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Abstract 

Computational simulation of language evolution provides 
valuable insights into the origin of language. Simulating the 
evolution of language among agents in an artificial world also 
presents an interesting challenge in evolutionary computation 
and machine learning. In this paper, a “jungle world” is 
constructed where agents must accomplish different tasks such 
as hunting and mating by evolving their own language to 
coordinate their actions. In addition, all agents must acquire the 
language during their lifetime through interaction with other 
agents. This paper proposes the algorithm of Evolutionary 
Reinforcement Learning with Potentiation and Memory (ERL-
POM) as a computational approach for achieving this goal. 
Experimental results show that ERL-POM is effective in 
situated simulation of language evolution, demonstrating that 
languages can be evolved in the artificial environment when 
communication is necessary for some or all of the tasks the 
agents perform. 

Introduction 

Highly efficient and low-cost computer systems have made 
computational simulation possible at an unprecedented scale 
in recent decades. In the specific field of language evolution, 
computational simulation provides a complementary 
methodology that can help researchers develop detailed 
hypotheses on language origins and evolution and test these 
hypotheses in the virtual laboratory of simulation (Cangelosi 
and Parisi, 2002). Furthermore, from a technical perspective, 
an understanding of the fundamental principles in language 
evolution may lead to innovative machine learning algorithms 
and communication methods that are applicable to interactive 
software agents and multi-agent systems (Wagner, Reggia, 
Uriagereka, and Wilkinson, 2003). 
    Language is a powerful tool that helps humans coordinate 
actions to accomplish various tasks. It is also a skill that is 
acquired through lifetime learning. The purpose of this paper 
is therefore to establish a simulation framework, i.e. an 
artificial world and a computational method that captures 
these important features into a simulation of language 
evolution. Such a framework should then make it possible to 
gain new insights into evolution of natural and artificial 
language. 

The first part of the simulation framework: “the jungle 
world”, is an artificial environment in which agents attempt to 
hunt and mate through coordinated actions. Initially, the agent 
population have neither any knowledge on the rules of the 
world nor any existing code of communication. Through 

generations of evolution, the agent population must develop 
their own language and learn to use that language to 
coordinate their hunting and mating efforts. Additionally, for 
each agent, the language and the behavioral policy in the 
artificial world must be acquired through interaction with 
other agents and the environment during lifetime. Thus, the 
goal of evolution is to (1) evolve a language, (2) evolve it in 
service of coordinated behavior, and (3) evolve the ability for 
individuals to acquire it during their lifetime. 

 To allow efficient simulation of language evolution in the 
jungle world, a biologically-inspired algorithm, Evolutionary 
Reinforcement Learning with Potentiation and Memory 
(ERL-POM) is proposed. This approach utilizes a genetic 
algorithm to configure reinforcement learners units. State-
action memory and potentiation are introduced to balance 
exploitation with exploration and improve interactive learning 
ability. 

Using the proposed algorithm, language evolution and 
acquisition is simulated under a variety of settings of the 
jungle world. These settings include the scenario where 
communication is necessary for both tasks, one of the tasks, 
or neither of the tasks. The paper also presents and analyzes 
samples of the artificial languages evolved in different 
settings. Experimental results and analysis show that ERL-
POM is effective in simulating language evolution and 
acquisition, demonstrating that languages can be evolved and 
acquired in the artificial world if communication is necessary 
for one or both of the tasks. 

The remaining sections of the paper are organized as 
follows. The next section gives a brief review on prior work 
in computational simulation of language evolution. The third 
section introduces rules and settings of the jungle world, and 
the fourth section provides details on the algorithm. The fifth 
section presents and analyzes experimental results, and the 
sixth section points out potential directions for future work.  

