
Evolving Artificial Language through Evolutionary Reinforcement Learning

Xun Li1 and Risto Miikkulainen2

1,2University of Texas at Austin

xun@cs.utexas.edu

Abstract

Computational simulation of language evolution provides
valuable insights into the origin of language. Simulating the
evolution of language among agents in an artificial world also
presents an interesting challenge in evolutionary computation
and machine learning. In this paper, a “jungle world” is
constructed where agents must accomplish different tasks such
as hunting and mating by evolving their own language to
coordinate their actions. In addition, all agents must acquire the
language during their lifetime through interaction with other
agents. This paper proposes the algorithm of Evolutionary
Reinforcement Learning with Potentiation and Memory (ERL-
POM) as a computational approach for achieving this goal.
Experimental results show that ERL-POM is effective in
situated simulation of language evolution, demonstrating that
languages can be evolved in the artificial environment when
communication is necessary for some or all of the tasks the
agents perform.

Introduction

Highly efficient and low-cost computer systems have made
computational simulation possible at an unprecedented scale
in recent decades. In the specific field of language evolution,
computational simulation provides a complementary
methodology that can help researchers develop detailed
hypotheses on language origins and evolution and test these
hypotheses in the virtual laboratory of simulation (Cangelosi
and Parisi, 2002). Furthermore, from a technical perspective,
an understanding of the fundamental principles in language
evolution may lead to innovative machine learning algorithms
and communication methods that are applicable to interactive
software agents and multi-agent systems (Wagner, Reggia,
Uriagereka, and Wilkinson, 2003).
 Language is a powerful tool that helps humans coordinate
actions to accomplish various tasks. It is also a skill that is
acquired through lifetime learning. The purpose of this paper
is therefore to establish a simulation framework, i.e. an
artificial world and a computational method that captures
these important features into a simulation of language
evolution. Such a framework should then make it possible to
gain new insights into evolution of natural and artificial
language.

The first part of the simulation framework: “the jungle
world”, is an artificial environment in which agents attempt to
hunt and mate through coordinated actions. Initially, the agent
population have neither any knowledge on the rules of the
world nor any existing code of communication. Through

generations of evolution, the agent population must develop
their own language and learn to use that language to
coordinate their hunting and mating efforts. Additionally, for
each agent, the language and the behavioral policy in the
artificial world must be acquired through interaction with
other agents and the environment during lifetime. Thus, the
goal of evolution is to (1) evolve a language, (2) evolve it in
service of coordinated behavior, and (3) evolve the ability for
individuals to acquire it during their lifetime.

 To allow efficient simulation of language evolution in the
jungle world, a biologically-inspired algorithm, Evolutionary
Reinforcement Learning with Potentiation and Memory
(ERL-POM) is proposed. This approach utilizes a genetic
algorithm to configure reinforcement learners units. State-
action memory and potentiation are introduced to balance
exploitation with exploration and improve interactive learning
ability.

Using the proposed algorithm, language evolution and
acquisition is simulated under a variety of settings of the
jungle world. These settings include the scenario where
communication is necessary for both tasks, one of the tasks,
or neither of the tasks. The paper also presents and analyzes
samples of the artificial languages evolved in different
settings. Experimental results and analysis show that ERL-
POM is effective in simulating language evolution and
acquisition, demonstrating that languages can be evolved and
acquired in the artificial world if communication is necessary
for one or both of the tasks.

The remaining sections of the paper are organized as
follows. The next section gives a brief review on prior work
in computational simulation of language evolution. The third
section introduces rules and settings of the jungle world, and
the fourth section provides details on the algorithm. The fifth
section presents and analyzes experimental results, and the
sixth section points out potential directions for future work.

Prior Work

In a typical simulation of language evolution, a multi-agent
system is created to simulate an entire population of agents.
Each agent acquires a shared communication system either by
using machine learning methods and/or through simulated
evolutionary process.
 Simulations of language evolution can be divided into
situated and non-situated simulations. In a non-situated
simulation, an agent’s actions consist solely of sending and
receiving signals. Such non-embodied agents perceive objects

and events, but do not change the state of the environment.
Usually, the agents aim at encoding an arbitrary meaning as a
signal and send it to another agent, who decodes the signal
back to a meaning. In such simulations, neural networks
(Batali, 1998; Kvasnicka and Pospichal, 1999; Smith 2002),
lookup tables (Kaplan 2000; Smith 2001), associative
memories (De Boer and Vogt, 1999; Steels and Oudeyer,
2000) and finite state machines (MacLennan and Burghardt,
1993; Brighton 2002) are the most commonly used models to
represent the behaviors. While they have been employed to
demonstrate many interesting properties of communication
systems, non-situated simulations are unrealistic in that they
do not associate external tasks with communication actions. In
contrast, the evolution of language in nature is strongly linked
to the need to perform various tasks in which communication
helps.

