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Recent advances in connectomics have produced large-scale datasets aligning brain
connectivity with genetic expression, and these resources are poised to grow dra-
matically with ongoing technological and institutional investment. In response,
researchers have developed computational models linking gene expression to brain
wiring, often using regression techniques that identify genes implicated in neural de-
velopment. While these models offer valuable biological insights, they are inherently
constrained: they explain connectivity only as a function of known gene expres-
sion patterns, limiting the kinds of hypotheses that can be formulated about how
connectivity arises.

This dissertation introduces a generative modeling framework that reverses the
traditional direction of explanation. Instead of predicting connectivity from genetics,
it constructs connectivity from first principles, using unsupervised latent variables
that are fit to explain observed wiring patterns. The model reveals strong statistical
associations between learned latent representations and genetic expression, especially
under sparse and low-complexity assumptions, suggesting that gene expression en-
codes the structural motifs of connectivity.

Building on this foundation, a developmental model is introduced based on the
theory of morphogenesis. This model generates latent variables through a sequen-
tial process governed by local signaling rules, capturing the constraints of biological
development. It is found that the developmental model explains even more of the
observed genetic expression than the static model, providing evidence that gene ex-
pression contains disambiguating signals that support pattern formation, cell iden-
tity, and positional inference.

Together, the results support the theory that brain wiring arises from a low-
dimensional, structured genetic program optimized under biological constraints. These
models not only advance understanding of neural development, but also open new
directions for engineering applications in AI, regenerative medicine, and biologically
inspired design.
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Chapter 1

Introduction

Did you know that a tree tells a story? Look closely, and you’ll notice a branch scar
from the time a branch was pruned during a drought, now hardened; reaction wood
grown after strong winds off the lake buffeted the trunk; and a wide growth ring from
when the tree flourished in an especially sunny season. The branches take numerous
bends and turns, attesting to once-flexible shoots that explored multiple directions
before lignifying into strong, structural supports. From the many emerging buds,
only a select few will receive the tree’s growth resources, reflecting the direction it has
chosen to invest in for long-term sunlight capture and structural stability—decisions
now solidified in hardened wood. Because every investment in growth can be a matter
of life and death, the tree’s form is the product of millions of years of environmental
challenges that have molded its developmental choices—its final structure encoding
the facts of evolution. There is so much information about the tree’s life and evolution
clearly present in its form, if only one knows how to look. Where did the structure
come from? With the right tools to analyze the mature form, one could see its
story—the environmental factors and developmental decisions that steered its growth
to produce the observed structure.

A similarly data-rich system is found in brain connectomics. During development,
neurons proliferate, migrate, extend growth processes, and form intricate electrical
networks. Unlike the biology of trees, which is relatively well-characterized (Zhu
and Roeder, 2020), the origins of the brain’s intricate directed connectivity are only
beginning to be understood (Gilmour et al., 2017; Tiberi et al., 2012). Developmental
biology offers system-level models that explain the chemical and genetic dynamics
driving these processes (Dickson, 2002). These models illuminate how the brain
might self-organize and reveal the guidance cues that determine diverse neural fates
across different regions (Sánchez-Camacho and Bovolenta, 2009). Evidence suggests

1



2 CHAPTER 1. INTRODUCTION

that a complex interplay between genetic expression, chemical signals, and neuronal
activity collectively shapes the destiny of each cell (Flavell and Greenberg, 2008).

In this dissertation, a data-driven approach is employed to infer the properties of
the system responsible for the observed connectivity patterns, advancing a compu-
tational approach and understanding. The core contribution lies in identifying signs
that neuronal interconnectivity is encoded within the genetic expression. Building
on this foundation, a developmental model is applied—offering a novel way to inter-
pret the data—to uncover the origins of these connections. This approach not only
proposes a candidate growth hypothesis for how the entire brain might self-organize
but also suggests that the developmental model can serve as a robust and efficient
framework for describing complex architectures. Looking forward, these models offer
a foundation for building brain-like computational systems, advancing regenerative
medicine, and enabling the self-assembly of biological machines.

1.1 Motivation

“What I cannot create, I do not understand.” Widely attributed to physicist Richard
Feynman, this quote encapsulates the idea that true comprehension comes from the
ability to construct or recreate something from first principles. As connectomic
datasets expand—mapping the neuronal connectivity of larger brains at ever-higher
resolutions—the ability to understand and explain the data using traditional meth-
ods, such as hand-made mathematical models, struggles to keep pace. While a
handful of key genetic transcription factors and their interactions have successfully
explained some broad developmental patterns, these approaches are unlikely to scale
for deciphering an entire connectomic map. Consequently, this dissertation, along
with prior work, leverages machine learning for the automated discovery of candidate
developmental hypotheses. By generating the observed data, these generative mod-
els offer a scalable pathway to understanding whole-brain development. Therefore,
generative models of data are the only scalable solution to whole-brain developmen-
tal models. Although exploring the detailed roles of specific transcription factors or
complex interaction networks falls beyond the scope of this work, the high-level fo-
cus maintained here lays the groundwork for future investigations into these specific
mechanisms.

This automated inference of the developmental program is essential for the large-
scale application of developmental models into practical domains. In medicine, these
models provide a framework for simulating both normal and aberrant developmental
processes, thereby offering insights into the origins of developmental disorders and
guiding the design of targeted interventions. They pave the way for predictive diag-
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nostics, personalized treatment plans, and even strategies in regenerative medicine.
In the field of bioengineering, automated developmental models inspire the creation
of semi-organic machines that integrate synthetic components with biological tissues.
Such systems, which mimic the self-organizing and self-repairing properties of living
organisms, hold promise for developing adaptive, resilient technologies. Ultimately,
these high-level models act as a bridge between theoretical insights and real-world
applications, enabling scalable solutions that address complex challenges in both
medicine and engineering.

1.2 Approach

This dissertation analyzes data from mouse brains, focusing on region-to-region con-
nectivity and genetic expression patterns. The approach involves training models
that generate the observed connectivity, which is then compared to the genetic ex-
pression data. Various methods for constructing connectivity are tested, each rep-
resenting a hypothesis for the organic growth of neural networks. By comparing
multiple hypotheses based on how well they match the genetic expression data, a
better understanding is formed about where the connectivity comes from, how it is
encoded by the genetic expressions, and how the genetic expression patterns form.

Two primary models are tested as hypotheses. The first, the static model, sim-
plifies the system by treating each region independently, assigning a numerical “bar-
code” to each location to represent its unique and group-level identity. These bar-
codes are then combined in a generative model to approximate the observed connec-
tivity. The static model evaluates various coding principles, such as the preferred
barcode distribution and its role in encoding connectivity, thereby elucidating the
relationship between genetic expression and neuronal wiring. The second, the devel-
opmental model, introduces a more biologically grounded hypothesis by generating
the barcodes through a sequential process constrained by local interactions. Inspired
by Alan Turing’s theory of morphogenesis, it captures the spatial and temporal dy-
namics of development, producing structured patterns that better reflect how neural
connectivity may emerge in real organisms. The end result is a computational model
that represents a theory of how gene expressions form and determine connectivity.

1.3 Results

The core findings of this dissertation demonstrate that genetic expression in the
mouse brain carries structured information predictive of connectivity patterns. La-
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tent variables derived from actual brain connectivity data show strong correlations
with genetic expression, significantly exceeding those obtained from randomized base-
lines. These results indicate that gene expression does not merely reflect general
spatial organization but encodes meaningful, region-specific wiring features. Fur-
thermore, testing across multiple prior distributions reveals that gene predictivity
remains stable regardless of regularization strategy, with no significant evidence that
sparsity-inducing priors enhance the interpretability or specificity of gene-to-latent
correspondences.

Extending this framework, a developmental model was introduced to simulate the
process by which latent connectivity codes might arise through sequential, locally
constrained interactions. The developmental model achieved markedly higher gene
expression predictivity compared to the static model, indicating that gene expression
encodes not only the final wiring outcomes but also disambiguating signals necessary
for developmental pattern formation. This effect was strongest when the complexity
of the model was appropriately constrained, highlighting the importance of a sim-
ple, locally informed process—limited in both perceptual scope and representational
capacity—in accurately capturing the inference demands faced by developing cells.
Finally, the developmental encoding was shown to provide greater efficiency at low
complexity and the capacity for self-repair through local updates, highlighting its
potential utility for scalable, resilient architecture design.

1.4 Guide to the Thesis

This dissertation applies generative modeling techniques to explore how genetic ex-
pression encodes brain connectivity in the mouse. Two main modeling approaches
are employed: a static model, adapted from prior latent-variable approaches in con-
nectomics, and a developmental model, inspired by morphogenetic processes and
implemented using neural cellular automata.

