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Abstract 

In many imperfect information games, the ability to exploit 
the opponent is crucial for achieving high performance. For 
instance, skilled poker players usually capitalize on various 
weaknesses in their opponents’ playing patterns and styles to 
maximize their earnings. Therefore, it is important to enable 
computer players in such games to identify flaws in opponent 
strategies and adapt their behaviors to exploit these flaws. 
This paper presents a genetic algorithm to evolve adaptive 
LSTM (Long Short Term Memory) poker players featuring 
effective opponent exploitation. Experimental results in 
heads-up no-limit Texas Hold’em demonstrate that adaptive 
LSTM players are able to obtain 40% to 1360% more earn-
ings than cutting-edge game theoretic poker players against 
opponents with various flawed strategies. In addition, exper-
imental results indicate that adaptive LSTM players evolved 
through playing against simple and weak rule-based oppo-
nents can achieve comparable performance against top game-
theoretic poker players. The approach introduced in this pa-
per is a promising start for building adaptive computer play-
ers for imperfect information games.  

1. Introduction   

In an imperfect information game, players often play against 
one or multiple opponents repeatedly, making it possible to 
identify and exploit flaws and weaknesses in the opponents’ 
playing patterns and strategies. Poker games such as Texas 
Hold’em are typical examples of such imperfect information 
games. Players in these games usually play against a group 
of opponents for tens or hundreds of hands, with the goal of 
maximizing total earnings from all hands played. When fac-
ing strong opponents, skilled poker players make patient and 
deliberate moves, seeking the best opportunity for a profita-
ble play. When a strong opponent makes a mistake, or a 
weak opponent with flawed strategies chips in, skilled play-
ers never hesitate to exploit the opportunity for a large gain. 
Based on the mistakes or flaws of their opponents, skilled 
poker players adjust their own strategy and make calculated 
moves to maximize winnings. In fact, the ability to punish 
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mistakes and exploit weaknesses is one of the factors that 
contribute most to high earnings of a poker player. In this 
sense, the skill of a poker player, be it human or computer, 
should be evaluated not only by their performance against 
the strongest players, but also by their ability to exploit op-
ponents with flaws and weaknesses. 

In order to build computer poker players with effective 
opponent exploitation, two challenges must be addressed.  

First, the computer players must be able to identify flaws 
and weaknesses of their opponents through limited observa-
tion. Typical no-limit Texas Hold’em tournaments (final ta-
ble) last only for a few hundred hands. Furthermore, oppo-
nents may change their strategies, thus making the window 
to spot and exploit flaws and weaknesses even shorter. 

Second, the computer players must be able to adapt their 
own strategy in real time based on observations of their op-
ponents. Since flaws and weaknesses in various playing pat-
terns and strategies usually require different and sometimes 
opposite counter-strategies for maximum exploitation, ad-
aptation must be quick, effective, and versatile. 

Classic equilibrium-based approaches do not solve either 
of the two challenges. Researchers have been exploring al-
ternative approaches, including neural networks, mixed-
strategy model, etc. (Lockett and Miikkulainen 2008, 
Ganzfried and Sandholm 2011). Applications of such oppo-
nent modeling techniques in multiple imperfect information 
games of different complexity yielded promising results 
(see Section 2 for details).  

The goal of this paper is to provide an alternative para-
digm for building computer agents with adaptive behaviors 
and effective opponent exploitation for imperfect infor-
mation games. The paper introduces a genetic algorithm to 
evolve computer poker players controlled by Long-Short 
Term-Memory-based multiple-module neural networks to 
effectively exploit a variety of common flaws and weak-
nesses in poker strategy. Compared with top equilibrium-
based poker players, adaptive LSTM poker players demon-
strate much better performance against exploitable weak op-

 



ponents. In addition, they can be adjusted to achieve com-
parable performance against state-of-the-art computer poker 
players in no-limit heads-up Texas Hold’em.  