Prior Work  

In a typical simulation of language evolution, a multi-agent 
system is created to simulate an entire population of agents. 
Each agent acquires a shared communication system either by 
using machine learning methods and/or through simulated 
evolutionary process.  
   Simulations of language evolution can be divided into 
situated and non-situated simulations. In a non-situated 
simulation, an agent’s actions consist solely of sending and 
receiving signals. Such non-embodied agents perceive objects 



and events, but do not change the state of the environment. 
Usually, the agents aim at encoding an arbitrary meaning as a 
signal and send it to another agent, who decodes the signal 
back to a meaning. In such simulations, neural networks 
(Batali, 1998; Kvasnicka and Pospichal, 1999; Smith 2002), 
lookup tables (Kaplan 2000; Smith 2001), associative 
memories (De Boer and Vogt, 1999; Steels and Oudeyer, 
2000) and finite state machines (MacLennan and Burghardt, 
1993; Brighton 2002) are the most commonly used models to 
represent the behaviors. While they have been employed to 
demonstrate many interesting properties of communication 
systems, non-situated simulations are unrealistic in that they 
do not associate external tasks with communication actions. In 
contrast, the evolution of language in nature is strongly linked 
to the need to perform various tasks in which communication 
helps. 

To address this problem, situated simulations can be built. 
In such a simulation, agents are embodied in an artificial 
world. Their goal is usually to accomplish tasks that require 
cooperation or competition among multiple agents. Thus, 
language serves as a necessary or beneficial tool to achieve 
higher performance in multi-agent tasks. Situated simulations 
can be used to test specific assumptions on the role of certain 
behaviors or environmental factors in the evolution of 
language (Quinn 2001; Mirolli and Parisi, 2010; De Greeff 
and Nolfi, 2010; Mitri, 2010; Rawal, Boughman, and 
Miikkulainen, 2014). 

However, prior work on situated simulations is limited in 
two ways. First, most of them focus on a single task. More 
specifically, the rewards of actions, be it communicative or 
non-communicative, do not change throughout the lifetime of 
agents in all generations. In contrast, in nature, language is 
used for numerous tasks, and the rewards of actions depend on 
multiple factors. Second, the language is usually encoded 
genetically and passed on to the next generation through 
genotypes. In contrast, language in nature is acquired during 
lifetime learning and passed on to the next generation through 
interaction among individuals in the environment. While some 
of the existing work addresses one of the above problems, to 
our best knowledge, no prior work on situated simulations 
evolves artificial languages that are both applicable to 
different tasks and acquired through lifetime learning. 
Therefore, the purpose of this work is to introduce a 
simulation framework that achieves both goals. Such a 
framework makes the simulation more realistic and should be 
helpful in discovering deeper insights into the origin and 
evolution of language. 

Simulation Environment 

This section introduces the rules and settings of the jungle 
world – the artificial environment used in the experiments. 
The goal is to establish a paradigm of situated simulation 
environment where languages evolved are used in different 
tasks at different stages of an agent’s life, and knowledge must 
be acquired through lifetime learning. While only a few 
variations of the jungle world are used in the experiments, the 
simulation environment can be modified to serve many other 
experimental goals. In addition, the jungle world does not 
impose any requirement for the artificial controller of the 
agents except for an interface that specifies inputs and outputs. 

Hence, it can be viewed as a general test environment for 
evaluating performances of genetic based machine learning 
algorithms. 

Life in the Jungle World 

This subsection presents basic concepts and rules in the virtual 
world. The focus is on actions and rewards during a single 
generation. Concepts and rules are organized into entries with 
short definitions and descriptions. 

Step and Trial. Time is discretized into steps. At each step, 
agents receive inputs from the artificial environment including 
messages from their partner, and take actions accordingly. A 
trial is a 10-step experiment with two agents. It terminates 
early if any of the participants receive a positive or negative 
reward. 

Jungle. The jungle is the place where agents hunt for prey and 
feed themselves. However, if an imprudent agent enters the 
jungle without its partner at any step, it will be hurt and receive 
a negative reward. 

Agent. An agent has two integer states: fitness and position. 
Fitness ranges from 10 to 200, with 10 the initial value for 
new-born agents. Fitness increases by 10 after a successful 
hunt (defined later) and decreases by 1 after each trial. 
Position ranges from 0 to 5, indicating the distance between 
an agent and the jungle. 

An agent senses its proximity to the jungle and becomes 
alert if its position is 1. It becomes ready for mating if its 
fitness is greater than 100. 

At each step, an agent may decide to take the following 
actions: (1) move towards the jungle, (2) attempt to mate, and 
(3) send a two-bit message. 

Thus, in the typical setting of the jungle world, an agent’s 
brain, i.e. the controller, receives a four-bit input at each time 
step: position alert, mating readiness, message bit 1 and 2. 
Based on the input, the controller makes a four-bit decision, 
indicating whether the agent decides to move towards the 
jungle, to mate with its partner, or to set message bits to one. 