Chapter 2 provides the conceptual foundation, synthesizing insights from connec-
tomics, developmental biology, and computational neuroscience. Chapter 3 outlines
the dataset preparation, the modeling architectures, and the evaluation metrics used
to assess the biological plausibility of each hypothesis. Chapter 4 introduces the static
model, which demonstrates a clear correspondence between connectivity and gene
expression. Chapter 5 presents the developmental model, showing how incorporat-
ing sequential, spatial constraints yields a more biologically grounded representation.
Chapter 6 explores the computational properties of the developmental framework, in-
cluding its efficiency and self-repair capabilities. Chapter 7 addresses the limitations
of the current models, discusses emerging opportunities in large-scale connectomics,
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and outlines the broader implications of developmental modeling across artificial
intelligence, regenerative medicine, and biological engineering. Finally, Chapter 8
reflects on how generative models can illuminate developmental processes and guide
future scientific and technological efforts.
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Chapter 2

Background

Prior studies have identified statistical associations between gene expression and
brain connectivity, suggesting that genetic patterns play a role in shaping neural
circuits. Building on this foundation, this dissertation introduces introduces a sta-
tistical and generative modeling framework that aims not only to replicate these
associations but to explain them — revealing how gene expressions encode wiring
and how they emerge from the developmental process. The approach integrates in-
sights from three domains: statistical connectomic modeling, developmental biology,
and computational neuroscience.

Section 2.1 reviews prior models linking genetic expression to connectivity, high-
lighting the need for more expressive, latent variable approaches to test competing
hypotheses about how connectivity is encoded. This motivates the use of generative
models that can reconstruct wiring while revealing underlying coding principles. Sec-
tion 2.2 introduces a developmental perspective, reviewing classical theories of mor-
phogenesis and modern computational models—especially neural cellular automata
(NCA)—that formalize development as a self-organizing, spatially constrained pro-
cess. This provides the conceptual foundation for the developmental model intro-
duced later in the dissertation.

The approach also draws from computational neuroscience, particularly the use
of latent variable models to explain connectivity as arising from spatially distributed
“barcodes.” Section 2.3 reviews how representational learning is used in neuroscience
to infer internal variables from observed behavior that explain brain activity. This
provides a conceptual foundation for the present work, which similarly models devel-
opment as an inference process—recovering how genetic expression might solve the
task of wiring the brain. The connection is made explicit by appealing to the Free
Energy Principle of developmental biology, which argues that development itself is an

7



8 CHAPTER 2. BACKGROUND

inference task. This perspective motivates the statistical toolkit used throughout the
dissertation and and clarifies how methods from computational neuroscience—such
as brain-predictive metrics—can be extended to developmental biology.

2.1 Computational Models Linking Genetic Ex-

pression and Connectivity

Recent advances in high-throughput imaging have made it possible to collect large
datasets describing both the connectivity and genetic expression of animal brains.
A critical feature of some of these datasets is that both data types are mapped to
a common spatial coordinate reference frame. This alignment makes direct spa-
tial comparison possible, allowing statistical models to assess how patterns of gene
expression relate to patterns of brain connectivity. It is thus possible to computa-
tionally derive candidate hypotheses for how genetic factors may influence neuronal
wiring. These computational models have found that across several species much
of the connectivity can be predicted from the genetic expressions distributed in the
brain, supporting the idea that chemical guidance cues serve as an organizing prin-
ciple for axonal targeting. The computational models can further identify specific
genes and how they may influence wiring in the model.

This dissertation takes computational models a step further. While previous work
found genes that correlate with wiring patterns, this dissertation learns an entire spa-
tial profile of latent variables that explain the connectivity, allowing the comparison
of different coding hypotheses. Therefore, this work offers a richer explanation of how
wiring is encoded in genetic expressions and where the genetic expression patterns
are formed. The section will begin with historical context linking wiring to chemical
guidance cues and then review prior work.

2.1.1 Foundation: Chemical Guidance of Axon Targeting

The chemoaffinity hypothesis suggests that developing neurons rely on chemical sig-
nals to form precise neural connections with their intended targets. This hypothesis
originated from early experiments conducted by Sperry (1963), who investigated the
chemical basis underlying neural circuit formation through studies involving amphib-
ian visual systems. In these experiments, Sperry surgically rotated the eyes of frogs
and observed that regenerating optic nerve fibers reconnected to their original, chem-
ically defined target regions rather than adjusting to the altered spatial orientation.
Consequently, frogs exhibited persistent visual disorientation, demonstrating that ax-



2.1. COMPUTATIONALMODELS LINKINGGENETIC EXPRESSION AND CONNECTIVITY9

ons follow chemical cues rather than adapting solely through functional experience.
The chemoaffinity hypothesis was an affront to the predominant functionalist view at
the time, which considered behavior to be too complex to be explained by connective
patterns, and thus there was no need for neurons to have selective synaptic targets.

The chemoaffinity hypothesis proved to be controversial as time went on, and ev-
idence was compiled for the role of experience-based plasticity in determining wiring
rules. However, after decades of discussion, the chemoaffinity hypothesis was re-
fined into several widely accepted postulates (Meyer, 1998): (1) axons carry distinct
molecular markers; (2) target cells and pathways express corresponding complemen-
tary markers; (3) these markers are produced as a consequence of cellular differentia-
tion; and (4) axonal growth is actively guided by these chemical markers to establish
specific neuronal connections. Collectively, these observations have formed the basis
for understanding how chemical signaling directs accurate axonal targeting during
neural development.

Building on the understanding that chemical cues guide axons toward synaptic
targets, researchers have sought to piece together the molecular and genetic mech-
anisms underlying wiring behavior. Axon-guidance studies have identified families
of attractive and repulsive cues that regulate the behavior of the developing axonal
growth cone (Dickson, 2002). In several cases, large-scale wiring patterns have been
successfully explained by the spatial expression of morphogens—signalling proteins
that are expressed in subsets of cells and trigger concentration-dependent cellular
responses, thereby coordinating spatially patterned cellular differentiation (Sánchez-
Camacho and Bovolenta, 2009). Together, these findings support the view that
signalling molecules play a central role in organizing neural connectivity.

The studies on chemical guidance of neural targeting and the associated genetic
factors lay the groundwork for the computational models discussed in this section.
These computational models extend the analysis of connectivity and chemical guid-
ance patterns to large-scale data, thus accelerating the discovery of gene transcription
factors relevant to synaptic targeting.

2.1.2 Neuron-level Computational Models

Computational models linking genetic expression and wiring were first attained for C.
elegans, for which a wiring diagram has been constructed as far back as 1986 (White
et al., 1986), and decades of genetic data has been collected in the WormBase archive
(Sternberg et al., 2024). Hence, early evidence came from C. elegans : the landmark
study by Kaufman et al. (2006) found that a neuron’s gene expression “signature”
carries significant information about its synaptic connections.
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At the single-cell level, recent models use single-cell transcriptomics coupled with
synaptic wiring data to decode connectivity rules. Barabási and Barabási (2020) pro-
posed a connectome model (CM) to explain how genes encode neural wiring. They
hypothesized that each neuron’s gene expression profile guides synapse formation,
predicting the existence of specific biclique motifs (complete bipartite subgraphs) in
neural networks. Indeed, they identified large, statistically significant bicliques in the
connectomes of three species, within which neurons shared common gene expression
patterns and morphological features. This statistical observation supports the idea
that genetic compatibility rules (i.e. specific gene-gene interactions) drive circuit for-
mation. The CM provides a generative framework linking an organism’s genome to
the architecture of its connectome. In a detailed case study, the model was applied to
identify the genetic rules of wiring in C. elegans (Kovács et al., 2020). The method
incorporated biological realities like data noise and spatial contact constraints (neu-
rons must be in physical contact to connect). Applying this to C. elegans uncovered
a network of 19 gene-gene interactions that likely govern the formation of electri-
cal synapses. Notably, five of these predicted interactions were supported by prior
experimental evidence, lending credibility to the model’s predictions.

Following Barabási’s work, Qiao (2024) introduced a bilinear modeling approach
to link neuronal gene expression profiles to a neuronal type connectome. The method
takes two sets of inputs: gene expression data for each neuron (or cell type) on the
presynaptic side and on the postsynaptic side. It then learns a matrix factorization
that predicts the strength of the connection between any pre-post pair as a function
of their gene profiles. The method is likened to a recommendation system: genes of
the source and target neurons interact, like “user” and “item” features, to predict
a “rating”, i.e. the connectivity likelihood. Qiao tested this model on the C. ele-
gans connectome (neuron-level) and on a mouse retina connectome at the level of
cell types. In C. elegans, the model slightly outperformed a previous state-of-the-art
(the “spatial connectome model”, which incorporated neuron locations) in recon-
structing the network of electrical synapses. Notably, it rediscovered all the gene
interactions that the earlier model had identified and found additional candidate in-
teractions, demonstrating improved sensitivity. When applied to the mouse retina, it
produced known wiring motifs—for example, connectivity between bipolar cell types
and retinal ganglion cells. Notably, the model output was biologically interpretable:
it pointed out specfic genes associated with particular motifs, many of which have
plausible roles in synapse formation.

As the C. elegans connectome is highly consistent across different specimens, it has
proved to be a good testing ground for models linking genetic expression to wiring.
One study to highlight is Barabási’s biclique model, which, using connectivity alone,
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was able to predict group-membership of individual neurons that correlated with
neuron-level genetic expressions. This study stands out among other studies which
explicitly predict the connectivity from the genetics. This dissertation builds upon
such connectivity-first analysis. However, while the wiring rules such as Barabási’s
“connectome model” and Qiao’s “recommender” have focused C. elegans, this dis-
sertation uses high-dimensional mouse brain data to test wiring principles. Applying
generative models to a more complex dataset, the approach tests whether the same
principles hold in mammalian neural networks. The following section will intro-
duce other models that studied mammalian wiring and genetic expressions and will
contrast them with this work.