The remaining sections of the paper are organized as fol-
lows. Section 2 outlines related work. Section 3 details the 
architecture of adaptive LSTM poker players and the genetic 
algorithm used to evolve them. Section 4 presents experi-
mental results in no-limit heads-up Texas Hold’em against 
various exploitable players as well as a cutting edge game 
theoretic player, Slumbot (Jackson 2016). Section 5 points 
out directions for future work. 

2. Related Work 

There has been substantial progress in research on imperfect 
information games in recent years. As a typical example of 
such games, Texas Hold’em has been heavily studied by re-
searchers. Computer players in many variants of the game 
are becoming increasingly powerful and capable of emulat-
ing high-ranking professional human players. 

 As a classic solution concept in game theory, Nash Equi-
librium has been applied to multiple variants of Texas 
Hold’em with remarkable success. Counterfactual Regret 
Minimization (CFR) make it possible to find equilibrium-
based solutions to large imperfect information games 
(Zinkevich et al. 2008). Heads-up limit Texas Hold’em has 
been weakly solved (Bowling et al. 2015). Many powerful 
equilibrium-based no-limit Hold’em players have been built 
using various techniques such as discretized betting models 
and potential-aware automated abstraction (Gilpin, Sand-
holm, and Sorensen 2008), Public Chance Sampling (Johan-
son et al. 2012, Jackson 2013), and distributed abstraction 
(Brown, Ganzfried, and Sandholm 2015). 

While poker players acting according to Nash equilibri-
ums have achieved state-of-the-art performances, they suf-
fer from two deficiencies. First, in many complex imperfect 
information games, multiple Nash equilibria exist. If the op-
ponents are not following the same equilibrium adopted by 
such players, performance cannot be guaranteed (Ganzfried 
2016). Second, these players are unable to adapt behaviors 
based on opponent strategy. Therefore, they are unable to 
fully exploit the flaws and weaknesses of their opponents. 

For two-player zero-sum games such as heads-up Texas 
Hold’em, there exist polynomial-time algorithms for com-
puting an equilibrium. Also, there exists a game value that 
is guaranteed in expectation in the worst case by all equilib-
rium strategies regardless of opponent strategy (Koller, Me-
giddo, and von Stengel 1994). Thus, the first deficiency has 
relatively smaller influence in heads-up poker games. Nev-
ertheless, the second deficiency limits performance of such 
equilibrium-based poker players in all variants of the game, 
since adapting strategies to exploit different opponent weak-
nesses is desirable in all formats of poker games, regardless 
of the number of opponents. 

To address this problem, opponent exploitation mecha-
nisms must be introduced. Researchers have proposed vari-
ous methods in identifying and exploiting flaws and weak-

nesses in opponent strategies. Such methods include oppo-
nent clustering (Teofilo and Reis 2011), and opponent mod-
eling by mixed strategy (Ganzfried and Sandholm 2011), 
Bayesian model (Finnegan et al. 2005, Ganzfried 2016), and 
neural networks (Lockett and Miikkulainen 2008). 

In addition, researchers have been exploring non-equilib-
rium based approaches for Texas Hold’em such as convolu-
tional neural networks (Yakovenko et al. 2016). Evolution-
ary methods have been employed to optimize topologies and 
weights of neural networks due to lack of labeled training 
data and large state space (Nicolai and Hilderman 2010).  

In contrast to equilibrium-based players, players con-
trolled by neural networks are not restricted by equilibrium 
strategies and can be easily integrated with various opponent 
models to generate adaptive strategies that exploit oppo-
nents effectively. Furthermore, complex strategies and op-
ponent models can be compressed into network connections 
and weights, making it possible to represent complicated 
game strategies efficiently. 

In the past decade, a special class of recurrent neural net-
work, Long Short Term Memory (a.k.a. LSTM, Hocreiter 
and Schmidhuber 1997) networks have emerged as an effec-
tive and scalable model for a number of challenging prob-
lems related to sequential patterns (Greff et al. 2015). Since 
poker strategies and opponent models are essentially based 
on sequences of moves from different players, LSTM is di-
rectly applicable to extracting useful features and learning 
adaptive behaviors in poker games. Moreover, genetic algo-
rithms can be adopted to optimize LSTM cell structures and 
weights (Bayer et al. 2009, Rawal and Miikkulainen 2016). 
Therefore, evolving adaptive LSTM poker players to max-
imize opponent exploitation in Texas Hold’em is a practical 
and promising approach. 

