures can reduce the printing time by using less

support material [4, 10]. 4) The topology of the original design can

be optimized subject to extra overhang constraints [5, 9]. 5) The

object can be decomposed into smaller printable parts. This paper

will focus on the 5th approach, because the other methods are less

practical; they either aim to slightly reduce the use of supports

or to redesign the 3D object to be printed. Fig. 9 also shows that

the proposed methodology can completely remove the need for

support structures for most objects.

GECCO ’17, July 15-19, 2017, Berlin, Germany Eric A. Yu, Jin Yeom, Cem C. Tutum, Etienne Vouga, Risto Miikkulainen

Several related studies have attempted to decompose an object

into printable parts. Luo et al. [8] used object decomposition to

cut a large object into parts that �t within a printing volume. Simi-

larly, Chen et al.[1] decomposed an object and packed it to �t into

a smaller print volume. However, these studies do not consider

the reduction of support structures for 3D printing. Vanek et al.

[11] suggested a methodology, that converts 3D solid mesh into a

shell by hollowing its inner parts and then dividing the shell into

smaller segments, however this method is unsuited for FDM since

the resulting arbitrary shell pieces would need support. Hu et al.[7]

proposed a bottom-up clustering algorithm for decomposing an

object into approximate pyramidal pieces. The idea is that pyra-

midal pieces can be printed without supports as any point within

the object will have material beneath it. However, in practice, 3D

printers can print non-pyramidal objects as long as the orientation

of the faces fall within the printer’s tolerances. In contrast to the

pyramidal decomposition work, the proposed methods employ a

top-down evolutionary approach to the decomposition problem

and does not limit decompositions with pyramidality constraints.

To solve this problem, two alternative evolutionary methods

with complementary strengths are proposed: Multi-objective Ge-

netic Algorithm (MOGA) and Covariance Matrix Adaptation Evolu-

tion Strategy (CMA-ES)[6]. MOGA is developed to simultaneously

evolve solutions with di�erent topologies and is able to �nd a �nal

set of decompositions at variable complexity, i.e. number of pieces.

On the other hand, CMA-ES evolves a population of solutions with

identical topologies and is able to �nd a limited number of compa-

rable decompositions with signi�cantly less computational time.

The paper is organized as follows: First, the decomposition prob-

lem is formulated, and the representation of the candidate object de-

compositions is introduced. Next, the working principles of MOGA

and CMA-ES are given. Then, six 3D objects that are frequently

used in the computer graphics community for test purposes are

decomposed using the both evolutionary methods and the results

are compared. Quantitative results are accompanied by the prints

of successful decompositions, many of which do not require any

support structure. Finally, outcomes of both methodologies are

brie�y discussed and some ideas for the future work are elaborated.

2 METHODOLOGY
Two separate evolutionary approaches searching for object decom-

positions that result in the greatest reduction of overhanging area

are presented and compared. Because of the correlation between

overhanging area and the need for support structures during print-

ing, solutions resulting in large reductions of total overhanging

area will also be the solutions that reduce the amount of support

structures required to print the object. The �rst approach uses

MOGA to search for an optimal decomposition while our second

approach uses CMA-ES. Each of these methods has advantages over

the other that can be bene�cial in the object decomposition domain.

In contrast to CMA-ES, MOGA allows for encodings of candidate

solutions to be of variable length. As a result, object decompositions

with varying number of cuts can be evolved simultaneously with

MOGA. However, CMA-ES is able to converge on optimal solutions

with a much smaller population size, greatly decreasing the number

of �tness evaluations performed compared to MOGA.

Both approaches are implemented using Distributed Evolution-

ary Algorithms in Python (DEAP) [2], an evolutionary computation

framework for Python which provides functionality for rapid devel-

opment of Evolutionary Algorithms. Another advantage of DEAP

is that its integration with the Scalable COncurrent Operations

in Python (SCOOP) module allows for objective evaluations of

candidate solutions to be run in parallel.

