

Dynamic Adaptation and Opponent Exploitation in Computer Poker

Xun Li and Risto Miikkulainen
The University of Texas at Austin

xun.bhsfer@utexas.edu | risto@cs.utexas.edu

Abstract
As a classic example of imperfect information games, Heads-
Up No-limit Texas Holdem (HUNL), has been studied exten-
sively in recent years. While state-of-the-art approaches
based on Nash equilibrium have been successful, they lack
the ability to model and exploit opponents effectively. This
paper presents an evolutionary approach to discover oppo-
nent models based Long Short Term Memory neural net-
works and on Pattern Recognition Trees. Experimental re-
sults showed that poker agents built in this method can adapt
to opponents they have never seen in training and exploit
weak strategies far more effectively than Slumbot 2017, one
of the cutting-edge Nash-equilibrium-based poker agents. In
addition, agents evolved through playing against relatively
weak rule-based opponents tied statistically with Slumbot in
heads-up matches. Thus, the proposed approach is a promis-
ing new direction for building high-performance adaptive
agents in HUNL and other imperfect information games.

1. Introduction
Imperfect information games are an important AI problem
with numerous real-world applications, such as trading,
business negotiation, security, military decision-making,
and table games.

As a classic imperfect information game, Texas Holdem
has been studied extensively in recent years. Nash-equilib-
rium-approximation techniques, e.g. Counterfactual Regret
Minimization (CFR) (Zinkevinch et al. 2008), have been ap-
plied to multiple variants of the game and achieved remark-
able successes. Heads-Up Limit Texas Holdem has been
weakly solved (Bowling et al. 2015). Many powerful poker
agents for Heads-Up No-Limit Holdem (HUNL) have been
built through CFR in combination with various abstraction
and/or sampling techniques (Gilpin et al. 2008; Brown et al.
2015; Jackson 2017). In recent Human vs. AI competitions,
poker agents using approximated Nash equilibrium strate-
gies have defeated professional human players in HUNL
with statistically significant margins (Moravcik et al. 2017;
Brown and Sandholm 2017).

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

However, Nash-equilibrium-approximation approaches
have three limitations.

First, for imperfect information games with large state
space, the quality of approximated Nash equilibrium strate-
gies can be far from ideal. As an example, in HUNL, most
top-ranking agents using approximated equilibrium strate-
gies are exploitable with a simple local best response
method (Lisy and Bowling 2016).

Second, although a Nash-equilibrium strategy in a two-
player zero-sum game is unexploitable in theory, it does not
guarantee maximum utility. In particular, even if a real Nash
equilibrium strategy is found for HUNL, it is unlikely to be
the most profitable strategy. The best counter-strategy
against each opponent is different, and only through oppo-
nent modeling and adaptation can a player approximate such
counter-strategies to exploit various opponents effectively.

Third, in imperfect information games with more than
two players and multiple equilibria, if the opponents are not
following the same equilibrium as approximated by an equi-
librium-based agent, the agent’s performance cannot be
guaranteed (Ganzfried 2016). Thus, Nash-equilibrium-ap-
proximation approaches may not be effective in applications
with three or more players.

Therefore, developing a new method for building adap-
tive poker agents that is not based on Nash equilibrium strat-
egies may be the next step towards building stronger com-
puter agents for HUNL.

Adaptive agents with opponent models can exploit their
opponents’ weaknesses effectively, thereby achieving high
utility. In addition, if the method does not attempt to approx-
imate Nash equilibrium strategies, the limitations of approx-
imation quality and generalizability no longer apply.

This paper proposes such a method: opponent models
based on Pattern Recognition Trees and LSTM neural net-
works are constructed through evolutionary optimization;
such models are then integrated with decision algorithms to
build poker agents that are able to adapt their behaviors to
exploit opponents’ weaknesses. Via this approach, a poker

agent called Adaptive System of Holdem (ASHE) is con-
structed. Experimental results show that ASHE exploits
highly to moderately exploitable opponents far more effec-
tively than Slumbot 2017, one of the state-of-the-art poker
agents based on Nash equilibrium approximation, and ties
with it statistically in HUNL matches. In addition, since the
proposed approach is not based on Nash equilibrium, the
lack of performance guarantee of equilibrium strategies in
games with more than two players does not limit its appli-
cation. Thus, the paper provides an alternative method for
building high-quality computer poker agents and points out
a promising new direction of research in imperfect infor-
mation games.

