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Abstract
In developing brains, axonal projections follow chemical gradients
shaped by local interactions. This paper asks whether such a pro-
cess can be inferred from its outcome: For instance, given observed
mouse brain connectivity, can one recover the developmental pro-
gram that produced it? If such developmental programs can be
recovered, they not only explain how biological connectivity arises,
but also offer a biologically grounded search space for artificial
intelligence, in which architectures emerge through the evolution
of genetic encodings that produce plausible wiring diagrams. A
framework is proposed that uses the biological connectome itself
as a beacon to guide this search, referred to as the Connectome-
Generating, AI-Generating Algorithm (CONGA). Implemented as
neural cellular automata (NCA), a model was trained to reproduce
axon-tracing data in the mouse connectome, and its internal repre-
sentations were compared to gene expression patterns measured in
the same spatial coordinates. The result demonstrates how the brain
of an intelligent organism may self-assemble through an indirect
encoding of connectivity. The model outperformed a static linear
baseline, but onlywhen constrained in size, suggesting that compact
developmental programs better align with biological mechanisms.

CCS Concepts
• Applied computing→ Systems biology; • Computing method-
ologies → Randomized search; Multi-agent systems; Unsupervised
learning.
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1 Introduction
This work investigates whether NCA can serve as an explanatory
developmental model for real biological data, specifically the wiring
architecture of the mouse brain. These models provide a power-
ful framework for simulating systems in which structure emerges
through localized, iterative processes. Originally applied to syn-
thetic pattern formation tasks such as emoji regeneration, NCA
were simultaneously proposed as models of morphogenesis [26].
Building on that proposal, this work applies them to the domain of
real developmental data. To produce the connectivity data, the NCA
is extended with a dot-product decoder to convert its voxel-level
state vectors into a connectivity estimate. This decodingmechanism
reflects homophilic wiring rules, where connectivity is determined
by the similarity between genetic expression signatures at source
and target sites [2].

The central question of this work is whether an NCA, when
trained to reproduce the voxel-level connectivity of themouse brain,
also captures features of the biological developmental process that
gives rise to that connectivity. The NCA’s internal state variables,
treated as a candidate mechanism for generating connectivity, are
compared to aligned in situ hybridization (ISH) gene expression
data using a gene score metric that quantifies how much of the
transcriptomic variation is explained by the learned representations.
High scores indicate that the model has not merely fit the data, but
has inferred a biologically meaningful generative process.

To benchmark the developmental model, it is compared to a
static alternative that directly learns latent state variables to fit the
observed connectivity. Unlike the developmental model, which con-
structs state through a sequential local process, the static model op-
timizes each latent vector independently, without regard for spatial
structure. As a result, it serves as a baseline for evaluating whether
spatially grounded dynamics provide additional explanatory power.
The developmental model yields higher gene-expression predictiv-
ity, indicating a closer alignment with the biological processes that
shape brain organization.

Having established that developmental models capture a biolog-
ically grounded link between genetics and phylogeny, this work
proposes that the same link can support the evolution of intelligent
architectures by enabling direct comparison between model connec-
tivity and biological data. This provides a way to validate whether
evolved structures reflect principles of biological intelligence. The
idea is formalized in the Connectome-Generating, AI-Generating
Algorithm (CONGA) framework, which evolves AI models in an
emergent task environment and uses biological connectomic data
as a reference point for evaluating candidate architectures derived
from that process. Because models like NCA produce spatially struc-
tured connectivity shaped by developmental rules, their outputs
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can be meaningfully compared to biological connectomes. When a
model solves a task while also exhibiting strong correspondence
to brain connectivity, it suggests convergence on principles that
underlie biological intelligence.

This paper proceeds in two parts. The first presents a devel-
opmental modeling approach to brain connectivity and evaluates
its correspondence with genetic expression. The second proposes
CONGA as a framework for using developmental models and bio-
logical data to guide the evolution of artificial neural architectures.
Together, these contributions demonstrate how developmental and
evolutionary principles can be integrated to inform the design of
brain-like AI systems.

2 Related Work
This work sits at the intersection of developmental biology and
neuroevolution. In developmental biology, computational meth-
ods have been used to explain neural wiring from transcriptional
data, often via supervised models that predict connectivity based
on gene expression, revealing key genes involved in brain organi-
zation. Neuroevolution approaches, meanwhile, explore indirect
encodings that generate structure through development-inspired
representations, enabling more efficient exploration of neural archi-
tecture design spaces. This section reviews related methods from
both fields to situate the NCA as both a model of brain connectivity
and an implementation of indirect encoding.