2.1 Representation of Object Decompositions
Object decompositions for both approaches are represented as a

Binary Space Partitioning (BSP) Tree. The BSP tree is a �exible

and recursive formulation for the separation of pieces through a

series of planar cuts [8]. Each node of the BSP tree contains the

information necessary to represent a single cutting plane as a point

and a normal vector. The root node represents an initial cutting

plane that divides the object into two pieces. Each left child then

represents a further division of the resulting piece that is opposite

the normal direction of its parent’s cutting plane. Each right child

represents a further division of the resulting piece that is in the

direction of its parent’s cutting plane. A diagram depicting one

such tree and its corresponding object decomposition is shown in

Figure 2.

Figure 2: A diagram illustrating object decomposition using
a Binary Space Partitioning (BSP) tree representation. Left:
Each square node represents a cutting plane through the ob-
ject while each circle represents a resulting piece. Right: A
visualization of the decomposition process is givenusing the
BSP tree on the left with plane colors corresponding to the
square nodes.

Each BSP tree is encoded as an array of continuous values be-

tween 0 and 1. Each node of the BSP tree is represented by a group

of �ve contiguous values within this array. The �rst three values

represent the location of a point within the bounding box around

the object as determined by the minimum and maximum x , y, and z
values of the points composing the object. The �nal two values rep-

resent the direction of the cutting plane’s normal vector. The �rst of

these values represents a rotation of the normal vector around the

x-axis while the second value represents a rotation of the normal

vector around the y-axis. Together, these two angles can represent

any orientation of the normal vector. To construct the BSP tree

from the array representation, the �rst set of �ve values within

the array represent the root cutting node. Then for each following

cut, the point value of the cutting plane is checked to determine

which piece it lies within. This comparison determines the location

Evolutionary Decomposition for 3D Printing GECCO ’17, July 15-19, 2017, Berlin, Germany

within the tree where the new node should be added. The process

repeats until every cutting plane is added to the tree.

2.2 Objective Function
When applied to the original object, the BSP tree divides the object

into several smaller parts that make up the original object when

pieced together. The total overhanging area of these parts is calcu-

lated by choosing the optimum printing orientation for each piece

and summing the area of faces with orientation less than 45 degrees

with respect to the printing plane. Our optimization algorithms try

to �nd the object decomposition that produces parts that have the

smallest total overhanging area.

Evolutionary approaches lend themselves well to multiobjective

optimization. While the goal is to �nd the object decomposition

that minimizes overhanging area, breaking the object into hun-

dreds of minuscule pieces is also unacceptable as having many

pieces could result in extra work required to put the object together,

defeating the goal of reducing the post-processing work. There-

fore, the minimization of the number of cuts is considered as a

secondary objective. Fig. 3 shows the solutions in the objective

space schematically. The Pareto front is drawn in a continuous

manner even though the discrete nature of the number of cuts

results in columnar distribution.

When working with multiobjective optimization, two important

concepts are domination and the diversity preservation. A solution

x1 is said to dominate solution x2 if for all objective values fi (x1)
and fi (x2) for i = 0, 1, ...,m, fi (x1) ≤ fi (x2), and for at least one i ,
fi (x1) < fi (x2). The Pareto Optimal Set is the set of solutions that

are not dominated by any other solutions.

Figure 3: Schematic view of the distribution of di�erent slic-
ing con�gurations togetherwith the Pareto solutions for the
tree object in the objective space.