3. Evolving Adaptive LSTM Poker Player 

This section introduces an evolutionary method for building 
adaptive heads-up no-limit Texas Hold’em players that ex-
ploit their opponents effectively. The first subsection pre-
sents the architecture of the adaptive LSTM players. The 
second subsection details the method in which such players 
are evolved. While the approach is originally designed for 
heads-up no-limit Texas Hold’em, similar approaches 
should be applicable to building artificial agents in other im-
perfect information games where adaptive behaviors and 
opponent exploitation are desirable. 

3.1. Architecture 

This subsection introduces the architecture of the adaptive 
LSTM poker players in a bottom-up manner, starting from 
one of the basic functional units in the architecture, i.e. Va-
nilla LSTM blocks (Graves and Schmidhuber 2005). Figure 
1 illustrates the structure of a Vanilla LSTM block. 

 

 



Figure 1. Vanilla LSTM Block. A block consists of three gates (in-

put, forget, and output), a block input, a cell, an output activation 

function, and peephole connections. The outputs are sent back to 

the block input and all gates via recurrent connections.  

 The vector formulas for a Vanilla LSTM block forward 
pass (Greff and Srivastava et al, 2015) are: 

where xt is the input vector at time t, the c are the cell vec-
tors, the y are the output vectors. Note that the dimension of 
the cell vectors is equal to that of the output vectors. For 
convenience of discussion, it is referred to as the cell size in 
the rest of this paper. The W are weight matrices for the in-
puts, the R are recurrent weight matrices for the outputs, the 
p are peephole weight vectors, and the b are bias vectors. 
The asterisks denote point-wise multiplication of two vec-
tors, and 𝜎, g, and h are point-wise activation functions. In 
this application, all Vanilla LSTM blocks use hyperbolic 
tangent as both input and output activation function. 
 Vanilla LSTM blocks are organized into two modules: the 
game module and the opponent module. In the experiments, 
both modules contain a single layer of blocks. However, the 
structure of both modules can be adjusted for applications 
of different complexity. 
 The game module consists of ten blocks, with a cell size 
of five. The function of the game module is to extract useful 
features in the sequence of moves from both players playing 
their hand in a single game. Therefore, the blocks in the 
game module are reset to their initial state for each hand in 
a heads-up poker match. 

 The opponent module consists a single block of size ten. 
The opponent module is introduced to model each opponent 
by extracting useful features from the entire history of 
games played with that opponent. Hence, the blocks in the 
opponent module are reset for each new opponent. 
 Blocks in both modules receive inputs in the same format. 
These inputs are a compressed representation of the state of 
a game, including the stage of the game (i.e. preflop, flop, 
turn, or river), the winning probability given the board, the 
amount of chips committed by the opponent, the amount of 
chips committed by the player, and the pot odds.  
 The stage of the game is represented by four bits, with the 
bit corresponding to the current stage set to one and others 
zero. The winning probability is estimated assuming the op-
ponent holding a random possible hand. The chip amounts 
are cumulative over each round of betting and normalized 
by the stack size at the beginning of the game. The pot odds 
op are computed according to 

𝑜p =
𝑥

𝑥+𝑠p
 , 

where x is the amount to call and sp is the size of the pot. Pot 
odds are normalized into the range [0, 1). Thus, all elements 
of the input vector fall into the range [0, 1]. 
 The outputs of the blocks in the game module and the op-
ponent module are concatenated as an input vector to the 
decision network, which is a fully-connected feed-forward 
neural network with one hidden layer. The decision network 
uses hyperbolic tangent activation function and has a single 
real valued output o, which is combined with the following 
algorithm to decide the next move of the player.  

Algorithm 1. The Decision Algorithm. ss is the stack size at the start 

of the game, x is the amount to call, BB is the big blind, rmin is the 

minimum raise, and y can be considered as the amount of extra 

chips the player is willing to commit. 