To address this problem, situated simulations can be built.
In such a simulation, agents are embodied in an artificial
world. Their goal is usually to accomplish tasks that require
cooperation or competition among multiple agents. Thus,
language serves as a necessary or beneficial tool to achieve
higher performance in multi-agent tasks. Situated simulations
can be used to test specific assumptions on the role of certain
behaviors or environmental factors in the evolution of
language (Quinn 2001; Mirolli and Parisi, 2010; De Greeff
and Nolfi, 2010; Mitri, 2010; Rawal, Boughman, and
Miikkulainen, 2014).

However, prior work on situated simulations is limited in
two ways. First, most of them focus on a single task. More
specifically, the rewards of actions, be it communicative or
non-communicative, do not change throughout the lifetime of
agents in all generations. In contrast, in nature, language is
used for numerous tasks, and the rewards of actions depend on
multiple factors. Second, the language is usually encoded
genetically and passed on to the next generation through
genotypes. In contrast, language in nature is acquired during
lifetime learning and passed on to the next generation through
interaction among individuals in the environment. While some
of the existing work addresses one of the above problems, to
our best knowledge, no prior work on situated simulations
evolves artificial languages that are both applicable to
different tasks and acquired through lifetime learning.
Therefore, the purpose of this work is to introduce a
simulation framework that achieves both goals. Such a
framework makes the simulation more realistic and should be
helpful in discovering deeper insights into the origin and
evolution of language.

Simulation Environment

This section introduces the rules and settings of the jungle
world – the artificial environment used in the experiments.
The goal is to establish a paradigm of situated simulation
environment where languages evolved are used in different
tasks at different stages of an agent’s life, and knowledge must
be acquired through lifetime learning. While only a few
variations of the jungle world are used in the experiments, the
simulation environment can be modified to serve many other
experimental goals. In addition, the jungle world does not
impose any requirement for the artificial controller of the
agents except for an interface that specifies inputs and outputs.

Hence, it can be viewed as a general test environment for
evaluating performances of genetic based machine learning
algorithms.

Life in the Jungle World

This subsection presents basic concepts and rules in the virtual
world. The focus is on actions and rewards during a single
generation. Concepts and rules are organized into entries with
short definitions and descriptions.

Step and Trial. Time is discretized into steps. At each step,
agents receive inputs from the artificial environment including
messages from their partner, and take actions accordingly. A
trial is a 10-step experiment with two agents. It terminates
early if any of the participants receive a positive or negative
reward.

Jungle. The jungle is the place where agents hunt for prey and
feed themselves. However, if an imprudent agent enters the
jungle without its partner at any step, it will be hurt and receive
a negative reward.

Agent. An agent has two integer states: fitness and position.
Fitness ranges from 10 to 200, with 10 the initial value for
new-born agents. Fitness increases by 10 after a successful
hunt (defined later) and decreases by 1 after each trial.
Position ranges from 0 to 5, indicating the distance between
an agent and the jungle.

An agent senses its proximity to the jungle and becomes
alert if its position is 1. It becomes ready for mating if its
fitness is greater than 100.

At each step, an agent may decide to take the following
actions: (1) move towards the jungle, (2) attempt to mate, and
(3) send a two-bit message.

Thus, in the typical setting of the jungle world, an agent’s
brain, i.e. the controller, receives a four-bit input at each time
step: position alert, mating readiness, message bit 1 and 2.
Based on the input, the controller makes a four-bit decision,
indicating whether the agent decides to move towards the
jungle, to mate with its partner, or to set message bits to one.

Hunting. An agent succeeds in hunting if it enters the jungle
with its trial partner at the same time step. A successful hunt
gives a positive reward and increases fitness by 10 for both
agents.

Mating. If a pair of agents decides to mate at the same step,
and both of them are ready, they succeed in mating and receive
a positive reward equal to 1/10 of their partner’s fitness. Thus,
successful mating always claims more rewards than hunting,
especially so when fitness is high.

 If an agent decides to mate when its fitness does not exceed
100, it receives a negative reward for cheating its partner. If
an agent decides to mate while its partner is not ready, it is
embarrassed and receives a negative reward, too.

Idling. If a pair of agents claim no reward at the end of a trial,
they receive a negative reward for wasting time.