2.3 Mesh Reduction
Evolutionary Algorithms iterate over multiple generations and the

�tness evaluation must be performed on every candidate solution

in each generation. This iteration results in a large number of �t-

ness evaluations. The objective function evaluation can be fairly

expensive as the execution times of cutting the object, �nding the

optimal printing plane, and summing the area of overhanging faces

all increase as a function of the number of vertices and faces of the

object. There are a wide range of algorithms available for reduc-

ing the number of vertices and faces in a mesh while maintaining

the major structural features of the object. By �rst simplifying the

mesh using a fast mesh simpli�cation program and then performing

optimization on the simpli�ed mesh, the time taken for objective

evaluation can be greatly reduced. Since the simpli�ed object main-

tains the basic shape of the original object, the resulting BSP tree

solutions found for the simpli�ed mesh will also result in good de-

compositions of the original object. The process of simplifying the

mesh can be done e�ciently, taking an insigni�cant amount of time

compared to time taken for �tness evaluation. The reduction of the

number of vertices and faces greatly improves the execution time

of the objective evaluations in our algorithms. In the experiments,

a simpli�cation of the meshes keeping 10% of the verticies of the

original mesh is performed using a fast quadratic mesh decimation

algorithm. Future work can be done to automatically �nd the opti-

mal amount of reduction to be used, and feature preserving mesh

reduction algorithms can be used to further reduce the resolution

of the mesh while preserving important topological features.

2.4 Method I: MOGA
The �rst method for �nding optimal object decompositions relies on

MOGA to �nd a set of solutions minimizing both total overhanging

area and number of cuts. During initialization, a population of

candidate solutions is created. Each candidate solution is referred

to as an individual. Each individual, which is encoded as an array

of continuous values between 0 and 1, represents a BSP tree that

can be applied to the object to decompose it into smaller pieces. In

each iteration of MOGA, there is a selection phase in which the

candidate solutions are sorted using that solution’s �tness value.

The genetic operators of crossover and mutation are then applied

to the best candidate solutions in order to form the next generation

of candidate solutions. The algorithm is presented in detail below.

Algorithm 1 MOGA Object Decomposition

1: procedure decompose(obj, pop_size = 50)

2: pop := initialize_pop(pop_size)
3: f itnesses := evaluate_fitnesses(pop,obj)
4: for i from 0 to N do
5: pop[i]. f itness := f itnesses[i]

6: children := ∅

7: дeneration := 0

8: while дeneration < 50 do
9: pop := pop ∪ children

10: fast_non-dominated_sort(pop)
11: pop := pop[: pop_size]
12: children := mutation_and_crossover(pop)
13: f itnesses := evaluate_fitnesses(children)
14: for i from 0 to len(children) do
15: children[i]. f itness := f itnesses[i]

16: дeneration := дeneration + 1

GECCO ’17, July 15-19, 2017, Berlin, Germany Eric A. Yu, Jin Yeom, Cem C. Tutum, Etienne Vouga, Risto Miikkulainen

2.4.1 Selection. Object decompositions are optimized with re-

spect to the objectives of minimizing overhanging area and mini-

mizing the number of cuts used to decompose the object. During the

selection phase, the new candidate solutions are �rst evaluated in

parallel to determine their �tness values. Two values are calculated

for each object, one for total overhanging area and one for the num-

ber of cuts. An elitist approach is chosen, so the newly evaluated

candidate solutions (o�spring) are added to the already evaluated

parent solutions from the previous generation prior to selection.

The combined set of candidate solutions is then sorted using the

non-dominated sorting based selection algorithm in NSGA-II [3].

In NSGA-II, a crowding distance value is assigned to each solution

to determine that solution’s distance from its neighboring solutions.

This value is used to maintain diversity during selection by prefer-

ring solutions that are farther away from their neighbors. However,

since the number of cuts is a discrete value, crowding distance does

not have much of an e�ect and can be ignored. The best solutions

are chosen to be the parents of the next generation. Crossover

and mutation operators are applied to the parents to form new

candidate solutions that make up the o�spring population.

