To appear, Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2006) 1

Incorporating Advice into Neuroevolution of Adaptive Agents

Chern Han Yong
Institute for Infocomm Research
21 Heng Mui Keng Terrace
Singapore 119613
chyong @i2r.a-star.edu.sg

Risto Miikkulainen
Dept of Computer Sciences
University of Texas, Austin

Austin, TX 78712 USA
risto@cs.utexas.edu

Abstract

Neuroevolution is a promising learning method in tasks with
extremely large state and action spaces and hidden states. Re-
cent advances allow neuroevolution to take place in real time,
making it possible to e.g. construct video games with adap-
tive agents. Often some of the desired behaviors for such
agents are known, and it would make sense to prescribe them,
rather than requiring evolution to discover them. This paper
presents a technique for incorporating human-generated ad-
vice in real time into neuroevolution. The advice is given in a
formal language and converted to a neural network structure
through KBANN. The NEAT neuroevolution method then in-
corporates the structure into existing networks through evolu-
tion of network weights and topology. The method is evalu-
ated in the NERO video game, where it makes learning faster
even when the tasks change and novel ways of making use
of the advice are required. Such ability to incorporate human
knowledge into neuroevolution in real time may prove useful
in several interactive adaptive domains in the future.

Introduction

Evolution of neural networks (neuroevolution; NE) is a pol-
icy search method for reinforcement learning tasks. The
policy is represented as a neural network. Because the cor-
rect actions are not known, standard neural network learning
methods such as backpropagation cannot be used. However,
reinforcement information is available on how effective the
actions are, and such information can be utilized as a fitness
for the neural network. Based on the fitness evaluations, the
networks can then be evolved with e.g. genetic algorithms
(GA; (Goldberg, 1989; Mitchell, 1996; Yao, 1999)).
Neuroevolution is particularly effective in control tasks
where more traditional value-function-based reinforcement
learning methods face difficulties, i.e. those with hidden
states and large state-action spaces. Recurrency in the net-
works serves as memory that allows identifying the state,
and the networks generalize well to new states and actions.
In several comparisons in standard benchmark tasks (such

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Kenneth O. Stanley

School of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL 32816 USA
kstanley @cs.ucf.edu

Igor V. Karpov
Dept of Computer Sciences
University of Texas, Austin
Austin, TX 78712 USA
ikarpov@cs.utexas.edu

as balancing two poles simultaneously on a moving cart),
neuroevolution has performed significantly better than other
reinforcement learning methods (Gomez, 2003; Stanley &
Miikkulainen, 2002; Igel, 2003). It has also made novel
real-world applications possible, such as controlling finless
rockets and mobile robots (Gomez & Miikkulainen, 2003;
Floreano & Urzelai, 2000).

In addition to nonlinear control tasks, the approach has
proved useful in discovering behavioral strategies for inde-
pendent agents, such as those that play checkers, robotic
soccer, or video games (Chellapilla & Fogel, 1999; White-
son et al., 2005; Stanley, Bryant, & Miikkulainen, 2005). In
such domains, the behavior of agents is usually scripted by
hand, which is time consuming and often results in ineffec-
tive mechanical behaviors. The behaviors are also difficult
to learn because the state-action space is extremely large.
With neuroevolution, effective strategies can be discovered
automatically, even in real time, as demonstrated e.g. in the
NERO video game (Stanley, Bryant, & Miikkulainen, 2005).
In NERO, the player acts as a trainer for a team of agents that
learn new strategies through neuroevolution.

One problem with the current neuroevolution methods,
and traditional reinforcement learning methods as well, is
that the agents can learn only through exploration. Often
there are behaviors that are obvious for the human observer,
yet the agents have to discover them through trial and er-
ror. In domains like NERO where the agents interact with
humans in real time, exploration slows down learning and
makes the agents less believable. More generally, in many
cases injecting human knowledge to the learning process
would be useful. The human observer might have an idea
what works in the domain, formulate it as an advice, and the
agents could then take advantage of it in the learning pro-
cess. Being able to incorporate advice could help in learn-
ing difficult tasks, could direct the learning towards the de-
sired kinds of solutions, and could make the human-agent
interactions in domains like video games more natural and
believable.