2.1 Linking Gene Expression to Connectivity
Computational models have helped reveal how developmental pro-
cesses give rise to brain wiring architecture. These studies lever-
aged spatially aligned datasets (at the neuron or region level) that
combine transcriptomic and connectomic data, enabling models to
explore how gene expression shapes circuit formation. This subsec-
tion reviews work modeling the link between gene expression and
brain connectivity.

The idea that brain wiring is guided by chemical signals dates
back decades. A foundational theory, the chemoaffinity hypothe-
sis, posits that neurons form precise connections using molecular
markers. Early experiments showed that regenerating optic nerves
in amphibians reconnected to their original targets despite inverted
orientation, suggesting axonal guidance by chemical cues rather
than learning [35]. These findings established the chemoaffinity
hypothesis, now widely accepted: axons and targets express com-
plementary molecular markers shaped by differentiation, guiding
connectivity during development [25]. Subsequent research iden-
tified key families of attractant and repellent molecules [8], and
revealed that large-scale wiring patterns are shaped by gradients
of signaling molecules known as morphogens [32]. These princi-
ples laid the foundation for computational models linking genetic
expression to wiring behavior.

The nematode C. elegans was one of the first organisms used
to explore computational models linking gene expression to con-
nectivity. Early studies showed that a neuron’s gene expression
profile could predict its synaptic partners [19]. The Connectome
Model (CM) proposed that wiring motifs such as bicliques emerge
from gene-gene compatibility rules, identifying these network-level
patterns computationally and using them to infer genes involved in

circuit formation [2]. This model was later extended to incorporate
physical constraints and biological noise, recovering plausible gene
interactions in both C. elegans and mouse retina data [21]. Another
approach, based on bilinear factorization, treated gene expression
profiles as input to a recommender system for predicting pairwise
connection strength [30]. Collectively, these models supported the
idea that genetic signatures can encode wiring rules and highlighted
candidate genes likely to influence circuit assembly.

In mammals, limited neuron-level resolution has led researchers
to focus on region-level data when relating gene expression to
connectivity. Early studies found that brain regions with similar
gene expression profiles were more likely to be connected [13], and
that classifiers trained on gene expression could predict anatomi-
cal connectivity in mice and rats [43]. Later work leveraging the
Allen Mouse Brain Connectivity Atlas (MBCA) demonstrated that
voxel-level connectivity could be predicted with high accuracy from
local gene expression [11, 18]. The most predictive genes were in-
volved in synaptic function and neural development. Other studies
identified transcriptomic features that distinguish network hubs in
both mouse and human brains, suggesting potential conservation
of wiring principles across species [1, 12].

While most prior studies used supervised learning to predict
connectivity from gene expression, this paper adopts a latent vari-
able formulation. Rather than learning a direct mapping (gene
expression → connectivity), the model infers voxel-level latent
variables, or “barcodes,” from the connectivity matrix, which are
then compared to observed gene expression patterns (connectivity
→ barcodes → gene expression). This approach enables testing of
competing hypotheses about how connectivity may be genetically
encoded. Unlike supervised models, which are constrained to de-
fine connectivity only in terms of the genetic expression already
observed, latent variable models can uncover spatial codes de novo.
When such codes align with gene expression, they offer compelling
candidate explanations for the genetic basis of neural wiring.

Supported by this latent variable framework, this work intro-
duces a new connectivity model: an NCA-based developmental
model that incorporates biological constraints through amorphogenesis-
inspired growth process. Drawing on classical theories such as
reaction-diffusion systems [39] and positional information gradi-
ents [44], the NCA generates structure through sequential, local in-
teractions that mimic intercellular chemical signaling. The resulting
spatially organized barcodes are then used to estimate connectivity,
as detailed in Section 3.3.

2.2 Indirect Encodings and Developmental
Programs

The developmentalmodel presented here defines connectivity through
a learned growth process, placing it within a broader class of neu-
roevolutionary approaches that use indirect encodings to construct
neural architectures [37]. Rather than specifying connectivity di-
rectly, these methods generate structure through biologically in-
spired processes that yield compact and regular wiring patterns.
A notable example is HyperNEAT [36], which uses compositional
pattern-producing networks (CPPNs) to generate neural weights
from spatial coordinates. The NCA model applied here can be
viewed as a conceptual successor: whereas HyperNEAT relies on
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fixed pattern generators, NCAs implement dynamic, local growth
processes that construct networks through sequential interactions,
more closely mirroring biological development.