2.1.3 Structure- and Region-level Computational Models

In mammalian systems, researchers lacked neuron-level data, so they turned to
region-level analysis. Two early studies relied on the Allen Brain Atlas (ABA) for
genetic data while turning to other sources available for connectivity. Using the ABA
in conjunction with the Brain Architecture Management System (BAMS) for connec-
tivity, French and Pavlidis (2011) demonstrated that regions sharing gene expression
profiles tend to share connectivity patterns. They identified genes specifically impli-
cated in neural development and axon guidance as strong predictors of connectivity,
utilizing Mantel correlation (correlation of correlations) to analyze the various brain
regions. Concurrently, Wolf et al. (2011) took a predictive approach, using a linear
SVM classifier to predict the connectivity from the genetic data across 146 regions
using cross-validation. They relied on the ABA mice data but used a rat connec-
tome, for which data was available, and which mapped onto the mouse brain at the
structural level. They were able to attain a high predictive power of the connectivity,
with mean Area Under the ROC Curve (AUC) between 0.73 and 0.74. These studies
were the first to integrate whole-brain rodent transcriptomic and connectomic data.

Wiring prediction studies were extended to the Allen Mouse Brain Connectivity
Atlas (MBCA) upon its final release in 2014. Ji et al. (2014) performed an integrative
study of the mouse brain by combining the Allen Mouse Brain gene expression atlas
with the ABA. They built machine learning models to predict the presence of a pro-
jection between any two brain regions from their gene expression patterns. The key
finding was that gene expression is strongly predictive of mesoscale connectivity in
the mouse brain. In fact, using the expression patterns of about 4,000 genes across
the brain, their model could predict region-to-region connections with about 93%
accuracy (after binarizing connectivity strength). Remarkably, they achieved about
91% accuracy using only a small subset of 25 top predictive genes. These genes were
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implicated in roles in neural development and synaptic function, suggesting a mean-
ingful biological signal. Ji et al. (2014) demonstrated that at a coarse resolution (i.e.
brain areas as nodes), the molecular signature of a region encodes its wiring. Further
methodological advancements by Roberti et al. (2019) incorporated neural network-
based models (multi-layer perceptrons), achieving improved prediction performance
compared to previous linear methods, achieving an AUC of 0.943.

Building on structure-level studies, researchers have pushed to finer resolutions
where local variations in gene expression and connectivity can be captured. In a 2015
follow-up, Fakhry and Ji (2015) extended their analysis to the voxel level in the mouse
brain. They divided the brain into small voxels (grid elements 200um in size) and
predicted voxel-to-voxel connectivity based on gene expression in those voxels. Even
at this high resolution (tens of thousands of voxels), gene expression retained strong
predictive power, again about 93% accurate in classifying connected vs. unconnected
voxel pairs. Using only about 100 genes still gave >80% accuracy. Notably, the
most predictive genes at voxel-scale were related to synaptic transmission, aligning
with the theory that neurons’ gene expression profiles determine their projection
patterns. This fine-scale model implies that connectivity is imprinted even in local
gene expression variations.

Subsequent studies confirmed and extended these findings, finding links between
different species models. For example, Fornito et al. (2019) identified transcriptomic
signatures distinguishing hub regions in mouse and human networks. Therefore,
conserved transcription factors can play similar organizational roles between mul-
tiple species. Studies in humans, though lacking detailed data available in simpler
model animals, also reveal a link between genetics and connectivity as evidenced by
heritability (twin studies), association studies (gene-trait correlations), and spatial
transcriptomics (genetic expression and connectivity imaging) (Arnatkeviciute et al.,
2021).

Many previous studies of the rodent brain predicted connectivity directly from
gene expression data using supervised learning, mapping observed gene expression
patterns to region-to-region connectivity (genetics → connectivity). In contrast,
this dissertation employs latent variable modeling, which provides greater flexibility.
Rather than learning a direct mapping, the approach begins by extracting latent spa-
tial variables from the observed connectivity using a generative model. These latent
factors are then used to predict and explain gene expression profiles (connectivity →
latent variables → genetics).

The latent variable approach is more complex than direct supervised methods,
but it also provides a richer and more informative framework for understanding
brain wiring. Supervised models constrain the hypothesis space to functions of the
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observed genetic expressions, limiting the types of explanations they can offer for
connectivity. In this dissertation, the latent variables instead discover spatial dis-
tributions—termed “barcodes”—that explain the connectivity structure. Learning
these underlying variables is a higher-dimensional and more expressive task than
simply learning readout weights from measured genes.

The latent variable approach makes it possible to address a different scientific goal.
Whereas earlier work primarily focused on identifying individual genes involved in
neural wiring, this dissertation investigates how genetic expression might encode
connectivity. By generating different hypothetical codes through generative models
of connectivity and comparing them against measured gene expression, it is possible
to evaluate the plausibility of various coding hypotheses. If a hypothetical code
aligns well with observed gene expression, it provides a stronger explanation of the
biological process. This generative framework thus enables the comparison of more
complex models of genetic coding, offering deeper insights into both how connectivity
is encoded and how gene expression patterns arise.

This reformulation of the modeling approach—from a direct supervised mapping
to a latent variable framework—enables greater flexibility in the types of generative
models that can be applied to explain brain connectivity. This dissertation intro-
duces, in particular, a developmental generative model inspired by morphogenesis.
Unlike earlier models that imposed only static spatial constraints, such as a pref-
erence for short connections, the developmental approach generates latent variables
through a sequential process in which each region updates its state based on local in-
teractions with its neighbors. These local updates reflect developmental constraints,
such as diffusible signaling and spatially restricted interactions, that shape biological
tissues. By incorporating these dynamics, the developmental model relaxes several
assumptions of previous work and offers a more biologically grounded explanation of
how gene expression patterns and connectivity co-emerge during development.

2.2 Computational Models of Pattern Formation

How do cells assemble into coherent tissues, organs, and bodies? Developmental
biology seeks to answer this question by studying how organisms grow and how
their cells and tissues differentiate over time, guided by chemical signals exchanged
between cells. These signaling gradients create spatial variation in cellular envi-
ronments, driving the emergence of structure and identity across the developing
organism. This section reviews classical models of morphogenesis—the foundational
theory describing how such spatial patterns arise—as well as recent work that uses
machine learning to rediscover or extend these models. This background provides
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the theoretical basis for the developmental modeling framework used in this disser-
tation. Building on these ideas, this dissertation applies a machine learning system
inspired by morphogenesis (the developmental model) to mouse brain connectivity
data, offering a new hypothesis about the developmental processes that shape neural
circuitry.

2.2.1 Classical Models of Morphogenesis

The field of morphogenesis models the system of development as a spatially dis-
tributed process with local signalling and interaction, giving rise to complex patterns
and structures. This view treats development as a kind of computation performed
by cells communicating locally. Classic work by Turing (1952) introduced the idea
of reaction-diffusion systems to explain how an organism’s genes could generate or-
dered patterns (like stripes or spots) without encoding each detail explicitly. Turing
showed that two diffusible substances (morphogens) reacting with each other could
spontaneously form stable periodic patterns, providing a morphological blueprint for
where cells should differentiate. This work was foundational for theoretical develop-
mental biology: it demonstrated how simple chemical rules, encoded in the genome,
might produce complex spatial organization in tissues. Building on this, Wolpert
(1969) French Flag model introduced the concept of positional information, in which
cells read their position in a morphogen gradient and differentiate accordingly. This
framework illustrated how embryonic cells interpret genetic and molecular cues to
reliably create spatial patterns, supporting the idea that local gene expression gra-
dients can yield global structure.

Over the decades, such morphogen-based models of development have been re-
fined and expanded. They form the basis of many computational models of pattern
formation in biology. A famous example from 1988 is a reaction-diffusion model of
skin patterning, which explains how patterns like stripes and spots emerge on animal
coats (e.g. zebras, leopards) due to the interaction of morphogens like activators and
inhibitors (Murray, 1988). A similar model explained the skin patterning of angelfish
(Kondo and Asal, 1995). The reaction-diffusion model provides the mathematical
framework for how local activators and inhibitors can form stable spatial patterns.
The activators increase the concentration of the inhibitor in their vicinity, leading
to feedback loops that generate spots or stripes in the skin. These reaction-diffusion
models are classic examples of abstract patterning processes in biological systems.

Models involving locally interacting morphogens continue to explain a variety
of anatomical processes. In the developing limbs of vertebrates, digit formation is
influenced by several signalling molecules, such as the morphogen Sonic hedgehog



2.2. COMPUTATIONAL MODELS OF PATTERN FORMATION 15

(Shh) (Riddle et al., 1993). A model detailed how a gradient of Shh in the zone of
polarizing activity (ZPA) at the posterior margin of the developing limb bud controls
the number and identity of digits in a gradient-dependent fashion, so that cells closer
to the ZPA expressed higher levels of Shh and resulted in more posterior fates (like
the little finger), while those at the front (anterior) of the limb bud, where Shh
concentration was lower, formed more anterior digits (like the thumb). This Shh-
based patterning demonstrates how morphogen gradients coordinate complex spatial
patterns in limb development. This model supports the concept that differential
gradients of morphogen signalling can give rise to patterned variation downstream.