The remaining sections of this paper are organized as fol-
lows. Section 2 outlines prior work on opponent modeling
in poker. Section 3 presents the architecture of ASHE, and
introduces the genetic algorithm to evolve its opponent
model. Section 4 presents experimental results and discusses
ASHE’s performance both against highly to moderately ex-
ploitable players and Slumbot 2017. Section 5 suggests di-
rections for future work.

2. Related Work
To achieve high performance in an imperfect information
game such as poker, the ability to effectively model and ex-
ploit suboptimal opponents is critical (Billings et al. 2002).

The initial attempts to construct adaptive poker agents
employed rule-based statistical models. For instance, the
Loki system was able to discover and exploit certain patterns
in its opponents’ strategies (Billings et al. 1998). Billings et
al. (2006) proposed opponent modeling with adaptive game
tree algorithms: Miximax and Miximix, which computed the
rank histogram of opponent’s hand for different betting se-
quences, categorizing them as one of a broader hand groups.
Bard et al. (2013) proposed an end-to-end approach for
building an implicit modeling agent. In addition, Bayesian
model (Korb et al. 1999; Southey et al. 2005; Ponsen et al.
2008), clustering (Teofilo and Reis 2011), and ensemble
learning (Ekmekci and Sirin 2013) were introduced for op-
ponent modeling in different variants of poker.

Researchers also attempted to build adaptive poker agents
by adjusting Nash-equilibrium strategies. Ganzfried and
Sandholm (2011) proposed an efficient real-time algorithm
that observed the opponent’s action frequencies and built an
opponent model by combining information from an approx-
imated equilibrium strategy with the observations. Statisti-
cal exploitation module (Norris and Watson 2013), robust
counter strategies (Johanson et al. 2008; Johanson and
Bowling 2009; Ponsen et al. 2011), and safe exploitation
techniques were proposed (Ganzfried and Sandholm 2015)
to make adaptive agents less exploitable. While these tech-
niques improve adaptive agents' performance against high-

quality equilibrium-based opponents, they also limit adapta-
tion and are unable to fully exploit opponent strategies.

Neural networks were introduced to model opponents by
Davidson et al. (2000). The networks were used to assign
each game state with a probability triple, predicting the ac-
tion of the opponent in Limit Texas Holdem. The prediction
had an accuracy of over 80%. Lockett and Miikkulainen
(2008) proposed a method to evolve neural networks to clas-
sify opponents in a continuous space. Poker agents were
trained through neuroevolution both with and without the
opponent models, and the players with the models conclu-
sively outperformed the players without them.

However, most of the above methods were applied to and
evaluated in Heads-Up Limit Holdem or simpler poker var-
iants. In particular, none of them has been demonstrated ex-
perimentally to be effective in building adaptive agents for
HUNL, a far more challenging poker variant due to much
bigger state space.

In recent years, a type of recurrent neural network, Long
Short Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) has achieved great successes in many challenging AI
problems (Greff et al. 2015). Li and Miikkulainen (2017)
proposed to build poker agents based on LSTM for HUNL.
Such agents extracted action patterns from game state se-
quences and modeled the opponent implicitly. The agents
exploited various weak strategies effectively, but did not
achieve comparable performance in HUNL matches against
cutting-edge Nash-equilibrium-based agents.

This paper proposes to use LSTM neural networks and
Pattern Recognition Trees to build poker agents that model
the opponents explicitly. Poker agents built in this method
were able to adapt to their opponents dynamically, even to
those with stronger strategies than they have seen in train-
ing. In the experiments, these agents tied against Slumbot
2017, the best equilibrium-based agent that was accessible
as a testing opponent, in HUNL matches. In addition, they
were far more effective in exploiting highly to moderately
exploitable opponents than Slumbot 2017.