Several recentmodels adopt developmental encoding usingNCAs
as the generative engine of connective weights, though they differ
in key ways from the approach presented here. HyperNCA grows
the weights of a policy network from a seed state, interpreting
the final NCA state vectors directly as connection weights [27]. In
contrast, the present model uses a dot-product-based connectivity
rule, which better reflects homophilic wiring principles observed
in biological systems [2]. Both Developmental Graph Cellular Au-
tomata (DGCA) and Neural Developmental Programs (NDPs) mod-
ify graph structure directly; DGCA, in particular, has been used to
fully reconstruct the C. elegans connectome through evolved local
rules [28, 40, 41]. These approaches rely on evolutionary search,
whereas the present model uses backpropagation for greater sample
efficiency and scalability to region-level mouse brain data. As a
proposed next step, evolutionary optimization is introduced only
at the task level, as outlined in Section 6.

3 Methods
To investigate how brain connectivity might emerge from biolog-
ical principles, this analysis uses combined transcriptional and
anatomical data from the adult mouse brain. Two generative models
are applied, each estimating connectivity from latent variables—or
“barcodes”—that define a three-dimensional spatial pattern. The
baseline static model directly learns barcodes that reproduce the ob-
served connectivity, illustrating how independent encodings, with-
out spatial or developmental structure, can account for wiring pat-
terns. The developmental model, implemented as an NCA, extends
this by modeling the emergence of barcodes through a morpho-
genetic process. In doing so, it incorporates biological constraints
and offers a framework for explaining the origins of gene expression
patterns in a developmental process.

3.1 Dataset and Preprocessing
This work uses transcriptomic [23] and connectomic [29] datasets
from the Allen Institute for Brain Science, which offer extensive
whole-brain measurements. All data are aligned to a common coor-
dinate system, allowing latent representations derived from con-
nectivity to be directly compared with voxel-level gene expression.
For tractability, both data types were downsampled to a 20×20×20
grid, resulting in 1,544 interior brain voxels used in the analysis.
Downsampling was performed using cubic interpolation. Voxels
corresponding to invalid regions, such as outside the brain or within
ventricles, were assigned a value of zero.

Gene expression data were obtained from the Allen Mouse Brain
Atlas [23], which uses in situ hybridization (ISH) to measure mRNA
transcript levels for over 20,000 genes. Expression energy values
were extracted, capturing both the volume and intensity of expres-
sion within each voxel of the grid. The resulting matrix assigns
each voxel a high-dimensional gene expression vector representing
local transcriptional activity.

Connectivity data were derived from the Allen Mouse Brain
Connectivity Atlas [29], which reports voxel-level axonal projec-
tions from viral tracer experiments. The raw dataset includes scans

taken both immediately after tracer injection (“injection”) and after
axonal transport (“projection”). Following the approach of [29], a
voxel-to-voxel connectivity matrix was estimated by regressing pro-
jection activity onto injection activity using L2-regularized linear
regression (𝛼 = 0.001). The resulting weights were log-transformed
to normalize scale, thresholded to remove values below 10−5, and
shifted to ensure all retained values were positive, with absent con-
nections set to zero. The final matrix, aligned to the same 20×20×20
voxel grid as the gene expression data, served as the modeling tar-
get.

Given a model estimate of connectivity, the coefficient of deter-
mination (𝑅2) provides an interpretable measure of performance,
quantifying the proportion of variance in the observed connec-
tivity explained by the model. Since only 4.3% of voxel pairs ex-
hibit nonzero connectivity, the total variance is dominated by the
contrast between connected and unconnected pairs. A variance
decomposition shows that 86% of the total variance arises from the
mean difference between these two groups, while only 14% reflects
variation in edge strength among connected voxels. As a result, 𝑅2
primarily evaluates the model’s ability to predict the presence or
absence of connections, rather than their precise magnitude.

3.2 Gene Score Evaluation
To evaluate whether the models capture developmentally mean-
ingful structure, a gene score metric quantifies the correspondence
between the learned spatial representations and measured gene
expression. This metric provides an assessment of how well the
barcodes align with biological development, independent of their
ability to reconstruct connectivity.