These examples illustrate the versatility of morphogen-based models in explaining
various forms resulting from development. They provide a computational framework
for understanding how simple molecular interactions can lead to the precise creation
of biological structures. This computational perspective emphasizes that develop-
ment is not simply a process of following genetic instructions but is actively shaped
by feedback and local interactions among the molecular signals present in the tissue.

The model of locally interacting species of molecules described in morphogenesis
is used as a foundation for the developmental model of this dissertation. The de-
velopmental model learns rules defining how local interactions occur to explain the
brain connectivity data, thereby finding a Turing mechanism that is the best fit for
the data. While the rules for dynamics in the model are not put into one-to-one
comparison with chemical interactions—such a correspondence is not supported by
the architecture—modeling the data using such a process model is demonstrated to
improve the predictivity of genetic expression data. Therefore, morphogenesis helps
explain the observed pattern of genetic expression.

2.2.2 Neural Cellular Automata (NCA)

Modern computational approaches have revisited these ideas with new tools —
namely, deep learning. Through the use of learnable pattern generation schemes,
the parameters of an arbitrary reaction-diffusion-type system can be learned in such
as way to produce a target pattern, which is a known two-dimensional image or three-
dimensional structure, which the model will approximate. The hallmark design is
the Neural Cellular Automata (NCA) (Mordvintsev et al., 2020), a differential cel-
lular automata that learns to “grow” a target image by iteratively updating cells
based on local rules. The use of the NCA in this dissertation, along with more
technical details, are outlined in Section 3.2.4. This model, inspired by Turing pat-
tern reaction-diffusion, highlights the power of simple local signalling rules to create
complex patterns and creates an opportunity for automated developmental model
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learning. The NCA has been extended in several directions with an aim to extend
it to more dimensions, to impose additional biological constraints, and to test the
ability for small, simple rules to generate complex patterns.

One straightforward extension of the NCA model was to produce three-dimensional
shapes (Zhang et al., 2021). This implementation uses a voxel lattice rather than
a pixel lattice to represent the data, and the underlying transformations (convolu-
tion and recurrence) remain the same, albeit in three dimensions. The voxel grid is
larger to store in memory, so the size of appropriate patterns must be appropriately
downscaled.

Neural CA models have also been extended to enforce isotropy and rotational
equivariance in their local update rules. Recent work draws inspiration from classic
reaction-diffusion systems to ensure that pattern formation is independent of any
global orientation cue. For example, Mordvintsev et al. (2022) found that by remov-
ing the orientation-specific Sobel filters, leaving only an isotropic Laplacian filter
in the perception kernel — thus forming the isotropic NCA (IsoNCA) — the sys-
tem could still generate complex asymmetric target patterns by breaking symmetry
through the initial conditions or the loss function. An alternative approach to rota-
tional invariance is found in Steerable NCA models, which give each cell an internal
degree of freedom representing its orientation. In this formulation, cells can locally
adjust their orientation (“turn”) as part of the dynamics, achieving a form of rota-
tion equivariance without an external reference frame (Randazzo et al., 2023). The
Steerable NCA can be trained to reliably grow oriented patterns. These developments
show that NCAs can grow grow the directional context that they need to produce
patterns, as in biology; chemical reactions are not typically orientation-dependent.

Parallel efforts have focused on making NCAs more compact. Mordvintsev and
Niklasson (2021) eliminates some redundant perceptual filters to reduce the NCA
model to a very small size, resulting in the µ-NCA (micro-NCA). In this approach,
the entire NCA update rule is parameterized by only a few hundred weights – the
smallest variant uses just 68 parameters – yet it can generate intricate, varied textures
comparable to those produced by much larger models.

The NCA model is the core of the developmental model, to be introduced in Sec-
tion 3.2.4. It serves to explain the developmental origin of morphogen patterns that
guide the neural wiring, as contrasted with the static model, which explains wiring
in terms of gene expressions but does not account for where the gene expressions
come from. While morphogenesis provides the conceptual foundation for the NCA
developmental model, the next section reviews the broader latent variable frame-
work that underpins this work and presents a biological rationale for the relevance
of representational learning to development.
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2.3 Representations in the Brain and in Develop-

ment

The previous section introduced computational models of development that build
structured patterns from local rules and interactions. This section now turns to the
question of how such developmental processes can be understood in informational
terms. In neuroscience, neural activations are commonly interpreted as encoding
information about behaviorally relevant variables—those that help the brain make
predictions or guide actions. Similarly, developmental systems require internal vari-
ables that carry information needed to coordinate tissue growth, resolve ambiguity,
and enforce structural constraints. This analogy supports treating developmental
signals as task-relevant representations, or “developmental codes,” enabling the use
of tools from computational neuroscience to model biological development in this
dissertation.

Subsection 2.3.1 develops this idea by treating development as an inference pro-
cess, in which morphogens and gene expression patterns carry task-relevant informa-
tion. In this framework, spatially distributed signals can be interpreted as internal
representations that help organize the system. The analogy to neural coding becomes
especially powerful when combined with tools from machine learning. As introduced
in Section 2.3.2, deep learning models are often used to extract structured represen-
tations from complex data. This provides a computational lens for understanding
how internal signals—whether in brains or in development—can emerge to solve
problems.

2.3.1 Development as Inference

A thermodynamic, or statistical, view of development considers the inferential or
decision-making process that a developing system performs to achieve complex form.
In this view, life fights entropy by actively maintaining order. A classic perspec-
tive comes from Schrödinger (1944), who argued that organisms avoid decay into
equilibrium by feeding on “negative entropy,” exporting disorder to keep their own
structure intact. This thermodynamic insight that living systems resist the universe’s
tendency toward disorder laid the groundwork for later theoretical biology. Modern
theoretical biologists have formalized this idea. Karl Friston’s Free Energy Principle
(Parr et al., 2022) generalizes this notion by treating living systems as probabilistic
inference machines that minimize their internal “surprise” over time. Under this
principle, development can be seen not as an entropy-minimizing process, but rather
as a free energy minimizing process: an embryo grows (or a brain self-organizes), it
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actively drives its states toward expected configurations, thus resisting chaos in the
face of environmental uncertainty.

This thermodynamic view leads to a perspective of development as Bayesian infer-
ence or prediction. Friston et al. (2015) proposed that morphogenesis (the formation
of body structure, including neural wiring) is essentially an inferential process akin
to the brain’s perception. They cast embryonic self-assembly in terms of variational
free-energy minimization, suggesting that cell communities collectively “compute”
the body plan by minimizing surprise or error from an intended anatomical model.
Cells are hypothesized to share a common generative model (encoded by genetic and
epigenetic information) of the final organism’s form, and development is the process
of inverting that model, each cell using local signals to infer how it should contribute
to the overall anatomy. This view interprets the genetic code not just as a static
model, but as a probabilistic program. Michael Levin and co-workers extended this
model explicitly: they argued that each cell behaves as an information-processing
agent making decisions to fulfill a built-in model of the target morphology. In their
Bayesian formulation, the driving force behind morphogenesis is the maximization of
a cell’s model evidence — achieved by expressing particular receptors and signalling
molecules that align with the cell’s predicted role in the organism. Thus, develop-
ment can be seen as cells performing Bayesian inference, adjusting gene expression
until their local state matches the expected pattern that the collective is trying to
build.

This dissertation leverages the Bayesian development framework in the latent vari-
able model. The system collectively maximizes the probability of the connectivity
data, which is assumed to be the target blueprint structure toward which the model
is aiming. However, corresponding to the “complexity” term in the variational free
energy equations, the models must balance the reconstruction of the connectivity
with constraints on their ability to represent data. The constrained computing ap-
proach proved fruitful, as the models that served the best fit to the biological genetic
expression data — thus the best models of biological self-organization — were those
that were similarly constrained in their complexity. These findings are discussed for
the static latent model in Section 4.4 and for the developmental model in Section 5.2.

2.3.2 Machine Learning for Canonical Solutions

At the intersection of neuroscience and artificial intelligence, a framework termed
goal-driven deep learning provides a method for understanding neural representa-
tions using deep learning models. In this approach, researchers train deep neural
networks to perform tasks analogous to those faced by biological systems (e.g. object
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recognition, navigation, decision-making) and then compare the internal represen-
tations or dynamics of these models to neural data. The underlying hypothesis is
that if a model’s architecture and learning objectives are appropriate, it may discover
canonical solutions – patterns of representation or dynamics – that mirror those used
by real neural circuits. This framework was articulated in work by Yamins and Di-
Carlo (2016), who showed that a deep convolutional network optimized for visual
object recognition could predict neural responses in the primate ventral visual path-
way, effectively mapping model layers to brain areas like V4 and IT cortex. Together,
these studies established goal-driven modeling as a powerful technique: by training
neural networks to solve the same goals as the brain, one can obtain insights into
the brain’s own solution.