 If a call is decided but current stack is too short to call, 
the player will all-in instead. In the case of a raise, k ∙ BB is 
the amount of extra chips committed to the pot, and k ∙ BB - 
x is technically the raise amount. The actual amount of chips 
committed in a raise is converted to integer times of the big 
blind in order to merge trivially different moves. Similar to 
the case of a call, if current stack is too short for a decided 
raise, the player will go all-in. 
 Figure 2 presents the entire architecture of an adaptive 
LSTM poker player. With the support of the game module 
and the opponent module, the decision network is able to 
choose actions based on both moves in the current game and 
useful features extracted from previous games against the 
same opponent. Thus, players with the specified architecture 



have the potential to adapt their behaviors for different op-
ponents to effectively exploit the flaws and weaknesses in 
opponent strategy. 

Figure 2. The Architecture of an Adaptive LSTM Player. The ar-

chitecture consists of a decision algorithm and three neural net-

work modules: the opponent module, the game module, and the de-

cision network. The opponent module and game module contain 

one or multiple Vanilla LSTM blocks. 

3.2. Evolution 

Genetic algorithms can be specified in three parts: represen-
tation, selection, and reproduction.  
 Since the Vanilla LSTM blocks in the opponent module 
and the game module have fixed structure, and the structure 
of the decision network is invariant, a genetic representation 
of an adaptive LSTM player can be constructed by serializ-
ing and concatenating weight matrices, weight vectors, bias 
vectors, etc. of all components. 
  In order to encourage adaptation, the selection process 
must allow players to play against opponents with a variety 
of flawed strategies. These strategies should require differ-
ent and preferably opposite counter-strategies for maximum 
exploitation. Fitness functions should evaluate a player 
based on its performance against all opponents. Potential 
bias must be taken into consideration to prevent experts spe-
cialized in exploiting certain types of opponents from con-
stantly dominating the population. For instance, in Texas 
Hold’em, exploiting certain flawed strategies can easily 
generate far more earnings than exploiting other strategies. 
Hence, a fitness function that evaluates players by adding up 
their earnings against each opponent may undesirably favor 
expert players rather than adaptive players (see section 4 for 
more details). 

 Stochastic property of imperfect information games pre-
sents additional challenge to the selection process. Skilled 
players may suffer losses against weak opponents in short 
game sessions. On the other hand, prolonged game sessions 
may render selection painfully slow. Similarly, a small sur-
vival rate may eliminate many “unlucky” good players, but 
a large survival rate may preserve poor genotypes and re-
duce performance of future generations. Furthermore, ge-
nomes of adaptive LSTM players tend to be sizable, making 
it relatively difficult to discover and propagate advanta-
geous genotypes via mutation and crossover. 
 To alleviate these problems, Tiered Survival and Elite Re-
production (TSER) is introduced. Survivors of a generation 
are divided into two tiers based on their fitness. Members of 
the top tier, i.e. the elites, are allowed to participate in repro-
duction. They are immune to mutation as long as they re-
main in the top tier. In contrast, members of the second tier 
are not allowed to reproduce, neither are they immune to 
mutation. However, survival provides them opportunity to 
preserve advantageous genotypes and improve performance 
through mutation.  
 In each generation, all players are evaluated in the same 
way regardless of their status. Thus, second-tier survivors 
from previous generations and newborn players in the latest 
generation can compete for positions in the top tier. After 
survivors are selected and classified, crossover takes place 
between randomly selected elites to construct children ge-
nomes. Following crossover, children and second-tier survi-
vor genomes are mutated. 
 TSER provides three advantages. First, advantageous 
genotypes are not lost even if they perform poorly occasion-
ally, because they can survive in the second tier. Second, the 
survival rate dilemma no longer exists. A high survival rate 
coupled with a small top tier can keep poor genotypes from 
being propagated while reducing accidental losses of desir-
able genotypes. Third, because advantageous genotypes 
among elites are immune to mutation, they are preserved for 
multiple generations, thereby providing them more time to 
be propagated among entire population. 
 To balance exploration of genome space and preservation 
of advantageous genotype, descending mutation rate and/or 
strength can be introduced. High mutation rate and strength 
in early stage of evolution allows more effective exploration 
of the genome space. As evolution proceeds, more desirable 
genotypes are discovered, making less aggressive mutation 
preferable.     
 While the evolutionary method outlined in this section is 
not limited to specific imperfect information games, exper-
iments in Section 4 provide examples for its application. 