Given a set of voxel-level latent representations, produced by
either the static or developmental model, the gene score quanti-
fies how well these vectors predict the spatial distribution of gene
expression. This metric adapts the “brain score” framework from
neural representation analysis [4], repurposed here for genetic data.
For each gene, a linear model is trained to predict expression levels
across voxels from the latent vectors, using a leave-one-region-
out cross-validation scheme. Voxels are grouped into 13 top-level
anatomical regions (per the reference atlas), and each group is held
out in turn. The model is fit on the remaining voxels and evaluated
on the held-out region, cycling through all regions to generate pre-
dictions for every voxel. The Pearson correlation between predicted
and observed expression defines the gene score, with higher scores
indicating that the latent representation captures spatial structure
aligned with true gene expression.

Unlike supervised approaches that directly map gene expression
to connectivity (discussed in Section 2.1), this method treats gene
expression as an independent evaluation target. Because no expres-
sion data are used during training, the resulting gene scores reflect
how well a model’s learned representation implicitly captures bio-
logically meaningful structure. Averaging these scores across genes
yields a summary metric for model comparison, used consistently
to assess whether the static baseline or the developmental model
better reflects transcriptional organization in the mouse brain.
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Figure 1: Overview of the Static Model. Connectivity is mod-
eled using the top 𝑘 singular vectors obtained from singular
value decomposition (SVD) of the voxel-to-voxel connectivity
matrix. These latent variables provide a compact representa-
tion that captures the dominant structure of the connectome.
While effective as a baseline for reconstruction, this approach
does notmodel biologicalmechanisms such as spatial growth
or local interaction.

Figure 2: Overview of the Developmental Model. A NCA archi-
tecture is used to simulate the growth of voxel-level latent
representations over time. Each voxel updates its internal
state using only local information from neighboring voxels.
After a fixed number of steps, the final latent states are used
to reconstruct connectivity. This model simulates spatially
localized, biologically plausible development.

3.3 Model Architectures
This work compares two modeling approaches for generating voxel-
to-voxel connectivity in the mouse brain: a static latent variable
model based on singular value decomposition (SVD), and a de-
velopmental model implemented as a NCA. Both models produce
voxel-wise latent representations (“barcodes"), which are used to
reconstruct the observed connectivity matrix. These latent vari-
ables are then evaluated against gene expression data using the
gene score metric described in Section 3.2.

3.3.1 Static Latent Variable Model (SVD). The static model (Fig-
ure 1) follows a latent space modeling framework used in network
science, where each node is assigned a vector of latent variables,
and connectivity is defined by their dot product [16]. Each latent
vector z𝑖 ∈ R𝐷 is composed of two sub-vectors: a source component
zsrc
𝑖

∈ R𝐷/2 and a target component ztgt
𝑖

∈ R𝐷/2, concatenated to
represent directional connectivity:

z𝑖 = [zsrc𝑖 ; ztgt
𝑖

] . (1)

Predicted connectivity from voxel 𝑗 to voxel 𝑖 is computed as
the dot product between the source vector of voxel 𝑗 and the target
vector of voxel 𝑖:

𝐶𝑖 𝑗 = ztgt
𝑖

· zsrc𝑗 . (2)

This formulation allows the model to represent directional con-
nectivity, a defining feature of real neural systems. By separating
each voxel’s latent representation into source and target compo-
nents, the model can learn distinct patterns for incoming and out-
going connections.

Latent vectors are learned using a standard singular value decom-
position (SVD) solver. As established by the Eckart–Young theorem
[10], performing SVD and truncating to the top-𝑘 singular vectors
yields the optimal rank-𝑘 approximation of a matrix under the
Frobenius norm. While gradient descent could be used to incor-
porate prior distributions on the latent variables, empirical tests
showed no meaningful effect from applying L1 or L2 regularization
in this setting. Model complexity was varied by adjusting the num-
ber of latent dimensions (𝐷), enabling a systematic evaluation of
how representational capacity impacts both reconstruction perfor-
mance and alignment with gene expression data (see Section 4.2).

Thismodel serves as a linear baseline, capturing low-dimensional
structure in the connectivity matrix. However, it treats each voxel
independently, without modeling spatial relationships. The devel-
opmental model addresses this limitation by incorporating local
interactions between voxels.

3.3.2 Developmental Model (Neural Cellular Automata). The de-
velopmental model is implemented as a neural cellular automaton
(NCA) [26], drawing inspiration from morphogenetic processes in
biological development. Rather than assigning latent variables di-
rectly, the model simulates a spatially constrained, iterative process
in which voxel states evolve over time through local interactions.
After the simulation, each voxel’s final state is treated as a latent
vector, which is then split into source and target components. Con-
nectivity is predicted by computing dot products between these
components, following the same approach as in the static model.