Population. The population in all generations contains 50
agents with 25 seniors and 25 juniors (except for the first
generation in which no seniors exist). A senior is an agent who
survived the selection process after the previous generation. A

junior is a newborn agent whose parents are a pair of senior
agents.

Generation. A generation contains two phases: parenting and
socializing (except for the first generation). In the parenting
phase, junior agents pair with each of their parents for 100
trials. Since every junior has two parents, a total of 5000 trials
are conducted in the parenting phase. In the socializing phase,
every pair of agents in the current generation participates in
100 trials with random ordering of partners. Thus, a total of
122,500 trials are conducted in the socializing phase. Rewards
accumulated from the socializing trials are used as the
performance measure for all agents.

Selection. After each generation, agents are ranked based on
their performance. Top 25 eligible agents survive the selection
and become the senior agents in the next generation. An agent
is eligible as long as its life spans fewer than four generations.

Reproduction. Before the next generation starts, selected
agents must participate in the reproduction process to produce
junior agents for the next generation. While the artificial world
does not impose any requirement on the mechanisms in which
genotypes of selected agents are used to generate new agents,
the following approach is employed in the experiments.

Each of the 25 selected agents is paired with a randomly
chosen partner. Junior agents are then constructed from them
through mutation and crossover. Thus, every selected agent
has at least one child, but may have two or more children due
to random pairing. Details on genotypes, mutation, and
crossover is presented in the “Method” section.

Language Acquisition Requirement (LAR). Junior agents
in all generations as well as agents in the first generation must
NOT have any knowledge on the rules of the world and the
language that is used in it. All agents must acquire such
knowledge by participating in trials. The genotype of an agent
defines how it learns, rather than representing such knowledge
directly.

Implications to Language Evolution

As defined in the previous subsection, the jungle world is an
artificial environment for situated simulations of language
evolution. This subsection gives a brief discussion on two
important features of this artificial environment and points out
their implications.

Multitasking. Jungle world requires artificial agents to evolve
languages that are applicable to different tasks from three
perspectives.

First and most obviously, there are two tasks (actions),
namely hunting, i.e. moving into the jungle, and mating, i.e.
attempting to mate with a partner, that need to be coordinated
through communication. Each action receives negative or
positive rewards under different environmental state.

Second, if the long-term reward of these actions remains
constant in a changing environment, the so-called “different
tasks” are actually a single task interpreted subjectively with
the semantics of multiple tasks. After all, the core challenge
of multitasking is that possible actions pursuing different tasks
must be properly prioritized and coordinated in order to
achieve higher rewards in the long run.

Indeed, agents in the jungle world are required to coordinate
and prioritize their tasks throughout their lifetime via the
language they evolve. For instance, agents in the socializing
phase usually have a fitness score higher than 100, which
gives them legitimate choices of hunting and mating.
Successful mating always yields a higher reward than hunting.
However, fitness decreases at the end of each trial. Therefore
the agents have to hunt regularly to maintain a high fitness
level. Since both actions are always available to the agents,
they must learn to prioritize the actions and coordinate with
partners in pursuing each task. Note that the messages sent and
received are part of the environmental state, and in some
variance of the jungle world, messaging is the only way in
which agents can communicate state or convey intention. In
this sense, the jungle world presents a true multi-task
challenge.

Third, due to LAR and the fitness requirement for mating,
agents in the jungle world must adapt their strategy at different
stages of their life. As in nature, junior agents must first learn
to interpret the environment and hunt successfully through
communicating with their parents in the parenting phase.
Before their fitness score can be maintained at a high level (i.e.
greater than 100), mating is not a viable choice. However, as
agents proceed into the socializing phase, they must adjust
their strategy and learn to balance mating and hunting in order
to maximize their cumulative rewards.

Language Acquisition. LAR ensures that agents have to learn
to survive the jungle world during their lifetime rather than
relying solely on the information encoded in their genes. LAR
thus makes simulation of language evolution more realistic: in
nature, language and knowledge is largely acquired through
lifetime learning rather than genetically encoded. While some
theories suggest that the human genotype encodes the
universal grammar (Chomsky and DiNozzi 1972), it is
commonly accepted that any particular language should be
learned.