2.4.2 Crossover. The crossover operation takes two parent so-

lutions as input to create o�spring solutions. The intuition is that

taking features from two strong parent solutions may produce

similarly good o�spring solutions. Two crossover operations are

employed in this approach. The �rst type, macro crossover, takes

a random set of cuts from both parent solutions and concatenates

these cuts to form a new solution. The remaining cuts from both

parents are then combined in the same manner to create a second

new solution. A diagram illustrating this type of crossover is shown

in Fig. 4. The second type, micro crossover, involves selecting a ran-

dom cut from each parent solution and either swapping the points

of the two cutting planes or swapping the angles of the planes. The

motivation behind this type of crossover is that combining features

of a cutting plane that has a good orientation, but bad position with

a cutting plane that has a good position, but bad orientation can

result in a better overall cutting plane. A diagram illustrating this

type of crossover is shown in Fig. 5.

Figure 4: Diagram illustrating macro crossover. This
crossover swaps entire cutting planes between two candi-
date solutions.

2.4.3 Mutation. The mutation operation takes one candidate

solution and alters it to create a new candidate solution with similar

Figure 5: Diagram illustrating micro crossover. This
crossover swaps either a cutting plane’s location or its ori-
entation with that of another cutting plane

features. Two di�erent types of mutation are employed. The �rst

type takes a candidate solution and randomly permutes the order

that cuts appear in the solution’s array representation. Because of

the way the solution array is translated to the BSP tree, ordering of

the cuts can have a signi�cant in�uence on the object decomposition

produced. The �rst cut is always considered as the root of the BSP

tree and cuts falling earlier in the array tend to lie closer to the

root. The second type of mutation adds a small amount of 0-mean

Gaussian noise to either the coordinate point of a cutting plane

or to the angles that determine the normal vector of the plane. A

diagram illustrating the two di�erent mutation operations is shown

in Fig. 6.

Figure 6: Diagram illustrating mutation. Left: An example
of a mutation switching the order of cuts. Right: An ex-
ample of mutation with a small perturbation of the cutting
planes.

2.5 Method II: CMA-ES
The second method uses the CMA-ES algorithm. As opposed to

MOGA, which requires a large population of candidate solutions,

CMA-ES is able to converge onto a good solution with a much

smaller population size. Also, while there are many parameters to

tune for MOGA (e.g. crossover rate, mutation rate, ect.) with no

single combination of parameters working best across all objects,

CMA-ES requires minimal parameter tuning. In CMA-ES, a new

population of candidate solutions is created in each iteration by

drawing samples from a multivariate Gaussian distribution as de-

termined by the algorithm’s internal parameters. Then, the �tness

of each candidate solution is evaluated in parallel by applying the

objective function. Finally, the calculated �tness values of the can-

didate solutions are used to update the internal parameters of the

Evolutionary Decomposition for 3D Printing GECCO ’17, July 15-19, 2017, Berlin, Germany

algorithm including the covariance matrix and mean which results

in a new distribution from which new candidate solutions can be

drawn. Iterations continue until convergence or until a maximum

number of iterations is reached. Convergence occurs when all solu-

tions have �tness values within a small range or when the �tness

of the median solution and �tness of the best solution show no

improvement over 20 iterations. The algorithm is shown in detail

below.

Algorithm 2 CMA-ES Object Decomposition

1: procedure decompose(obj)
2: num_cuts := 1

3: solutions := ∅
4: best_score := in f inity
5: repeat
6: result := cma-es_decompose(obj,num_cuts)
7: solutions .append(result . f itness)
8: score := result . f itness
9: if score < best_score then

10: best_score := score

11: num_cuts := num_cuts + 1
12: until score > best_score
13: return solutions
14: procedure cma-es_decompose(obj,num_cuts)
15: best_solution := null
16: best_f itness := in f inity
17: repeat
18: pop := generate()
19: f itnesses := evaluate_fitnesses(pop,obj)
20: sort zip(pop, f itnesses) by f itnesses
21: if f itnesses[0] < best_f itness then
22: best_solution := pop[0]
23: best_f itness := f itnesses[0]

24: update_parameters()
25: until all solutions have similar �tness or

no improvement in �tness in 20 generations

26: return solution, f itness

Because candidate solutions must have the same size for CMA-

ES, the algorithm is applied iteratively, increasing the number of

cutting planes after each iteration. The process of increasing the

number of cuts and running CMA-ES ends when the best solution

found at the end of the current iteration results in pieces with

greater total overhanging area than the best solution found in the

previous iteration where solutions used one less cut.