As illustrated in Figure 2, each voxel maintains a state vector that
is updated over 𝑇 developmental steps (𝑇 = 100) using a shared
neural update function. At each step, a voxel observes its local
3 × 3 × 3 neighborhood (including itself), applies a fixed convolu-
tional readout, and passes the result through a two-layer multilayer
perceptron (MLP) with ReLU activation to update its own state. The
convolution uses a set of five fixed 3 × 3 × 3 kernels—an identity
kernel, three Sobel filters (one per spatial axis), and a Laplacian
filter—whose outputs are concatenated before being fed into the
MLP. The MLP’s hidden layer size serves as a complexity knob:
larger sizes support more expressive transition dynamics, while
smaller sizes enforce stronger inductive constraints. The effect of
the MLP size was significant in modeling the developmental pro-
cess, as described in Section 4.2. The state vector has 32 channels,
and unlike the original NCA implementation, no aliveness masking
is used.

Each voxel begins from a fixed initial seed state at 𝑡 = 0. Specifi-
cally, the state vector for each voxel is a 4-dimensional vector where:
the first channel is set to 1.0 if the voxel is part of the brain interior
and 0.0 otherwise; the second, third, and fourth channels are set to
the 𝑥 , 𝑦, and 𝑧 coordinates of the voxel within the brain volume,
scaled to the range [−1, 1]. All other channels are initialized to zero.
This seed establishes a morphogen-like gradient that encodes the
brain’s geometry, while avoiding the center-out bias introduced by
seeding from a single voxel.
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To train the developmental model, gradients were propagated
through the entire rollout sequence using backpropagation through
time. Parameter updates were performed using the NAdam opti-
mizer with a learning rate of 6 × 10−4. Each model was trained
for 10,000 steps with a batch size of 1, reflecting the use of the
full voxelized brain as a single training instance. Gradient clipping
was applied to promote stability, and was essential for preventing
gradient explosions during training.

This architecture imposes strong inductive biases reflecting bio-
logical principles: the re-use of developmental subroutines to pro-
duce reocurring patterns across space. This process produces disam-
biguating information, analogous to morphogens during biological
development, that scaffold the construction of the spatial pattern.
Thus, the developmental model incorporates biological constraints,
and its representations will be compared with the genetic expres-
sion to assess whether it captures key aspects of the developmental
process underlying connectivity.

3.4 Randomization Baselines
To ensure that elevated gene scores reflect meaningful biological
structure rather than generic spatial or statistical effects, three ran-
domized connectivity baselines were introduced, each preserving
different properties of the original connectivity:

(1) FullRandom: fully shuffles the connectivity matrix, destroy-
ing all spatial and topological structure while preserving the
global distribution of connection weights.

(2) DegreePreserve: re-wires edges to preserve the in/out de-
gree of each voxel, controlling for effects driven by connec-
tion density alone.

The latter baseline isolates a potential confound, connection
density, allowing the contribution of region-to-region wiring to
be identified more precisely. The results support the central claim
that gene expression reflects specific features of structural connec-
tivity. That is, the observed association between gene expression
and the model’s latent variables cannot be explained by generic
spatial structure alone, but instead points to a genetically embedded
representation of the brain’s wiring architecture.

4 Results
This section evaluates the developmental model’s ability to recon-
struct mouse brain connectivity and examines whether its learned
representations reflect underlying biological processes, as indicated
by their correspondence with gene expression. Comparisons are
made to a static SVD-based baseline and to randomized control
conditions. The results are presented in two parts. First, the devel-
opmental model captures a key biological signal: its latent variables
show strong alignment with gene expression, suggesting that mod-
eling the developmental process enhances biological fidelity. Sec-
ond, simpler developmental models yield the highest gene scores,
indicating that the underlying biological process may itself be sub-
ject to inferential or perceptual constraints.

Figure 3: Gene Score Comparison. This box plot shows the
distribution of gene scores across different model conditions:
the developmental model, the static SVD-based model, and
two randomized baselines applied to the static model. Each
point represents the average gene score from an independent
model run. Higher scores indicate stronger alignment be-
tween the model’s latent representations and empirical gene
expression. The developmental model achieves the highest
scores, suggesting it most accurately captures biologically
relevant developmental structure.