This paper shows how advice can be incorporated in the
rtNEAT neuroevolution method, and demonstrates that such

To appear, Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2006) 2

advice is useful in interactive domains like NERO. The rt-
NEAT method is particularly well suited for advice because
it evolves both the network weights and its topology (Stanley
& Miikkulainen, 2002); using an elaboration of the KBANN
technique for converting rules into neural networks (Maclin
& Shavlik, 1996), the advice is encoded as a piece of a neural
network, which is then included in the rtNEAT networks and
refined in further evolution. In NERO, the agents are advised
on how to get around an obstacle to a target. Such advice
helps evolution discover the desired behavior, and doesn’t
prevent discovering further behaviors, even those that might
conflict with the advice. Therefore, the technique is shown
useful in a real-world task, as a mechanism that allows hu-
mans to interact with the learning process in real time.

The rtNEAT neuroevolution method is first described be-
low, followed by the NERO video game. Related work on
advice taking in artificial intelligence is then discussed, and
the method for encoding advice into rtNEAT in the NERO
domain is described. Experiments on advising agents on get-
ting around the obstacle are then presented, concluding that
the method can be useful in injecting human knowledge into
neuroevolution-based reinforcement learning in general.

Real-time Neuroevolution of Augmenting
Topologies (rtNEAT)

The rtNEAT method is based on NEAT, a technique for
evolving neural networks for complex reinforcement learn-
ing tasks. NEAT combines the usual search for the ap-
propriate network weights with complexification of the net-
work structure, allowing the behavior of evolved neural net-
works to become increasingly sophisticated over genera-
tions. While NEAT evolves networks off-line, rtNEAT al-
lows the evolutionary process to take place on-line, i.e. in
real time during performance. In this section, the main prin-
ciples of NEAT and rtNEAT are reviewed; for a detailed de-
scription, see e.g. (Stanley & Miikkulainen, 2002; Stanley,
Bryant, & Miikkulainen, 2005).

NEAT method is based on three key ideas. First, the ge-
netic encoding of the neural network is designed to make
it possible to evolve network structure. Each genome in-
cludes a list of connection genes, each of which specifies
two node genes being connected, and the weight on that con-
nection. Through mutation, connection weights can change
and nodes and connections can be added. To make crossover
possible between different network structures, each gene in-
cludes an innovation number: this number uniquely identi-
fies genes with the same origin, so that they can be matched
up during crossover. Second, NEAT speciates the popula-
tion, so that individuals compete primarily within their own
species instead of with the population at large. Thus, topo-
logical innovations are protected and have time to optimize
their structure before competing with other species in the
population. In addition, individuals must share their fitness
with their species (Goldberg & Richardson, 1987), prevent-
ing any one species from taking over the population. Third,
NEAT begins with a population of simple networks (with
no hidden nodes), and gradually makes them more complex.
In this way, NEAT searches through a minimal number of

weight dimensions and finds the appropriate complexity for
the problem.

This approach is highly effective: NEAT outperforms tra-
ditional reinforcement learning (RL) methods e.g. on the
benchmark double pole balancing task (Stanley & Miikku-
lainen, 2002; Gomez, 2003). In addition, because NEAT
starts with simple networks and expands the search space
only when beneficial, it is able to find significantly more
complex controllers than fixed-topology evolution, as was
demonstrated in a robotic strategy-learning domain (Stanley
& Miikkulainen, 2004). These properties make NEAT an
attractive method for evolving neural networks in complex
tasks such as video games.

However, like most genetic algorithm (GA) methods,
NEAT was originally designed to run offline. Individuals
are evaluated one at a time, and after the whole population
has been evaluated, a new population is created to form the
next generation. In other words, in a normal GA it is not
possible for a human to interact with the multiple evolving
agents while they are evolving. The rtNEAT method is an
extension of NEAT to on-line evolution, where individuals
are evaluated and reproduced continuously, making such in-
teraction possible.

In rtNEAT, a single individual is replaced every few game
ticks. The worst individual is removed and replaced with
a child of parents chosen probabilistically from among the
best, and the division into species is adjusted. This cycle of
removal, replacement, and speciation continues throughout
evolution. The dynamics of offline NEAT is preserved, i.e.
the evolution protects innovation and complexifies the solu-
tions as before. Thus, it is now possible to deploy rtNEAT
in a real video game and interact with complexifying agents
as they evolve.

Neuroevolving Robotic Operatives (NERO)

NERO is representative of a new genre that is only possible
through machine learning (Stanley, Bryant, & Miikkulainen,
2005). The idea is to put the player in the role of a trainer or
a drill instructor who teaches a team of agents by designing
a curriculum (Figure 1).