Thus, this paper is an important step towards effective op-
ponent modeling in HUNL and points out a promising new
direction for building high-performance adaptive computer
agents in imperfect information games.

3. Method
This section introduces an evolutionary method for building
adaptive poker agents that utilizes opponent models based
on Pattern Recognition Trees and LSTM neural networks.
Subsection 3.1 details the architecture of ASHE, including
the Pattern Recognition Trees, the LSTM estimators, and the
Decision Algorithm. Subsection 3.2 introduces the method
for evolving the opponent models.

 (a) Overall Architecture (b) Pattern Recognition Tree (c) LSTM Estimator

Figure 1: ASHE Architecture. ASHE consists of two parts: a rule-based decision algorithm and an opponent model. The opponent model
contains three components: Showdown Win Rate Estimator, Opponent Fold Rate Estimator, and Pattern Recognition Tree. The PRT and
LSTM estimators allow ASHE to make decisions based on current game state and patterns learned from previous games.

3.1. ASHE Architecture
ASHE is an adaptive poker agent designed for HUNL with
a dynamic strategy based on opponent modeling. Figure 1
(a) presents the overall architecture of ASHE.
 The core of ASHE is the opponent model, which contains
the Pattern Recognition Trees (PRTs) and two LSTM esti-
mators. The PRTs maintain of a set of statistics for each se-
quence of actions seen in games against an opponent, col-
lecting information on the opponent's strategy from every
game. Both of the estimators receive input features extracted
from the current game state and the PRTs. The Showdown
Win Rate Estimator evaluates the probability of ASHE hold-
ing a hand better than the opponent’s. The Opponent Fold
Rate Estimator estimates the probability of the opponent
folding to a raise (bet).
 These estimations are sent to the Decision Algorithm,
which evaluates the expected utility for each possible action
based on statistical estimation and selects the action with the
highest expected utility.
3.1.1. Pattern Recognition Tree
The PRT collects data on action sequences seen in all games
against an opponent and organizes the data to allow fast re-
trieval given any game state. Such data is used to extract
input features for the LSTM estimators. Figure 1 (b) illus-
trates its structure.
 The root of the tree represents an initial state of the game;
it can be either preflop on button or preflop as the Big Blind,
with no action taken by either player. Thus, in a typical
HUNL match, two PRTs are created, each corresponding to

one of the two positions (i.e. the Button or the Big Blind).
Leaf nodes represent terminal states of the game. They can
be either a showdown or a fold from a player. Non-leaf
nodes represent decision points where either ASHE or its
opponent must make the next move. For each non-leaf node,
the path from the root to the node represents a sequence of
actions from the two players. ASHE’s bets are restricted to
0.5, 1.0, 1.5, 2.0 pot size, and all-in. The opponent’s bets are
discretized into seven buckets: (0, 0.125), (0.125, 0.375),
(0.375, 0.75), (0.75, 1.25), (1.25, 2.0), (2.0, 4.0), (> 4.0),
also with respect to the size of the pot.
 Each non-leaf node is associated with a set of statistics
called node stats, including the frequency of the node being
visited (f), the opponent's average hand strength in show-
downs after visiting the node (𝑠̅), and the number of show-
downs (csd) and the opponent's folds (cof) after reaching the
node. These statistics outline the tendency of opponent ac-
tions at different decision points. For instance, if the oppo-
nent is over-cautious when facing consecutive raises at both
the flop and the turn, the cof will be high for every node along
that path, suggesting an opportunity for bluffing.
 At the beginning of a match, two PRTs corresponding to
each position (i.e. the button and the Big Blind) are initial-
ized with only a root node. Nodes are inserted to the trees
when their corresponding decision points occur for the first
time in the match. After each game, node stats for every
node along the path of the game (from the root to the leaf)
are updated based on the result of the game. As the match
proceeds, the PRTs grow, and the node stats become in-
creasingly reliable, especially for decision points that are
frequently visited. Note that because of action restriction