From a technical perspective, LAR presents interesting
challenges. Many powerful methods such as neural networks
are usually not directly applicable to learning in real time.
Meanwhile, traditional reinforcement learning algorithms
such as Q learning require accurate and full observation of
environmental state. In contrast, in typical settings of the
jungle world, states are only partially observable, i.e. agents
cannot observe the fitness or the position of their trial partners.
While communication can be leveraged to compensate partial
observation, at the early stage of evolution, semantics of the
messages are rather unreliable and frequently changing. Even
after a language is established among the senior population,
messages from junior agents in the parenting phase can
mislead or confuse their parents and in the worst case, reverse
the progress of language evolution in previous generations.

While reflecting important features of language in nature,
both multitasking and LAR present interesting challenges to
the method used in such simulations.

Method

This section presents details on Evolutionary Reinforcement
Learning with Potentiation and Memory (ERL-POM) – the
method adopted to allow efficient and effective simulation in

the jungle world. The reinforcement learner serves as the brain
of the agents. In each generation, every individual in the
population has its own reinforcement learner. Through
lifetime interaction with trial partners, these controllers adjust
their policy gradually to achieve higher cumulative rewards.

Controller Structure

This subsection introduces the structure of the controller.

Inputs and Outputs. The controller assumes that both the
inputs (i.e. environmental states) and the outputs, (i.e. action
decisions) are binary, or can be converted to binary.

Learner Unit. Similar to neurons in a neural network, learner
units are basic functional units of a controller. They take
binary inputs (multiple bits) and give a single bit output. Each
unit consists a policy map and a memory. The policy map is
implemented as a Hashmap whose keys are the input patterns
and values activation parameters (AP).

Memory. Memory is a queue of input-output pairs with a
certain size. Inspired by the short term memory in nature, old
items in the queue are replaced by new items once the number
of items reaches memory size. Memory provides a record on
decisions given input patterns and helps the learner unit adjust
APs to maximize long term reward.

Expansion. Since both inputs and outputs are binary, learner
units can be connected similarly to neurons in a neural
network to form various complex structures. They also adjust
their weights based on memory and rewards while interacting
with the environment. Thus, a controller is essentially a neural
network designed for real-time learning.

However, it is worth pointing out that learner units are more
powerful and complicated than neurons in typical neural
networks. Therefore, it usually takes fewer learner units than
neurons to solve a problem. As a matter of fact, given the
typical setting of the jungle world, merely four learner units
are needed to achieve high average cumulative rewards, which
is similar to a single layer neural network if all learner units
are replaced by neurons.

Figure 1: Controller Structure. A controller may contain one
or multiple layers of learner units, connected similarly to
neurons in a neural network. Each learner unit consists a
policy and a memory. The policy is a Hashmap whose keys
are input patterns and values activation parameters, and the
memory is a queue of input-output pairs.

Real Time Learning and Evolution

Initially, all policy maps are empty. As an agent explores the
artificial world, learner units receive inputs and insert a new
entry to their policy map for each previously unseen input. The
AP in each new entry is set to 0. The probability of activation
PA given the activation parameter AP of an input is computed
according to formula 1.

𝑃A = σ(AP) =
1

1+𝑒−AP
 (1)

Here, σ is the sigmoid function. Note that for each new
entry, the probability of activation is 0.5, i.e. the learner units
performs random exploration.

Learning with Memory. Whenever a learner unit makes a
decision given an input, the event (input-output pair) is pushed
into the memory queue. After the queue is full, oldest records
are replaced by new ones.

When the agent collects a reward r, each learner unit looks
into its memory. For each event (i.e. input-output pair) in the
queue, the learner unit updates the AP of the corresponding
input in the policy map according to formula 2.

AP′ = 𝛼 ∙ AP + 𝑟 ∙ 𝑑𝑛(2𝑥 − 1) (2)

Here, AP and AP’ are the activation parameter before and
after the update, respectively, α is the decay rate (0 ≤ α ≤ 1), r
is the normalized reward (-1 ≤ r ≤ 1), d is discount factor (0 ≤
d ≤ 1), n is event index in the memory queue, with 0
representing the most recent, and x is the binary output.

Intuitively, learner units increase the AP mapped to an input
pattern (thus the activation probability given that input) if (1)
a positive reward is received, and the unit outputs 1, or (2) a
negative reward is received, and the unit outputs 0. The decay
rate balances the influence of knowledge from the past with
the most recent experience. When α = 0, only the latest
experience is taken into consideration. The discount factor
reflects the contribution of decisions in the past. If d = 0, only
the last decision is assumed to be the cause of the reward, and
if d = 1, the reward is assumed to be equally attributable to all
events in the memory.

Potentiation. Because junior partner behave randomly, it is
possible that senior partners are confused during the parenting
phase. Therefore, potentiation is introduced to retain long-
term memory, i.e. well-tested knowledge and rules learned in
the past.