Hunting. An agent succeeds in hunting if it enters the jungle 
with its trial partner at the same time step. A successful hunt 
gives a positive reward and increases fitness by 10 for both 
agents. 

Mating. If a pair of agents decides to mate at the same step, 
and both of them are ready, they succeed in mating and receive 
a positive reward equal to 1/10 of their partner’s fitness. Thus, 
successful mating always claims more rewards than hunting, 
especially so when fitness is high. 

 If an agent decides to mate when its fitness does not exceed 
100, it receives a negative reward for cheating its partner. If 
an agent decides to mate while its partner is not ready, it is 
embarrassed and receives a negative reward, too. 

Idling. If a pair of agents claim no reward at the end of a trial, 
they receive a negative reward for wasting time. 

Population. The population in all generations contains 50 
agents with 25 seniors and 25 juniors (except for the first 
generation in which no seniors exist). A senior is an agent who 
survived the selection process after the previous generation. A 



junior is a newborn agent whose parents are a pair of senior 
agents.  

Generation. A generation contains two phases: parenting and 
socializing (except for the first generation). In the parenting 
phase, junior agents pair with each of their parents for 100 
trials. Since every junior has two parents, a total of 5000 trials 
are conducted in the parenting phase. In the socializing phase, 
every pair of agents in the current generation participates in 
100 trials with random ordering of partners. Thus, a total of 
122,500 trials are conducted in the socializing phase. Rewards 
accumulated from the socializing trials are used as the 
performance measure for all agents. 

Selection. After each generation, agents are ranked based on 
their performance. Top 25 eligible agents survive the selection 
and become the senior agents in the next generation. An agent 
is eligible as long as its life spans fewer than four generations.  

Reproduction. Before the next generation starts, selected 
agents must participate in the reproduction process to produce 
junior agents for the next generation. While the artificial world 
does not impose any requirement on the mechanisms in which 
genotypes of selected agents are used to generate new agents, 
the following approach is employed in the experiments.  

Each of the 25 selected agents is paired with a randomly 
chosen partner. Junior agents are then constructed from them 
through mutation and crossover. Thus, every selected agent 
has at least one child, but may have two or more children due 
to random pairing. Details on genotypes, mutation, and 
crossover is presented in the “Method” section. 

Language Acquisition Requirement (LAR). Junior agents 
in all generations as well as agents in the first generation must 
NOT have any knowledge on the rules of the world and the 
language that is used in it. All agents must acquire such 
knowledge by participating in trials. The genotype of an agent 
defines how it learns, rather than representing such knowledge 
directly. 

Implications to Language Evolution 

As defined in the previous subsection, the jungle world is an 
artificial environment for situated simulations of language 
evolution. This subsection gives a brief discussion on two 
important features of this artificial environment and points out 
their implications. 

Multitasking. Jungle world requires artificial agents to evolve 
languages that are applicable to different tasks from three 
perspectives.  

First and most obviously, there are two tasks (actions), 
namely hunting, i.e. moving into the jungle, and mating, i.e. 
attempting to mate with a partner, that need to be coordinated 
through communication. Each action receives negative or 
positive rewards under different environmental state. 

Second, if the long-term reward of these actions remains 
constant in a changing environment, the so-called “different 
tasks” are actually a single task interpreted subjectively with 
the semantics of multiple tasks. After all, the core challenge 
of multitasking is that possible actions pursuing different tasks 
must be properly prioritized and coordinated in order to 
achieve higher rewards in the long run.  

Indeed, agents in the jungle world are required to coordinate 
and prioritize their tasks throughout their lifetime via the 
language they evolve. For instance, agents in the socializing 
phase usually have a fitness score higher than 100, which 
gives them legitimate choices of hunting and mating. 
Successful mating always yields a higher reward than hunting. 
However, fitness decreases at the end of each trial. Therefore 
the agents have to hunt regularly to maintain a high fitness 
level. Since both actions are always available to the agents, 
they must learn to prioritize the actions and coordinate with 
partners in pursuing each task. Note that the messages sent and 
received are part of the environmental state, and in some 
variance of the jungle world, messaging is the only way in 
which agents can communicate state or convey intention. In 
this sense, the jungle world presents a true multi-task 
challenge. 