Table 1: Estimator Inputs. The first four input features are derived from node stats in the PRTs, which provides statistical information on the
opponent's strategy given the same action sequence in the past. The rest of the features provide information on the current state of the game.
Notations of node stats are the same as defined in the previous subsection. S and F refers to the SWRE and the OFRE, respectively. These
features collectively not only encode the current game state but also reflect the history of previous games against the opponent.

and bucketing, the trees grow slowly after a few dozens of
games, and most nodes are visited repeatedly.
 To control the size of the trees and ensure that most nodes
are visited frequently enough to provide meaningful node
stats, PRTs in the current version of ASHE do not distin-
guish decision points by community cards. However, infor-
mation regarding community cards are encoded in the input
features of the estimators.
3.1.2. LSTM Estimators
The estimators provide essential information for the Deci-
sion Algorithm to evaluate the expected utility of each pos-
sible action. The Showdown Win Rate Estimator (SWRE)
estimates the probability of ASHE’s hand beating its oppo-
nent’s if a showdown occurs. The Opponent Fold Rate Esti-
mator (OFRE) estimates the probability of the opponent
folding its hand if ASHE bets or raises. Both the SWRE and
the OFRE share the same LSTM-based neural network ar-
chitecture, illustrated by Figure 1 (c).
 In the current version of ASHE, each LSTM module con-
tains 50 vanilla LSTM blocks as described by Greff et al.
(2015). Each block contains ten cells. These LSTM blocks
are organized into a single layer. The estimation network is
a fully connected feed-forward neural network with one hid-
den layer.
 All LSTM blocks are reset to their initial states at the be-
ginning of each hand. Given a decision point, a set of input
features are derived for each estimator from the game state
and the node stats of the corresponding node. If the node
does not exist, a set of default inputs indicating an unknown
state are used instead. Table 1 defines the input features.

These input features are sent to the LSTM modules in the
estimators, whose cell states and outputs after receiving the
inputs are saved as the decision states.
 To compute estimations for an action (e.g. the probability
for the opponent folding after a pot-size raise), input features
from the PRT node corresponding to that action are also ex-
tracted. The LSTM modules take these inputs and send their
outputs to the estimation network, which produces the esti-
mation. After that, the LSTM modules are restored to the
decision states to compute estimation for other actions.
Thus, the estimators process and balance information from
each decision point and compute estimations based on the
states in the current game and node stats from the PRT.
3.1.3. Decision Algorithm
Figure 2 outlines the decision algorithm. When estimating
the expected utility of an action, the decision algorithm
makes two assumptions.
 First, it assumes that the estimations from the LSTM es-
timators are the true values. Second, it assumes that if the
opponent does not fold to a raise, it will call, and the game
will go to a showdown with no more chips committed to the
pot. Although neither of these assumptions always hold in
reality, experimental results indicate that the utility estima-
tions based on the decision algorithm is an acceptable ap-
proximation.
 In addition, a restriction is placed on ASHE’s actions:
ASHE responds to a four-bet (when playing as the Big
Blind) or a three-bet (when playing as the Button) with a
fold, a call, or an all-in. This restriction simplifies utility es-
timation and reduces the size of the PRTs.

Figure 2: Decision Algorithm. The decision algorithm estimates
the expected utilities of each available action and selects the best
move. The estimations are based on the outputs of the LSTM esti-
mators and two assumption as in 3.1.3.

 In sum, the ASHE architecture uses the PRTs to collect
statistical information on the opponent’s moves given dif-
ferent at decision points. The LSTM estimators consider
such information and the game state at each decision point
in the current hand to estimate ASHE’s winning probability
in a showdown and the probability of the opponent folding
to bets/raises. The decision algorithm uses these outputs to
approximate the expected utility of available actions and se-
lects the best move accordingly.