Many studies that followed applied this framework to sensory systems, showing
that models that both perform sensory-based decision-making tasks tend to align
with human neural data elicited by the same tasks. For example, vision models op-
timized for object or face recognition have been found to develop brain-like feature
hierarchies, offering quantitative explanations for neural tuning in visual cortical ar-
eas (Cadieu et al., 2014; Yamins and DiCarlo, 2016). In the auditory domain, Kell
et al. (2018) trained a deep network to recognize speech and music and showed that
its internal activations could predict electrophysiological responses throughout the
human auditory pathway. The researchers also searched through various solution ar-
chitectures, showing that the best-fit auditory model had a hierarchical organization
that corresponded to primary and secondary auditory cortices. Such results suggest
that deep networks can serve as in silico proxies for sensory processing, where model
neurons and layers map onto real neural populations in anatomical order.

Goal-driven models have also shed light on spatial navigation and memory repre-
sentations in the brain. A well-studied case is the emergence of grid cells – neurons
that activate in a periodic lattice-like pattern during navigation. Cueva and Wei
(2018) found that when a recurrent network was trained to perform path integration
(updating position from velocity inputs), units spontaneously developed grid-like fir-
ing patterns akin to those observed in the entorhinal cortex of mammals. Along with
grid cells, the network produced other cell types (e.g. border cells) seen in animal
brains, suggesting that these may be a natural solution for encoding space given the
task demands. Complementary results came from deep reinforcement learning: Ban-
ino et al. (2018) trained an agent to navigate in a virtual environment and reported
that its latent representations became grid-like, supporting efficient path planning.
These findings indicate that when artificial agents are trained to solve spatial navi-
gation tasks, they often converge on the same grid cell representations employed by
biological navigation systems.
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Beyond primary sensory or spatial domains, deep learning models have been used
to probe higher-level cognitive computations. Mante et al. (2013) demonstrated
that recurrent neural networks (RNNs) trained to solve cognitive tasks can exhibit
low-dimensional dynamical motifs matching those recorded in prefrontal cortex dur-
ing flexible decision-making. Similarly, Yang et al. (2019) trained a single RNN to
master a battery of abstract working memory and decision tasks, and found that
the network self-organized into specialized subspaces capturing each task’s rules –
mirroring how the primate prefrontal cortex can flexibly reconfigure for different
contexts. This connection points to how task-trained models can reveal principles of
cognitive flexibility and multi-task representation in neural circuits. Recent work by
Miller et al. (2023) extends this idea to meta-learning: they introduced ”disentan-
gled RNNs” that learn interpretable, low-dimensional latent dynamics while fitting
behavioral data. These RNNs recovered known cognitive strategies (e.g. evidence
accumulation or Q-learning-like rules) from raw choice sequences, offering candidate
explanations for the algorithms the brain might be running (Miller et al., 2023). By
compressing complex behavior into human-interpretable components, such models
act as hypothesis generators for the neural mechanisms underlying cognition.

Finally, the goal-driven modeling framework has begun to incorporate large lan-
guage models (LLMs) to tackle language and semantic representations in the brain.
For instance, Caucheteux et al. (2022) showed that the activations of a transformer
language model (GPT-2) could be linearly mapped to fMRI signals recorded as sub-
jects listened to stories – and crucially, the strength of this mapping predicted how
well each subject comprehended the narrative. In parallel, Schrimpf et al. (2021)
reported that neural network models with higher next-word prediction accuracy also
better explain neural and behavioral responses during reading, suggesting a task-
driven convergence between artificial and biological language processing. In a review,
Mineault (2024) discussed the opportunity of foundation models for neuroscience –
large pretrained models (of vision, language, etc.) that can be adapted to brain
data – as a way to derive general-purpose computational explanations across brain
regions. This approach leverages the power of large models that have learned rich
data patterns, but it comes with challenges in interpretability and ethical use.

These studies illustrate how deep learning models, when trained on ecologically
relevant tasks, often converge on representational solutions similar to those in the
brain—providing a tool for formulating and testing hypotheses about neural compu-
tation. Drawing on the analogy established in the previous section, this dissertation
extends the framework of goal-driven deep learning by applying representational
learning to a developmental task. Many of the tools used in this dissertation orig-
inate in the goal-driven deep learning literature. For example, the “gene scores”
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discussed in Section 3.3.2 derive from the “brain scores” of Caucheteux et al. (2022).
This perspective frames development as an inference problem and justifies the use of
machine learning tools to analyze the structure and origin of brain connectivity. The
following chapter introduces the data and modeling framework used to investigate
this idea.
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Chapter 3

Approach

In order to understand the relationship between genetic expression and connectivity,
this dissertation uses latent variable models to produce hypothetical explanations of
the connectivity data. By comparing how well these various models map onto genetic
data, different hypotheses (with different assumptions) can be tested as explanations
for the genetic expression coding of connectivity. These methods thus explain how
genetic expression patterns give rise to connectivity at an informational or coding
level. This section details the methodology, starting from sourcing the biological
data, processing it with latent variable models, and quantitatively evaluating results.

3.1 Biological data

The Allen Mouse Brain dataset was selected because it provides extensive genetic and
connectivity data suitable for latent variable modeling. Gene expression data from
the ABA and connectivity data from the MBCA are registered to the Allen Mouse
Common Coordinate Framework (CCF). This alignment enables direct comparisons
between genetic expression patterns and connectivity.

The complexity of the mouse brain provides an ideal case study for understand-
ing genetic contributions to brain connectivity, potentially generalizable to complex
neural systems.

3.1.1 Gene expression

The gene expression dataset comprises genome-wide in-situ hybridization (ISH) data
for over 20,000 genes in adult mice, available from the ABA. Processed data was

23
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accessed through the Allen API at 200µm voxel resolution. Three types of processed
data are available:

1. Expression density: proportion of pixels expressing the gene.

2. Expression intensity: average intensity of expressing pixels.

3. Expression energy combines both density and intensity, providing a measure
of total expression strength.

For this study, the expression energy format was selected due to its comprehensive
representation of gene expression. To further reduce computational complexity, the
genetic data was voxelized again into a grid at 20-voxel resolution using cubic anti-
aliasing to avoid artifacts.

3.1.2 Connectivity

Connectivity data was obtained from viral tracer experiments, consisting of injec-
tion scans (images immediately after viral tracer injection) and projection scans
(capturing axonal projections). These scans were used to construct a voxel-based
connectivity matrix at the same 20-voxel resolution as the genetic data. Following
the linear regression approach of Oh et al. (2014), injection scans were used as in-
put predictors, and projection scans were used as targets to generate the adjacency
matrix. An L2 regularization parameter (α = 1.0) was chosen to prevent extreme
values, balancing reconstruction accuracy with model stability.

The resulting distribution of connection weights (Figure 3.1) spanned several or-
ders of magnitude, causing larger weights to dominate learning. Thus, the weights
were log-scaled and thresholded (values below 10−5 were removed) to ensure bal-
anced contribution across connections during learning. A positive translation was
also applied, so that an absence of an edge is represented by the value 0.0, and the
remaining edge strengths take on positive values. While binarization of the connec-
tivity strength values was implemented in previous studies, preliminary experiments
using simulated data found that including the variation in edge strength values re-
sulted in a better fit of the static latent model to the underlying data causes.

3.1.3 Brain Volume and Structures

The structural annotation atlas provided by the Allen Institute, aligned to the Com-
mon Coordinate Framework (CCF), was used to define the brain interior at the
20-voxel resolution and to assign anatomical labels to voxels. Voxels were included
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Figure 3.1: Brain Connection Weights. The distribution of connection weight
values that is the raw output of the linear regression algorithm. These values span
multiple orders of magnitude, which biases the resulting error gradient during learn-
ing so that the largest values take precedence. Post-processing to take the log of
these values is therefore applied, allowing for all edges to contribute to the loss func-
tion on a similar scale.

in the brain interior if at least 50% of their constituent pixels carried a valid structural
annotation. These annotations were also used to group voxels into anatomical re-
gions for a region-based cross-validation procedure, described in Section 3.3.2, where
models were trained on some regions and tested on others. Additionally, the annota-
tion atlas was used to verify that the connectivity and gene expression datasets were
aligned to the same voxel grid and that they exhibited expected region-to-region
trends, such as strong reciprocal connectivity within cortical areas and consistent
gene expression within structurally defined regions.

3.1.4 Post-Processing and Validation

Multiple validation steps were performed to ensure correct data processing. Three-
dimensional visualization validated the alignment of genetic and connectivity data,
and statistical checks confirmed accurate voxel-grid alignment. While the left hemi-
sphere was well represented across experiments, the right hemisphere contained many
missing or incomplete entries. As a result, model training included data from both
hemispheres to maximize sample diversity, but gene scores and genetic correlations
(see Section 3.3) were computed exclusively on the more complete left-hemisphere
data to avoid introducing bias or artifacts due to uneven spatial coverage.
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3.2 Architecture Design

Two models—the static model and the developmental model—are introduced in
Chapters 4 and 5 to examine how genetic factors influence connectivity patterns.
Both models produce voxel-based barcodes, or vectors of latent variables, that are
used to predict connectivity. In both cases, representation learning is used to infer
these latent variables from the observed connectivity data.