Third, due to LAR and the fitness requirement for mating, 
agents in the jungle world must adapt their strategy at different 
stages of their life. As in nature, junior agents must first learn 
to interpret the environment and hunt successfully through 
communicating with their parents in the parenting phase. 
Before their fitness score can be maintained at a high level (i.e. 
greater than 100), mating is not a viable choice. However, as 
agents proceed into the socializing phase, they must adjust 
their strategy and learn to balance mating and hunting in order 
to maximize their cumulative rewards. 

Language Acquisition. LAR ensures that agents have to learn 
to survive the jungle world during their lifetime rather than 
relying solely on the information encoded in their genes. LAR 
thus makes simulation of language evolution more realistic: in 
nature, language and knowledge is largely acquired through 
lifetime learning rather than genetically encoded. While some 
theories suggest that the human genotype encodes the 
universal grammar (Chomsky and DiNozzi 1972), it is 
commonly accepted that any particular language should be 
learned. 

From a technical perspective, LAR presents interesting 
challenges. Many powerful methods such as neural networks 
are usually not directly applicable to learning in real time. 
Meanwhile, traditional reinforcement learning algorithms 
such as Q learning require accurate and full observation of 
environmental state. In contrast, in typical settings of the 
jungle world, states are only partially observable, i.e. agents 
cannot observe the fitness or the position of their trial partners. 
While communication can be leveraged to compensate partial 
observation, at the early stage of evolution, semantics of the 
messages are rather unreliable and frequently changing. Even 
after a language is established among the senior population, 
messages from junior agents in the parenting phase can 
mislead or confuse their parents and in the worst case, reverse 
the progress of language evolution in previous generations. 

While reflecting important features of language in nature, 
both multitasking and LAR present interesting challenges to 
the method used in such simulations.  

Method 

This section presents details on Evolutionary Reinforcement 
Learning with Potentiation and Memory (ERL-POM) – the 
method adopted to allow efficient and effective simulation in 



the jungle world. The reinforcement learner serves as the brain 
of the agents. In each generation, every individual in the 
population has its own reinforcement learner. Through 
lifetime interaction with trial partners, these controllers adjust 
their policy gradually to achieve higher cumulative rewards. 

Controller Structure 

This subsection introduces the structure of the controller. 

Inputs and Outputs. The controller assumes that both the 
inputs (i.e. environmental states) and the outputs, (i.e. action 
decisions) are binary, or can be converted to binary. 

Learner Unit. Similar to neurons in a neural network, learner 
units are basic functional units of a controller. They take 
binary inputs (multiple bits) and give a single bit output. Each 
unit consists a policy map and a memory. The policy map is 
implemented as a Hashmap whose keys are the input patterns 
and values activation parameters (AP). 

Memory. Memory is a queue of input-output pairs with a 
certain size. Inspired by the short term memory in nature, old 
items in the queue are replaced by new items once the number 
of items reaches memory size. Memory provides a record on 
decisions given input patterns and helps the learner unit adjust 
APs to maximize long term reward. 

Expansion. Since both inputs and outputs are binary, learner 
units can be connected similarly to neurons in a neural 
network to form various complex structures. They also adjust 
their weights based on memory and rewards while interacting 
with the environment. Thus, a controller is essentially a neural 
network designed for real-time learning. 

However, it is worth pointing out that learner units are more 
powerful and complicated than neurons in typical neural 
networks. Therefore, it usually takes fewer learner units than 
neurons to solve a problem. As a matter of fact, given the 
typical setting of the jungle world, merely four learner units 
are needed to achieve high average cumulative rewards, which 
is similar to a single layer neural network if all learner units 
are replaced by neurons. 

Figure 1: Controller Structure. A controller may contain one 
or multiple layers of learner units, connected similarly to 
neurons in a neural network. Each learner unit consists a 
policy and a memory. The policy is a Hashmap whose keys 
are input patterns and values activation parameters, and the 
memory is a queue of input-output pairs. 

Real Time Learning and Evolution 

Initially, all policy maps are empty. As an agent explores the 
artificial world, learner units receive inputs and insert a new 
entry to their policy map for each previously unseen input. The 
AP in each new entry is set to 0. The probability of activation 
PA given the activation parameter AP of an input is computed 
according to formula 1. 