3.2. Evolving the LSTM Estimators
The performance of ASHE depends on the accuracy of the
LSTM estimators. Although it is clear what the LSTM esti-
mators need to do, how can they be trained to do so? The
correct outputs for the estimators, e.g., the accurate estima-
tion of an opponent's folding probability given a game state
and the history of previous games, are not known. Therefore,
they cannot be trained through supervised methods. A major
technical insight in this paper is that it is possible to evolve
the LSTM estimators for their tasks through genetic algo-
rithms. This allows the method to be applied to problems
with little or no labeled training data.
 In the genetic algorithm, a population of agents are cre-
ated with randomly initialized LSTM estimators at first.
They are evaluated based on their fitness, i.e. their average
earnings against a variety of training opponents. These op-
ponents require different counter-strategies for effective ex-
ploitation. Thus, agents with adaptive behaviors that can ex-
ploit various strategies are rewarded by higher fitness.
 The agents with the highest fitness survive and reproduce
via mutation and crossover. The others are replaced by the
offspring. Selection and reproduction are done iteratively,

thus improving the overall fitness of the population. Note
that the agents do not have to know what the accurate esti-
mations are or what actions are the best; it is sufficient to
select agents that perform relatively well in the population.
 Specifically, during evolution, agents are represented by
theirs numeric genomes, which are constructed by concate-
nating all parameters in the estimators, i.e. the weights in the
LSTM module, the initial states of all LSTM blocks, and the
weights of the estimation network. To preserve advanta-
geous genotypes against occasional poor luck, Tiered Sur-
vival and Elite Reproduction is adopted. Survivors are di-
vided into two tiers based on their fitness. Agents in the top
tier can reproduce and do not mutated. Agents of the second
tier mutate but cannot reproduce. Thus, genotypes from
more agents can be preserved without compromising the
performance of the offspring (Li and Miikkulainen 2017).
 Evolving agents with multiple modules can be inefficient,
especially at an early stage. Advantageous genotypes of one
module may be coupled with poor genotypes of another,
causing low performance and loss of progress. Therefore,
evolution is organized into a series of sessions, with each
session dedicated to evolving one of the two estimators.
When a new session begins, the champion of the previous
session is duplicated to form the agent population. The
weights in the estimator to be evolved are mutated, and the
weights in the other estimator frozen. Thus, the genetic al-
gorithm is able to discover effective LSTM estimators effi-
ciently, even though there is no data for supervised training.

4. Experimental Results
In the experiments, agents were evolved for 500 genera-
tions, and the champion at that point were used to evaluate
the proposed method. The population size was 50. Mutation
followed Gaussian distribution. As evolution proceeded,
mutation rate descended linearly from 0.25 to 0.1, and mu-
tation strength (variance) from 0.25 to 0.05. After each gen-
eration, agents with top 30% performance survived, and sur-
vivors whose performance was above the mean performance
among all survivors were in the top tier (as defined by sub-
section 3.2). Note that these settings should be considered
as a reference, and reasonably different settings should not
affect overall performance noticeably.
 In each generation, agents played two matches against
every opponent. Both matches contained 1000 hands. Card
decks in the first match were duplicated and played again in
the second match. The players switched seats between the
two matches, and the PRTs of the agents were reset before
entering the second match. At the beginning of each hand,
the chip stacks of the two players were reset to $20,000. The
blinds were $50/$100. The format of the game was con-
sistent with HUNL matches in the Annual Computer Poker
Competition (ACPC).

Table 2: Training and Testing Opponents. HM, CM, SL and CS are four agents with highly exploitable strategies that require different (and
in some cases, opposite) counter-strategies. LA, LP, TP, and TA are less exploitable versions of HM, CM, SL, and CS, respectively. RG, HP,
and SB were used only for testing. RG is highly exploitable, but its strategy is dynamic. HP is a strong agent based on common tactics and
strategies adopted by professional players. Slumbot 2017 (SB; https://www.slumbot.com) was the best Nash-equilibrium-based agent that
was publicly available at the time of the experiments. These agents form a pool of training and testing opponents with different weakness
types and exploitability levels.