In NERO the learning agents are simulated robots, each
controlled by a neural network. The goal is to train such a
team of robots for military combat. The robots have several
types of sensors, including wall rangefinders, enemy radars,
an “on target” sensor, and line-of-fire sensors. The radars
activate in proportion to how close an enemy is within the
radar’s sector, and rangefinders activate according to the dis-
tance a ray travels before it hits a wall in the rangefinder’s
direction. The on-target sensor returns full activation only if
a ray projected along the front heading of the robot hits an
enemy. The line of fire sensors detect where a bullet stream
from the closest enemy is heading. The complete sensor set
supplies robots with sufficient information to make intelli-
gent tactical decisions.

Typically, 50 such robots are in the field at the same time.
The robots begin the game with no skills and only the abil-
ity to learn. The player sets up training exercises by plac-
ing objects on the field and specifying goals through several
sliders. The objects include static enemies, enemy turrets,

To appear, Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2006) 3

Scenario 1: Enemy Turret

Q P,

Scenario 2: 2 Enemy Turrets

Q \"‘!
._ < ._ é N

4 A %)) G4 Yo

Scenario 3: Mobile Turrets & Walls Battle
Pe)
a ! a Yo
._ fo oo 4 2
é b & b

‘\ o Ao

Figure 1: Training NERO agents for battle. The figure depicts a sequence of increasingly difficult and complicated training exercises in
which the agents attempt to attack turrets without getting hit. In the first exercise there is only a single turret but more turrets are added by
the player as the team improves. Eventually walls are added and the turrets are given wheels so they can move. Finally, after the team has
mastered the hardest exercise, it is deployed in a real battle against another team. To download a playable demo and animations of various

training and battle scenarios, see http://nerogame.org.

rovers (i.e. turrets that move), and walls. To the player, the
sliders serve as an interface for describing ideal behavior. To
rtNEAT, they represent coefficients for fitness components.
For example, the sliders specify how much to reward or pun-
ish approaching enemies, hitting targets, getting hit, follow-
ing friends, dispersing, etc. Fitness is computed as the sum
of all these normalized components multiplied by their slider
levels. Thus, the player has a natural interface for setting up
a training exercise and specifying desired behavior.

Over the course of training, the player sets up increas-
ingly difficult training exercises so that the team can begin
by learning a foundation of basic skills and then gradually
building on them. Such skills range from attacking an en-
emy, dodging enemy fire, and navigating a maze, to more
complex ones such as approaching an enemy from behind to
fire on it and then quickly backing off when it turns around to
shoot back. When the player is satisfied that the team is pre-
pared, the team is deployed in a battle against another team
trained by another player. The robots are no longer learn-
ing and they are eliminated from the game after being shot.
The battle ends when one team is completely eliminated, or
when the remaining robots will no longer fight. The winner
is the team with the most robots left standing.

The challenge of the game for the player is to antici-
pate the kinds of skills that might be necessary for battle
and build training exercises to hone those skills. Behav-
iors evolve very quickly in NERO, fast enough so that the
player can be watching and interacting with the system in
real time. However, there are times when evolution seems to
take longer than necessary to discover a desired behavior, or
when that behavior would be easier to specify verbally rather
than through a training regimen. In such cases, it would be
useful to be able to incorporate the desired behavior directly
into the population. Such human-injected knowledge is very
difficult to take into account in evolution in general, but the
structure of the rtNEAT method makes it possible, as de-
scribed in the next section.

Incorporating Advice into Learning

Adpvice taking has long been recognized as a useful compo-
nent in artificial intelligence (Al) systems (Huffman, Miller,
& Laird, 1993; McCarthy, 1958; Hayes-Roth, Klahr, &

Mostow, 1981). Methods have been developed also for inte-
grating advice into systems that learn, either by supervised
learning or through reinforcement. For example, Noelle
(1997) showed how advice could be entered through sep-
arate inputs of a recurrent neural network that then drive
the network into an attractor state incorporating the advice.
In Gordon and Subramanian’s (1994) approach, high-level
advice is encoded in rules that are then refined using ge-
netic algorithms. In Maclin and Shavlik’s (1996) RATLE
system, advice is used to direct reinforcement learning. A
neural network is trained to represent the utility function in
Q-learning based on examples. At the same time, advice
is expressed in a formal language and converted with the
KBANN (Knowledge-based artificial neural network) algo-
rithm into nodes and connections added to the neural net-
work.