4.1 Predicting Gene Expression from Latent
Representations

The central evaluation metric is how well the model’s latent vari-
ables capture underlying genetic structure. As described in Sec-
tion 3.2, gene scores measure how accurately voxel-level gene ex-
pression can be predicted from the model’s learned spatial repre-
sentations.

As shown in Figure 3, the developmental model significantly
outperforms the static model in terms of gene score. The highest-
performing developmental model achieves an average gene score
of 0.202, compared to 0.120 for the static model. Both models sub-
stantially exceed the scores achieved by randomized connectivity
baselines, providing computational evidence that gene expression
encodes information about the brain’s wiring architecture. These
results indicate that the developmental model’s latent representa-
tions also align more closely with underlying genetic structure than
the static method.

4.2 Model Complexity and Biological Signal
For both the static and developmental models, a key finding is that
simpler architectures yield stronger alignment with gene expres-
sion when trained to reconstruct connectivity. In the static model,
complexity is controlled by the number of latent dimensions in
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Figure 4: Tradeoff Between Model Complexity and Biological
Alignment. (Left) As the internal hidden size of the develop-
mental model increases, gene scores decline (upper plot), but
connectivity reconstruction improves. Simpler developmen-
tal models yield representations that more closely match
gene expression, suggesting that the underlying biological
process is governed by limited representational complexity.
(Right) As the number of latent variables per voxel in the
static model increases, the gene scores peak at a low level of
complexity (upper plot), but the connectivity reconstruction
continues to improve (lower plot). As the static model grows
in size, it overfits to the connectivity, and its latent variables
lose their relevance to genetic expression.

each voxel’s barcode. In the developmental model, however, reduc-
ing the number of output channels alone was insufficient—strong
biological alignment only emerged when the internal computation
was also constrained, requiring a small multilayer perceptron in
the update rule.

As shown in Figure 4, models with fewer latent variables achieved
higher gene scores, despite performing worse at reconstructing the
connectivity matrix. Moreover, the developmental model only out-
performed the static model in gene score when its hidden layer size
was heavily restricted. This tradeoff suggests that simpler models
yield more biologically meaningful representations.

These findings align with Occam’s Razor, the principle that,
among competing explanations, the one with the fewest assump-
tions is most likely to be correct. They also provide computational
support for the view that development operates under informa-
tional and energetic constraints. This suggests that the genetic
code for wiring is not only efficient but embedded within a tightly
bounded developmental program.

5 Discussion: Developmental Programs as
Biological Models

The primary empirical finding of this work is that genetic expres-
sion profiles are better explained by the developmental model of
connectivity than by the static model. This result supports a mor-
phogenetic view of development, in which local interactions give
rise to spatial patterns that guide cell differentiation and tissue
formation. Since cellular automata have historically been proposed
as models of morphogenesis, this work demonstrates that neural
cellular automata (NCA) can learn such developmental programs
directly from data.

However, several limitations constrain the scope of these conclu-
sions. The model operates on static snapshots of adult brain data,
both for connectivity and gene expression. In biological systems,
many transcription factors disappear once their developmental
role is complete and would therefore be absent from the data used
here. Nor does the model capture mechanical processes like cell
migration and proliferation, which would better reflect the under-
lying brain geometry. Additionally, the reliance on voxelized data
sacrifices spatial resolution, and the dataset does not distinguish
between synaptic and non-synaptic connections. Some of these
limitations may be addressed through the use of higher-resolution
or temporally resolved data, which is becoming increasingly avail-
able through recent advances in large-scale connectomic mapping
efforts.

Advances in connectomics are rapidly transforming the ability to
study neural structure at scale, creating new opportunities to model
the developmental processes that give rise to brain wiring. High-
resolution electron microscopy (EM) has enabled synapse-level
connectomes in small model organisms, including the complete
adult fruit fly brain—with 140,000 neurons and 50 million synapses
[9]—and the larval fly brain with over 3,000 neurons [42]. Projects
such as MICrONS have extended these methods to mammalian
tissue, reconstructing cubic millimeters of mouse cortex at nanome-
ter resolution through automated segmentation and AI-assisted
analysis [38]. Even in humans, a petavoxel-scale fragment of brain
tissue has been successfully reconstructed [33]. Complementary
molecular techniques such as MAPseq [20] and BRICseq [17] use
DNA barcoding to multiplex axon-tracing experiments, enabling
large-scale connectivity mapping without relying on electron mi-
croscopy. Expansion microscopy offers another scalable approach
to high-resolution imaging of whole-brain volumes [5]. As datasets
continue to increase in resolution and coverage, models that link
structural wiring to underlying developmental programs—such as
the developmental model of connectivity presented here—offer a
framework for making sense of complex brain data and may pro-
vide a foundation for leveraging biological organization in artificial
intelligence.

