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Abstract 
As a classic example of imperfect information games, Heads-
Up No-limit Texas Holdem (HUNL), has been studied exten-
sively in recent years. While state-of-the-art approaches 
based on Nash equilibrium have been successful, they lack 
the ability to model and exploit opponents effectively. This 
paper presents an evolutionary approach to discover oppo-
nent models based Long Short Term Memory neural net-
works and on Pattern Recognition Trees. Experimental re-
sults showed that poker agents built in this method can adapt 
to opponents they have never seen in training and exploit 
weak strategies far more effectively than Slumbot 2017, one 
of the cutting-edge Nash-equilibrium-based poker agents. In 
addition, agents evolved through playing against relatively 
weak rule-based opponents tied statistically with Slumbot in 
heads-up matches. Thus, the proposed approach is a promis-
ing new direction for building high-performance adaptive 
agents in HUNL and other imperfect information games. 

1. Introduction   
Imperfect information games are an important AI problem 
with numerous real-world applications, such as trading, 
business negotiation, security, military decision-making, 
and table games.  

As a classic imperfect information game, Texas Holdem 
has been studied extensively in recent years. Nash-equilib-
rium-approximation techniques, e.g. Counterfactual Regret 
Minimization (CFR) (Zinkevinch et al. 2008), have been ap-
plied to multiple variants of the game and achieved remark-
able successes. Heads-Up Limit Texas Holdem has been 
weakly solved (Bowling et al. 2015). Many powerful poker 
agents for Heads-Up No-Limit Holdem (HUNL) have been 
built through CFR in combination with various abstraction 
and/or sampling techniques (Gilpin et al. 2008; Brown et al. 
2015; Jackson 2017). In recent Human vs. AI competitions, 
poker agents using approximated Nash equilibrium strate-
gies have defeated professional human players in HUNL 
with statistically significant margins (Moravcik et al. 2017; 
Brown and Sandholm 2017). 
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However, Nash-equilibrium-approximation approaches 
have three limitations.  

First, for imperfect information games with large state 
space, the quality of approximated Nash equilibrium strate-
gies can be far from ideal. As an example, in HUNL, most 
top-ranking agents using approximated equilibrium strate-
gies are exploitable with a simple local best response 
method (Lisy and Bowling 2016).  

Second, although a Nash-equilibrium strategy in a two-
player zero-sum game is unexploitable in theory, it does not 
guarantee maximum utility. In particular, even if a real Nash 
equilibrium strategy is found for HUNL, it is unlikely to be 
the most profitable strategy. The best counter-strategy 
against each opponent is different, and only through oppo-
nent modeling and adaptation can a player approximate such 
counter-strategies to exploit various opponents effectively. 

Third, in imperfect information games with more than 
two players and multiple equilibria, if the opponents are not 
following the same equilibrium as approximated by an equi-
librium-based agent, the agent’s performance cannot be 
guaranteed (Ganzfried 2016). Thus, Nash-equilibrium-ap-
proximation approaches may not be effective in applications 
with three or more players. 

Therefore, developing a new method for building adap-
tive poker agents that is not based on Nash equilibrium strat-
egies may be the next step towards building stronger com-
puter agents for HUNL. 

Adaptive agents with opponent models can exploit their 
opponents’ weaknesses effectively, thereby achieving high 
utility. In addition, if the method does not attempt to approx-
imate Nash equilibrium strategies, the limitations of approx-
imation quality and generalizability no longer apply.  

This paper proposes such a method: opponent models 
based on Pattern Recognition Trees and LSTM neural net-
works are constructed through evolutionary optimization; 
such models are then integrated with decision algorithms to 
build poker agents that are able to adapt their behaviors to 
exploit opponents’ weaknesses. Via this approach, a poker 

 



 

 

agent called Adaptive System of Holdem (ASHE) is con-
structed. Experimental results show that ASHE exploits 
highly to moderately exploitable opponents far more effec-
tively than Slumbot 2017, one of the state-of-the-art poker 
agents based on Nash equilibrium approximation, and ties 
with it statistically in HUNL matches. In addition, since the 
proposed approach is not based on Nash equilibrium, the 
lack of performance guarantee of equilibrium strategies in 
games with more than two players does not limit its appli-
cation. Thus, the paper provides an alternative method for 
building high-quality computer poker agents and points out 
a promising new direction of research in imperfect infor-
mation games. 