3.2.1 Representation Learning

Representation learning extracts latent variables z from observed data x using prob-
abilistic modeling Dayan and Abbott (2005). The latents are considered to be a
simpler explanation of the data, or an explanation that is more workable for down-
stream tasks.

For example, the input data may represent raw visual input, such as the input
stream to the visual cortex. The corresponding cause variable may represent e.g.
whether there is a dangerous predator animal in the input. The forward probability
distribution, conditioned on the latent variables, is referred to as the generative
distribution P (x | z), indicating the likelihood of the input data x given the belief
z. The reverse distribution, P (z | x), is referred to as the recognition distribution,
used to ascertain the latent beliefs given the inputs. There is in addition a prior,
P (z), over the various latent variables. The theory of representation learning is
applied in this work to the task of linking connectivity and genetic expression. The
goal is to infer an explanation of the connectivity.

Variational learning introduces an approximate inference strategy for cases in
which computing the true recognition distribution P (z | x) is computationally in-
tractable. To address this intractability, variational methods posit a simpler, param-
eterized approximation distribution, denoted as Q(z | x), aiming to closely match
the true recognition distribution P (z | x). The goal is to minimize the difference
between these distributions, which is captured by the “free energy” objective:

F = EQ(z|x) [logQ(z | x) − logP (x, z)] . (3.1)

Minimizing this free energy function encourages the variational approximation
Q(z | x) to closely approximate the true recognition distribution, leading to latent
representations that effectively capture the structure underlying the observed data.

This section outlined the mathematical framework behind latent variables and
their role in modeling structured data. In this dissertation, latent variables are used
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to identify the hidden factors that give rise to observed patterns of brain connec-
tivity and to investigate how these factors correspond to genetic expression. The
following chapters apply this framework to two modeling approaches—first, a static
model that directly maps latent variables to connectivity, and then a developmental
model in which latent variables emerge through a sequential, spatially constrained
growth process. Before introducing these models in detail, it is useful to begin with
a classical baseline—singular value decomposition (SVD)—which approximates con-
nectivity through a low-rank factorization and serves as the simplest instance of the
static modeling approach.

3.2.2 Singular Vector Decomposition (SVD)

Singular value decomposition (SVD) is a classical method for data compression and
dimensionality reduction, widely used to extract dominant patterns in structured
datasets. In this work, SVD serves both as a baseline for evaluating the developmen-
tal model and as a limiting case of the static model when no additional structure is
imposed. The static model extends this baseline by introducing learnable priors, but
SVD remains a useful starting point for comparison.

Given a connectivity matrix W ∈ Rn×m, representing connection strengths, SVD
factorizes it into three matrices:

W = UΣV ⊤. (3.2)

Here, U and V contain orthonormal singular vectors, and Σ is a diagonal matrix
with singular values, quantifying the relative significance of each singular vector
in reconstructing the original data. In neural connectivity, singular vectors and
values reveal latent structural patterns that correspond to meaningful biological or
functional groupings of neurons or brain regions.

SVD has been used to form node-level latent variables that explain connectivity
data. For example, the “eigenmodel” eigen-decomposition of Hoff (2007), closely
related to SVD, represents connectivity as inner products of latent vertex features.
Each node i is associated with a latent vector ui, and the strength of the connection
between nodes i and j is modeled by a weighted inner-product u⊤

i Λuj, a low-rank ap-
proximation closely resembling SVD. Hoff demonstrated that this latent factor model
can capture both stochastic equivalence (patterns between groups) and homophily
(patterns within groups). Thus, SVD identifies latent dimensions that explain the
underlying structure of connectivity matrices.

Moreover, classical results indicate that retaining the top k singular vectors (low-
rank approximation) through SVD not only produces interpretable latent variables
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but also yields the optimal low-rank reconstruction by minimizing Euclidean distance
to the original matrix (Eckart and Young, 1936).

In summary, SVD functions both as a latent variable estimator and as an optimal
low-rank reconstruction method for the connectivity matrix. In this dissertation, it
is applied to brain connectivity as a starting point for the static model. The next
section describes how the static model builds upon this baseline by introducing prior
distributions that further constrain and interpret the latent structure.

3.2.3 Static Model

Figure 3.2: Architecture of the Static Model. (Left) The static model maps
voxel-based latent variables (“barcodes”) through a decoder to produce an estimated
voxel-to-voxel connectivity matrix. This estimate is then compared with empirical
connectivity data, and the barcode parameters are optimized to minimize reconstruc-
tion error. (Right) The decoder architecture is shown. Each barcode is split into two
disjoint sub-vectors, which are used to predict outgoing and incoming connections,
respectively. Connectivity between any two voxels is estimated by taking the dot
product between their corresponding sub-vectors. This figure introduces the general
framework of mapping latent variables to connectivity patterns using a fixed decoder
function—a setup that will be expanded in later chapters by incorporating develop-
mental constraints.

While SVD provides an efficient, low-error decomposition of the connectivity ma-
trix into k latent variables, it does not account for biological constraints. In real
neural systems, coding variables often reflect trade-offs between accurately repre-
senting signals and minimizing energetic or structural costs. To address this, the
static latent model extends the SVD framework by incorporating such costs di-
rectly into the representation, as illustrated in Figure 3.2.3. The associational rule
applied here—based on dot products between latent variables—is functionally simi-
lar to previous work modeling bicliques through associational wiring rules (Barabási
and Barabási, 2020), or bilinear recommender models (Qiao, 2024), introduced in
Section 2.1. However, this approach differs in that the latent variables are derived
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directly from the connectivity data, without regressing from gene expression, allow-
ing for the explicit introduction of biologically motivated priors. These priors reflect
assumptions about how connectivity information is encoded in biological systems
and form the core of this model’s contribution beyond earlier methods.

To formalize this trade-off between reconstruction accuracy and biological costs,
the static model draws on representational learning theory. This task constitutes an
unsupervised learning problem, in which latent variables represent a variational dis-
tribution over the connectivity data. Under the representational learning framework,
the true distribution of the connectivity data is approximated by the variational pos-
terior derived from latent variables. The presence of a prior distribution over the
latent variables introduces an additional complexity constraint, resulting in a final
“free energy” optimization objective:

F = −EQ(z)[logP (x | z)]︸ ︷︷ ︸
Accuracy

+KL[Q(z)∥∥P (z)]︸ ︷︷ ︸
Complexity

.

Minimizing this free energy objective encourages the latent variables to capture
the features of the data necessary to reconstruct the connectivity matrix accurately
(the accuracy term), while simultaneously constraining the latent representations
from becoming overly complex by staying close to the prior distribution (complex-
ity term). Therefore, minimizing free energy yields latent representations that bal-
ance accurate connectivity encoding and adherence to biologically plausible cost con-
straints. In machine learning, priors introduced via Bayesian frameworks are imple-
mented as regularizers. Thus, free energy minimization can be viewed as a form of
regularized optimization. In this work, the static latent model is fitted by gradient de-
scent, minimizing a loss function comprising reconstruction error plus regularization
cost derived from the prior.

The latent distribution Q(z) can express uncertainty regarding the latent vari-
ables. The distribution is paramaterized by sufficient statistics Q(z | ϕ). By mini-
mizing F , the entire distribution over latent values is taken into account. However,
this dissertation uses a point estimate Q(z) = δ(z − z0), where the variational dis-
tribution is a Dirac delta with mean z0. While this distribution does not model
uncertainty (full uncertainty modeling is left to future work), it simplifies the model.
The complexity term reduces to simply the surprisal of the prior: − logP (z0). The
accuracy term reduces to a single likelihood evaluation, − logP (x | z0). With these
additions, the objective function is a sum of a negative log likelihood reconstruction
term and a prior term:

F = − logP (x | z0) − logP (z0),
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which reduces the optimization to standard Bayesian optimization of a maximum a
posteriori estimate.

The generative model P (x | z) links the latents to the data. It will be called the
decoder. A bilinear decoder is used as follows. The vector zi, the latents at voxel i,
is first subdivided into two components, zi = [zsrci ; ztgti ]. Then the estimate of the
connectivity strength from voxel j to voxel i is given as

M̂i,j = ztgti · zsrcj ,

thus producing the connectivity as a product of the source and target states. The
generative distribution is then modeled as a Gaussian distribution with mean M̂ ,
so that the negative log likelihood reduces to the mean squared error between the
estimated connectivity matrix M̂ and the true connectivity matrix M .

Static latent variables are randomly initialized and iteratively refined through
training. The experiments in this dissertation employed 2,000 training iterations
with a learning rate of 0.001, optimized using the NAdam algorithm (Dozat, 2016).

The genetic data is not used in the loss function; only the reconstruction of connec-
tivity, along with a prior over the latent variables, guides the fitting process. While it
would be possible to define an objective that jointly optimizes for both connectivity
and genetic alignment, such an approach would conflict with the scientific aims of
this work. The goal here is to infer latent variables from first principles, drawing
on ideas about optimal representations to test theoretical hypotheses about the re-
lationship between genetics and connectivity. Incorporating genetic information into
the loss function would compromise the independence of this data, effectively using
validation information during training.