𝑃A = σ(AP) =
1

1+𝑒−AP
    (1) 

Here, σ is the sigmoid function. Note that for each new 
entry, the probability of activation is 0.5, i.e. the learner units 
performs random exploration. 

Learning with Memory. Whenever a learner unit makes a 
decision given an input, the event (input-output pair) is pushed 
into the memory queue. After the queue is full, oldest records 
are replaced by new ones.  

When the agent collects a reward r, each learner unit looks 
into its memory. For each event (i.e. input-output pair) in the 
queue, the learner unit updates the AP of the corresponding 
input in the policy map according to formula 2.  

AP′ = 𝛼 ∙ AP + 𝑟 ∙ 𝑑𝑛(2𝑥 − 1)    (2) 

Here, AP and AP’ are the activation parameter before and 
after the update, respectively, α is the decay rate (0 ≤ α ≤ 1), r 
is the normalized reward (-1 ≤ r ≤ 1), d is discount factor (0 ≤ 
d ≤ 1), n is event index in the memory queue, with 0 
representing the most recent, and x is the binary output. 

Intuitively, learner units increase the AP mapped to an input 
pattern (thus the activation probability given that input) if (1) 
a positive reward is received, and the unit outputs 1, or (2) a 
negative reward is received, and the unit outputs 0. The decay 
rate balances the influence of knowledge from the past with 
the most recent experience. When α = 0, only the latest 
experience is taken into consideration. The discount factor 
reflects the contribution of decisions in the past. If d = 0, only 
the last decision is assumed to be the cause of the reward, and 
if d = 1, the reward is assumed to be equally attributable to all 
events in the memory. 

Potentiation. Because junior partner behave randomly, it is 
possible that senior partners are confused during the parenting 
phase. Therefore, potentiation is introduced to retain long-
term memory, i.e. well-tested knowledge and rules learned in 
the past.  

As in nature, if the brain is confident enough on a decision 
for a certain input, that decision is fixed. Specifically, if AP of 
an input satisfies the condition in formula 3, the learner unit 
fixes the decision on that input to 1 if AP is positive, and to 0 
if it is negative. 

|σ(AP)−0.5|

0.5
≥ PT    (3) 

Here PT (0 ≤ PT ≤ 1) is potentiation threshold. Intuitively, 
PT specifies how confident the controller must be in order to 
fix its decision. If PT = 0, the controller will fix its decision 
after learning from a single event, and if PT = 1, the controller 
will never fix its decision. 

Evolution. As introduced in the previous subsections, each 
learner unit is defined by the following parameters: (1) the 
potentiation threshold, (2) the discount factor, (3) the decay 



rate, and (4) the memory size. Thus, a controller with m 
learner units and a fixed topology has a genome with 4m 
numbers, which include m positive integers with a maximum 
(i.e. the maximum size of the memory), and 3m real numbers 
[0..1]. Since all controllers have numeric genomes with 
uniformly defined structure, mutation and crossover can be 
directly applied to producing controllers for a new generation. 

In the above mechanism, the role of evolution is to explore 
the learner space and optimize parameters for units in the 
controller. In other words, evolution aims to improve learning 
ability rather than encode policies. Junior agents in a 
generation are equipped with potentially better learning tools. 
Nevertheless, they have no specific knowledge of the rules of 
the world or the language among the senior agents. Thus, this 
method satisfies LAR as defined in the previous section. 

Experimental Results 

This section presents and discusses the experimental results of 
the situated simulation under four different settings of the 
jungle world. In the first setting, communication channels are 
disabled, and the environment is fully observable, i.e. agents 
can observe the fitness and position of their partners directly. 
The second settings allows full observation while enabling 
communication. In the third setting, communication channels 
are enabled, but agents cannot observe the position or fitness 
of their partner. The fourth setting is the same as the third, 
except that partner position is observable. The above four 
settings aim to address the following questions: 

1. When communication channels are disabled and 
environmental states fully observable, what kind of 
behaviors emerge as a baseline? 

2. If environmental states are fully observable, i.e. 
communication is enabled but unnecessary, will any 
language emerge?  

3. When communication is necessary for all tasks, can 
the agents evolve a language to coordinate their 
actions? 

4. If communication is necessary for some of the tasks 
but not for the others, will any language emerge? 

   In each of the experiments, any language that emerges is 
analyzed to understand what it is and how it helps agents to 
perform their tasks. 