4. Experimental Results 

To evaluate the effectiveness of the method proposed in the 
previous section, experiments on evolving adaptive LSTM 
players for heads-up no-limit Hold’em are conducted. Sub-
section 4.1 provides details on experimental setup, including 
exploitable opponents, fitness evaluation, and parameter 



settings. Subsection 4.2 presents and analyzes the perfor-
mance of adaptive LSTM players in exploiting flawed op-
ponents. Subsection 4.3 discusses the performance of adap-
tive LSTM players against Slumbot 2016, a state-of-the-art 
equilibrium-based player (available at www.slumbot.com). 

4.1. Experimental Setup 

As is stated in subsection 3.2, selection and fitness evalua-
tion play a key role in evolving adaptive LSTM players to 
exploit opponents effectively. To encourage adaptation, 
players need to be evaluated by their performance against 
multiple opponents with different strategies. Fitness func-
tion need to reward good performance against all opponents. 
Parameter settings need to create a balance between genome 
space exploration and genotype preservation. 

4.1.1. Opponents 
Four rule-based players are built as opponents: the Scared 
Limper, the Calling Machine, the Hothead Maniac, and the 
Candid Statistician. Their respective strategies are outlined 
in algorithm 2 - 5. The variable p is the winning probability 
introduced in subsection 3.1. 

Algorithm 2. The Scared Limper. “The ultra-conservative”. 

  The Scared Limper always calls the big blind when being the 

small blind and folds to almost any raise at any stage of the game 

unless holding top hands (i.e. winning probability close to one). 

Counter-strategy against the Scared Limper is simple: raise any 

hand regardless of hand strength; if called or re-raised, fold unless 

holding the best hand. 

Algorithm 3. The Calling Machine. “Call or check only”. 

 The Calling Machine stays in the game for a showdown 
regardless of hand strength. To effectively exploit its weak-
ness, players must refrain from bluffing and raise aggres-
sively when holding strong hands. 

Algorithm 4. The Hothead Maniac. “Blindly raise”. 

 The Hothead Maniac is addicted to bluffing. Similar to 
the Calling Machine, it is immune to bluffs. The counter-
strategy must take pot size control into consideration. Fold-
ing becomes necessary when holding weak hands. 

Algorithm 5. The Candid Statistician. “Bet honestly”. 

 The Candid Statistician’s moves always reflect its hand 
strength. Bluffing can be effective when the Candid Statis-
tician holds a weak hand. In addition, the moves from the 
Candid Statistician can be viewed as an accurate measure of 
its hand strength, making it much easier for its opponent to 
take correct actions. 

4.1.2. Evaluation and Selection 
In each generation, every LSTM player plays against all four 
opponents. Two game sessions are played with each oppo-
nent. Both sessions contain 500 hands. Card decks in the 
first session are duplicated and played again in the second 
session. The players switch seats between the two sessions, 
and the memory of the LSTM player is cleared before enter-
ing the second session. At the beginning of each game, the 
chip stacks of the two participants are reset to $20,000. The 
big blind of the game is $100, and no ante is required. Cu-
mulative earning (i.e. the total earning out of 1000 hands in 
two sessions) against every opponent is recorded for all 
LSTM players. 
 To encourage adaptation over specialization, fitness is 
evaluated based on Average Normalized Earnings (ANE). 
In the formulas below, eij is the cumulative earning of player 
i against opponent j, m is the number of opponents, and nj is 
the normalization factor for opponent j. When the maximum 
cumulative earning against an opponent is less than one big 
blind (BB), n is set to BB to avoid normalization errors. 