As in nature, if the brain is confident enough on a decision
for a certain input, that decision is fixed. Specifically, if AP of
an input satisfies the condition in formula 3, the learner unit
fixes the decision on that input to 1 if AP is positive, and to 0
if it is negative.

|σ(AP)−0.5|

0.5
≥ PT (3)

Here PT (0 ≤ PT ≤ 1) is potentiation threshold. Intuitively,
PT specifies how confident the controller must be in order to
fix its decision. If PT = 0, the controller will fix its decision
after learning from a single event, and if PT = 1, the controller
will never fix its decision.

Evolution. As introduced in the previous subsections, each
learner unit is defined by the following parameters: (1) the
potentiation threshold, (2) the discount factor, (3) the decay

rate, and (4) the memory size. Thus, a controller with m
learner units and a fixed topology has a genome with 4m
numbers, which include m positive integers with a maximum
(i.e. the maximum size of the memory), and 3m real numbers
[0..1]. Since all controllers have numeric genomes with
uniformly defined structure, mutation and crossover can be
directly applied to producing controllers for a new generation.

In the above mechanism, the role of evolution is to explore
the learner space and optimize parameters for units in the
controller. In other words, evolution aims to improve learning
ability rather than encode policies. Junior agents in a
generation are equipped with potentially better learning tools.
Nevertheless, they have no specific knowledge of the rules of
the world or the language among the senior agents. Thus, this
method satisfies LAR as defined in the previous section.

Experimental Results

This section presents and discusses the experimental results of
the situated simulation under four different settings of the
jungle world. In the first setting, communication channels are
disabled, and the environment is fully observable, i.e. agents
can observe the fitness and position of their partners directly.
The second settings allows full observation while enabling
communication. In the third setting, communication channels
are enabled, but agents cannot observe the position or fitness
of their partner. The fourth setting is the same as the third,
except that partner position is observable. The above four
settings aim to address the following questions:

1. When communication channels are disabled and
environmental states fully observable, what kind of
behaviors emerge as a baseline?

2. If environmental states are fully observable, i.e.
communication is enabled but unnecessary, will any
language emerge?

3. When communication is necessary for all tasks, can
the agents evolve a language to coordinate their
actions?

4. If communication is necessary for some of the tasks
but not for the others, will any language emerge?

 In each of the experiments, any language that emerges is
analyzed to understand what it is and how it helps agents to
perform their tasks.

Experimental Setup

Table 1 shows the parameter settings used in all simulations.
The normal distributions (ND) have a standard deviation of
0.1, with a mean of zero. Mutation rate is applied to each gene
independently. A special rule (SR) is applied to the mutation
of memory size: it increases or decreases by one with 0.5
probability for each.
 After the seniors are selected from the previous generation,
each senior has one chance to be paired with another senior
randomly to produce a junior for the next generation. The
genome of the first senior is used as the initial genome of the
child. With a probability equal to crossover rate, each gene
(i.e. number) has a chance to be replaced by the corresponding
gene of the random spouse. In addition, it can mutate based on

Item Value/Setting

Population Size 50

Senior/Junior 25/25

Mutation Rate 0.1

Mutation Rule Gene Initial Value (Method)

MS 1 (SR, 1 ≤ MS ≤ 10)

PT 1.0 (ND, 0 ≤ PT ≤ 1)

𝛼 1.0 (ND, 0≤ α ≤1)

d 0.0 (ND, 0≤ d ≤1)

Crossover Rate 0.1

Table 1: Parameters and Mutation Rules

the mutation rate and rules in table 1. Crossover always takes
place before mutation.
 Note that in table 1, Initial Value refers to the values of
parameters of learner units in the first generation. Memory
size is set to one so that agents memorize only the last event.
Potentiation threshold is 1.0, thus the agents never fix their
decisions. Discount factor is 0.0, i.e. reward is assumed to be
attributable to only the latest action. In other words, memory
and potentiation do NOT exist for the first generation. It is up
to evolution to decide if they are desirable. Such a setting
serves two purposes: (1) it demonstrates the benefit of
memory and potentiation through evolution, and (2) it avoids
unnecessary structural and algorithmic complication.
However, it has a downside of potentially delaying the
emergence of language in the artificial world since such a
simple starting point may be far from the best settings.

Experiment 1 (Baseline)

In this experiment, the communication channels are blocked
and the environment is fully observable to the agents. Thus,
agents cannot send messages to their partner, but they can
observe the fitness and the position of their partner directly.
The results in this group serve as a reference to evaluate the
performance in other experiments. Figure 2 shows the results.