Experimental Setup 

Table 1 shows the parameter settings used in all simulations. 
The normal distributions (ND) have a standard deviation of 
0.1, with a mean of zero. Mutation rate is applied to each gene 
independently. A special rule (SR) is applied to the mutation 
of memory size: it increases or decreases by one with 0.5 
probability for each. 
   After the seniors are selected from the previous generation, 
each senior has one chance to be paired with another senior 
randomly to produce a junior for the next generation. The 
genome of the first senior is used as the initial genome of the 
child. With a probability equal to crossover rate, each gene 
(i.e. number) has a chance to be replaced by the corresponding 
gene of the random spouse. In addition, it can mutate based on  
 

Item Value/Setting 

Population Size 50 

Senior/Junior 25/25 

Mutation Rate 0.1 

Mutation Rule Gene Initial Value (Method) 

MS 1    (SR, 1 ≤ MS ≤ 10) 

PT 1.0 (ND, 0 ≤ PT ≤ 1) 

𝛼 1.0 (ND, 0≤ α ≤1) 

d 0.0 (ND, 0≤ d ≤1) 

Crossover Rate 0.1 

Table 1: Parameters and Mutation Rules 

the mutation rate and rules in table 1. Crossover always takes 
place before mutation. 
   Note that in table 1, Initial Value refers to the values of 
parameters of learner units in the first generation. Memory 
size is set to one so that agents memorize only the last event. 
Potentiation threshold is 1.0, thus the agents never fix their 
decisions. Discount factor is 0.0, i.e. reward is assumed to be 
attributable to only the latest action. In other words, memory 
and potentiation do NOT exist for the first generation. It is up 
to evolution to decide if they are desirable. Such a setting 
serves two purposes: (1) it demonstrates the benefit of 
memory and potentiation through evolution, and (2) it avoids 
unnecessary structural and algorithmic complication. 
However, it has a downside of potentially delaying the 
emergence of language in the artificial world since such a 
simple starting point may be far from the best settings. 

Experiment 1 (Baseline) 

In this experiment, the communication channels are blocked 
and the environment is fully observable to the agents. Thus, 
agents cannot send messages to their partner, but they can 
observe the fitness and the position of their partner directly. 
The results in this group serve as a reference to evaluate the 
performance in other experiments. Figure 2 shows the results.  

 
Figure 2: Experiment 1. In approximately eight generations, 
accumulated rewards become stabilized, and the performance 
does not differentiate much between juniors, seniors, and the 
champion. All results, including those of the other 
experiments are averaged from 20 runs. 

   Table 2 presents a sample policy of a champion in the 100th 

generation. According to the policy, the champion mates with 
its partner whenever they are both ready to mate (i.e. fitness ≥ 

100). Until then, it moves towards the jungle as long as its 
position is greater than one. When getting close to the jungle, 

the champion waits for the partner if it is not in position, and 



jumps into the jungle as soon as both of their positions equal 

to one. 

F’ P’ F P A M 

0 0 0 0 1 0 

0 0 0 1 0 0 

0 0 1 0 1 0 

0 0 1 1 0 0 

0 1 0 0 1 0 

0 1 0 1 1 0 

0 1 1 0 1 0 

0 1 1 1 1 0 

1 0 0 0 1 0 

1 0 0 1 0 0 

1 0 1 0 0 1 

1 0 1 1 0 1 

1 1 0 0 1 0 

1 1 0 1 1 0 

1 1 1 0 1 1 

1 1 1 1 1 1 

Table 2: Champion Policy – Experiment 1. Regular letters are 
input states, and bold letters are actions. F represents fitness, 

i.e. whether the fitness score is greater than 100; P is position, 

i.e. whether position equals 1; F’ and P’ indicate partner’s 
fitness and position, respectively; A is the action to approach 

the jungle; and M is the action to mate.  

Lastly, memory size after ten generations averages 1.28, 

with a majority of learner units having no memory beyond the 

last decision. This result can be explained by the fact that in a 
fully observable environment, with a majority of senior agent 

policies like that in table 2, the challenge faced by a junior 

agent is largely a Markovian problem. On the other hand, the 
average potentiation threshold is 0.965 – the agents do fix their 

actions, but only when they are very confident in their 
decisions.  

