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Abstract

In certain tasks such as pursuit and evasion, multiple agents need to coordinate their behavior to achieve a
common goal. An interesting question is, how can such behavior be best evolved? A powerful approach is
to control the agents with neural networks, coevolve them inseparate subpopulations, and test them together
in the common task. In this paper, such a method, called Multi-Agent ESP (Enforced SubPopulations), is
proposed and demonstrated in a prey-capture task. First, the approach is shown more efficient than evolving
a single central controller for all agents. Second, cooperation is found to be most efficient through stigmergy,
i.e. through role-based responses to the environment, rather than direct communication between the agents.
Together these results suggest that role-based cooperation is an effective strategy in certain multi-agent
domains. [ This paper is a revision of AI01-287. ]

1 Introduction

In cooperative multi-agent problem solving, several agents work together to achieve a common goal. Due
to their distributed nature, multi-agent systems can be more efficient, more robust, and more flexible than
centralized problem solvers. A central issue with such systems is how such cooperation can be best estab-
lished. First, should the agents be implemented as a diverseset of autonomous actors, or should they be
coordinated by a central controller? Second, if the agents are autonomous, what kind of communication is
necessary for them to cooperate effectively in the task?

In this paper, these issues are addressed from the machine learning perspective: A team of neural net-
works is evolved using genetic algorithms to solve a cooperative problem. The Enforced SubPopulations
method of neuroevolution (ESP [10, 11]), which has proven highly efficient in single-agent reinforcement
learning tasks, is first extended to multi-agent evolution,in a method named Multi-agent ESP. This method
is then evaluated in a pursuit-evasion task where a team of several predators must cooperate to capture a
fast-moving prey. The main contribution is to show how different ways of encoding, evolving, and coordi-
nating a team of agents affect performance in the task. Two hypotheses are tested: First, a coevolutionary
approach (using Multi-agent ESP), where autonomous neuralnetworks are evolved cooperatively to each
control a single predator of the team, is shown to outperforma central-controller approach, where a single
neural-network is evolved (using ESP) to control the entireteam. This is because niching in coevolution,�Present address: Institute for Infocomm Research, Singapore 119613, chyong@i2r.a-star.edu.sg



which is especially strong in ESP [10, 11], can be further leveraged in Multi-agent ESP to meet the demands
of multi-agent tasks. Instead of searching the entire spaceof solutions, coevolution allows identifying a set
of simpler subtasks, and optimizing each team member separately and in parallel for one such subtask.

Second, the agents do not even need to communicate directly with each other to behave cohesively: It
is sufficient that they coevolve to establish compatible roles mediated through stigmergy, that is, they learn
to react to environmental changes caused by the teammates. In fact, when a primitive form of direct com-
munication is available (where each team member broadcastsits location to its teammates), communicating
teams consistently perform worse than teams without directcommunication! Each agent learns to perform
its subtask (or role) reliably, and the task is solved through the stigmergic interaction of these roles; direct
communication is unnecessary and only complicates the task.

The paper will begin with a brief review of related work in cooperative coevolution, multi-agent learning,
and the prey-capture domain. The Multi-Agent Enforced SubPopulations method is then described, followed
by its experimental evaluation. A discussion of future prospects of this approach concludes the paper.

2 Background and Related Work

The termcooperationis used in two distinct ways in this paper. The first refers to aphenomenon of multi-
agent behavior where agents work together to achieve a common goal, as will be discussed in Section 3.
The second refers to cooperation as a mechanism for learning, and will be discussed in detail in Section 2.1.
Section 2.2 will discuss agent communication through stigmergy.

2.1 Cooperative Coevolution

Coevolution in Evolutionary Computation means maintaining and evolving multiple individuals in a com-
mon task, either in a single population or in multiple populations. In competitive coevolution, these in-
dividuals have adversarial roles in that one agent’s loss isanother one’s gain. In cooperative coevolution,
however, the agents share the rewards and penalties of successes and failures. It is most effective when
the solution can be naturally modularized into components that interact, or cooperate, to solve the prob-
lem. Each component can then be evolved in its own population, and each population contributes its best
individual to the solution.

For example, Gomez and Miikkulainen [10] developed a methodcalled Enforced SubPopulations (ESP)
where populations of neurons are evolved to form a neural network. A neuron is selected from each popu-
lation to form the hidden layer of the network, which is then evaluated on the problem and its fitness passed
back to the participating neurons. In the multi-agent evolution developed in this paper, ESP is used to evolve
each neural network, but the networks are also required to cooperate. The ESP method and the multi-agent
extension to it are discussed in more detail in Section 4.

Potter and De Jong [31] designed an architecture and processof cooperative coevolution similar to ESP,
focusing on methodological issues such as how to decompose the problem automatically into an appropriate
number of subcomponents and roles. In contrast, the focus ofthis paper is on understanding cooperation
itself, including the roles of team control and communication.

In a series of papers, Haynes and Sen [16, 14, 15] explored various ways of encoding, controlling, and
evolving predators that behave cooperatively in the prey-capture domain. In the first of these studies [14],
Genetic Programming was used to evolve a population of strategies, where each individual was a program
that represented the strategies of all predators in the team. The predators were thus said to be homoge-
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neous, since they each shared the same behavioral strategy.In follow-up studies [16, 15], they developed
heterogeneous predators: Each chromosome in the population was composed ofk different programs, each
one representing the behavioral strategy of one of thek predators in the team. Haynes and Sen reported
that the heterogeneous predators were able to perform better than the homogeneous ones. In this paper,
heterogeneity is taken a step further by evolving the controllers for each predator in separate populations.

In contrast to the advantage found for heterogeneous teams in the above studies, Luke [21] observed
that heterogeneous teams could not outperform homogeneousteams evolved using Genetic Programming in
the soccer softbot domain. However, he conjectured that, given sufficient time, the heterogeneous approach
would have learned better strategies. Such time was not practical in his domain, where each evaluation cycle
took between 20 seconds and one minute.

Quinn et al. [32] and Baldassarre et el. [3] evolved teams of homogeneous robots controlled by neural
networks, and studied how the role allocations emerge in collective behaviors such as formation move-
ment and flocking. In contrast, this paper shows how roles areallocated in heterogeneous teams of agents,
focusing in particular on the effects of global vs. global control and communication.

Balch [2] examined the behavioral diversity developed by robot teams using reinforcement learning. He
found that when the reinforcement was local, i.e. applied separately to each agent, the agents within the
team learned identical behaviors; global reinforcement shared by all agents, on the other hand, produced
teams with heterogeneous behavior. This result provides a useful guideline for evolving cooperating agents:
Rewarding the whole team for good behavior privileges cooperation even when some agents do not con-
tribute as much as others, whereas rewarding individuals induces more competitive behaviors because each
individual tries to maximize its own reward at the expense ofthe good of the entire team. The work re-
ported in this paper diverges from Balch’s in focus and implementation: The focus is on how global versus
local control and communication affect the diversity and niching of the behaviors that evolve, and instead of
reinforcement learning, the implementation is based on evolutionary learning of neural networks [11].