𝑓(𝑖) = 𝐴𝑁𝐸𝑖 =
1

𝑚
∑

𝑒𝑖𝑗

𝑛𝑗

𝑚
𝑗=1 , 

𝑛𝑗 = max (BB, max𝑖(𝑒𝑖𝑗)), 

 The maximum fitness of a player is 1.0, which means the 
player breaks the record of cumulative earnings against 
every opponent. Note that the cumulative earnings against a 
single opponent, regardless of its amount, contributes no 
more than 1/m to the ANE. Thus, normalization makes it 
more difficult for players specialized in exploiting certain 
opponent(s) to stay in the top survivor tier. 
 In the experiments presented by this section, the top tier 
size is not fixed. Instead, survivors of each generation are 
ranked according to their ANE, and the survivors whose 
ANE is above the average of all survivors ascend to the top 
tier. If the top tier contains only a single player, the second 
best player is added to the top tier for crossover. This mech-
anism allows players with genetic breakthrough to propa-
gate advantageous genotypes quickly. 

4.1.3. Parameter Settings 
Table 1 presents the value of key parameters in the algo-
rithm. Mutation rate refers to the probability for a gene (i.e. 
an element in the genome vector) to mutate. Mutation 
amount follows Gaussian distribution with zero mean, and 
mutation strength is the standard deviation of the distribu-
tion. Mutation rate and strength descend linearly from the 
initial value to the final value as evolution proceeds. Cross-
over is done by copying elements with odd and even index 
from the genome vectors of two parents, respectively. 

 



Parameter Value 

Number of Generation 250 

Population Size 50 

Survival Rate 0.30 

Mutation Rate (initial/final) 0.25/0.05 

Mutation Strength (initial/final) 0.50/0.10  

Table 1. Parameter Settings 

4.2. Exploitation and Adaptation 

This subsection aims at answering three questions:  

 How effective are adaptive players in exploiting 
flaws of different opponent strategies? 

 Can the evolutionary method in Section 3 evolve 
adaptive players with consistent performance? 

 What are the specific adaptations that allow the 
adaptive players to exploit different opponents? 

 To answer these questions, the experiment introduced in 
the previous subsection is conducted 21 times. The cham-
pion in the last generation of each run is selected to play 500 
games with each rule-based player. In addition, every rule-
based player plays against one of the cutting-edge game-the-
oretic players, Slumbot, for 500 games. All games are in the 
same format as specified in the previous subsection. Table 
2 compares the average performance of the champions with 
the performance of Slumbot. Performances are measured in 
mBB/hand, i.e. 1/1000 Big Blind per hand.  
 Depending on the opponent strategy, the average perfor-
mance of the champions is 42% to 1362% better than the 
performance of Slumbot, making adaptive LSTM player a 
clear winner in the competition of opponent exploitation. 

Opponent Adaptive 

LSTM 

Slumbot 

Scared Limper 998.6 ± 2.619 702.0 ± 59.10 

Calling Machine 40368 ± 1989 2761 ± 354.6 

Hothead Maniac 36158 ± 1488 4988.0 ± 881.0 

Candid Statistician 9800 ± 1647 4512.5 ± 471.5 

Table 2. Opponent Exploitation (mBB/hand, confidence = 0.95). 

Adaptive LSTM players perform much better than Slumbot in ex-

ploiting different flawed opponent strategies.  

 Figure 3 shows boxplots of average winning per hand of 
the twenty-one champions against each opponent. Samples 
outside 1.5 IQR (Inter-quartile Range) are marked as “+”. 
The champions from different runs demonstrate consistent 
performance, and the evolutionary method introduced in 
Section 3 is a reliable approach in evolving adaptive LSTM 
players with effective opponent exploitation. 
 The game logs of the champion with the highest fitness 
among all runs are analyzed to understand how adaptive 
LSTM players exploit each opponent. Table 3 shows some 
related statistics on the moves made by the champion. 
 

Figure 3. Champion Performance against Rule-based Players. 

Last-generation champions evolved in 21 runs demonstrate con-

sistent performance against rule-based opponents. 