The method described in this paper is based on Maclin
and Shavlik’s approach, extended to the rtNEAT neuroevo-
lution learning method. Instead of the utility function, the
neural networks represent the controller itself, i.e. a direct
mapping from the state to the actions. Instead of backprop-
agation based on Q-value examples, rtNEAT is used to learn
the network weights and the topology. With this interpre-
tation, the advice structures that KBANN produces are ex-
actly like the structural mutations at the core of rtNEAT.
The mechanisms for incorporating, evaluating and further
refining the advice already exist, making this combina-
tion of knowledge-based neural networks and the topology-
evolving neuroevolution a natural approach to incorporating
advice into neuroevolution.

In the next section, this method will be described in detail,
using the NERO video game as the context.

Adyvising NEAT in NERO

The advice-incorporation method consists of four compo-
nents: first, the advice is specified according to a formal ad-
vice language and converted into a neural-network structure.
Second, the advice is added to an agent by splicing the ad-
vice structure onto the agent’s neural network. Third, the
advice is inserted into the population of agents in NERO.
Fourth, the advice is refined in rtNEAT evolution in the do-
main.

To appear, Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2006) 4

RULE —» { if CONDS then RULE [else RULE] } |
{ when CONDS repeat RULE until CONDS [then RULE]} |
{ output VARSTR }
CONDS —» TERM |

CONDS and TERM
TERM —» false | true | variable { <=1 < | >=1 > } value
VARSTR — variable strength |

VARSTR variable strength

Figure 2: Advice grammar. The grammar allows specifying if-
then rules and nested loops. The if-then rules are the most useful
in the NERO domain and will be evaluated in this paper.

{ ifwall ahead > 0.1 then { output move_forward 1.0 turn 0.5 } }
if wall is some distance in fronl, then move forward and turn right

{ itwall 45deg lefi > 0.5 then { output move_forward 1.0 turn 0.1 } }

ifwall is near 43 degrees to the lefi, then move forward and turn right slightly

Figure 3: Advice on how to go around a wall. This sample
advice, expressed in the language specified in Figure 2, tells the
agent to move forward and to the right, going around the right side
of the wall.

Specifying the Advice

The advice language is specified as a grammar, given in
Figure 2. There are 3 different types of rules: if-then
rules, repeat rules, and output rules. The first two are self-
explanatory; the third, output rule, states that an output vari-
able should be either excited or inhibited. A wide range of
advice is possible in this language, including state memo-
ries (using repeat loops) and nested statements (loops within
loops). The experiments reported in this paper focus on the
if-then statements because they are the most common type of
advice in NERO, and also because their effect can be readily
quantified.

For example, if the agents have been trained to go to a
flag but have no experience with walls, they will run directly
towards the flag even if there is a wall in the way. Through
exploration, they will eventually learn to head away from the
flag and go around the wall. Although such learning does not
take very long in terms of game time — about one minute
on average — it still seems like such a simple solution is
not worth the time to be discovered automatically, since it is
obvious to the human player what the agents should do.

Such knowledge can be easily encoded as advice, as
shown in Figure 3. It tells the agent how to go around the
right side of a wall by turning right and moving along the
wall. The next step is to convert it to the neural network
structure.

Converting the Advice into Network Structure

The advice is converted into its equivalent neural-network
structure via a recursive algorithm similar to RATLE
(Maclin & Shavlik, 1996). This algorithm builds one of
three structures depending on whether the rule is an if-then,
repeat, or output rule (Figure 4):

For an if-then rule:
1. Create the CONDS structure.

2. Build the rule in the “then” action by calling the conver-
sion algorithm recursively.

3. If there is an “else” clause, create the negation node, and
build the rule in the “else” action by calling the conversion
algorithm recursively.

4. Connect the nodes with the weight values given in the
rule.

For a repeat rule:

1. Create the WHEN-CONDS and UNTIL-CONDS struc-
tures.

2. Create the remember-repeat-state and negation nodes.

3. Build the rule in the “repeat” action by calling the conver-
sion algorithm recursively.

4. If there is a “then” clause, create the node for it, and build
the rule in the “then” action by calling the algorithm re-
cursively.

5. Connect the nodes with the weight values given in the
rule.

For an output rule:
1. Connect the current node to the output units with weight
values specified in the rule.