Figure 2: Experiment 1. In approximately eight generations,
accumulated rewards become stabilized, and the performance
does not differentiate much between juniors, seniors, and the
champion. All results, including those of the other
experiments are averaged from 20 runs.

 Table 2 presents a sample policy of a champion in the 100th

generation. According to the policy, the champion mates with
its partner whenever they are both ready to mate (i.e. fitness ≥

100). Until then, it moves towards the jungle as long as its
position is greater than one. When getting close to the jungle,

the champion waits for the partner if it is not in position, and

jumps into the jungle as soon as both of their positions equal

to one.

F’ P’ F P A M

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 1 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 1 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 1 0 0 1

1 0 1 1 0 1

1 1 0 0 1 0

1 1 0 1 1 0

1 1 1 0 1 1

1 1 1 1 1 1

Table 2: Champion Policy – Experiment 1. Regular letters are
input states, and bold letters are actions. F represents fitness,

i.e. whether the fitness score is greater than 100; P is position,

i.e. whether position equals 1; F’ and P’ indicate partner’s
fitness and position, respectively; A is the action to approach

the jungle; and M is the action to mate.

Lastly, memory size after ten generations averages 1.28,

with a majority of learner units having no memory beyond the

last decision. This result can be explained by the fact that in a
fully observable environment, with a majority of senior agent

policies like that in table 2, the challenge faced by a junior

agent is largely a Markovian problem. On the other hand, the
average potentiation threshold is 0.965 – the agents do fix their

actions, but only when they are very confident in their
decisions.

Experiment 2 (Unnecessary Communication)

Experiment 2 is different from the Experiment 1 in that agents
are allowed to send and receive messages. Since the position

and fitness of their partner are still observable, communication
is possible but unnecessary in achieving any of the tasks.

 Figure 3 presents the results of Experiment 2. Memory size

after ten generations averages 1.42, with average potentiation
thresholds as 0.971.

Figure 3: Experiment 2. Average cumulative rewards of each

generation are nearly identical to those in Experiment 1.

 The champion policies in Experiment 2 are characterized by

the following three observations:

1. Given same observation of fitness and positions,

actions are the same regardless of the message
received.

2. Messaging policies vary from generation to

generation, while having no influence on the stability
of performance.

3. There is no clear correlation between messages and

environmental states in most champion policies.

 The results in Experiment 2 suggest that if communication

is unnecessary for any of the tasks, messaging policy plays no
role in agent performance. Agents evolve no language even

when the communication channels are available.

Experiment 3 (Necessary Communication)

In this experiment, agents cannot observe the position and

fitness of their trial partners. Therefore, the only means by
which agents can coordinate their efforts in mating and

hunting is through communication.

Figure 4: Experiment 3. Champions in the agent population
achieve similar performance to that of Experiment 1 after

approximately 25 generations. Champion performance (red)

stabilizes afterwards. However, compared to Experiment 1,
average cumulated rewards among entire generations (blue)

and among the juniors (green) are lower and have bigger gaps
in between.

 The reasons for lower average performance is that multiple

languages may occur simultaneously in one generation,
causing confusion among the juniors in parenting phase, thus

lower their performance in the socializing phase.
Table 3 presents a sample policy of a champion in the last

generation. Champion policies after thirty generations encode

the fitness and position accurately and consistently in 19 out
of the 20 runs. However, in almost all generations, more than

20% of the seniors have a messaging policy that either fails to

encode fitness or position states accurately, or differs from the
champion policy.

 Also, average memory size after 30 generations is 7.10, and
the average discount factor is 0.722. The reason for the long

memory is that past decisions can be used to complement

partial observation and improve learning efficiency. For
instance, if an agent keeps sending wrong messages while

being in position for hunt, its trial partner can never know that

the agent is ready, resulting in a punishment for idling to both

agents in the trial. While potentiation may keep the seniors

from “second guessing” their correct policy, a long memory
of the past can help the juniors learn faster in such cases.

F P R2 R1 A M S2 S1

0 0 0 0 1 0 1 1

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 1 0

0 1 0 0 0 0 1 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1

1 0 1 0 1 0

1 0 1 1 1 0

1 1 0 0 0 1 0 1

1 1 0 1 1 0

1 1 1 0 1 0

1 1 1 1 0 0

Table 3: Champion Policy – Experiment 3. S1 and S2

represent the first and second message bit; R1 and R2 are the
message bits received from the partner. All other letters have

the same meaning as those in Table 2. The messages encode

fitness and position values.