The remaining sections of this paper are organized as fol-
lows. Section 2 outlines prior work on opponent modeling 
in poker. Section 3 presents the architecture of ASHE, and 
introduces the genetic algorithm to evolve its opponent 
model. Section 4 presents experimental results and discusses 
ASHE’s performance both against highly to moderately ex-
ploitable players and Slumbot 2017. Section 5 suggests di-
rections for future work.  

2. Related Work 
To achieve high performance in an imperfect information 
game such as poker, the ability to effectively model and ex-
ploit suboptimal opponents is critical (Billings et al. 2002).  

The initial attempts to construct adaptive poker agents 
employed rule-based statistical models. For instance, the 
Loki system was able to discover and exploit certain patterns 
in its opponents’ strategies (Billings et al. 1998). Billings et 
al. (2006) proposed opponent modeling with adaptive game 
tree algorithms: Miximax and Miximix, which computed the 
rank histogram of opponent’s hand for different betting se-
quences, categorizing them as one of a broader hand groups. 
Bard et al. (2013) proposed an end-to-end approach for 
building an implicit modeling agent. In addition, Bayesian 
model (Korb et al. 1999; Southey et al. 2005; Ponsen et al. 
2008), clustering (Teofilo and Reis 2011), and ensemble 
learning (Ekmekci and Sirin 2013) were introduced for op-
ponent modeling in different variants of poker.  

Researchers also attempted to build adaptive poker agents 
by adjusting Nash-equilibrium strategies. Ganzfried and 
Sandholm (2011) proposed an efficient real-time algorithm 
that observed the opponent’s action frequencies and built an 
opponent model by combining information from an approx-
imated equilibrium strategy with the observations. Statisti-
cal exploitation module (Norris and Watson 2013), robust 
counter strategies (Johanson et al. 2008; Johanson and 
Bowling 2009; Ponsen et al. 2011), and safe exploitation 
techniques were proposed (Ganzfried and Sandholm 2015) 
to make adaptive agents less exploitable. While these tech-
niques improve adaptive agents' performance against high-

quality equilibrium-based opponents, they also limit adapta-
tion and are unable to fully exploit opponent strategies. 

Neural networks were introduced to model opponents by 
Davidson et al. (2000). The networks were used to assign 
each game state with a probability triple, predicting the ac-
tion of the opponent in Limit Texas Holdem. The prediction 
had an accuracy of over 80%. Lockett and Miikkulainen 
(2008) proposed a method to evolve neural networks to clas-
sify opponents in a continuous space. Poker agents were 
trained through neuroevolution both with and without the 
opponent models, and the players with the models conclu-
sively outperformed the players without them. 

However, most of the above methods were applied to and 
evaluated in Heads-Up Limit Holdem or simpler poker var-
iants. In particular, none of them has been demonstrated ex-
perimentally to be effective in building adaptive agents for 
HUNL, a far more challenging poker variant due to much 
bigger state space. 

In recent years, a type of recurrent neural network, Long 
Short Term Memory (LSTM) (Hochreiter and Schmidhuber 
1997) has achieved great successes in many challenging AI 
problems (Greff et al. 2015). Li and Miikkulainen (2017) 
proposed to build poker agents based on LSTM for HUNL. 
Such agents extracted action patterns from game state se-
quences and modeled the opponent implicitly. The agents 
exploited various weak strategies effectively, but did not 
achieve comparable performance in HUNL matches against 
cutting-edge Nash-equilibrium-based agents. 

This paper proposes to use LSTM neural networks and 
Pattern Recognition Trees to build poker agents that model 
the opponents explicitly. Poker agents built in this method 
were able to adapt to their opponents dynamically, even to 
those with stronger strategies than they have seen in train-
ing. In the experiments, these agents tied against Slumbot 
2017, the best equilibrium-based agent that was accessible 
as a testing opponent, in HUNL matches. In addition, they 
were far more effective in exploiting highly to moderately 
exploitable opponents than Slumbot 2017. 

Thus, this paper is an important step towards effective op-
ponent modeling in HUNL and points out a promising new 
direction for building high-performance adaptive computer 
agents in imperfect information games. 