 Action frequencies are the probability of certain action 
being taken when they are available. Raise is available as 
long as a player has sufficient chips for the minimum raise. 
Fold is available only after opponent raises. The strategies 
of the Calling Machine and the Scared Limper make certain 
statistics unavailable (marked as “--”). The statistics in Ta-
ble 3 as well as the game logs demonstrate many interesting 
adaptations for effective opponent exploitation. 

Stage Attribute CS HM CM SL 

Preflop 
Avg. Raise (BB) 2.59 3.59 3.80 2.07 

Raise Frequency 52.2% 35.5% 49.5% 99.4% 

Flop 
Avg. Raise (BB) 19.59 30.39 13.46 

-- 
Raise Frequency 30.6% 22.7% 48.4% 

Turn 
Avg. Raise (BB) 63.10 63.87 66.54 

-- 
Raise Frequency 26.8% 11.8% 34.8% 

River 
Avg. Raise (BB) 72.46 59.69 79.01 

-- 
Raise Frequency 10.3% 11.5% 14.0% 

Game 
Fold Frequency 24.9% 4.9% 

-- -- 
Opponent Raise 953 1938 

Table 3. Champion Move Statistics against Different Opponents 

(CS = Candid Statistician, HM = Hothead Maniac, CM = Calling 

Machine and SL = Scared Limper, Avg. Raises are measured in 

Big Blinds, i.e. BB, and BB = 100) 

 First, the fold frequency of the champion when playing 
against the Candid Statistician is four times higher than the 
fold frequency against the Hothead Maniac. The champion 
adapts to the fact that the Candid Statistician’s raises indi-
cate strong hands, while the Hothead Maniac is inclined to 
bluff. 
 Second, to exploit the strategy of the Scared Limper, the 
champion increases preflop raise frequency to nearly 100%, 
forcing the extremely-conservative opponent to fold almost 
every hand 
  
 



 Third, when playing against the Hothead Maniac, the 
champion’s raise frequency is much lower in all stages of 
the game. However, the average raises from the champion 
at the turn and the river are both close to 60 BBs. Note that 
a raise over 40 BBs ($4,000) generally leads to an all-in due 
to the Hothead Maniac’s strategy and the size of the stack 
($20,000). Thus, the champion exploits Hothead Maniac’s 
strategy by folding weak hands, calling with fair hands, and 
inducing all-in with strong hands. 
 Fourth, the champion’s strategy against the Calling Ma-
chine features much higher raise frequency compared to its 
strategy against the Hothead Maniac. Game logs indicate 
that the champion is not bluffing. Rather, it simply recog-
nizes the fact that the Calling Machine’s moves are inde-
pendent from the strength of its hands. Therefore, if the 
champion’s hand is better than the average, it raises. In ad-
dition, the amount of a raise is strongly correlated with hand 
strength, which is different from the strategy against the 
Candid Statistician where the champion plays strong hands 
less aggressively and bluffs when the opponent appears pas-
sive. 
 Such adaptations enable the LSTM players to make more 
profitable moves against different players, thus exploiting 
the weakness of opponent strategy effectively.   

4.3. Slumbot Challenge 

The adaptive players are evolved through playing against 
rule-based players with only simple and weak strategies. 
Generally, genetic algorithms tend to achieve no fitness be-
yond the scope of evolution. Nevertheless, adaptive players 
have the potential to compete against previously unseen op-
ponents through adaptation. How well can they generalize 
against new opponents with much stronger strategies?  
 To answer this question, 500 games were played between 
the champions from each run (as introduced in the previous 
subsection) and Slumbot. The adaptive players lose to Slum-
bot by an average of 426 mBB per hand. 

Player Performance 

Adaptive LSTM - 426.0 ± 44.2 

Adaptive LSTM, Adjusted - 115.0 ± 11.1 

Table 4. Performance against Slumbot (mBB/hand). Adaptive 

players evolved through playing against weak rule-based players 

can adapt to Slumbot and achieve comparable performance. 