Experiment 2 (Unnecessary Communication) 

Experiment 2 is different from the Experiment 1 in that agents 
are allowed to send and receive messages. Since the position 

and fitness of their partner are still observable, communication 
is possible but unnecessary in achieving any of the tasks.  

   Figure 3 presents the results of Experiment 2. Memory size 

after ten generations averages 1.42, with average potentiation 
thresholds as 0.971. 

Figure 3: Experiment 2. Average cumulative rewards of each 

generation are nearly identical to those in Experiment 1.  

   The champion policies in Experiment 2 are characterized by 

the following three observations: 

1. Given same observation of fitness and positions, 

actions are the same regardless of the message 
received. 

2. Messaging policies vary from generation to 

generation, while having no influence on the stability 
of performance. 

3. There is no clear correlation between messages and 

environmental states in most champion policies. 

   The results in Experiment 2 suggest that if communication 

is unnecessary for any of the tasks, messaging policy plays no 
role in agent performance. Agents evolve no language even 

when the communication channels are available. 

Experiment 3 (Necessary Communication) 

In this experiment, agents cannot observe the position and 

fitness of their trial partners. Therefore, the only means by 
which agents can coordinate their efforts in mating and 

hunting is through communication. 

 

Figure 4: Experiment 3. Champions in the agent population 
achieve similar performance to that of Experiment 1 after 

approximately 25 generations. Champion performance (red) 

stabilizes afterwards. However, compared to Experiment 1, 
average cumulated rewards among entire generations (blue) 

and among the juniors (green) are lower and have bigger gaps 
in between.  

   The reasons for lower average performance is that multiple 

languages may occur simultaneously in one generation, 
causing confusion among the juniors in parenting phase, thus 

lower their performance in the socializing phase. 
Table 3 presents a sample policy of a champion in the last 

generation. Champion policies after thirty generations encode 

the fitness and position accurately and consistently in 19 out 
of the 20 runs. However, in almost all generations, more than 

20% of the seniors have a messaging policy that either fails to 

encode fitness or position states accurately, or differs from the 
champion policy. 

   Also, average memory size after 30 generations is 7.10, and 
the average discount factor is 0.722. The reason for the long 

memory is that past decisions can be used to complement 

partial observation and improve learning efficiency. For 
instance, if an agent keeps sending wrong messages while 

being in position for hunt, its trial partner can never know that 

the agent is ready, resulting in a punishment for idling to both 



agents in the trial. While potentiation may keep the seniors 

from “second guessing” their correct policy, a long memory 
of the past can help the juniors learn faster in such cases. 

 

F P R2 R1 A M S2 S1 

0 0 0 0 1 0 1 1 

0 0 0 1 1 0 

0 0 1 0 1 0 

0 0 1 1 1 0 

0 1 0 0 0 0 1 0 

0 1 0 1 1 0 

0 1 1 0 1 0 

0 1 1 1 0 0 

1 0 0 0 1 1 0 0 

1 0 0 1 1 1 

1 0 1 0 1 0 

1 0 1 1 1 0 

1 1 0 0 0 1 0 1 

1 1 0 1 1 0 

1 1 1 0 1 0 

1 1 1 1 0 0 

Table 3: Champion Policy – Experiment 3. S1 and S2 

represent the first and second message bit; R1 and R2 are the 
message bits received from the partner. All other letters have 

the same meaning as those in Table 2. The messages encode 

fitness and position values.  

   Although the average potentiation threshold is close to one 

(0.981), potentiation is crucial in the simulation because the 

parenting phase is sufficiently long to generate enough 
confusing interactions to reverse knowledge encoded in the 

seniors’ controllers. In fact, if potentiation threshold is fixed 
to one (i.e. potentiation does not exist), language simply 

cannot be established among the agent population, rendering 

cumulative rewards consistently negative in all generations. 

Experiment 4 (Partially Necessary Communication) 

In this experiment, the position of a trial partner is observable 
while the fitness of the partner is hidden. Communication is 

possible between partners in a trial, however, it is necessary 

only for mating. 

 

Figure 5: Experiment 4. Average performance in the first 10 

generations is similar to that in Experiment 1. After 15 to 20 
generations, rewards stabilize at a level approximately 50% 

higher than that in Experiment 1.  