3 RESULTS
In this section, results for both MOGA and CMA-ES are presented.

The two algorithms are compared using six 3D objects that are

frequently used in the computer graphics community. First, both

algorithms are executed to �nd a Pareto set of object decomposi-

tions for each object. The overhanging area of the solution pieces

is compared to the overhanging area of the original object. Then,

to determine the real reduction in support structures used, the orig-

inal objects are printed alongside select solutions and the amount

of support structures is compared. The chosen models exhibit a

range of sizes and di�er widely in the amount of support structures

required during printing.

3.1 Reduction in Overhanging Area
First presented are results relating to the reduction of total overhang

area obtained through object decomposition. The total overhang-

ing area of each object prior to decomposition is shown in Table

1. Note that di�erent objects may di�er amounts of overhanging

area depending on the scale of the object as well as topological dif-

ferences. Both MOGA and CMA-ES produced results that reduced

overhanging area compared to that of the original object.

Object Total Overhanging Area

Bunny 59.5603

Dolphin 0.4607

Elephant 0.6048

Fertility 0.1542

Homer 0.3138

Horse 0.3151

Table 1: Total area of overhanging faces prior to object de-
composition. The overhanging area varies greatly depend-
ing on the topology and size of the object.

3.1.1 MOGA Results. MOGA was tested for object decompo-

sition over a variety of crossover and mutation rate parameter

combinations. A 4-by-4 grid search was performed to �nd the

combination of crossover and mutation rate which works best for

object decomposition. Each initial population consisted of 50 ran-

domly generated candidate solutions each consisting of a BSP tree

encoding up to six cutting planes. In each experiment, the Genetic

Algorithm was allowed to run for 50 generations. No particular pair

of crossover and mutation rates had a clear advantage across all

objects. The overhanging areas of the best set of Pareto solutions

for each object are shown in Fig. 7. The solutions are very good

with even the single cut solutions resulting in over 90% reductions

in total overhanging area compared to the original object.

3.1.2 CMA-ES Results. CMA-ES was tested using the same set of

objects. Unlike MOGA, which was run for a total of 50 generations,

the CMA-ES algorithm was allowed to run until convergence. The

overhanging area of the Pareto solutions found by the CMA-ES

approach is shown in Fig. 7. Though this approach used a much

smaller population size, the quality of solutions obtained using

CMA-ES is very similar to the quality of those obtained through

the MOGA approach.

3.1.3 Timing Statistics. Execution of both approaches are timed

on a machine with an Intel(R) Core(TM) i7-3770 3.40GHz CPU

with 12GB of RAM. The timing statistics are shown in Table 2.

While it looks like execution time is rather high, the time it takes to

decompose an object into printable parts is quite small compared

to the many hours it takes to print an object. For the majority of

objects, CMA-ES took less time to execute compared to MOGA.

Because di�erent object decompositions within a population do not

depend on each other, �tness calculation can be done in parallel to

signi�cantly reduce execution time.

GECCO ’17, July 15-19, 2017, Berlin, Germany Eric A. Yu, Jin Yeom, Cem C. Tutum, Etienne Vouga, Risto Miikkulainen

Figure 7: Overhanging area of Pareto solutions found with MOGA and CMA-ES approaches. Both approaches found object
decompositions that have signi�cantly less overhanging compared to the original objects. The initial overhanging area for
each shape is shown in Table 1.