The main difference from RATLE is that learnable recur-
rent connections are used to maintain the state of the loop in
repeat rules, instead of copies of previous activations. Fig-
ure S5a shows the sample advice converted into a network
structure. This structure is then added to the existing neural
network.

Inserting the Advice into Agent Networks

Advice is incorporated into an agent by splicing the advice
network structure onto the agent’s neural network. This step
is similar the KBANN algorithm, except connections with
low weights are not included to make the resulting network
fully connected; instead, the rtNEAT algorithm adds con-
nections later as needed. Figure 5b shows the original net-
work and Figure 5c the same network with the sample advice
added.

In NERO, the advice is added to the best individual in the
top k species of the population. If there are fewer than k
species, then advice is also added to the lower-ranked in-
dividuals in each species until k individuals have received
it. Each of these individuals is copied n times, slightly mu-
tating their weights. These kn individuals are then used to
replace the worst kn agents in the population. In the exper-
iments in this paper, kK = 5 and n = 4, to give a total of 20
agents with the advice. Slight variations of these values lead
to similar results.

Refining the Advice

The inserted advice is refined during further evolution by
allowing the advice portion of the network to evolve along
with the original network. Its weights can be mutated, new
links can be added between nodes, and new nodes can be
added.

The degree of refinement is controlled by a parameter as-
sociated with each advice, representing confidence. This pa-
rameter ranges from O to 1; a value of x means that the ad-
vice portion has a 1 —x chance of being mutated during each

To appear, Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2006) 5

Building a repeat rule

{ when WHENCONDS repeat REPEATACTION-RULE until UNTILCONDS
[then THENACTION-RULE] }

THENACTION RULE

REPEATACTION RULE Building an output rule

Building an if rule
{ if CONDS then THENACTION-RULE sbeliad el oot Belati. cubbaalles)
[else ELSEACTION-RULE | } (remember repeat St"nc) ot mb .
ELSEACTION-RULE (g Cg (g
THENACTION-RULE T
\il
/’ (negation) (nega Dn).

. eg. repeat node
e WHENCONDS UNTILCONDS

(a) (0) (©)

Figure 4: Converting advice into neural-network structures. (a) An if-then rule is constructed by linking the conditions to the “then”
action, and their negation to the “else” action. (b) A repeat rule is constructed by creating a neuron that remembers the repeat state through a
recurrent connection, and linking the “when” conditions to activate this node and the “until” conditions to deactivate it. (¢) An output rule is
constructed by linking the rule node to each of the output nodes, weighted as specified in the rule. A blue (i.e. dark) node indicates a node to
be added to the network, a yellow (i.e. light) node indicates an existing node in the network.

move forward tum ﬁre crouch
move_forward turn j A
A A

1] NN

t]
wall_ahead wall 45deg left

wall ahead wa!]745deg71qﬁ wa]LQOdngqfi wa[l_45deg_r:ght wah’_QDdeg_rtghI other input 597-'307‘5

(a) (b)

move jorward tw"n ﬁre cmuc}?

NS

wm'l'_ﬂhead Wa[lf45degjqﬁ‘ wa11790degjqﬁ wall_45deg_r1g}rz waH_QDa’eg_rlgh[m‘her input 53”50"5
(c)

Figure 5: Incorporating advice into neural networks in NERO. (a) The network structure that implements the advice in Figure 3. The
thresholds and weights of each hidden unit is set so that they implement the two rules. (b) A network controlling the agents before the advice.
(c) The advice is added by connecting the hidden nodes of the advice structure to the appropriate inputs and outputs.

To appear, Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2006) 6

Project NERO Prototype.

Number of Agents that Reached Flag

—=No Advice
- Advice, confidence 0.5
—- Advice,

mmmmmmmmmmmmmm

Generations (10)

(a) The three phases of the experiment

(b) Performance over generations

Figure 6: Experiment on advice in NERO. The agents in the NERO game were first (during generations 0 to 600) trained to go to the flag
by going around the right side of the wall. The advised agents learned significantly faster and reached significantly higher performance. The
task then changed (during generations 601 to 1400), requiring them to go to the left. Surprisingly, the difference is even greater: it was easier
for evolution to discover mutations that changed the bad advice into behaviors that worked in the new situation, than change the behaviors it
had discovered without advice. In the third phase (generations 1401 to 2100), the right-path behavior was required again. All systems learned
equally: the advice had become encoded the same way as the behaviors discovered without advice. The control window on the bottom right
in (a) indicates that the agents are trained only on one objective: going to the flag (indicated by the single cyan (i.e. light) slider). The ovals
on top right of (a) indicate that the snapshot is taken during the second (middle) task. The generations in (b) are listed as multiples of ten.

reproduction cycle. When it is 1, the human advice giver ex-
presses full confidence in the advice, and the advice portion
is not changed during evolution. When it is 0, the advice
evolves just as if it were the original part of the network. In
this manner, hard rules can be implemented, but it is also
possible to give uncertain advice whose value will be tested
in further evolution.