   Typical messaging policies in the first ten generations of 

each run encode fitness in two bits (e.g. “11” for “ready to 
mate” and “01” otherwise). As evolution proceeds, more 

advanced policies may emerge, leading to better performance 
than the full observation baseline. Table 4 shows a messaging 

policy from a champion in the 100th generation.  

 

F P P’ R2 R1 S2 S1 

0 0 - - - 1 0 

0 1 - - - 1 0 

1 0 - - - 0 0 

1 1 - - - 1 1 

Table 4: Champion Messaging Policy – Experiment 4. Dash 
indicates that an input has no effect on the outputs. 

   While the messaging policy in table 4 looks confusing by 
itself, interestingly, it exploits the setting of the jungle world 

effectively if combined with corresponding action policy. 

Although such a policy can be expressed by a table as before, 
it is translated into the following rule-based policy due to 

limited space. 

1. Run towards the jungle until position is one. 
2. Wait until partner position becomes one. 

3. Enter the jungle if positions of both agents are one. 
4. If “11” is received before entering the jungle, mate 

and enter the jungle at the same time step. 

   Note that Rule 1 to 3 are based purely on observation, i.e. 
they have nothing to do with the messages received because 

partner position is directly observable. In fact, the only rule 

that relies on communication is Rule 4. It can be triggered only 
under the circumstance where both agents are one step away 

from the jungle and “11” is received; and according to Table 
4, “11” is sent whenever an agent is ready for both hunting 

and mating. Since messages are ignored in all other scenarios, 

the only messaging rule that a junior agent needs to learn is to 
send “11” when F and P are both one. This rule has two 

positive effects. First, the juniors learn the language faster 
because it tolerates faults on all but a few inputs (i.e. inputs 

with F and P equal to one). Second, combined with the action 

policy, it allows agents to mate and hunt successfully in a 
single trial, making the average fitness of the population close 

to the maximum (200) all the time. 

   Among the 20 runs in Experiment 4, approximately half of 
them (11/20) discovered policies with similar principles, thus 

achieving higher performance than Experiment 1 and 2. Note 
that without the emergence of meaningful language, agents in 

Experiment 1 or 2 cannot discover behaviors that accomplish 

hunt and mating in a single trial. The fact that languages can 
be evolved to get around deceptive local optima (e.g. policies 

that decide to mate whenever both agents are ready) is 

intriguing.  
   Additionally, results in Experiment 2 and 4 suggest that for 

language to emerge, it is essential that language is indeed 
necessary to perform some of the tasks. However, as long as 

language appears, it can be evolved into a beneficial tool for 

all tasks. 



Future Work 

Situated simulation of language evolution provides interesting 

insights on the origin and evolution of language. The jungle 
world simulation can be used as a starting point for more 

advanced simulations in two ways. 
   First, in nature, spoken language is formed with sequential 

patterns of utterances. Messages may span multiple time steps 

rather than contained in a single step. Also, they may start at 
any step. Such sequential features are essential for simulating 

the evolution of more complex and structured languages. 

   Second, languages in the real world are usually structured 
based on syntax. The emergence of grammatical components 

and structures such as nouns and verbs, subjects and objects, 
phrases and sentences is an important aspect of language 

evolution. A possible approach in the jungle world is to 

establish social roles in the simulation, and create tasks around 
them. Grammatical structure might then emerge in order to 

communicate such role-based information (Bickerton 1990).  

   Integrating sequential and/or structural features into the 
jungle world framework will make simulations more realistic 

and informative. 

Conclusion 

This paper presents a framework for situated simulation of 

language evolution. It introduces an artificial environment, the 

jungle world, which can be used to simulate the evolution and 
acquisition of multitask languages. The paper also proposes a 

method: Evolutionary Reinforcement Learning with 

Potentiation and Memory (ERL-POM) for simulation of 
language evolution in this environment.  

   Experimental results indicate that languages can be evolved 
in the artificial environment if communication is necessary for 

some or all of the tasks. Languages can be used to coordinate 

efforts in multiple tasks where communication is required. 
When communication is not necessary for all tasks, languages 

can be leveraged to overcome local optima and discover better 
policies. Experimental results also show that memory and 

potentiation are necessary for such emergence. Extending the 

simulation to sequential and structured communication is a 
most interesting direction of future work.  
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