2.2 Agent Communication

The role of communication in cooperative behavior has been studied in several Artificial Life experiments
[41, 5, 29, 19, 37]. These studies showed that communicationcan be highly beneficial, even crucial, in
solving certain tasks. However, the cost of communication—-such as the energy expenditure in signaling, or
the danger of attracting predators, or the complexity of theapparatus required—was not taken into account in
most of these studies. In fact, even in domains where communication does contribute toward solving a task,
communicative traits may still not evolve if they involve a significant cost [39]. Other kinds of cooperative
strategies may evolve instead, depending on the nature of the task, how dense the population is, and whether
resources are available.

One particularly interesting form of such cooperation without communication is stigmergy, a concept
proposed by Grassé [12] to describe the indirect communication observed in the behaviors of certain social
insects. Grassé observed that worker termites were stimulated to perform certain activities by a particular
configuration of their nest, transforming it into a new configuration, which would in turn stimulate other
activities. The word stigmergy was coined to describe this process: “The stimulation of the workers by the
very performances they have achieved is a significant one inducing accurate and adaptable response, and
has been namedstigmergy” [12] (translated by Holland and Melhuish [18]).

Holland and Melhuish [18] examined stigmergy and self-organization in a group of robots that clustered
and sorted frisbees, and found that the task was solvable using stigmergy-based control without any direct
communication between robots. Franklin [8] proposed that stigmergic coordination may be an advantage
over coordination through direct communication, because communication and explicit planning between
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agents require additional architecture, intelligence, and resources. The work presented in this paper further
advances these ideas in three ways: (1) By showing how stigmergy can emerge in cooperative coevolution
when direct communication between teammates is not available; (2) by comparing the learning perfor-
mance of communicating teams and those that coordinate through stigmergy; and (3) by comparing the
emergent behaviors of communicating teams and those that coordinate through stigmergy. As a result, an
effective non-communicating strategy based on stigmergiccoordination is identified and termedrole-based
cooperation. In certain tasks, this strategy is easier to learn and more powerful than a strategy based on
communication.

In this paper, a most elementary form of communication is employed. Whereas each non-communicating
agent is completely unaware of its teammates, each communicating agent continuously broadcasts its loca-
tion to its teammates. Although elementary, such exchange of information is useful communication: In
many real-world applications of software agents or physically situated robots, it is not possible to sense the
teammates locations directly, because they may be far away or obscured or the appropriate sensors may not
be available. A communicative apparatus (such as a radio system) is required to obtain this information. On
the other hand, while other, more complex forms of communication are possible, broadcasting of locations is
sufficient to demonstrate differences between teams that communicate and those that do not, and it therefore
forms a suitable experimental platform for this study, as will be described next.

3 The Prey-Capture Domain

The prey-capture task used in this paper is a special case of pursuit-evasion problems [24]. Such tasks con-
sist of an environment with one or more preys and one or more predators. The predators move around the
environment trying to catch the preys, and the preys try to evade the predators. Pursuit-evasion tasks are
interesting because they are ubiquitous in the natural world, offer a clear objective that allows measuring
success accurately, and allow analyzing and visualizing the strategies that evolve. Such tasks generally can-
not be solved with standard supervised learning techniqueslike backpropagation. The correct or optimal
decisions at each point in time are usually not known, and theperformance can be measured only after sev-
eral decisions have been made. More complex algorithms are required that can learn sequences of decisions
based on sparse reinforcement. Pursuit-evasion tasks are challenging for even the best learning systems
because they require coordination with respect to the environment, other agents with compatible goals, and
adversarial agents [10].

The prey-capture task in this paper consists of one prey and three predators in a discrete toroidal envi-
ronment (Figure 1). The prey is controlled by a rule-based algorithm; the predators are controlled by neural
networks. The goal is to evolve the neural networks to form a team for catching the prey. The different
approaches and techniques are compared based on how long it takes for the team to learn to catch the prey
consistently, and what kind of strategies they use.

The environment is a100� 100 toroid without obstacles or barriers (the100� 100 area is also referred
to as the “world” below). All agents can move in 4 directions:N, S, E, or W. The prey moves as fast as the
predators, and always directly away from the nearest predator. It starts at a random location of the world,
and the predators start in a horizontal row at the bottom leftcorner (Figure 1a). All the agents make their
moves simultaneously, and an agent can move into a position occupied by another agent. The team catches
the prey when a predator moves onto the position occupied by the prey. If the predators have not caught the
prey in 150 moves, the trial is terminated and counted as a failure.

Constrained in this way, it is impossible to consistently catch the prey without cooperation. First, since
the predators always start at the bottom left corner, behaving greedily would mean that they chase the prey
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Figure 1: The Prey-Capture Domain. The environment is a100 � 100 toroidal grid, with one prey (denoted by
“X”) and three predators (denoted by “1”, “2” and “3”). Figure (a) illustrates a starting scenario: The predators start
in a row at the bottom left corner, and the prey starts in a random location. Figure (b) illustrates a scene later during
a trial. The arrows indicate a general direction of movement: Since each agent may only move in the four cardinal
directions, a movement arrow pointing 45 degrees northwestmeans the agent is moving north and west on alternate
time steps. Figure (c) shows the positions of the predators one time step before a successful capture. Even though the
prey is as fast as the predators, the predators approach it consistently from different directions, and eventually the prey
has nowhere to run.

as a pack in the same direction. The prey will then avoid capture by running away in the same direction:
Because it is as fast as the predators, and the environment istoroidal, the predators will never catch it
(Figure 18 demonstrates this scenario). On the other hand, should the predators behave randomly, there is
little chance for them to approach, circle, and run into the prey. The 150 steps limit is chosen so that the
predators can travel from one corner of the world to the other, i.e. they have enough time to move to surround
the prey, but it is not possible for them to just mill around and capture the prey eventually by accident.

The prey-capture task has been widely used to test multi-agent behavior. For example, Benda et al. and
Haynes and Sen [6, 16, 15] used this domain to assess the performance of different coordination systems,
and Jim and Giles [19] studied the evolution of language and its effect on performance. In their variant of the
task, the predators are required to surround the prey in specific positions to catch it, and the main difficulty
is in coordinating the predators to occupy the proper capture positions simultaneously. On the other hand,
the prey moves either randomly or at a slower speed than the predators, thus allowing the predators to catch
up with it easily. In contrast, in the experiments describedin this paper it is enough for one predator to move
onto the prey to capture it. However, the prey moves as fast asthe predators, and always away from the
nearest predator, and therefore there is no way to catch the prey simply by chasing it. The main challenge
is in coordinating the chase: The agents have to approach theprey from different directions so that it has
nowhere to go in the end (Figure 1c). This behavior requires developing a long-term cooperative strategy,
instead of coordinating the timing of a few actions accurately as in the previous studies.