Figure 8: Original objects printed with support structures. Support structures need to be printed under overhanging areas.
Supports waste material and are time-consuming to remove.

Runtime (mins)

Object MOGA CMA-ES

Bunny 7.61 3.90

Dolphin 10.63 11.45

Elephant 17.13 4.30

Fertility 27.30 8.18

Homer 9.68 1.20

Horse 11.22 7.48

Table 2: Timing statistics of object decomposition on an In-
tel(R) Core(TM) i7-3770 3.40GHz CPU with 12GB of RAM.

3.2 3D Printing Results
To determine the actual reduction of support structures in solutions

found with our methods, both the original object as well as select

solutions were printed using a Flashforge Creator Pro 3D printer.

The original objects printed with support structures is shown in

Fig. 8.

3.2.1 Reduction of Support Structures. The solutions produced

by the MOGA and CMA-ES approaches greatly reduce the amount

of required support material. It is important to note that most

printers are able to print very small areas of overhang. This means

that sometimes a solution with fewer cuts but with a small amount

of overhang can still be printed without requiring support. Having

a set of Pareto solutions allows the user to perform qualitative

Evolutionary Decomposition for 3D Printing GECCO ’17, July 15-19, 2017, Berlin, Germany

Figure 9: Select printed solution pieces. Homer andHorse solutionswere obtained from theMOGA approachwhile Bunny, Ele-
phant, Fertility, and Dolphin solutions were obtained from the CMA-ES approach. All objects were printed without supports
except the fertility �gurine, which used much less support than the original.

Figure 10: Prints of sliced parts of the bunny model connected with a snapping connector without the need for gluing.

decision-making by choosing the decomposition that they prefer.

The results are shown in Fig. 9. Most were printed without any

support structure. An estimate of support material reduction is

obtained by importing the solution pieces into the Makerware 3D

printing software that adds support necessary to print the pieces.

The percent reduction of support material used when printing each

object is shown in Table 3.

Object Support Material Reduction(%)

Bunny (CMA-ES, 1 cut) 100

Dolphin (CMA-ES, 1 cut) 100

Elephant (CMA-ES, 1 cut) 100

Fertility (CMA-ES, 1 cut) 93.88

Homer (MOGA, 1 cut) 100

Horse (MOGA, 2 cuts) 100

Table 3: Reduction of support material used for each object
when printed on a Flashforge Creator Pro 3D printer.

3.2.2 Assembly of Printed Parts. There are several ways to as-

semble the printed pieces to recreate the original object. Since the

objects are decomposed or sliced along planar surfaces, the original

object can be built by putting together the smooth surfaces formed

by the cuts. An obvious way of recombining pieces is by gluing

them together. Another method is to create snapping type connec-

tors and corresponding grooves in the sliced sub-pieces as shown

with the bunny model in Fig. 10.

4 DISCUSSION AND FUTUREWORK
The results show that evolutionary methods can be e�ective at

decomposing objects into printable parts. Both methods produced

solutions that could be printed with little if any need for extra

support structure. While the MOGA approach is more �exible in its

ability to allow candidate solutions with di�ering numbers of cuts to

be evolved at the same time, the CMA-ES approach requires a much

smaller population size and thus executes much faster, especially

when it �nds a good solution involving a small number of cuts. If

execution time is of concern, CMA-ES can be used since it uses a

smaller population size and performs fewer objective evaluations.

Otherwise, if a wide variety of results with varying number of cuts

is preferred, MOGA can be used.

Compared to the most similar work [7] in decomposing objects

to minimize support structure, which uses a bottom-up clustering

algorithm to decompose an object into approximately pyramidal

parts, both approaches introduced in this paper can �nd solutions

that are printable without support using fewer pieces, since the

GECCO ’17, July 15-19, 2017, Berlin, Germany Eric A. Yu, Jin Yeom, Cem C. Tutum, Etienne Vouga, Risto Miikkulainen

proposed methods do not enforce pyramidality assumptions and

optimize for reduction of support structures directly.