Experiments

Experiments were conducted to test three hypotheses: (1)
Giving advice helps the agents learn the task; (2) even if the
task changes into one that conflicts with the advice, agents
can modify the advice to solve the new task; and (3) the
advice eventually becomes incorporated into the network the
same way as behaviors discovered through exploration.

These hypotheses were tested in learning to move around
a wall to get to a flag that is placed in various locations
behind it. The advice used in all these experiments is the
sample depicted in Figure 3a. Three versions are compared:
learning without advice, and learning with 0.5 and 1.0 con-
fidence on the advice.

The performance of each approach is measured as the
number of agents out of the population of 50 who reach the
flag at each timestep. The agents’ lifetime is 5.5 seconds;
depending on the position of the flag, the shortest path to it
takes 3 to 5 seconds. Thus each agent has to behave nearly
optimally to be successful. To smooth out the performance
values, at each time step the windowed average of the per-
formance of the past 30 time steps is taken, and the results
are averaged over 3 runs.

Before the experiment, the agents were pretrained to go to

the flag, but they did not have any experience with walls. In
each run, they start in front of a wall with the flag placed be-
hind it (Figure 6a), and have to learn to circumvent the wall
around the right side to reach the flag before their lifetime
expires (in about 5 seconds). The evolution continues until
a stable, successful behavior has been discovered in all three
versions; this happened in 600 generations in all runs.

After the agents have learned to go to the flag, it is moved
close behind the wall on the left side (Figure 6a). To reach
the flag in their lifetime, agents now have to circumvent the
wall on the left side; there is not enough time if they follow
the advice and go to the right. The three versions are com-
pared to determine whether evolution can recover from such
bad advice and learn the new task. Evolution is run for 800
further generations to achieve the new task.

In the third phase, the flag is moved further back behind
the wall to near where it originally was, but slightly to its
right (Figure 6b). The agents now have to circumvent the
wall on its right side again, i.e. to make use of the old advice.
The three versions are compared to see if whether any differ-
ences remain, or whether the advice has been incorporated
into the network like the behaviors learned by exploration.

Results

Figure 60 plots the average performance of each version over
time. The left third of the graph (generations O to 600) cor-
responds to the first phase of the experiment.

Without advice, the agents reach a performance level of
11 at around generation 450. With 0.5 confidence, the per-
formance improves significantly: The agents learn faster and
reach a higher level of performance. With 1.0 confidence,

To appear, Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2006) 7

they improve even more, reaching performance 13 at gen-
eration 450. These results support the first hypothesis that
giving pertinent advice makes learning the task easier.

The middle third of the graph (generations 601 to 1400)
corresponds to the second phase where agents have to learn
to circumvent the wall around the opposite side. Initially,
the agents either try to make a long detour around the right
side of the wall, or go straight towards the flag and get stuck
behind the wall, resulting in a drastic drop in performance.
Gradually, they begin to learn to circumvent the wall around
its left. Surprisingly, the agents without the advice were the
slowest to learn this behavior, taking over 200 generations
longer than the agents with advice. This result was unex-
pected because the advice is in direct conflict with the neces-
sary behavior. Analysis of the successful networks showed
that the same advice portion of the network was still used,
but evolution had discovered mutations that turned a right
circumvention into a left one. In other words, the original
advice was still useful, but the network had discovered a
refinement that applied to the changed task. The networks
with 0.5 confidence learned faster than those with 1.0 con-
fidence because it was easier for the advice to be modified.
Hypothesis 2 was therefore confirmed: evolution can mod-
ify advice to fit the new task. Furthermore, if the advice can
be exploited to give an advantageous bias in the new task,
evolution can modify it to do so.