4 The Multi-Agent ESP Approach

The Enforced SubPopulations Method (ESP1; [10, 11]) is an extension of Symbiotic, Adaptive Neuro-
Evolution (SANE; [26, 27, 25]). SANE is a method of neuro-evolution that evolves a population of neurons
instead of complete neural networks. In other words, in SANEeach chromosome represents the connections
of a single neuron instead of the structure and weights of an entire network (analogous to the “Michigan”
method of evolving rule-based systems, where each chromosome represents a single rule [17], versus the
entire rule set as in the “Pitt” method [36]). Neurons are selected from the population to form the hidden
layer of a neural network, which is then evaluated on the problem. The fitness of the network is passed

1ESP neuroevolution software is available at http://nn.cs.utexas.edu/soft-list.php
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Figure 2: ESP architecture. Each subpopulation of neurons contributes one neuron (withits input and output
connections) to form the hidden layer of the neural network,which is then evaluated in the domain. The fitness is
passed back to the participating neurons. This scheme is used to evolve the central-controller neural network (Figure 4)
that controls all three predators simultaneously. The extension to multiple controllers is shown in Figure 3.

back to all neurons of the network equally. ESP extends SANE by allocating a separate population for
each hidden-layer neuron of the network; a number of neuron populations are thus evolved simultaneously
(Figure 2). ESP is thus a cooperative coevolution method: Each neuron population tends to converge to a
role that results in the highest fitness when the neural network is evaluated. In this way, ESP decomposes
the problem of finding a successful network into several smaller subproblems, resulting in more efficient
evolution [10, 11].

In several robot control benchmark tasks, ESP was compared to other neuro-evolution methods such as
SANE, GENITOR [42], Cellular Encoding [13, 43], as well as toother reinforcement learning methods such
as Adaptive Heuristic Critic [4, 1], Q-learning [40, 30], and VAPS [23]. Because of its robust neural network
representation and efficient search decomposition, ESP turned out to be consistently the most powerful,
solving problems faster, and solving harder problems [11, 9]. The above properties of ESP also allow it
to be extended efficiently to multi-agent systems evolution. In this paper, ESP is extended to simultaneous
evolution of multiple agents, called Multi-agent ESP.

Three approaches of evolving and controlling agents are tested: the central controller approach, the
autonomous communicating approach, and the autonomous non-communicating approach. In the central
controller approach, all three predators are controlled bya single feedforward neural network, imple-
mented with the usual ESP method (Figure 2). Multi-agent ESPis used in both the communicating and
non-communicating autonomous controllers approaches, where each predator is controlled by its own feed-
forward network, evolved simultaneously in separate populations (Figure 3). Each network is formed using
the usual ESP method. These three networks are then evaluated together in the domain as a team, and the
resulting fitness for the team is distributed among the neurons that constitute the three networks.

In all three approaches, the agents are evolved in a series ofincrementally more challenging tasks. Such
incremental evolution, or shaping, has been found to facilitate learning in complex domains, where direct
evolution in the goal task would result in inadequate, mechanical strategies such as running around in circles
[10, 34, 7, 38]. Evolution proceeds through six stages: In the easiest task the prey is stationary, and in each
subsequent task it moves at a faster speed and with a greater probability of heading away from the nearest
predator, until in the final task it moves as fast as the predators, and always away from the nearest predator.
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Figure 3: Multi-agent ESP architecture. Each predator is controlled by its own neural network, formed from its
own subpopulations of neurons. The three neural networks are evaluated in the domain at the same time as a team, and
the fitness for the team is passed back to all participating neurons. A detailed architecture for the individual networks
is shown in Figure 5.

Task Prey Speed (Relative to Predators’ Speeds)Prey Probability of Moving Away from Nearest Predator
1 0 0
2 0.45 0.45
3 0.63 0.63
4 0.77 0.77
5 0.89 0.89
6 1 1

Table 1:The sequence of incrementally more difficult tasks.

Table 1 gives the speeds and evasive probabilities of the prey for each of these tasks; small variations to
this schedule lead to similar results. When a team manages tosolve the current task consistently, the next
harder task is introduced; the team can thus utilize what it has already learned in the easier task to help guide
its learning in the new, harder task. In the pursuit-evasiondomain, incremental evolution is particularly
useful because it allows the predators to learn early on how to catch the prey at close proximity. Placing the
predators into the final task right from the start fails because they do not get close to the prey often enough
to learn to catch it. Incremental learning is therefore usedto give evolution more experience in the necessary
skills that would otherwise be hard to develop.

The fitness function consists of two components, depending on whether the prey was captured or not:f = ( d0�de10 if the prey was not caught200�de10 if the prey was caught,

whered0 is the average initial distance of the predators from the prey, andde is the average final distance.
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This fitness function was chosen to satisfy four criteria:

1. If the prey is caught, the starting scenario (i.e. the initial distance from the prey) should not bias the
fitness. Instead, teams should be rewarded if their ending positions are good—that is, if all predators
are near the prey.

2. If the prey is not caught, teams that covered more distanceshould receive a higher reward.

3. Since a successful strategy has to involve sandwiching the prey between two or more predators, at
least one predator must travel the long distance of the worldso that two predators can be on the
opposite sides of the prey. Thus the time taken for each capture (within the 150 step limit) tends to be
about the same, and should not be a factor in the fitness function.

4. The fitness function should have the same form throughout the different stages of incremental evolu-
tion, making it simple and convenient to track progress.

The neuron chromosomes are concatenations of the real-valued weights on the input and output connec-
tions of the neuron (Figure 2). As is usual in ESP, burst mutation through delta-coding [44] on these weights
is used as needed to avoid premature convergence: If progress in evolution stagnates (i.e. the best solution
25 generations earlier outperforms the current best solution), the populations are re-initialized according to
a Cauchy distribution around the current best solution. Burst mutation typically takes place in prolonged
evolution in difficult tasks [10, 11].

5 Evolution of Cooperative Behavior

In this section, two experiments are presented, testing thetwo main hypotheses of this paper: First, that
cooperative coevolution of autonomous controllers is moreeffective than evolving a central controller in
this domain (Section 5.2), and second, that the agents controlled by autonomous neural networks can learn
to cooperate effectively using stigmergy without any direct communication (Section 5.3). These behaviors
and conditions under which they arise are then analyzed in detail in Sections 6 and 7.

5.1 Experimental Setup

The following parameter settings were used for ESP and its multi-agent extension. Each subpopulation of
neurons consisted of 100 neurons; each neuron (or chromosome) was a concatenation of real-valued num-
bers representing full input and output connections of one hidden unit. During each evolutionary generation,
1,000 trials were run wherein the neurons were randomly chosen (with replacement) from their subpopula-
tions to form the neural network(s). In each trial, the team was evaluated nine times to match the number
of evaluations in the test benchmark suite (to be described shortly). The prey started in a random location
each time, while the predators always started in the bottom-left corner (Figure 1a). The consistent starting
location gives the different trials a common structure thatmakes it easier to analyze and compare results;
Section 7.3 shows that similar results are obtained when predators start at random locations. The fitnesses
over the nine evaluations are averaged, and assigned to all the neurons that constituted the network. After
the trials, the top 25% of neurons were recombined using one-point crossover. The offspring replaced the
bottom 50% of the neurons, and they were then mutated with a probability of 0.4 on one randomly-chosen
weight on each chromosome, by adding a Cauchy-distributed random value to it. Small changes to these
parameters lead to similar results.
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Figure 4: Central controller network for a team of three predators. This network receives the relativex andy
offsets of the prey from the perspective (i.e. location) of all three predators, and outputs the movement decisions for
all three predators. This way it acts as the central controller for the whole team. There are nine hidden units, and the
chromosomes for each hidden layer unit consist of 21 real-valued numbers (six inputs and 15 outputs).