 Although the average potentiation threshold is close to one

(0.981), potentiation is crucial in the simulation because the

parenting phase is sufficiently long to generate enough
confusing interactions to reverse knowledge encoded in the

seniors’ controllers. In fact, if potentiation threshold is fixed
to one (i.e. potentiation does not exist), language simply

cannot be established among the agent population, rendering

cumulative rewards consistently negative in all generations.

Experiment 4 (Partially Necessary Communication)

In this experiment, the position of a trial partner is observable
while the fitness of the partner is hidden. Communication is

possible between partners in a trial, however, it is necessary

only for mating.

Figure 5: Experiment 4. Average performance in the first 10

generations is similar to that in Experiment 1. After 15 to 20
generations, rewards stabilize at a level approximately 50%

higher than that in Experiment 1.

 Typical messaging policies in the first ten generations of

each run encode fitness in two bits (e.g. “11” for “ready to
mate” and “01” otherwise). As evolution proceeds, more

advanced policies may emerge, leading to better performance
than the full observation baseline. Table 4 shows a messaging

policy from a champion in the 100th generation.

F P P’ R2 R1 S2 S1

0 0 - - - 1 0

0 1 - - - 1 0

1 0 - - - 0 0

1 1 - - - 1 1

Table 4: Champion Messaging Policy – Experiment 4. Dash
indicates that an input has no effect on the outputs.

 While the messaging policy in table 4 looks confusing by
itself, interestingly, it exploits the setting of the jungle world

effectively if combined with corresponding action policy.

Although such a policy can be expressed by a table as before,
it is translated into the following rule-based policy due to

limited space.

1. Run towards the jungle until position is one.
2. Wait until partner position becomes one.

3. Enter the jungle if positions of both agents are one.
4. If “11” is received before entering the jungle, mate

and enter the jungle at the same time step.

 Note that Rule 1 to 3 are based purely on observation, i.e.
they have nothing to do with the messages received because

partner position is directly observable. In fact, the only rule

that relies on communication is Rule 4. It can be triggered only
under the circumstance where both agents are one step away

from the jungle and “11” is received; and according to Table
4, “11” is sent whenever an agent is ready for both hunting

and mating. Since messages are ignored in all other scenarios,

the only messaging rule that a junior agent needs to learn is to
send “11” when F and P are both one. This rule has two

positive effects. First, the juniors learn the language faster
because it tolerates faults on all but a few inputs (i.e. inputs

with F and P equal to one). Second, combined with the action

policy, it allows agents to mate and hunt successfully in a
single trial, making the average fitness of the population close

to the maximum (200) all the time.

 Among the 20 runs in Experiment 4, approximately half of
them (11/20) discovered policies with similar principles, thus

achieving higher performance than Experiment 1 and 2. Note
that without the emergence of meaningful language, agents in

Experiment 1 or 2 cannot discover behaviors that accomplish

hunt and mating in a single trial. The fact that languages can
be evolved to get around deceptive local optima (e.g. policies

that decide to mate whenever both agents are ready) is

intriguing.
 Additionally, results in Experiment 2 and 4 suggest that for

language to emerge, it is essential that language is indeed
necessary to perform some of the tasks. However, as long as

language appears, it can be evolved into a beneficial tool for

all tasks.

Future Work

Situated simulation of language evolution provides interesting

insights on the origin and evolution of language. The jungle
world simulation can be used as a starting point for more

advanced simulations in two ways.
 First, in nature, spoken language is formed with sequential

patterns of utterances. Messages may span multiple time steps

rather than contained in a single step. Also, they may start at
any step. Such sequential features are essential for simulating

the evolution of more complex and structured languages.

 Second, languages in the real world are usually structured
based on syntax. The emergence of grammatical components

and structures such as nouns and verbs, subjects and objects,
phrases and sentences is an important aspect of language

evolution. A possible approach in the jungle world is to

establish social roles in the simulation, and create tasks around
them. Grammatical structure might then emerge in order to

communicate such role-based information (Bickerton 1990).

 Integrating sequential and/or structural features into the
jungle world framework will make simulations more realistic

and informative.

Conclusion

This paper presents a framework for situated simulation of

language evolution. It introduces an artificial environment, the

jungle world, which can be used to simulate the evolution and
acquisition of multitask languages. The paper also proposes a

method: Evolutionary Reinforcement Learning with

Potentiation and Memory (ERL-POM) for simulation of
language evolution in this environment.