 Game log shows that the adaptive players adopt an ag-
gressive strategy that appears to be a mixture of the strate-
gies against the rule-based players, and are able to bluff 
Slumbot effectively when holding relatively weak hands. 
However, Slumbot performs much better when holding 
strong hands. In particular, Slumbot uses value bets (i.e. 
small to mid-sized bets aimed at inducing a call or re-raise) 
effectively. In contrast, the adaptive players tend to raise ra-
ther aggressively with a strong hand, which usually reveals 
true hand strength and leads to a fold in response.  
 This problem may be caused by the fact that the adaptive 
players have rarely seen value bets from the rule-based op-
ponents. Neither is value bet necessary for exploiting them. 

Two out of the four rule-based players never fold to any 
raise. Furthermore, the Candid Statistician can be quite reck-
less in calling or raising when the pot is small. 
 To alleviate this problem, two adjustments are made to 
the decision algorithm: (1) raise amount was restricted to be 
integer times of a half of the pot size, up to twice the pot size 
and all-in, and (2) if the desired raise amount is smaller than 
a fourth of the pot size, the player was made to call or check 
instead of raise. These rule-based adjustments limit raise 
amount to five options, making each option representing a 
much wider range of hands, which helps conceal true hand 
strength. 
 After the adjustments, the adaptive players achieve con-
siderably better performance, losing approximately 1/10 of 
a big blind per hand against Slumbot. The performances in 
Table 4 demonstrate that adaptive LSTM players evolved 
via playing against weak opponents can adapt to new and 
strong opponents. 

5. Discussion and Future Work 

Experimental results in this paper demonstrate that the ar-
chitecture outlined in Section 3 is effective in integrating 
opponent modeling with decision making. Nevertheless, the 
architecture is manually designed in a trial-and-error man-
ner. The process is inefficient and unlikely to find optimal 
solutions. Therefore, an interesting direction for future work 
is to search for more effective architectures. One possible 
approach would be to evolve such architectures via genetic 
algorithms capable of optimizing multi-module neural net-
work systems (Li and Miikkulainen 2014). 
 Another factor that strongly influences the performance 
is feature extraction. The input vector in Section 3 cannot 
reflect the texture of the board such as pairs and draws. On 
the other hand, more features result in larger models, mak-
ing it more difficult to discover advantageous genotypes 
through evolution. Hence, a promising direction for future 
work is to optimize the feature set for efficient and accurate 
representation of the state of the game. As an example, Con-
volutional Neural Network (CNN) can be used to extract 
features from basic representation (Yakovenko et al. 2016). 
 In addition, experimental results in Subsection 4.3 sug-
gest that adaptive players evolved through playing against 
weak opponents are able to compete against much stronger 
opponents. A promising direction for future work is to uti-
lize strong opponents during evolution and evolve adaptive 
players that are able to identify and exploit flaws in more 
sophisticated opponent strategies. This way, adaptation 
would be based on a much stronger foundation, and adaptive 
players might be able to defeat Slumbot and other state-of-
the-art game-theoretic players. 
 Since neural networks are able to compress and represent 
large policies, the approach introduced in this paper can be 
applied to imperfect information games with much larger 
state space such as multi-player no-limit Texas Hold’em. 
Further, the method may also be helpful in complicated real 
world applications where adaptation to partially observable 
environment is in need. 



Conclusion 

This paper introduces an LSTM-based multi-module neural 
network architecture that integrates opponent modeling with 
decision making for building adaptive players in imperfect 
information games. It provides a genetic algorithm, i.e. 
TSER, to evolve adaptive players with such architecture for 
effective opponent exploitation. Experimental results in 
heads-up no-limit Hold’em show that the proposed ap-
proach is effective and reliable in evolving computer players 
that exploit the weaknesses of opponent strategies through 
adaptation. In addition, computer players evolved by play-
ing against simple and weak opponents can adapt its behav-
iors to compete against much stronger opponents and 
achieve comparable performances. Therefore, the approach 
introduced by this paper is a promising start for building 
adaptive computer players for large-scale imperfect infor-
mation games. 
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