One advantage of the methods introduced in this paper is that

they both provide a collection of solutions that can involve variable

number of cuts. This �exibility allows a user to choose the most

appropriate solution for a particular purpose. In many cases, there

is an inverse relationship between number of cuts and overhanging

area of the solutions. However, there are also advantages to using

a smaller number of cuts. Solutions with fewer cuts require less

e�ort to piece together as there are fewer resulting pieces. These

solutions may also have better structural stability and may be more

aesthetically pleasing. The user can opt to print using a solution

with fewer cuts at the expense of requiring a small amount of

support. Also, as printability can vary from printer to printer, it

may be possible that a solution with a smaller number of cuts may

be printable without supports even though the amount of calculated

overhang is greater than that of a solution involving more cuts.

Because both CMA-ES and MOGA can be easily extended to in-

clude more objectives, one area of future work can be to test object

decomposition with a variety of other objectives. Some possible

additional objectives could be those encouraging decompositions

that divide along natural symmetry lines in the object, or objectives

discouraging decompositions with cuts through important areas

in the object (i.e. context or feature-based slicing). Such objectives

could result in more aesthetic decompositions. Other possible ob-

jectives could be to maximize the size of the sliced pieces or to

maximize the structural integrity of the resulting components.

One major limitation of the proposed approach is that it uses

planar cuts that extend completely through the bounding box of the

object. In some cases, this limitation can result in multiple pieces

being produced with a single cut if the cutting plane passes through

a concave section of the object. One area of future work could be to

improve the representations of object decompositions to overcome

this limitation.

The CMA-ES approach makes an assumption that the process of

increasing the number of cuts should stop when the result found

by CMA-ES has more overhanging area compared to a solution

found involving fewer cuts. This assumption may not be entirely

correct as it is possible that allowing more cuts could allow for

better solutions to be found. One likely scanario is that a local

optimum is found that has much more overhanging area compared

to the global optimum. This issue may be addressed in future work

by employing random restarts when this situation is encountered.

Neither MOGA nor CMA-ES were able to �nd the optimal one-

cut solution for the dolphin object. This inability to �nd the optimal

solution is likely due to the non-linearity in the �tness landscape

around the optimal cut. Cuts parallel to the tail, but not passing

through it, will result in pieces that have a large sum of overhanging

area, but a cut passing through the tail will result in pieces that

have almost none. Evolutionary algorithms can have di�culty

�nding the optimum solution when this solution is completely

surrounded by suboptimal solutions. Running the algorithms with

larger population sizes or employing random restarts may allow

these di�cult solutions to be found.

5 CONCLUSION
In this paper, two evolutionary approaches are introduced to ad-

dress the problem of decomposition of 3D objects to minimize the

use of support structures for FDM 3D printing. Both MOGA and

CMA-ES show great promise in �nding object decompositions that

reduce the amount of overhanging area in the resulting pieces.

While MOGA provides �exibility by allowing solutions of varying

length to be evolved simultaneously and results in solutions that

have varying number of cuts, CMA-ES allows for solutions to be

found with fewer objective function evaluations and is much faster

for �nding object decompositions that use a small number of cuts.

The results of several object decompositions are printed and show

signi�cant reductions in the amount of support material used. The

methods presented in this paper provide a �rst step towards us-

ing evolutionary methods that decompose objects for 3D printing.

This work can be easily extended to incorporate a variety of new

objectives such as structural stability, aesthetics, and symmetry

preservation.

6 ACKNOWLEDGMENTS
The authors wish to acknowledge the funding and support provided

by the Freshman Research Initiative Program at the College of

Natural Sciences in The University of Texas at Austin as well as

BEACON Research Center at Michigan State University.

REFERENCES
[1] Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing Huang, Bedrich

Benes, Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: Decompose-and-

pack for 3D Printing. ACM Trans. Graph. 34, 6, Article 213 (Oct. 2015), 12 pages.