 Experimental results indicate that languages can be evolved
in the artificial environment if communication is necessary for

some or all of the tasks. Languages can be used to coordinate

efforts in multiple tasks where communication is required.
When communication is not necessary for all tasks, languages

can be leveraged to overcome local optima and discover better
policies. Experimental results also show that memory and

potentiation are necessary for such emergence. Extending the

simulation to sequential and structured communication is a
most interesting direction of future work.

Acknowledgement

This research was supported in part by NSF grants DBI-

0939454 and IIS-0915038, and in part by NIH grant R01-
GM105042.

Reference

Batali, J. (1998), Computational simulations of the emergence of

grammar. In J. R. Hurford, M. Studdert-Kennedy, & C. Knight

(Eds.), Approaches to the evolution of language, page 405–426.

Cambridge, UK: Cambridge University Press.

Bickerton, D. (1990). Species and Language. Univ. of Chicago Press,

Chicago.

Brighton, H. (2002). Compositional syntax from cultural transmission.

Artificial Life, 8, page 25–54.

Cangelosi, A., Parisi, D. (2002), Simulating the evolution of language,

2002 edition, page 5 – 8, Springer.

Chomsky, N. (1972). Language and mind. New York: Harcourt Brace

Jovanovich.

De Boer, B., & Vogt, P. (1999). Emergence of speech sounds in changing

populations. In Advances in artificial life, page 664-673. Springer

Berlin Heidelberg.

De Greeff, J., & Nolfi, S. (2010). Evolution of implicit and explicit

communication in mobile robots. In Evolution of Communication

and Language in Embodied Agents (pp. 179-214). Springer Berlin

Heidelberg.

Kaplan, F. (2000). Semiotic schemata: Selection units for linguistic

cultural evolution. In M. Bedau, J. McCaskill, N. Packard, & S.

Rasmussen (Eds.), Artificial Life VII: Proceedings of the Seventh

Artificial Life Conference, page 372–381. Cambridge, MA: MIT

Press.

Kvasnicka, V. and Pospichal, J. (1999), An Emergence of Coordinated

Communication in Populations of Agents. Artificial Life 5(4), page

319--342.

MacLennan, B., Burghardt, G. (1993), Synthetic ethology and evolution

of cooperative communication, Adaptive Behavior, Vol 2, page

167-187.

Mirolli, M., Parisi, D. (2010), Producer biases and kin selection in the

evolution of communication: how the phylogenetic and the

adaptive problems of communication can be solved. In Evolution

of communication and language in embodied agents, page 135–

159. Springer Verlag.

Mitri, S., Floreano, D., & Keller, L. (2010). Evolutionary conditions for

the emergence of communication. In Evolution of Communication

and Language in Embodied Agents, page 123-134. Springer Berlin

Heidelberg.

Nolfi, S., Mirolli, M. (2010), Evolution of communication and language

in embodied agents. Berlin: Springer.

Quinn, M. (2001). Evolving communication without dedicated

communication channels. In J. Kelemen & P. Sosí k (Eds.),

Advances in artificial life: The Sixth European Conference (ECAL

2001), page 357–366. Berlin: Springer.

Rawal, A., Boughman, J., Miikkulainen, R. (2014), Evolution of

communication in mate selection. In Proceedings of the fourteenth

international conference on the synthesis and simulation of living

systems (ALIFE 14), Cambridge, MA: MIT Press.

Smith, A. D. M. (2001). Establishing communication systems without

explicit meaning transmission. In J. Kelemen & P. Sosí k (Eds.),

Advances in artificial life: The Sixth European Conference (ECAL

2001), page 381–390. Berlin: Springer.

Smith, K. (2002). The cultural evolution of communication in a

population of neural networks. Connection Science, 14(1), page

65–84.

Steels, L., & Oudeyer, P.-Y. (2000). The cultural evolution of syntactic

constraints in phonology. In M. Bedau, J. McCaskill, N. Packard,

& S. Rasmussen (Eds.), Artificial life VII: Proceedings of the

Seventh Artificial Life Conference, page. 382–391. Cambridge,

MA: MIT Press.

Wagner, K., Reggia, J., Uriagereka, J., Wilkinson, G. S. (2003), Progress

in the simulation of emergent communication and language,

Adaptive Behavior, Vol 11, page 37-69.

http://www.isrl.uiuc.edu/~amag/langev/author/vkvasnicka.html
http://www.isrl.uiuc.edu/~amag/langev/author/jpospichal.html
http://www.isrl.uiuc.edu/~amag/langev/pubtype/article_ArtificialLife.html