6 From Biology to AI: Connectome-Generating
AI-Generating Algorithms

The developmental model presented in this paper recreates the
mesoscale connectome of the mouse brain, providing a generative
mechanism for producing structured connectivity from simple, local
rules. The learned representations align with patterns of genetic
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Figure 5: Three Paradigms for Building AGI. Top: The cogni-
tive approach constructs intelligent systems by assembling
cognitive modules (left panel), but suffers from a limited un-
derstanding of the brain’s modular functional architecture
(right panel). Middle: The emergent approach uses reinforce-
ment learning in task environments to produce intelligent
behavior (left panel). But without a complete understanding
of the relevant ecological pressures, such task design is diffi-
cult (right panel). Bottom: The connectomic approach grounds
architecture search in real brain wiring data (left), using the
connectome to shape the design of the task environment (cen-
ter). A developmental program generates architectures (right)
that are trained on this task. If the resulting architecture re-
capitulates features of the biological connectome—such as
spatial layout or structural motifs—it can be linked back to
the original neural data (purple dashed line), closing the loop
between biological structure and functional learning.

expression, offering evidence that themodel captures a link between
molecular-level biology and the emergent wiring phenotype.

This connection enables a new strategy for AI design. Because
developmental programs encode connectivity in three-dimensional
space through an indirect, biologically inspired process, they offer a
natural interface between artificial and biological brains. However,
while the current model captures structural organization, it does
not yet produce functional behavior.

To address this challenge, the proposed approach is to treat the
developmental model as a genotype, and evolve it with respect
to task performance. As functional models are discovered, those
whose generated connectomes also resemble biological wiring can
be interpreted as converging on biologically grounded solutions. In
this view, the connectome serves as a reference signal for validating
evolved architectures, and the developmental model defines the
search space in which evolution operates.

Grounding network models in connectomic data offers a po-
tential path toward more brain-like machine architectures—and,

ultimately, toward artificial general intelligence (AGI), here defined
as an agent with human-level cognitive capabilities [22]. AGI is
often regarded as the long-term goal of AI research, and this discus-
sion considers how insights from brain connectivity may inform
its development.

This section outlines how developmental models can be used to
evolve functional, brain-like networks. The first part reviews exist-
ing approaches to AGI and situates this work in relation to cognitive
and emergent strategies. The second part introduces a conceptual
framework, the Connectome-Generating AI-Generating Algorithm
(CONGA), which uses developmental programs and biological data
to guide the evolution of intelligent systems.

6.1 Approaches to Artificial General
Intelligence

This paper introduces a taxonomy of three broad approaches to con-
structing artificial general intelligence (AGI): cognitive, emergent,
and connectomic (illustrated in Figure 6).

Cognitive approaches to AGI begin with theories of mind and
attempt to reverse-engineer intelligence by decomposing it into
functional modules—such as memory, planning, symbolic reason-
ing, and attention. Classical frameworks like ACT-R and Soar, as
well as recent proposals like OpenCog Hyperon, follow this route
by combining learned systems with hand-engineered cognitive
functions [15, 24, 31]. While intuitively appealing, these designs
rely on a principled taxonomy of mental functions—something cog-
nitive science has yet to deliver. In the absence of a comprehensive
model of cognition, modular architectures risk being incomplete or
misaligned with the true structure of general intelligence.

Emergent approaches, by contrast, place minimal assumptions
on structure and instead rely on scale, data, and environment. Re-
inforcement learning and self-supervised training have produced
strikingly general behaviors in large agents like GPT-4, without
requiring cognitive blueprints [3, 34]. AI-generating algorithms
(AI-GAs) extend this philosophy, proposing that intelligent systems
can be evolved by jointly optimizing architectures, learning rules,
and training environments in an open-ended loop [7]. These sys-
tems shift the design burden from the agent to the world—but in
doing so, they assume the environment itself is rich enough to pro-
duce general intelligence, an assumption that may not hold without
strong inductive biases.