3. Method 
This section introduces an evolutionary method for building 
adaptive poker agents that utilizes opponent models based 
on Pattern Recognition Trees and LSTM neural networks. 
Subsection 3.1 details the architecture of ASHE, including 
the Pattern Recognition Trees, the LSTM estimators, and the 
Decision Algorithm. Subsection 3.2 introduces the method 
for evolving the opponent models. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (a) Overall Architecture          (b) Pattern Recognition Tree      (c) LSTM Estimator 

Figure 1: ASHE Architecture. ASHE consists of two parts: a rule-based decision algorithm and an opponent model. The opponent model 
contains three components: Showdown Win Rate Estimator, Opponent Fold Rate Estimator, and Pattern Recognition Tree. The PRT and 
LSTM estimators allow ASHE to make decisions based on current game state and patterns learned from previous games.

3.1. ASHE Architecture 
ASHE is an adaptive poker agent designed for HUNL with 
a dynamic strategy based on opponent modeling. Figure 1 
(a) presents the overall architecture of ASHE.  
 The core of ASHE is the opponent model, which contains 
the Pattern Recognition Trees (PRTs) and two LSTM esti-
mators. The PRTs maintain of a set of statistics for each se-
quence of actions seen in games against an opponent, col-
lecting information on the opponent's strategy from every 
game. Both of the estimators receive input features extracted 
from the current game state and the PRTs. The Showdown 
Win Rate Estimator evaluates the probability of ASHE hold-
ing a hand better than the opponent’s. The Opponent Fold 
Rate Estimator estimates the probability of the opponent 
folding to a raise (bet).  
 These estimations are sent to the Decision Algorithm, 
which evaluates the expected utility for each possible action 
based on statistical estimation and selects the action with the 
highest expected utility. 
3.1.1. Pattern Recognition Tree 
The PRT collects data on action sequences seen in all games 
against an opponent and organizes the data to allow fast re-
trieval given any game state. Such data is used to extract 
input features for the LSTM estimators. Figure 1 (b) illus-
trates its structure.  
 The root of the tree represents an initial state of the game; 
it can be either preflop on button or preflop as the Big Blind, 
with no action taken by either player. Thus, in a typical 
HUNL match, two PRTs are created, each corresponding to 

one of the two positions (i.e. the Button or the Big Blind). 
Leaf nodes represent terminal states of the game. They can 
be either a showdown or a fold from a player. Non-leaf 
nodes represent decision points where either ASHE or its 
opponent must make the next move. For each non-leaf node, 
the path from the root to the node represents a sequence of 
actions from the two players. ASHE’s bets are restricted to 
0.5, 1.0, 1.5, 2.0 pot size, and all-in. The opponent’s bets are 
discretized into seven buckets: (0, 0.125), (0.125, 0.375), 
(0.375, 0.75), (0.75, 1.25), (1.25, 2.0), (2.0, 4.0), (> 4.0), 
also with respect to the size of the pot. 
 Each non-leaf node is associated with a set of statistics 
called node stats, including the frequency of the node being 
visited (f), the opponent's average hand strength in show-
downs after visiting the node (𝑠̅), and the number of show-
downs (csd) and the opponent's folds (cof) after reaching the 
node. These statistics outline the tendency of opponent ac-
tions at different decision points. For instance, if the oppo-
nent is over-cautious when facing consecutive raises at both 
the flop and the turn, the cof will be high for every node along 
that path, suggesting an opportunity for bluffing. 
 At the beginning of a match, two PRTs corresponding to 
each position (i.e. the button and the Big Blind) are initial-
ized with only a root node. Nodes are inserted to the trees 
when their corresponding decision points occur for the first 
time in the match. After each game, node stats for every 
node along the path of the game (from the root to the leaf) 
are updated based on the result of the game. As the match 
proceeds, the PRTs grow, and the node stats become in-
creasingly reliable, especially for decision points that are 
frequently visited. Note that because of action restriction  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Estimator Inputs. The first four input features are derived from node stats in the PRTs, which provides statistical information on the 
opponent's strategy given the same action sequence in the past. The rest of the features provide information on the current state of the game. 
Notations of node stats are the same as defined in the previous subsection. S and F refers to the SWRE and the OFRE, respectively. These 
features collectively not only encode the current game state but also reflect the history of previous games against the opponent. 