The static model produces latent variables explaining connectivity while adhering
to biologically relevant cost constraints. Chapter 4 presents results of investiga-
tions comparing different cost scenarios as explanations linking genetic expression to
connectivity. The same probabilistic framework will continue to be used in the devel-
opmental model, which extends the static model by constructing the latent variables
using a developmental process over time.

3.2.4 Developmental Model

While the static model enables comparison between different coding hypotheses, it is
limited by its assumption that voxels are independent. Its learned parameters con-
sist only of the barcode values assigned to each voxel, without modeling how these
values might emerge through developmental processes. In contrast, biological gene
expression patterns are not independent across space; they are shaped by complex,
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Figure 3.3: Architecture of the Developmental Model. (Top) The developmen-
tal model, implemented using an NCA block, process a sequence voxel-based states.
It is initialized to a starting “seed” pattern at time t = 0, which is repeatedly passed
through the NCA to accumulate updates over multiple time steps. The final state,
called the “barcodes,” is then passed through the decoder (described in the previous
section) to produce a voxel-to-voxel estimate of brain connectivity. (Bottom) Inter-
nally, the NCA operates on a three-dimensional grid of vector-valued voxel states.
At each time step, convolutional filters (identity, directional Sobel, and Laplace)
are applied to extract a “perception vector” that encodes local spatial information.
These vectors are processed by an update module—a small neural network—that
computes the state updates of each voxel, the output of the NCA block. Thus the
developmental architecture models connectivity as the outcome of a spatially local,
iterative growth process, contrasting with the static model by incorporating tempo-
ral dynamics and neighborhood-based computation.

nonlinear interactions among signaling molecules during development (Kondo and
Miura, 2010). To better reflect this, the developmental model generates voxel-level
barcodes through a sequential process in which voxels interact with their neighbors
over time. The developmental model used here is based on neural cellular automata
(NCA), a framework previously applied to simple pattern generation tasks (Mord-
vintsev et al., 2020). This framework models how morphogen gradients and local
signaling dynamics guide the emergence of spatial patterns in real organisms. Like
the static model, the developmental model produces latent variables that are de-
coded into voxel-to-voxel connectivity estimates. Although it passes through many
intermediate states, only the final state is used as the output—defining the learned
barcodes. By embedding inductive biases that mirror biological development, this
model offers a more realistic hypothesis for how genetic patterns give rise to wiring
and may lead to improved alignment with observed gene expression.

The developmental model draws from computational models of morphogenesis,
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as outlined in Section 2.2. Each voxel is treated as a cell—not a biological cell,
but a region-based processing unit that expresses a vector-valued state evolving over
time through interactions with neighboring voxels. These voxel-to-voxel interactions
are modeled using a three-dimensional cellular automaton, a framework well suited
for simulating spatially distributed systems. In this implementation, the cellular
automaton’s update rule is parameterized as a learnable function, enabling gradient-
based optimization. As the system evolves forward through a sequence of states,
prediction errors are backpropagated through time to update the parameters of the
local update rule. The model is trained to minimize the error between the pre-
dicted and observed connectivity, effectively learning a developmental program that
produces barcode representations aligned with the data.

As a machine learning architecture, the model belongs to the class of neural cel-
lular automata (NCA; see Figure 3.3), introduced in Section 2.2.2. An NCA is a
differentiable extension of classical cellular automata, in which each spatial unit—or
cell—updates its internal state based on its local neighborhood, using learnable rules.
Whereas traditional cellular automata operate with fixed, hand-coded update rules,
NCA use neural networks to learn these update functions directly from data. The ar-
chitecture combines spatially local convolutional operations, as used in convolutional
neural networks (CNNs), with recurrent dynamics that allow it to evolve a sequence
of states over time, similar to recurrent neural networks (RNNs). This allows the
system to model development as a sequential process with local perception, where
each cell updates based only on information from its immediate surroundings.

The perception rules in the developmental model are intentionally constrained, in
contrast to the more expressive convolutional kernels used in standard convolutional
neural networks (CNNs). A typical 3×3×3 convolutional kernel assigns independent
weights to each position in the neighborhood, allowing the network to learn highly
specific, orientation-dependent features. In contrast, biological morphogen signals
are interpreted in a way that is largely invariant to their relative spatial orienta-
tion—cells respond to concentrations rather than directional patterns. To reflect
this biological constraint, the model limits perception to a fixed set of symmetric fil-
ters, which reduce orientation sensitivity while still capturing local spatial structure.
While not fully isotropic, this design introduces a biologically inspired constraint
that encourages generalization across spatial configurations.

That said, cells do rely on spatial gradients during self-organization. To model
this, the NCA applies a fixed set of perception filters — specifically, identity, So-
bel, and Laplace filters — to each channel of the state. The Sobel filters provide
directional information in the x-, y-, and z-axes, while the Laplace filter captures
second-order curvature. Along with the state itself, these produce a perception vector
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with 5 ·D dimensions, where D is the number of state channels. In contrast, a full
3 × 3 × 3 convolution would yield 27 · D dimensions, with unique weights for ev-
ery position in the neighborhood. Thus, the limited perceptual kernel reduces both
the parameter count and the total information available to each voxel, enforcing a
stronger inductive bias toward local, isotropic processing.

The perception vectors thus convey neighborhood information to each voxel.
These vectors are fed into the update rule, which computes the next state vector
for each voxel. The update rule is implemented as a multi-layer perceptron (MLP),
consisting of two hidden layers with ReLU activations. An important hyperparame-
ter is the hidden layer width, which determines the number of units in each hidden
layer. Using more units adds capacity to the module, increasing the number of
perceptual conditions and responses it contains — effectively increasing its overall
complexity.

The output of the update module is added to the input state to produce the next
state in the sequence. In this way, the state vectors accumulate gradually over a
simulation period of 100 time steps. This additive approach, now standard in machine
learning, provides a direct path for error gradients to backpropagate through time,
facilitating more effective training. However, propagating gradients across many
time steps—as in deep recurrent networks—can lead to numerical instability due to
exploding or vanishing gradients Graves (2014). To mitigate this, gradient clipping
is applied, with gradients constrained to a maximum norm of 1.0. This stabilizes
training by preventing large updates that could disrupt learning dynamics.

Let hi,t ∈ RD denote the hidden state vector (also referred to as the developmental
state or barcode) of voxel i at time step t, where D is the number of channels in
the state. The update process unfolds over discrete time steps and is governed by
a function fθ — the update module — parameterized as a multi-layer perceptron
(MLP), which maps local perception to a state update. Each voxel updates its state
using only information from its spatial neighborhood, processed through a fixed set
of convolutional filters.

The perception vector pi,t encodes spatial information from the local neighborhood
of voxel i at time t by applying a fixed bank of filters to each channel of the state
grid. Each filter produces one response per channel, and the results are concatenated
into a single vector. Specifically, the identity filter, three directional Sobel filters (Sx,
Sy, Sz), and a Laplace filter (L) are applied. The resulting vector has dimensionality
5D, where D is the number of state channels.

Let h·,t ∈ RX×Y×Z×D denote the full grid of states at time t. The perception
vector at voxel i is given by:

pi,t = [hi,t, (Sx ∗ h·,t)i, (Sy ∗ h·,t)i, (Sz ∗ h·,t)i, (L ∗ h·,t)i] , (3.3)
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where ∗ denotes 3D convolution applied channel-wise, and the subscript i extracts
the vector at voxel i after filtering. This concatenated vector captures local gradients
and curvature and serves as the input to the NCA update rule.

The update rule is then:

hi,t+1 = hi,t + fθ(pi,t), (3.4)

This formulation enables local, differentiable updates that accumulate information
over time, allowing the system to grow spatially structured latent representations
through repeated application of the update rule.

The process is initialized with a fixed starting seed state. In prior work (Mordv-
intsev et al., 2020), the seed consisted of a single activated voxel at the center of the
domain. This kind of seed is necessary to break translational symmetry—since per-
ception is purely local and invariant to spatial translation, some spatial signal must
be present to orient the system. However, this setup introduced a “center-out” bias:
voxels near the origin received more update steps during growth, leading to asym-
metries in the resulting pattern. To eliminate this artifact, the present work adopts
a full-brain seed. Here, all voxels in the brain interior receive a nonzero initial state.
The first channel is set to one for voxels within the brain and zero elsewhere. The
next three channels are initialized to the (x, y, z) coordinates of each voxel, forming
a smooth morphogenetic gradient that spans the brain volume. This initialization
provides spatial context to each voxel and serves as the starting substrate for the
developmental process.

Through local processing over many time steps, the developmental model accu-
mulates state updates to produce the final voxel-based barcodes. These barcodes
are decoded into an estimate of the brain’s connectivity and are also evaluated for
how well they match measured genetic expression patterns. This comparison to gene
expression serves as a validation metric, assessing whether the developmental process
produces spatial structures that resemble the biological cues thought to guide neural
wiring. While the static model captures high-level correlations between connectivity
and latent structure, the developmental model operates at a lower level, explicitly
modeling how those latent patterns might arise through interactive signaling over
time. Together, they offer complementary perspectives on the relationship between
genetic cues and brain wiring. To evaluate the biological relevance of the patterns
learned by each model, the next section outlines the procedure for comparing latent
variables—whether learned directly or through development—with measured gene
expression data. This comparison provides a framework for assessing how well each
model captures structure consistent with the known genetic scaffolding of the brain.
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3.3 Latent Variable Evaluation

While the models are trained to match the observed brain connectivity using mean
squared error (MSE), their latent variables are also compared to genetic expression
data. This allows different models to be evaluated based on how well their internal
representations match biology. By doing so, the models can be compared as possible
explanations for how genetic expression shapes brain connectivity.