DOI:http://dx.doi.org/10.1145/2816795.2818087

[2] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc

Parizeau, and Christian Gagné. 2012. DEAP: A Python Framework for Evolu-

tionary Algorithms. In Proceedings of the 14th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO ’12). ACM, New York, NY, USA,

85–92. DOI:http://dx.doi.org/10.1145/2330784.2330799

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiob-

jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6, 2 (Apr 2002), 182–197. DOI:http://dx.doi.org/10.1109/4235.996017

[4] Jérémie Dumas, Jean Hergel, and Sylvain Lefebvre. 2014. Bridging the Gap:

Automated Steady Sca�oldings for 3D Printing. ACM Trans. Graph. 33, 4, Article

98 (July 2014), 10 pages. DOI:http://dx.doi.org/10.1145/2601097.2601153

[5] Andrew T. Gaynor and James K. Guest. 2016. Topology optimization consider-

ing overhang constraints: Eliminating sacri�cial support material in additive

manufacturing through design. Structural and Multidisciplinary Optimization 54,

5 (2016), 1157–1172. DOI:http://dx.doi.org/10.1007/s00158-016-1551-x

[6] N. Hansen and A. Ostermeier. 2001. Completely derandomized self-adaptation

in evolution strategies. Evolutionary Computation 9, 2 (2001), 159–195.

[7] Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. 2014. Approximate

Pyramidal Shape Decomposition. ACM Trans. Graph. 33, 6, Article 213 (Nov.

2014), 12 pages. DOI:http://dx.doi.org/10.1145/2661229.2661244

[8] Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chop-

per: Partitioning Models into 3D-printable Parts. ACM Trans. Graph. 31, 6, Article

129 (Nov. 2012), 9 pages. DOI:http://dx.doi.org/10.1145/2366145.2366148

[9] Amir M. Mirzendehdel and Krishnan Suresh. 2016. Support structure constrained

topology optimization for additive manufacturing. Computer-Aided Design 81

(2016), 1 – 13. DOI:http://dx.doi.org/10.1016/j.cad.2016.08.006

[10] Juraj Vanek, Jorge A. G. Galicia, and Bedrich Benes. 2014. Clever Support:

E�cient Support Structure Generation for Digital Fabrication. Computer Graphics
Forum (2014). DOI:http://dx.doi.org/10.1111/cgf.12437

[11] J. Vanek, J. A. Garcia Galicia, B. Benes, R. Mech, N. Carr, O. Stava, and G. S. Miller.

2012. PackMerger: A 3D Print Volume Optimizer. Computer Graphics Forum
(2012). DOI:http://dx.doi.org/10.1111/cgf.12353

[12] Marijn P Zwier and Wessel W Wits. 2016. Design for Additive Manufacturing:

Automated Build Orientation Selection and Optimization. Procedia CIRP 55

(2016), 128–133.

http://dx.doi.org/10.1145/2816795.2818087
http://dx.doi.org/10.1145/2330784.2330799
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1145/2601097.2601153
http://dx.doi.org/10.1007/s00158-016-1551-x
http://dx.doi.org/10.1145/2661229.2661244
http://dx.doi.org/10.1145/2366145.2366148
http://dx.doi.org/10.1016/j.cad.2016.08.006
http://dx.doi.org/10.1111/cgf.12437
http://dx.doi.org/10.1111/cgf.12353

	Abstract
	1 Introduction
	2 Methodology
	2.1 Representation of Object Decompositions
	2.2 Objective Function
	2.3 Mesh Reduction
	2.4 Method I: MOGA
	2.5 Method II: CMA-ES

	3 Results
	3.1 Reduction in Overhanging Area
	3.2 3D Printing Results

	4 Discussion and Future Work
	5 Conclusion
	6 Acknowledgments
	References