and bucketing, the trees grow slowly after a few dozens of 
games, and most nodes are visited repeatedly. 
 To control the size of the trees and ensure that most nodes 
are visited frequently enough to provide meaningful node 
stats, PRTs in the current version of ASHE do not distin-
guish decision points by community cards. However, infor-
mation regarding community cards are encoded in the input 
features of the estimators. 
3.1.2. LSTM Estimators 
The estimators provide essential information for the Deci-
sion Algorithm to evaluate the expected utility of each pos-
sible action. The Showdown Win Rate Estimator (SWRE) 
estimates the probability of ASHE’s hand beating its oppo-
nent’s if a showdown occurs. The Opponent Fold Rate Esti-
mator (OFRE) estimates the probability of the opponent 
folding its hand if ASHE bets or raises. Both the SWRE and 
the OFRE share the same LSTM-based neural network ar-
chitecture, illustrated by Figure 1 (c). 
 In the current version of ASHE, each LSTM module con-
tains 50 vanilla LSTM blocks as described by Greff et al. 
(2015). Each block contains ten cells. These LSTM blocks 
are organized into a single layer. The estimation network is 
a fully connected feed-forward neural network with one hid-
den layer. 
 All LSTM blocks are reset to their initial states at the be-
ginning of each hand. Given a decision point, a set of input 
features are derived for each estimator from the game state 
and the node stats of the corresponding node. If the node 
does not exist, a set of default inputs indicating an unknown 
state are used instead. Table 1 defines the input features. 

These input features are sent to the LSTM modules in the 
estimators, whose cell states and outputs after receiving the 
inputs are saved as the decision states. 
 To compute estimations for an action (e.g. the probability 
for the opponent folding after a pot-size raise), input features 
from the PRT node corresponding to that action are also ex-
tracted. The LSTM modules take these inputs and send their 
outputs to the estimation network, which produces the esti-
mation. After that, the LSTM modules are restored to the 
decision states to compute estimation for other actions. 
Thus, the estimators process and balance information from 
each decision point and compute estimations based on the 
states in the current game and node stats from the PRT. 
3.1.3. Decision Algorithm 
Figure 2 outlines the decision algorithm. When estimating 
the expected utility of an action, the decision algorithm 
makes two assumptions. 
 First, it assumes that the estimations from the LSTM es-
timators are the true values. Second, it assumes that if the 
opponent does not fold to a raise, it will call, and the game 
will go to a showdown with no more chips committed to the 
pot. Although neither of these assumptions always hold in 
reality, experimental results indicate that the utility estima-
tions based on the decision algorithm is an acceptable ap-
proximation. 
 In addition, a restriction is placed on ASHE’s actions: 
ASHE responds to a four-bet (when playing as the Big 
Blind) or a three-bet (when playing as the Button) with a 
fold, a call, or an all-in. This restriction simplifies utility es-
timation and reduces the size of the PRTs.  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Decision Algorithm. The decision algorithm estimates 
the expected utilities of each available action and selects the best 
move. The estimations are based on the outputs of the LSTM esti-
mators and two assumption as in 3.1.3.  

 In sum, the ASHE architecture uses the PRTs to collect 
statistical information on the opponent’s moves given dif-
ferent at decision points. The LSTM estimators consider 
such information and the game state at each decision point 
in the current hand to estimate ASHE’s winning probability 
in a showdown and the probability of the opponent folding 
to bets/raises. The decision algorithm uses these outputs to 
approximate the expected utility of available actions and se-
lects the best move accordingly. 

3.2. Evolving the LSTM Estimators 
The performance of ASHE depends on the accuracy of the 
LSTM estimators. Although it is clear what the LSTM esti-
mators need to do, how can they be trained to do so? The 
correct outputs for the estimators, e.g., the accurate estima-
tion of an opponent's folding probability given a game state 
and the history of previous games, are not known. Therefore, 
they cannot be trained through supervised methods. A major 
technical insight in this paper is that it is possible to evolve 
the LSTM estimators for their tasks through genetic algo-
rithms. This allows the method to be applied to problems 
with little or no labeled training data. 
 In the genetic algorithm, a population of agents are cre-
ated with randomly initialized LSTM estimators at first. 
They are evaluated based on their fitness, i.e. their average 
earnings against a variety of training opponents. These op-
ponents require different counter-strategies for effective ex-
ploitation. Thus, agents with adaptive behaviors that can ex-
ploit various strategies are rewarded by higher fitness. 
 The agents with the highest fitness survive and reproduce 
via mutation and crossover. The others are replaced by the 
offspring. Selection and reproduction are done iteratively, 