The environment is stochastic only in the prey’s starting location, and this location is the only factor that
determines the course of action taken by the predators. In order to test these team strategies comprehensively,
a suite of benchmark problems was implemented. The world wasdivided into nine33 � 33 subsquares; in
each trial, each team was tested nine times, with the prey starting at the center of each of these squares
in turn. Such an arrangement provides a sampling of the different situations, and allows estimating how
effective each team is in general. A team that manages to catch the prey in all nine benchmark cases is
considered to have completely solved the task, and indeed such a team usually has a 100% success rate in
random, general scenarios.

Before running the comparisons, an appropriate number of hidden units was determined for each of
the three approaches. Since small networks typically generalize better and are faster to train [20, 33], the
smallest number of hidden units was found that allowed solving the task reliably. More specifically, for
each of the three approaches, ten evolution runs were performed on the prey-capture task, initially with two
hidden units. Should any of the ten runs fail to learn to solvethe task completely, the number of hidden
units was increased by one and another ten runs were tried. A run was deemed a failure if it stagnated ten
consecutive times, that is, if its fitness did not improve despite ten burst mutations in 250 generations.

Through this procedure, the appropriate number of hidden units was determined to be nine for the
central controller, eight for each of the autonomous communicating controllers, and three for each of the
autonomous non-communicating controllers (Figures 4–6).The comparisons were run with these architec-
tures, as described below.

5.2 Standard Evolution of a Central Controller vs. Cooperative Coevolution of Autonomous
Controllers

This section tests the first hypothesis, i.e. that it is easier to coevolve three autonomous communicating
neural networks, each controlling a single predator (Figure 5), than it is to evolve a single neural network
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Figure 6:Controller for each autonomous non-communicating predator. This network receives the prey’sx andy offsets as its inputs. Therefore, it controls a single predator without knowing where the other two predators are (i.e.
there is no communication between them). There are three hidden units, and the chromosomes for each hidden layer
unit consist of seven real-valued numbers (two inputs and five outputs).

that controls the entire team (Figure 4). The number of evolutionary generations needed to learn to solve the
task, that is, to be able to catch the prey in all nine benchmark cases, are compared for the two approaches.
Ten simulations with different random number seeds were runin each case.

Figure 7 shows a clear result: On average, the three autonomous controllers were evolved almost twice
as fast as the centralized controller. The conclusion is that the cooperative coevolution approach is more
powerful than the centralized approach in this task.

Figure 8 shows how long it took each approach to solve each incrementally more difficult task during
evolution. While the centrally controlled teams require just slightly more time to learn the easier tasks
than the autonomous controllers, as the tasks become more difficult, the differences in performance grow
significantly. This result suggests that the autonomous controller approach should scale up better to harder
tasks.
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Figure 8:Progress of evolution through incrementally more difficult tasks. Number of generations required for
each approach to solve each task in the sequence is shown. As shown in Table 1, in Task 1 the prey is stationary,
whereas in Task 6 it moves at the same speed as the predators, and always away from the nearest predator. The
centrally controlled teams took only slightly longer than the autonomously controlled communicating teams to learn
the easier tasks; with more difficult tasks, though, the differences in performance become significant. On the other
hand, the autonomously controlled, non-communicating teams learn to solve all the tasks substantially faster than
either of the two other approaches.
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5.3 Cooperative Coevolution With vs. Without Communication

The conclusion from the first comparison is that separating the control of each agent into disjoint au-
tonomous networks allows for faster evolution. The controllers no longer receive direct information about
what the other agents see; however the domain is still completely represented in each predator’s inputs,
which include the relative locations of the teammates and the prey. In this section the available information
is reduced further by preventing the predators from knowingeach other’s locations. This way the agents
will have to act independently, relying on stigmergy for coordination. The objective is to test the second
hypothesis, i.e. that cooperative behavior based on stigmergy may evolve more efficiently than cooperation
based on direct communication.

The network architecture for such non-communicating controllers is shown in Figure 6. The predator no
longer receives the relativex andy offsets of the other predators, only the offsets of the prey.These networks
were evolved with the same coevolutionary multi-agent ESP method as the communicating networks of
Figure 5. Again, ten simulations were run and the results averaged.

The non-communicating teams learned to solve the entire task more than twice as fast as the commu-
nicating teams (Figure 7). Furthermore, the non-communicating teams learned to solve each incrementally
more difficult task significantly faster than the communicating teams (Figure 8).

These results show that direct communication between teammates is not always necessary: Cooperative
behavior can emerge even when teammates are unaware of each other’s locations. In fact, since commu-
nication is not necessary, it is more efficient to do away withit entirely. In the next section examples of
evolved behaviors will be analyzed to gain insight into why this is the case, concluding that the agents rely
on stigmergy. In Section 7, a series of further simulations will be presented to demonstrate that this result is
robust; in particular, Section 7.1 shows that this result isnot due to the relative differences in search space
between the two approaches.

6 Analysis of Evolved Behaviors

In this section, the behaviors evolved in the three approaches are analyzed in two ways: First, the degree
to which each predator’s actions depend on those of the otherpredators is measured quantitatively; second,
examples of evolved behaviors are analyzed qualitatively.This analysis leads to the characterization of team
behaviors in two extremes: those based on role-based cooperation, where interaction between different roles
take place through stigmergy, and those based on direct communication.

6.1 Measuring Dependency

A predator’s actions are independent of its teammates if thepredator always performs the same action for the
same prey position, regardless of where its teammates are. Conversely, the predator’s strategy is dependent
on its teammates if its actions are determined by both the prey’s and the teammates’ positions.

The team of autonomous, non-communicating predators must act independently: Since the neural net-
work for each predator cannot see the locations of its teammates, their positions cannot affect its actions. A
more interesting question is whether dependent actions evolve in the communicating team. The agents could
evolve to simply ignore their communication inputs; on the other hand, they could learn to use communi-
cation to develop a coordinated strategy. Also, it is interesting to observe whether the actions of a centrally
controlled team are more dependent than those of an autonomous communicating team, since its control
architecture is more tightly coupled between teammates.
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Figure 9: Action dependence in teams evolved using each approach.The centrally controlled and autonomous
communicating teams both evolved behaviors in which each agent’s actions were highly dependent on its teammates
(the difference is not statistically significant, withp = 0:84). The non-communicating team evolved behaviors that
were independent (the difference between the dependence ofthe non-communicating team and those of the other two
approaches is statistically significant atp >> 0:99).

Action dependence can be measured in the following way: For each predator in the team, a sample is
taken of possible relative prey positions. For each of thesesampled positions, possible configurations of
teammates’ locations are then sampled. Each such case is presented to the predator’s control network, and
the predator’s resulting action observed. The percentage of actions that differ for the same prey position (but
different teammate positions) is a measure of how dependentthis predator’s actions are on its teammates.
The team’s dependence is obtained as the average of those of its three predators.