A connectomic approach offers a third alternative. Rather
than starting with behavioral modules or designing the perfect
environment, it anchors architecture discovery in the structure of
real nervous systems. In this view, biological connectomes serve
as a guiding prior that narrows the search space and biases the
evolution of functional architectures toward those that resemble
naturally occurring networks. This forms the basis of the proposed
CONGA framework, which incorporates biological structure as an
explicit constraint on the evolutionary process.

6.2 Proposal: Biological Structure as a Prior for
AI Design

This section introduces a new framework for architecture discovery:
CONGA, illustrated in Figure 5 (bottom panel). Like AI-GAs [7],
CONGA evolves intelligent agents by meta-optimizing learning
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systems within synthetic environments. However, they introduce
a key constraint: evolved architectures must resemble biological
brains. To achieve this, CONGA combines evolution with devel-
opment, generating agents whose connectivity emerges from a
simulated growth process tuned to match empirical connectomic
data. This coupling aligns structural complexity with the gradual
refinement observed in natural evolution and development, offering
a biologically grounded pathway toward artificial intelligence.

CONGA operates through a nested-loop optimization. In the in-
ner loop, search is conducted over developmental programs—now
including neural activations—to evolve agents with high task per-
formance. In the outer loop, the environment is gradually shaped
to favor the emergence of agents whose connectomes align with bi-
ological data. This structure ensures that the resulting connectivity
patterns are driven by task demands, while still converging toward
biologically plausible architectures. Because these architectures
arise through developmental growth, they are more likely to reflect
the structural regularities observed in real nervous systems.

Beyond developmental regularities, optimizing over develop-
mental programs may also produce evolutionary trajectories that
parallel the phylogenetic evolution of neural wiring. Brain architec-
tures did not emerge fully formed; they evolved through gradual
refinement, elaborating simple circuits into more complex and ca-
pable systems [6]. Similarly, CONGA begins with simple, functional
developmental programs and incrementally increases architectural
complexity, allowing growth processes to scaffold progressively
more sophisticated solutions.

As a proposal for future work, the following experiment draws
inspiration from an early stage in the evolution of nervous systems:
the simple neural architectures of early eumetazoans [6]. These
ancestral systems laid the foundation for later brain structures,
establishing core serotonergic and dopaminergic pathways that
regulate behavioral tradeoffs between short-range exploitation of
local resources and long-range exploratory foraging. The proposed
experiment will attempt to reproduce this core decision-making
circuit through a developmental program, using it as a foundation
for evolving more complex navigational architectures. The goal is
to identify evolutionary environments under which this circuitry
reliably emerges, providing insight into the conditions that may
have shaped its origin. If successful, the experiment would not only
support the hypothesized link between environment and wiring
but also yield a developmental program capable of generating the
circuit, enabling a stepwise expansion toward increasingly sophisti-
cated systems. By progressing through increasingly complex tasks
and environments, it may be possible to evolve rich decision-making
architectures in accordance with Gall’s Law: “A complex system
that works is invariably found to have evolved from a simple system
that worked” [14].

7 Conclusion
This paper introduced a Neural Cellular Automata (NCA) model
trained to reconstruct voxel-wise connectivity in the mouse brain.
Extending a static baseline that directly learns latent variables
to construct the connectivity, the NCA simulates a localized, se-
quential developmental process to form its representations. This
approach mirrors how biological structure emerges. The dataset

contains both connectivity and gene expression data on the same
voxel grid, enabling a direct biological validation of the learned
representations.

Comparison between the final state of the NCA and measured
gene expression indicates that the developmental model captures
biologically meaningful structure, outperforming a classical linear
baseline. This suggests that the NCA, in reproducing the connec-
tome, also reflected aspects of the developmental process that gave
rise to it.

Now that the developmental program has been shown to link
genetic expression to connective phenotypes, biological connectiv-
ity can be used to guide the design of task-performing circuitry by
leveraging the search space of developmental programs. A broader
framework is proposed for modeling connectomes as the joint prod-
uct of development and evolution. In this framework, CONGA, evo-
lution serves as a search mechanism that jointly optimizes both the
developmental program (which determines network architecture)
and the task environment, with the aim of reproducing biological
wiring. In doing so, it becomes possible to identify mechanisms
that give rise to brain-like structure as a byproduct of functional
adaptation.

This approach integrates developmental modeling with evolu-
tionary search, guided by biological data as a structural constraint.
As large-scale connectomic datasets continue to emerge, it offers a
path toward models that uncover the generative principles under-
lying brain network connectivity.
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