thus improving the overall fitness of the population. Note 
that the agents do not have to know what the accurate esti-
mations are or what actions are the best; it is sufficient to 
select agents that perform relatively well in the population. 
 Specifically, during evolution, agents are represented by 
theirs numeric genomes, which are constructed by concate-
nating all parameters in the estimators, i.e. the weights in the 
LSTM module, the initial states of all LSTM blocks, and the 
weights of the estimation network. To preserve advanta-
geous genotypes against occasional poor luck, Tiered Sur-
vival and Elite Reproduction is adopted. Survivors are di-
vided into two tiers based on their fitness. Agents in the top 
tier can reproduce and do not mutated. Agents of the second 
tier mutate but cannot reproduce. Thus, genotypes from 
more agents can be preserved without compromising the 
performance of the offspring (Li and Miikkulainen 2017). 
 Evolving agents with multiple modules can be inefficient, 
especially at an early stage. Advantageous genotypes of one 
module may be coupled with poor genotypes of another, 
causing low performance and loss of progress. Therefore, 
evolution is organized into a series of sessions, with each 
session dedicated to evolving one of the two estimators. 
When a new session begins, the champion of the previous 
session is duplicated to form the agent population. The 
weights in the estimator to be evolved are mutated, and the 
weights in the other estimator frozen. Thus, the genetic al-
gorithm is able to discover effective LSTM estimators effi-
ciently, even though there is no data for supervised training. 

4. Experimental Results 
In the experiments, agents were evolved for 500 genera-
tions, and the champion at that point were used to evaluate 
the proposed method. The population size was 50. Mutation 
followed Gaussian distribution. As evolution proceeded, 
mutation rate descended linearly from 0.25 to 0.1, and mu-
tation strength (variance) from 0.25 to 0.05. After each gen-
eration, agents with top 30% performance survived, and sur-
vivors whose performance was above the mean performance 
among all survivors were in the top tier (as defined by sub-
section 3.2). Note that these settings should be considered 
as a reference, and reasonably different settings should not 
affect overall performance noticeably. 
 In each generation, agents played two matches against 
every opponent. Both matches contained 1000 hands. Card 
decks in the first match were duplicated and played again in 
the second match. The players switched seats between the 
two matches, and the PRTs of the agents were reset before 
entering the second match. At the beginning of each hand, 
the chip stacks of the two players were reset to $20,000. The 
blinds were $50/$100. The format of the game was con-
sistent with HUNL matches in the Annual Computer Poker 
Competition (ACPC). 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Training and Testing Opponents. HM, CM, SL and CS are four agents with highly exploitable strategies that require different (and 
in some cases, opposite) counter-strategies. LA, LP, TP, and TA are less exploitable versions of HM, CM, SL, and CS, respectively. RG, HP, 
and SB were used only for testing. RG is highly exploitable, but its strategy is dynamic. HP is a strong agent based on common tactics and 
strategies adopted by professional players. Slumbot 2017 (SB; https://www.slumbot.com) was the best Nash-equilibrium-based agent that 
was publicly available at the time of the experiments. These agents form a pool of training and testing opponents with different weakness 
types and exploitability levels.

 Table 2 describes the agents used for evolving and testing 
ASHE. To investigate the influence of training opponents on 
ASHE’s performance, four instances of ASHE were evolved 
with different evolution settings. 
 The agent A1 was evolved by playing against a group of 
highly exploitable opponents with diversified strategies, i.e. 
HM, CM, SL and CS. The agent A2 was evolved by playing 
against less exploitable opponents with similarly diversified 
weaknesses, i.e. LA, LP, TP, and TA. The agent A3 was 
evolved against two pairs of opposite strategies (i.e maniac 
and passive) with different level of exploitation, HM, SL 
(relatively high exploitability), and LA, TP (relatively low 
exploitability). The agent A4 was evolved against HM, CM, 
SL and CS (the same as A1) for the first 200 generations, 
and LA, LP, TP, and TA (the same as A2) for the other 300 
generations. 
 Table 3 presents the test results. Every pair of agents in 
the table played at least 20,000 hands against each other. 
Another 20,000 hands were played if the margin was greater 
than 20% of the absolute value of the mean. Thus, approxi-
mately 1.5 million hands were played during evaluation. 
These hands were organized into 1000-hand matches, and 
ASHE's estimators were reset between consecutive matches. 
The rest of this subsection points out key discoveries and 
conclusions from these results. 
 First, overall, the best of the four ASHE instances is A4, 
followed by A2, A1, and A3 in decreasing order of their av-
erage performance.  