The dependences of the centrally controlled, communicating, and non-communicating teams are com-
pared in Figure 9. As expected, the non-communicating predators act independently. In contrast, over 90%
of the actions of the centrally controlled and communicating team members depend on the other predators.
On average, the centrally controlled teams were slightly more dependent than the communicating teams;
however, this difference is not statistically significant.

These results demonstrate that indeed the communicating teams learn a distinctly different behavior
than the non-communicating teams. Even though the weights on the communication inputs could evolve to
0, they do not. Apparently, given a starting point where all weights are random, it is easier for evolution
to discover an adequate communicating strategy than unlearn communication altogether. An interesting
issue is whether a different starting point would bias evolution to discovering non-communicating solutions
instead; this question is addressed in Section 7.4.

6.2 Characterizing Sample Behaviors

Dependence measurements demonstrate that the behaviors differ, but to understand how, actual examples
need to be analyzed. In this section, example behaviors for each approach are described and compared
in detail. The main results are that without communication,evolution produces specific roles for each
team member, and these roles interact only indirectly through stigmergy, that is, by causing changes to
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Figure 10: A sample strategy of a non-communicating team. In frames 1 and 2, the predators are in setup
mode, maneuvering into an appropriate chase configuration.In frame 3, they switch to chase mode: Predators
2 and 3 chase the prey toward predator 1, which acts as a blocker. This strategy is effective and does not re-
quire direct communication. Animated demos of this strategy, and others discussed in this paper, are available at
nn.cs.utexas.edu/keyword?mesp-demo

.

the environment that affect the other teammates’ roles; furthermore, these teams utilize a single effective
strategy in all cases. On the other hand, evolution with communication produces agents with more variable
(although less effective) behaviors, able to employ two or more different strategies at different times.

A typical successful strategy for the non-communicating team is illustrated in Figure 10. This strategy
is composed of two stages, thesetupstage and thechasestage. In the setup stage, illustrated in the first
two frames, the predators maneuver the prey into an appropriate configuration for a chase: In frame one,
predators 2 and 3 move eastward, causing the prey to flee in thesame direction, while predator 1 moves
westward. When the prey detects that predators have closed in to its south, it starts fleeing northward (frame
two). In frame three, the predators detect that the prey is directly to their north, and the chase stage of
the strategy begins. This stage involves two different roles, chasersandblockers. Predator 1, the blocker,
moves only in the horizontal direction, staying on the same vertical axis as the prey, while predators 2
and 3, the chasers, pursue the prey northward (frames three and four). Eventually, the prey is trapped
between the blocker and the chasers, who move in for the capture. Notice that this strategy requires no
direct communication between predators: As long as the predators get the prey into a chase configuration,
and the blockers and chasers execute their roles, the prey will always be caught. Moreover, it is reliable for
all starting locations of the prey, even when the predators do not all switch from setup to chase modes at the
same time.

From the above description, it is clear that some form of coordination is taking place, even without direct
communication. When the prey is not directly above (or below) a predator, the predator is in setup mode,
moving either east (predators 2 and 3), or west (predator 1).This action causes a change in the environment,
i.e. a specific reaction on the part of the prey: to flee east or west. Because of this reaction, each of the
predators will eventually find the prey directly above or below it, triggering a second activity: They either
chase the prey north (predators 2 and 3), or remain on the prey’s vertical axis (predator 1). This activity in
turn causes a change in the prey’s behavior, to flee north, until it is eventually trapped between chasers and
blockers. This sequence of events is a clear example of stigmergy: Each agent’s action causes a change in
the environment, that is, a reaction on the part of the prey; this reaction in turn causes a change in the agent’s
and its teammates’ behaviors.

Sample behavior of a communicating team is illustrated in Figure 11. Two different strategies are shown
because this team actually displays both of them, and also their combinations and variations, depending on
the relative locations of the prey and the other predators ateach timestep. The first strategy, Figure 11a,
illustrates behavior similar to the chaser-blocker strategy. The first frame is a snapshot of the starting posi-
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Figure 11:Two sample strategies of the same communicating team.This team employs the two strategies shown
above, as well as their variations and combinations. In the first, (a), the chase starts with two chasers and a blocker,
but ends with opposite chasers. In the second, (b), there is ablocker and two chasers throughout, but the movement is
horizontal. In this manner, the same team utilizes different strategies, depending on the starting position of the prey.

tion. Predators 1 and 2 are the chasers, and they start pursuing the prey upward. Predator 3 is the blocker,
and it moves left onto the prey’s vertical axis. At this point, however, it starts chasing the prey downward,
in Frame 2, until the prey is trapped between all three predators in Frame 3. Already this strategy is more
varied as those of the non-communicating teams, as a combination of blocking and opposite chasers.

Another strategy employed by the same team in a different situation is shown in Figure 11b. In the first
frame, predators 1 and 3 start moving toward the prey diagonally upward and downward, while predator 2
moves upward until it is horizontal with the prey. By the second frame, predators 1 and 3 are chasing the
prey horizontally, until it is trapped between them and predator 2 in frame 3. This strategy is again similar
to the chaser-blocker strategy, except this time the prey ischased horizontally instead of vertically, and the
chase includes diagonal movement as well.

Although each strategy is similar to those of non-communicating teams, in this case they are employed
by one and the same team. This team occasionally also utilizes combinations of these strategies, for example
by starting with one and finishing with another. Thus, each predator does not have a specific, fixed role, but
modifies its behavior depending on the situation. Through communication each predator is aware of its
teammates’ relative locations, and its behavior depends not only on the prey’s relative position, but also
directly on what the other predators are doing. In this way, the communicating strategies are more variable
and flexible. On the other hand, they are less efficient to evolve (Section 5.2), and less robust (Section 7.2).
In a sense, the non-communicating teams resemble players ina well-trained soccer team, where each player
knows what to expect from the others in each play, whereas thebehavior of the communicating teams is
similar to a pickup soccer team where each player has to constantly monitor the others to determine what to
do. Such players can perhaps play with many other kinds of players, but not as efficiently.

The centrally controlled teams exhibit behavior nearly identical to those of the communicating au-
tonomous teams. In particular, the more tightly coupled architecture does not translate to behavior that
is visibly more coordinated in this domain.
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Of course we have to be careful not to attribute undue intelligence and intention to neural networks that
simply manage to adapt to each other’s behavior. However, the differences in behavior are striking: The
non-communicating teams employ a single, efficient, fail-proof strategy in which each team member has a
specific role, while the communicating and centrally controlled teams employ variations and combinations
of two or more strategies. These two forms of cooperative behavior can be distinguished asrole-based
cooperationandcommunication-based cooperation. Role-based cooperation consists of two ingredients:
Cooperation is achieved through the combination of the various roles performed by its team members, and
these roles interact indirectly through stigmergy. On the other hand, communication-based cooperation may
or may not involve roles performed by its team members, but the team members are able to synchronize
through direct communication with each other.