 Table 2 describes the agents used for evolving and testing
ASHE. To investigate the influence of training opponents on
ASHE’s performance, four instances of ASHE were evolved
with different evolution settings.
 The agent A1 was evolved by playing against a group of
highly exploitable opponents with diversified strategies, i.e.
HM, CM, SL and CS. The agent A2 was evolved by playing
against less exploitable opponents with similarly diversified
weaknesses, i.e. LA, LP, TP, and TA. The agent A3 was
evolved against two pairs of opposite strategies (i.e maniac
and passive) with different level of exploitation, HM, SL
(relatively high exploitability), and LA, TP (relatively low
exploitability). The agent A4 was evolved against HM, CM,
SL and CS (the same as A1) for the first 200 generations,
and LA, LP, TP, and TA (the same as A2) for the other 300
generations.
 Table 3 presents the test results. Every pair of agents in
the table played at least 20,000 hands against each other.
Another 20,000 hands were played if the margin was greater
than 20% of the absolute value of the mean. Thus, approxi-
mately 1.5 million hands were played during evaluation.
These hands were organized into 1000-hand matches, and
ASHE's estimators were reset between consecutive matches.
The rest of this subsection points out key discoveries and
conclusions from these results.
 First, overall, the best of the four ASHE instances is A4,
followed by A2, A1, and A3 in decreasing order of their av-
erage performance.

 Second, both A4 and the second best instance, A2, de-
feated HP by a significant margin and tied statistically with
SB. These results demonstrate that ASHE, evolved by play-
ing against relatively weak opponents, can adapt to strong
opponents that are not seen during training and achieve com-
petitive performance against top-ranking Nash equilibrium-
based agents.
 Third, A4 outperformed SB 40% to 2300% when facing
weaker opponents. The more exploitable the opponent was,
the bigger the margin tended to be. Thus, the proposed
method can build poker agents that are significantly more
effective in exploiting weak opponents than top-ranking
agents following equilibrium strategies.
 Fourth, the performance of A3 was much worse compared
to the other three instances when facing opponents whose
strategies were fundamentally different from those seen dur-
ing evolution (e.g. CM and CS are fundamentally different
from both HM and SL). Nevertheless, instances evolved by
playing against a reasonably diversified set of strategies, e.g.
A1, A2, and A4, could adapt to HP or SL, whose strategies
were superior to any strategies seen during evolution. These
results indicate that a reasonable level of diversity of oppo-
nent strategies during evolution is necessary for evolving
strong adaptive agents. With such diversity, however, agents
evolved in the proposed method can generalize remarkably
well to opponents that are not seen during evolution.
 Fifth, A2 and A4 demonstrated consistently better perfor-
mance than A1 when playing against opponents that had not

Table 3: Evaluation Results. The first four rows show the performance of A1, A2, A3, and A4 against the eleven opponents in Table 2. The last
row shows Slumbot's performance against the same opponents for comparison. The last column of the second part of the table contains the
agents’ performance against Slumbot. Results are in blue if an agent played against the opponent during evolution. Performance is measured
in milli-Big-Blind per hand (mBB/hand. The best agent, A4, ties with Slumbot and is far more effective in exploiting weaker opponents.

been seen during evolution, despite that their opponents dur-
ing evolution had similar types of weaknesses. Hence, the
level of exploitability of opponent strategies during evolu-
tion is another factor that influences ASHE's performance.
A group of moderately exploitable opponents with similarly
diversified weaknesses tends to be more effective in evolv-
ing strong adaptive agents than a group of highly exploitable
opponents.
 Sixth, ASHE's performance against RG show that agents
built through the proposed approach can model and exploit
opponents with a changing strategy effectively. However,
game log analysis indicated that ASHE did not switch its
strategy as RG did after every 50 hands; rather, as more
hands were played, ASHE reached a strategy that exploited
RG based on the overall distribution of its moves across the
highly exploitable strategies it might randomly choose. That
strategy, while being close to static after a few hundreds of
hands, was much more effective in exploiting RG compared
to SB's approximated equilibrium strategy.
 The above observations and findings show that the pro-
posed approach is effective in building high-quality adap-
tive agents for HUNL. They also provide some useful prin-
ciples for its application and improvement in the future.