 Second, both A4 and the second best instance, A2, de-
feated HP by a significant margin and tied statistically with 
SB. These results demonstrate that ASHE, evolved by play-
ing against relatively weak opponents, can adapt to strong 
opponents that are not seen during training and achieve com-
petitive performance against top-ranking Nash equilibrium-
based agents. 
 Third, A4 outperformed SB 40% to 2300% when facing 
weaker opponents. The more exploitable the opponent was, 
the bigger the margin tended to be. Thus, the proposed 
method can build poker agents that are significantly more 
effective in exploiting weak opponents than top-ranking 
agents following equilibrium strategies. 
 Fourth, the performance of A3 was much worse compared 
to the other three instances when facing opponents whose 
strategies were fundamentally different from those seen dur-
ing evolution (e.g. CM and CS are fundamentally different 
from both HM and SL). Nevertheless, instances evolved by 
playing against a reasonably diversified set of strategies, e.g. 
A1, A2, and A4, could adapt to HP or SL, whose strategies 
were superior to any strategies seen during evolution. These 
results indicate that a reasonable level of diversity of oppo-
nent strategies during evolution is necessary for evolving 
strong adaptive agents. With such diversity, however, agents 
evolved in the proposed method can generalize remarkably 
well to opponents that are not seen during evolution.  
 Fifth, A2 and A4 demonstrated consistently better perfor-
mance than A1 when playing against opponents that had not  

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Evaluation Results. The first four rows show the performance of A1, A2, A3, and A4 against the eleven opponents in Table 2. The last 
row shows Slumbot's performance against the same opponents for comparison. The last column of the second part of the table contains the 
agents’ performance against Slumbot. Results are in blue if an agent played against the opponent during evolution. Performance is measured 
in milli-Big-Blind per hand (mBB/hand. The best agent, A4, ties with Slumbot and is far more effective in exploiting weaker opponents.

been seen during evolution, despite that their opponents dur-
ing evolution had similar types of weaknesses. Hence, the 
level of exploitability of opponent strategies during evolu-
tion is another factor that influences ASHE's performance. 
A group of moderately exploitable opponents with similarly 
diversified weaknesses tends to be more effective in evolv-
ing strong adaptive agents than a group of highly exploitable 
opponents. 
 Sixth, ASHE's performance against RG show that agents 
built through the proposed approach can model and exploit 
opponents with a changing strategy effectively. However, 
game log analysis indicated that ASHE did not switch its 
strategy as RG did after every 50 hands; rather, as more 
hands were played, ASHE reached a strategy that exploited 
RG based on the overall distribution of its moves across the 
highly exploitable strategies it might randomly choose. That 
strategy, while being close to static after a few hundreds of 
hands, was much more effective in exploiting RG compared 
to SB's approximated equilibrium strategy. 
 The above observations and findings show that the pro-
posed approach is effective in building high-quality adap-
tive agents for HUNL. They also provide some useful prin-
ciples for its application and improvement in the future. 

Discussion and Future Work 
The proposed method for opponent modeling is not based 
on equilibrium strategies; it allows free adaptation and po-
tentially more effective opponent exploitation. In addition, 
this method does not depend on any property of Nash Equi-
libria. Hence, the core idea of ASHE's architecture and the 
genetic algorithm to evolve it are applicable to a wider range 

of games. This work can be extended in four directions in 
the future. 
 First, ASHE’s performance can be improved by training 
against stronger opponents. Second, deep neural networks 
can be used to extract features from sequences of raw game 
states, thus reducing reliance on handcrafted features. Third, 
neural network structures can be optimized via evolution us-
ing NEAT (Stanley and Miikkulainen 2002). Fourth, the 
proposed method can be applied to build adaptive agents for 
other imperfect information games. 

Conclusion 
This paper introduces an evolutionary approach for oppo-
nent modeling and exploitation in HUNL based on Pattern 
Recognition Trees and LSTM Neural Networks. Using this 
method, a poker agent called ASHE is built. Experimental 
results show that (1) ASHE is effective in modeling and ex-
ploiting weak opponents, and (2) ASHE evolved by playing 
against highly to moderately exploitable opponents is capa-
ble of modeling top equilibrium-based agents, achieving 
competitive performance in matches against them. Thus, the 
paper presents a new method for building high-quality adap-
tive poker agents, and points out a promising direction for 
research in imperfect information games. 
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