In the following section, these cooperative strategies will be characterized further by testing how robustly
they evolve and how robustly the evolved agents perform under various extreme conditions.

7 Robustness of Strategy Evolution and Performance

Section 5 showed that when minimal neural-network architectures are used for each approach, the coevo-
lutionary approach learns faster than the centralized approach, and the team without communication learns
faster than the team with communication. It is important to verify that these results hold when equivalent
neural-network architectures are used across all approaches. Also, since the evolved non-communicating
strategies include fixed roles, it is necessary to demonstrate that they are robust against changes in the prey’s
behavior. It is also important to show that evolution can discover non-communicating strategies robustly
even when the predators are initially placed randomly. Another interesting issue is whether communicating
teams can be biased by design to learn role-based, rather than communication-based cooperative behavior.
Finally, it is important to demonstrate that coevolution ofheterogeneous agents is indeed necessary to solve
the task. Each of these issues is studied in a separate experiment in this section.

7.1 Do the results hold across equivalent network architectures?

When the network architectures were optimized separately for each approach, the coevolutionary approach
learned faster than the centralized approach (Section 5.2), and teams without communication faster than
teams with communication (Section 5.3). However, it is unclear how much of this result is due to the
different search-space sizes (i.e. different number of weights that need to be optimized), and how much is
due to the centralized vs. distributed control strategy itself, or to the availability of communication.

In the centralized approach, the neural network had 9 hiddenunits and 21 connections per unit for a total
of 189 weights (Figure 4), whereas the network used in the coevolutionary approach (with communication)
had 8 hidden units and 11 connections per unit for a total of 88weights (Figure 5); such a smaller search
space may allow learning to progress significantly faster. The same issue arises in comparing communicating
vs. non-communicating networks: The latter approach has 3 hidden units and 7 connections per unit for a
total of 21 weights (Figure 6).

Of course, such small search spaces are possible precisely because the approaches are different, but it
is still interesting to verify that the results are not completely due to search complexity. To this end, the ex-
periments in Sections 5.2 and 5.3 were repeated with identical network architectures across all approaches.
Specifically, all approaches use the architecture of the centralized approach, with 9 hidden units, 6 inputs,
and 15 outputs. When some inputs are not part of the approach (such as teammate locations in the non-
communicating approach), random noise values are used for them; outputs that are not used are simply
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Figure 12: The large-network versions of the communicating and non-communicating controllers. (a) The
network used in the autonomous communicating approach; tenof the outputs are ignored. (b) The network used in
the autonomous non-communicating approach; ten of the outputs are ignored, and four inputs are fed random noise.
In both cases, there are nine hidden units, and the chromosomes for each hidden layer unit consists of 21 real-valued
numbers (six inputs and 15 outputs), which is the same as in the central-controller approach.

ignored (Figures 12a; b). The learning performance of the coevolutionary approaches with such large net-
works is compared against that of the original centralized approach, providing a comparison of the three
different approaches given a uniform search space.

Figure 13 presents the results for these experiments. Usinglarger neural networks did not significantly
change the number of required generations to learn the task for either of the coevolutionary approaches
(with or without communication). As a result, the relative differences in learning time between the three
approaches are preserved. Therefore, the better performance of the coevolutionary over the centralized
approach, and that of the coevolutionary non-communicating over the coevolutionary communicating ap-
proach, are indeed due to the approaches themselves, and notsimply a consequence of being able to search
in a smaller space.

7.2 Are the strategies robust against novel prey behavior?

Although the non-communicating networks work together like a well-trained soccer team, soccer (like most
interesting real-world tasks) is unpredictable. For example, a player from the other team may intercept
a pass, in which case the team members will have to quickly adapt their strategy to cope with the new
situation. To determine how the non-communicating team candeal with such unpredictability, three further
experiments were conducted where the ten teams were pitted against a prey that behaved differently from
those encountered during evolution. For comparison, the same tests were also run for the communicating
teams. Since the non-communicating teams’ predators act according to rigid roles, they might not be able
to adapt as well as the communicating teams’ more apparentlyflexible agents.

In the first experiment, the prey moved three times faster than usual (by moving three steps each time)
and in a random direction 20% of the time; in the second test, three times faster than usual and in a ran-
dom direction 50% of the time; and in the third, the prey always moved right. The results, summarized in
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Figure 13:Learning performance for each approach with equivalent network architectures. The average number
of generations, with standard deviation, required to solvethe task is shown for each approach. The performance is
about the same as with minimal architectures, and the relative performance between approaches is preserved. The
differences between the approaches are statistically significant withp > 0:95.

Figure 14, are surprising: The non-communicating teams aremore robust against unpredictable preys than
the communicating teams. Apparently, the first two prey behaviors, which are noisy versions of the original
behavior, are still familiar enough so that the rigid roles are effective: The teams still catch the prey about
50% of the time. The agents only have to track the occasional erratic movement, otherwise their strategy is
effective as is. The communicating teams, however, have a narrower range of adaptable situations, particu-
larly because their agents tend to switch strategies and roles based on the current state of the world, and thus
get easily confused by the unexpected prey actions. In the third case, where the prey always moves right,
both teams are unable to adapt. This behavior is consistently novel, and the agents are evolved not to expect
it.

In sum, teams that have delegated rigid and specific roles to their members may be more tolerant to
noisy or unusual situations, as long as the basic strategy isstill valid.

7.3 Are the strategies robust with random deployment?

In all experiments so far, the predators always started at the bottom left corner of the world, and only the
prey’s initial position was varied. Such a limitation makesit possible to analyze the resulting behaviors
systematically. However, it is important to demonstrate that similar behavior evolves in the more general
case when the predators’ positions are initially random. The issue is, will the non-communicating networks
be able to establish effective roles even when the predators’ random initial positions make the initial state
uncertain during learning?

The experiment was set up as described in Section 5.1, exceptthat predators were placed randomly
in the world during both evolution and benchmark tests. Furthermore, the number of evaluations per trial
during evolution was increased from 9 to 45, in order to obtain a sufficient sample of the different starting
positions. The number of evaluations during benchmark tests was increased from 9 to 900 for the same
reason (whereas relatively sparse sampling is sufficient toguide evolution, the benchmarks need to measure
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Figure 14:Robustness of communicating and non-communicating teams against novel prey behavior. In the
first test, the prey moved three steps each time and in a randomdirection 20% of the time; in the second, three steps
and randomly 50% of the time; and in the third, always right. The results were averaged over the ten runs of each
approach. Surprisingly, the non-communicating teams performed significantly better than the communicating teams
(p > 0:99 for all three tests), even though the communicating strategies were more flexible. The non-communicating
teams tolerate the occasional novel behavior well as long astheir basic strategy is valid; however, even they cannot
cope if the prey employs a consistently different strategy.

performance more accurately). A network was deemed successful if it caught the prey in 750 of the 900
tests.

The minimum effective network sizes were determined as in Section 5.1. In this more challenging task,
they were found to be 13 hidden units for the centrally controlled and communicating autonomous networks,
and 5 hidden units for the non-communicating networks.