The right third of the graph (generations 1401 to 2100)
corresponds to the third phase of the experiment, where the
agents had to relearn to circumvent the wall on the right
side, a behavior they had learned in phase one. All three
approaches relearned this behavior equally well, whether
the agents originally learned it with advice or on their own,
showing that the behavior encoded through advice was as
well embedded as when it was discovered from scratch. Hy-
pothesis 3 was therefore confirmed as well: advice had be-
come fully integrated into the network.

Conclusion

The experiments presented in this paper demonstrate how
human-generated advice can be incorporated in real time
in neuroevolution. Such advice makes learning easier, and
even when the advice is conflicting, evolution may discover
ways to utilize it to its advantage. The structures generated
from the advice gradually become incorporated into the net-
work like structures discovered by evolution. The advice
technique makes it possible to inject human knowledge into
neuroevolution, which should turn out useful in several do-
mains in the future, including video games, adaptive user
interfaces, intelligent assistants, and adaptive training envi-
ronments.

References

Chellapilla, K., and Fogel, D. B. 1999. Evolution, neural networks,
games, and intelligence. Proceedings of the IEEE 87:1471—
1496.

Floreano, D., and Urzelai, J. 2000. Evolutionary robots with
on-line self-organization and behavioral fitness. Neural Net-
works 13:431-4434.

Goldberg, D. E., and Richardson, J. 1987. Genetic algorithms with
sharing for multimodal function optimization. In Grefen-
stette, J. J., ed., Proceedings of the Second International Con-
ference on Genetic Algorithms, 148—154. San Francisco:
Kaufmann.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization
and Machine Learning. Reading, MA: Addison-Wesley.

Gomez, F., and Miikkulainen, R. 2003. Active guidance for a
finless rocket using neuroevolution. In Proceedings of the
Genetic and Evolutionary Computation Conference, 2084—
2095. San Francisco: Kaufmann.

Gomez, F. 2003. Robust Non-Linear Control Through Neuroevolu-
tion. Ph.D. Dissertation, Department of Computer Sciences,
The University of Texas at Austin.

Gordon, D., and Subramanian, D. 1994. A multistrategy learning
scheme for agent knowledge acquisition. Informatica 331—
346.

Hayes-Roth, F.; Klahr, P.; and Mostow, D. J. 1981. Advice-taking
and knowledge refinement: An iterative view of skill acquisi-
tion. In Anderson, J., ed., Cognitive Skills and Their Acquisi-
tion. Hillsdale, NJ: Erlbaum. 231-253.

Huffman, S. B.; Miller, C. S.; and Laird, J. E. 1993. Learning
from instruction: A knowledge-level capability within a uni-
fied theory of cognition. In Proceedings of the 15th Annual
Conference of the Cognitive Sceince Society, 114—119. Hills-
dale, NJ: Erlbaum.

Igel, C. 2003. Neuroevolution for reinforcement learning using
evolution strategies. In Proceedings of the 2003 Congress on
Evolutionary Computation, 2588-2595.

Maclin, R., and Shavlik, J. 1996. Creating advice-taking reinforce-
ment learners. Machine Learning 22:251-281.

McCarthy, J. 1958. Programs with common sense. In Proceed-
ings of the Symposium on the Mechanization of Thought Pro-
cesses, volume I, 77-84.

Mitchell, M. 1996. An Introduction to Genetic Algorithms. Cam-
bridge, MA: MIT Press.

Noelle, D. C. 1997. A Connectionist Model of Instructed Learn-
ing. Ph.D. Dissertation, Departments of Cognitive Science
and Computer Science, University of California, San Diego.

Stanley, K. O., and Miikkulainen, R. 2002. Evolving neural net-
works through augmenting topologies. Evolutionary Compu-
tation 10:99-127.

Stanley, K. O., and Miikkulainen, R. 2004. Competitive coevolu-
tion through evolutionary complexification. Journal of Artifi-
cial Intelligence Research 21:63-100.

Stanley, K. O.; Bryant, B.; and Miikkulainen, R. 2005. Real-time
neuroevolution in the NERO video game. [EEE Transactions
on Evolutionary Computation 9:653—-668.

Whiteson, S.; Kohl, N.; Miikkulainen, R.; and Stone, P. 2005.
Evolving keepaway soccer players through task decomposi-
tion. Machine Learning 59:5-30.

Yao, X. 1999. Evolving artificial neural networks. Proceedings of
the IEEE 87(9):1423-1447.