Discussion and Future Work
The proposed method for opponent modeling is not based
on equilibrium strategies; it allows free adaptation and po-
tentially more effective opponent exploitation. In addition,
this method does not depend on any property of Nash Equi-
libria. Hence, the core idea of ASHE's architecture and the
genetic algorithm to evolve it are applicable to a wider range

of games. This work can be extended in four directions in
the future.
 First, ASHE’s performance can be improved by training
against stronger opponents. Second, deep neural networks
can be used to extract features from sequences of raw game
states, thus reducing reliance on handcrafted features. Third,
neural network structures can be optimized via evolution us-
ing NEAT (Stanley and Miikkulainen 2002). Fourth, the
proposed method can be applied to build adaptive agents for
other imperfect information games.

Conclusion
This paper introduces an evolutionary approach for oppo-
nent modeling and exploitation in HUNL based on Pattern
Recognition Trees and LSTM Neural Networks. Using this
method, a poker agent called ASHE is built. Experimental
results show that (1) ASHE is effective in modeling and ex-
ploiting weak opponents, and (2) ASHE evolved by playing
against highly to moderately exploitable opponents is capa-
ble of modeling top equilibrium-based agents, achieving
competitive performance in matches against them. Thus, the
paper presents a new method for building high-quality adap-
tive poker agents, and points out a promising direction for
research in imperfect information games.

Acknowledgement
This research was supported in part by NSF grants DBI-
0939454 and IIS-0915038, and in part by NIH grant R01-
GM105042.

References
Bard, N., Johanson, M., Burch, Neil., and Bowling, M. 2013.
Online Implicit Agent Modeling. In Proceedings of the 12th Inter-
national Conference on Autonomous Agents and Multi-agent Sys-
tems (AAMAS 2013), Saint Paul, Minnesota, USA.
Billings, D., Papps, D., Schaeffer, J., and Szafron, D. 1998. Oppo-
nent Modeling in Poker. In Proceedings of the Joint Conference of
AAAI/IAAI.
Billings, D. 2006. Algorithms and Assessment in Computer Poker.
Ph.D. Dissertation, University of Alberta.
Bowling, M., Burch, N., Johanson, M., and Tammelin, O. 2015.
Heads-up Limit Hold’em Poker is Solved. Science, 347 (6218).
Brown, N. and Sandholm, T. 2017. Safe and Nested Endgame
Solving for Imperfect-Information Games. In the AAAI workshop
on Computer Poker and Imperfect Information Games.
Brown, N., Ganzfried, S., and Sand-holm, T. 2015. Hierarchical
Abstraction, Distributed Equilibrium Computation, and Post-Pro-
cessing, with Application to a Champion No-Limit Texas Hold’em
Agent. In Proceedings of the International Conference on Autono-
mous Agents and Multi-agent Systems.
Davidson, A., Billings, D., Schaeffer, J., and Szafron, D. 2000. Im-
proved Opponent Modeling in Poker. In International Conference
on Artificial Intelligence, ICAI’00.
Ekmekci, O., and Sirin, V. 2013. Learning Strategies for Opponent
Modeling in Poker. In Proceedings of Workshops at the Twenty-
Seventh AAAI Conference on Artificial Intelligence. Bellevue:
AAAI Press (pp. 6-12).
Ganzfried, S. 2016. Bayesian Opponent Ex-ploitation in Imperfect-
Information Games, in AAAI Workshop on Computer Poker and
Incomplete Information.
Ganzfried, S. and Sand-holm, T. 2011. Game Theory-Based Op-
ponent Modeling in Large Imperfect-Information Games. In Pro-
ceedings of the International Conference on Autonomous Agents
and Multi-Agent Systems.
Ganzfried, S. and Sand-holm, T. 2015. Safe Opponent Exploita-
tion. In ACM Transactions on Economics and Computation, 3(2).
Gilpin, A., and Sandholm, T. 2008. Solving Two-Person Zero-Sum
Repeated Games of Incomplete Information. In Proceedings of the
Seventh International Conference on Autonomous Agents and
Multi-Agent Systems.
Greff, K., Srivastava, R. K., Jan, K., Steunebrink, B. R., and
Schmidhuber, J. 2015. LSTM: a Search Space Odyssey. arXiv pre-
print arXiv:1503.04069.
Hochreiter, S. and Schmidhuber, J. 1997. Long short-term
memory. In Neural Computation 9, pp 1735–1780.
Jackson, E. 2017. Targeted CFR, in AAAI Work-shop on Computer
Poker and Imperfect Information, San Francisco, CA.
Johanson, M. and Bowling, M. 2009. Data Biased Robust Counter
Strategies, In Proceedings of the Twelfth International Conference
on Artificial Intelligence and Statistics (AISTATS).
Johanson, M., Zinkevich, M., and Bowling, M. 2008. Computing
Robust Counter-Strategies. In Advances in Neural Information
Processing Systems 20 (NIPS).
Korb, K., Nicholson, A., and Jitnah, N. 1999. Bayesian Poker. In
Proceedings of the Fifteenth Conference on Uncertainty in Artifi-
cial Intelligence, pp. 343-350. Morgan Kaufmann Publishers Inc.