Figure 15 shows how long it took each approach to solve the task, averaged over 10 runs. Although this
task was much harder, the conclusions are the same as before:The communicating autonomous teams were
easier to evolve than central controllers, and the non-communicating networks easier than the communicat-
ing networks. The strategies learned were also similar to those with fixed initial placement of predators.

7.4 Can evolution be biased toward role-based cooperation?

As discussed in Section 6, the communicating networks couldin principle evolve non-communicating be-
havior by learning zero weights on the connections from those input units that specify the other predators’
positions. It does not happen, and the reason may be that it isdifficult for evolution to turn off all such
connections simultaneously; it is easier to instead discover a competent communicating solution, utilizing
those inputs and weights as well.

An interesting question is whether evolution would discover role-based cooperation if it was biased to
do so from the beginning. Such an experiment was run by setting all the communicating weights to zero in
the initial population; the other weights were initializedrandomly as usual. Evolution only had to keep the
communicating weights at zero while developing the rest of the network to solve the task. As a comparison,
networks with all weights initially zero were also evolved,and the results compared to normal evolution of
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Figure 15:Learning performance of the three approaches when the predators start at random locations. In
this harder task, evolution took longer than with fixed initial placement of predators in all cases. Moreover, as before,
the non-communicating teams were significantly easier to evolve than communicating teams (p > 0:99), which were
slightly easier than central controllers (p > 0:90). The team behaviors were also similar to those evolved earlier.

communicating networks.

The action dependencies that evolved are shown in Figure 16;the results were averaged over 10 runs.
The results show that such an initial bias does have an effect: Evolution discovers behaviors where the
actions depend significantly less often on the positions of other predators. With communication weights
initially at zero, 14% of the actions depend on them, and withall weights initially zero, 48%; in contrast, the
earlier evolved networks with all randomly-initialized weights exhibit 91% dependency. Qualitatively the
behaviors of the initially biased networks consist of mostly role-based cooperation, with occasional switches
or deviations in the roles of the predators.

The performance in terms of number of generations needed to learn the task is shown in Figure 17.
Teams with communication weights initialized to 0 show a significant improvement in evolution time: The
number of generations required, compared to the normal communicating teams, dropped by a factor of three,
making it as fast as the non-communicating teams. When all weights are initialized to 0, the improvement
in evolution time was found to be insignificant.

These results show that evolution can indeed discover role-based cooperation, and the number of gener-
ations required can be comparable to that needed by an architecture that forces role-based behavior (i.e. the
non-communicating networks); however, the initial state needs to be biased the right way, and the role-based
cooperation discovered may not be perfect. In other words, it is still important for the designer of a multi-
agent system to recognize whether role-based cooperation could work in the task, and utilize the appropriate
architecture to evolve it.

7.5 Is Coevolution Necessary?

Although the performance of cooperative coevolution looksconvincing, it does not necessarily mean that
coevolution is essential for the task. Perhaps it is possible to evolve good predators individually, and just put
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Figure 16:Degrees of dependence of communicating teams biased to evolve role-based cooperation.The com-
municating teams with communication weights initialized to 0 evolved behaviors that were 14% dependent on the
positions of teammates; with all weights initialized to 0, the evolved behaviors were 48% dependent. In both cases,
the evolved behaviors were significantly less dependent on teammates compared to those of the normal (randomly-
initialized) communicating teams, which was 91% dependenton teammates (all differences are statistically significant
with p > 0:99).
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Figure 17:Learning performance of communicating teams biased to evolve role-based cooperation.The com-
municating teams with communication weights initialized to 0 learned the task significantly faster than the normal
communicating teams (p > 0:99), taking about the same number of generations as the non-communicating teams
(p = 0:68). On the other hand, with all weights initialized to 0, learning was as slow as with normal communi-
cating teams (p = 0:89), and significantly slower than with communicating weightsinitialized to 0 as well as with
non-communicating teams (p > 0:90).
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Figure 18:A strategy of three individually evolved predators placed on the same environment.The predators
chase the prey together in the nearest direction but are unable to catch it.

them together into the domain? This subsection demonstrates experimentally that such an approach is not
sufficient, and the agents indeed must be evolved together tosolve the task.

A single predator without communication inputs (as shown inFigure 6) was evolved alone in the prey-
capture domain with incremental learning, using the standard ESP method as described in Section 4 and
Figure 2. The predator was allowed to evolve until it could nolonger improve its fitness. This process was
repeated three times, each time with a new predator, to produce three independent but competent predators.
These three predators were then put into the same environment and evaluated in the prey-capture task.

The results clearly support coevolution. When a predator evolves alone, it is never able to catch the
prey, since the prey moves at the same speed as the predator. It learns to chase the prey but is never able
to reduce the distance between them, and is only able to prevent the prey from increasing it. When the
three individually evolved predators are put together against the prey, they all chase the prey in the nearest
direction, and are unable to catch it at all—the prey keeps running and maintains the distance (Figure 18).
In other words, coevolution is necessary in this task to evolve successful cooperative behavior.

7.6 Are Heterogeneous Agents Necessary?

Even though a team of individually evolved predators cannotcatch the prey, it is possible that a homogeneous
team, i.e. one where all predators are controlled by identical networks, could. Such a team can be successful
only when the agents communicate; otherwise they would all employ the same behavior, and fail like the
team in the previous section.

In a separate experiment, communicating networks were evolved through the standard ESP method.
Each network was evaluated by making three copies of it, eachcontrolling one of the three predators in a
team; the fitness of such a homogeneous team was then taken as the network’s fitness. Networks of different
sizes were evolved, from 6 hidden units up to 16, with 10 runs at each size.

The success rate was extremely low: The homogeneous teams were able to solve the task only 3 times
out of the 100 total runs. Apparently, it was difficult for evolution to discover a way to establish the roles
initially in the beginning of the chase. In the heterogeneous communicating teams all agents are different
and their behaviors diverge in the beginning, and the agentscan immediately adopt a strategy that fits the
situation. In the homogeneous team, all predators initially perform the same actions, and it is difficult to
break the symmetry. A more effective form of communication might be to signal roles rather than simply
sensing teammates’ locations; each predator in turn would decide on a distinct role (such as chase northward,
or block horizontally), and communicate that to its teammates. Alternatively, evolving heterogeneous net-
works allows symmetry breaking to occur naturally, resulting in effective heterogeneous behaviors without
a negotiation phase.
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8 Discussion

In Section 5.2, a central controller was found to take over 50% longer to evolve than autonomous cooperating
controllers to solve the pursuit-evasion task. Cooperative coevolution is able to decompose the task into
simpler roles, thereby making it easier to discover solutions.

Such decomposition is a special case of speciation in evolutionary systems. Speciation has been widely
used to maintain diversity in evolution. Using techniques such as islands and fitness sharing [35, 28, 22],
separated populations are encouraged to diverge, resulting in more efficient search of the solution space. If
these separated populations are further evaluated jointlyand rewarded with a global fitness, they tend to con-
verge to heterogeneous policies that work well together. This is the driving mechanism behind cooperative
coevolution and also behind ESP and its multi-agent extension. ESP preserves diversity across populations
of neurons and networks, because these populations are disjoint by design. Although diversity is gradually
lost within each population as evolution focuses on a solution, diversity is maintained between subpopula-
tions, and diverse and complementary roles result. Thus, the observed cooperation between predators is a
consequence of cooperation between populations during evolution.