Li, X. and Miikkulainen, R. 2017. Evolving Adaptive Poker Play-
ers for Effective Opponent Exploitation. In AAAI Workshop on
Computer Poker and Imperfect Information Games, San Francisco,
CA.
Lisy, V. and Bowling, M. 2016. Equilibrium Approximation Qual-
ity of Current No-Limit Poker Bots, arXiv preprint
arXiv:1612.07547.
Lockett, A., and Miikkulainen, R. 2008. Evolving Opponent Mod-
els for Texas Hold’em. In Proceedings of the IEEE Conference on
Computational Intelligence in Games, IEEE Press.
Moravcik, M., Schmid, M., Burch, N., Lisy, V., Morrill, D., Bard,
N., Davis, T., Waugh, K., Johanson, M., and Bowling, M. 2017.
DeepStack: Expert-Level Artificial Intelligence in No-Limit
Poker, axXiv:1701. 01724.
Norris, K. and Watson, I. 2013. A Statistical Exploitation Module
for Texas Hold’em and Its Benefits When Used With an Approxi-
mate Nash Equilibrium Strategy. In Proceedings of IEEE Confer-
ence on Computational Intelligence and Games, Niagara, Canada.
Posen, M., Ramon, J., Croonenborghs, T., Driessens, K., and
Tuyls, K. 2008. Bayes Relational Learning of Opponent Models
from Incomplete Information in No-Limit Poker. In Twenty-third
Conference of the Association for the Advancement of Artificial In-
telligence (AAAI-08).
Ponsen, M., Jong, S., and Lanctot, M. 2011. Computing Approxi-
mate Nash Equilibria and Robust Best Responses Using Sampling.
In Journal of Artificial Intelligence Research.
Southey, F., Bowling, M., Larson, B., Piccione, C., Burch, N.,
Billings, D., and Rayner, C. 2005. Bayes Bluff: Opponent Model-
ling in Poker. In Proceedings of the 21st Annual Conference on
Uncertainty in Artificial Intelligence.
Stanley, K. and Miikkulainen, R. 2002. Evolving Neural Networks
Through Augmenting Topologies. In Evolution Computation, 10
(2): pp 99-127.
Teofilo, L. F., Reis, L. P. 2011. Identifying Player’s Strategies in
No Limit Texas Hold’em Poker through the Analysis of Individual
Moves, In Proceedings of the 15th Portuguese Conference on Ar-
tificial Intelligence. Lisbon, Portugal.
Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C. 2008.
Regret Minimization in Games with Incomplete Information. In
Proceedings of the Twenty-First Annual Conference on Neural In-
formation Processing Systems (NIPS).