Section 5.3 presented the result that predators without knowledge of teammates’ relative locations evolve
to cooperate and solve the task more than twice as fast than predators with such knowledge. This result
is interesting because such knowledge from communication allows each predator to make decisions based
directly on where the other predators are, as well as where the prey is; on the other hand, non-communicating
predators do not have such knowledge, and have to learn to coordinate using stigmergy. At first glance, this
result seems attributable to three factors. First, allowing communication usually requires more structure
(the minimal communicating autonomous controllers have eight neurons with 11 weights each, while the
minimal non-communicating autonomous controllers have three neurons with seven weights each), which
translates to a larger search space. However, this difference turns out to be unimportant: As discussed in
Section 7.1, when the same architecture is used across all approaches, the non-communicating approach still
outperforms the communicating approach substantially.

The second potential factor is that communication presentsmore information for evolution to under-
stand and organize, which might take more evolutionary generations. While it is theoretically possible for
evolution to learn to discard the unnecessary information,Section 7.4 demonstrated that evolution instead
attempts to make use of it. On the other hand, Section 7.1 showed that it takes evolution virtually no time
to learn to discard random noise fed into the extra inputs of the non-communicating approach: The number
of generations taken to solve the task is the same as without noisy inputs. The conclusion is that it is easy
for evolution to discard noisy, random activations given asinputs, but difficult to discard inputs such as
teammates’ relative positions that “make sense,” even if they are marginally useful at best.

The most important factor in explaining the better performance of the non-communicating over the
communicating approach lies in the different behaviors learned in each approach, and their relationship
to the powerful decompositional property within ESP itself. As was discussed in Section 6, the non-
communicating team always employed a single strategy whereeach agent had a specific role, whereas the
communicating team tended to utilize variations and combinations of two or more strategies with roles that
were not as well delineated. During evolution, each non-communicating subpopulation converges toward
optimizing specific functions such that, as long as each agent performs its role right, the team solves the
task successfully, even though the team members are independent of one another. Evolution without com-
munication thus places strong pressure on each predator to perform its assigned role well. These roles are
assigned through simultaneous adaptive niching: As one agent begins to converge to a particular behavior,
the other agents that behave complementarily are rewarded,and themselves begin to niche into such roles;
this adaptation in turn yields a higher fitness, and all predators begin to converge into cooperative roles. In
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this way, a stigmergic form of coordination between team members is fast to emerge.

Franklin [8] pointed out that communication abilities involve non-trivial costs, and suggested that in
some cases coordination without communication may be an advantage over communication-based coordi-
nation. Our findings suggest that this is indeed true: First,communication presents extra information that
ESP takes time to learn to organize and utilize, even if such information is not crucial in solving the task;
second, communication raises the structural requirementsof the communicating controller in terms of num-
ber of hidden units and weights. Even if this does not cause anincrease in the number of generations to
solve the task, it increases the computational resources needed to store, evaluate and operate upon the larger
structures. On the other hand, stigmergy is simpler and faster for ESP to learn due to the powerful decom-
positional properties of the algorithm, and is utilized more beneficially in the task to find a rigid, efficient
solution.

In general, the results in this paper suggest that it is better to use the most parsimonious architecture
possible to solve a task, rather than an architecture with full capabilities and the hope that evolution will
guide learning to discard the unnecessary capabilities. First, it is usually faster to evolve simpler architec-
tures. Efficiency becomes important especially with difficult real-world problems, which tend to be noisy
and unpredictable. For example, Section 7.3 showed that when predators start in random initial positions,
the number of generations required to learn the task increased significantly, and each generation took longer
because more sampling was required. Furthermore, Section 7.4 demonstrated that evolution may not learn
to discard extraneous capabilities, but rather learns to use them in less efficient and less robust solutions. In
domains that are completely role-based, a particularly efficient way to simplify a system’s architecture is to
discard communication between agents; the system will thenlearn the task faster, and learn more efficient
and robust solutions.

Of course, not all multi-agent domains may be as efficiently solved through role-based cooperation. For
example in the prey-capture domain where a capture configuration is necessary (as used by Benda [6] and
Haynes and Sen [16, 15]) it would be very difficult for the agents to guess the exact locations of the other
agents to achieve successful capture. In contrast, if the agents can let other agents know where they are, they
can coordinate their positions. Just as team behaviors wereclassified as either role-based or communication-
based in Section 6.2, it may be useful to classify multi-agent domains likewise: Role-based cooperative
domains can be solved more efficiently by teams employing role-based cooperation without direct commu-
nication, while communication-based cooperative domainsrequire some degree of direct communication
between teammates to be solved efficiently. The prey-capture domain in this paper is role-based, in that
direct communication is not necessary at all.

Given a multi-agent problem, it is then extremely useful to identify it as a communication-based or
role-based domain (or equivalently, determine whether direct communication between teammates is useful
or not), so that one can choose an appropriate learning approach for it. As discussed above, employing a
communicating team in a role-based domain may not give the most efficient or most robust solution, while
a non-communicating team may not even be able to solve a task that is communication-based. While it
may not be possible to identify the type of domain in every case, there are a few observations that are likely
to be helpful. First, in a task that requires temporal synchronization, communication between teammates
is likely to be essential, and the domain is therefore communication based. An example is a prey-capture
domain where all predators have to move to occupy a capture configuration simultaneously. Second, in a
task where essential, non-redundant roles may not always complete, communication is likely to be required
so that agents can seek assistance form teammates, or to notify them that a subtask cannot be completed. For
example, if the prey-capture domain included irregularly-placed obstacles, stigmergic coordination might be
insufficient to solve the task. On the other hand, there are likely to be several real-world domains where role-
based cooperation is effective. For example, in controlling a bank of elevators in a building, each agent’s
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role could be to serve a specific range of floors; in coordinating agents to search the web for information,
each agent could cover a separate web region. In such domains, communication may turn out to be a source
of noise that diverts teams from the best solution. Systematically identifying such tasks and applying role-
based cooperative coevolution to them constitutes a most interesting direction for future work.

9 Conclusion

The experiments reported in this paper show that coevolvingseveral autonomous, cooperating neural net-
works to control a team of agents can be more efficient and robust than evolving a single centralized con-
troller, and that Multi-Agent ESP is an efficient and naturalmethod for implementing such multi-agent
cooperative coevolution. Furthermore, a class of domains was identified, called role-based cooperative do-
mains, where direct communication is not necessary for success, and may actually make evolution less
effective. Instead, a team of non-communicating agents canbe evolved to utilize stigmergic coordination to
solve the task more efficiently and robustly. Many real worldtasks appear to fall in this category of domains.
Recognizing such tasks and applying the cooperative coevolution approach to them, as well as studying the
limits of stigmergic coordination in dealing with novel andchanging environments, are the main directions
of future work in this area.
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