3.3.1 Correlations

The first and most straightforward comparison between voxel-based latent variables
and the voxel-based gene expression is one-to-one correlations sampled across space.
These correlations indicate spatial overlap between any given latent variable and any
gene expression profile. Let gi,k represent the expression level of gene k measured
at voxel i, and let hi,l represent the value of latent variable l at voxel i. Then, the
correlation coefficient Rk,l is calculated, along with the covariance Ck,l, as:

Ck,l =

∑
i

(gi,k − ḡk)(hi,l − h̄l)

N − 1
(3.5)

Rk,l =
Ck,l√
Ck,kCl,l

(3.6)

In these equations, N represents the total number of voxels in the brain interior,
and ḡk and h̄l are the mean values of gene k and latent variable l across all voxels,
respectively.

The correlation is therefore a measure of the association between any given model
latent and gene expression, taken over the brain interior, accounting for the respective
scale of each variable. While this captures pairwise associations, the next section
extends the analysis to account for the full set of latent variables jointly.

3.3.2 Gene Scores

While correlations compare model latents and gene expressions one-to-one, there are
many genes measured in the dataset and many latent variables. To evaluate whether
a model provides a meaningful account of brain development, it is useful to quantify
how much of the genetic expression landscape can be predicted from the learned
representation as a whole. This measure is called the gene score. It is computed
in an analogous way to the “brain score” used to compare fMRI brain responses
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to language model latents in Caucheteux et al. (2022), building upon the analogy
established in Section 2.3.2. It is implemented as follows.

First, the voxels are divided into 13 mutually exclusive sets based on their top-level
structural annotation. Then, training proceeds in a leave-one-out cross-validation
manner, in which a general linear model is trained to predict the entire set of genetic
expression within the 12 training regions given the model latent variables. That is,
a linear combination of the model latents is used to reconstruct an approximation
to the genetic expression within each voxel. The final, left-out region is then used
to test the model. Iterating over the 13 different regions in this way, the predicted
values of gene expression are constructed for every voxel in the brain interior. Then,
the correlation is evaluated between the predicted genetic expression and the actual
genetic expression, and this correlation value is referred to as the gene score for gene
k.

Thus, the gene score represents the ability of the model latents to predict (up to
a linear transformation) each genetic expression factor in the dataset. Models with
higher gene scores are taken to offer more biologically grounded representations of
neural development and are favored as hypotheses for how connectivity may emerge
from gene expression. Frequently reported will be the average gene score, taken to
be the mean score across all genes predicted. While this section discussed the genetic
associations used to evaluate the coding hypotheses as biological theories, the next
section reviews the measures of connectivity prediction, which are used to fit the
latent variables during training.

3.4 Graph Match Evaluation

To evaluate how well each model captures the structure of brain connectivity, two
metrics are used. Mean-squared error (MSE) serves as the training objective, mea-
suring the distance between predicted and observed connectivity. Variance explained
(R2) offers a more interpretable score, reflecting how much of the observed variation
is captured by the model. These metrics support comparisons between generative
models and help assess their explanatory value.

The models were fitted using the MSE loss function, a standard objective for
regression problems. In this context, it corresponds to the negative log-likelihood of
the observed connectivity values under a Gaussian noise model, where the mean is
given by the model’s prediction. This formulation is appropriate for the dataset used
in this work, which represents voxel-to-voxel connectivity as continuous-valued edge
strengths. The MSE loss is defined as:
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MSE =
1

N

N∑
i=1

(yi − ŷi)
2, (3.7)

where yi is the observed value, ŷi is the model prediction, and N is the total
number of edge entries.

While the MSE is useful for training, the values are not very interpretable. When
assessing how well the model performs, the R2 metric is more informative. This
measure captures not only the accuracy of predicted edge strengths for existing
connections, but also how well the model distinguishes between the presence and
absence of edges. The R2 metric is computed as:

R2 = 1 − SSresidual

SStotal

= 1 −
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
, (3.8)

where yi are the true values, ŷi are the predicted values, and ȳ is the mean of
the true values. This expression quantifies the proportion of variance in the data
explained by the model. A value of R2 = 1 indicates perfect prediction, while R2 = 0
indicates that the model performs no better than predicting the mean.

To quantify the relative contribution of these two factors, an analysis of variance
was conducted by partitioning the total variation (SStotal) across all voxel-to-voxel
edges. The edge set was divided into two groups: those with nonzero edge weights
and those with zero-valued edges. The between-group variation (SSbetween) captures
the variance due to the presence versus absence of a connection, while the within-
group variation (SSwithin) accounts for differences in edge strength among existing
connections. This analysis revealed that 86% of the total variation is explained by
the distinction between connected and unconnected voxel pairs, and only 14% is
attributable to variation in edge strength within the connected group. Thus, models
that correctly predict where edges occur can account for the majority of observed
variance in the data.

These evaluation methods establish the framework for how models in this disser-
tation are trained and assessed. In the next chapter, these tools are applied to brain
data to uncover how genetic expression patterns relate to the structure of neural
connectivity.
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Chapter 4

Latent Representations of Brain
Connectivity

This chapter provides computational evidence that gene expression plays a crucial
role in coordinating the wiring of the mouse brain. The primary objective is to
establish a link between two distinct sources of biological data: gene expression
measurements across voxelized space and a voxel-to-voxel connectivity matrix (data
derived in Section 3.1). A latent representation model is used to bridge these data
formats by learning a set of voxel-based latent variables that explain the observed
connectivity (defined in Section 3.2.3). If these latent variables are associated with
the genetic expression in the mouse brain, as evaluated by the average gene score
(defined in Section 3.3.2), then the model explains how the wiring patterns can be
computed from information in the gene expression.

In Section 4.1, it is shown that gene expression is tied to the brain’s wiring by
demonstrating how latent variables trained on mouse connectivity offer an explana-
tion of genetic expression. In Section 4.2, several alternative models of the connectiv-
ity data are evaluated, indicating that the relationship between gene expression and
wiring remains robust regardless of the chosen latent prior distribution. Section 4.3
explores whether sparsity-promoting priors, which encourage more “untangled” rep-
resentations, affect this relationship; no significant difference was found. Lastly,
Section 4.4 unveils a key finding: only at low levels of complexity is the model able
to explain the link between genetic expression and connectivity patterns.

39
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4.1 Linking Connectivity and Gene Expression

A central goal is to demonstrate that the spatial variables learned by the model
are specifically associated with the observed wiring, rather than simply reflecting
general spatial information in the brain volume. To make this distinction clear, the
model trained on real connectivity is compared with models trained on randomized
connectivity. If the learned variables correlate with observed gene expression only
when reconstructing actual brain connectivity—and not when applied to randomized
data—this indicates that the correlation stems from genuine connectivity features
rather than a general coordinate system.

Section 4.1.1 introduces the randomized baselines. The results are then presented
in Section 4.1.2, followed by a discussion in Section 4.1.3.

4.1.1 Experimental Setup

Several methods for randomization are evaluated as baselines to selectively retain
certain information about the brain connectivity and provide a thorough compar-
ison. The first method, referred to here as “FullRandom,” constructs a random
connectivity matrix by shuffling the rows and columns of the original connectivity
matrix. This approach maintains the total number and weights of the connections
but does not preserve per-vertex degree or the average edge distance.

The second randomization method preserves per-vertex degree, thereby retaining
information about the density of connections entering and exiting each region. If the
model captures only connection density rather than regional identity signatures, it
will not distinguish between the baseline data and the degree-preserved randomiza-
tion. Degree-preserving randomization is a standard approach in network analysis,
commonly implemented by swapping or re-wiring edges to maintain degree informa-
tion (Rao et al., 1996). This implementation is termed “DegreePreserve.”

This experiment tests the hypothesis that biological data yields higher mean gene
scores than randomized data. For the brain data, multiple models are trained using
gradient descent with randomized initial conditions (see Section 3.2.3). For the
randomized trials, data is shuffled—while preserving key statistics where noted—and
models are fit using SVD. A Welch’s t-test is then used to assess whether high gene
scores from the true data are statistically distinguishable from those produced by
randomized data.

4.1.2 Results



4.1. LINKING CONNECTIVITY AND GENE EXPRESSION 41

Figure 4.1: Genetic Predictivity of the Latent Variables. Gene scores are
shown for a static model trained to predict either the true mouse brain connectivity
or a set of randomized connectivity datasets. The distribution of gene scores for the
true brain connectivity, compared to those for altered connectivity, indicates that
structured wiring patterns drive the model’s predictions of genetic expression.

Multiple randomized datasets were generated for both randomization methods
—“FullRandom” and DegreePreserve” — and gene scores were computed to assess
the relationship between learned latent variables and genetic expression. As shown
in Figure 4.1, the average gene score served as the primary metric. A Welch’s t-
test confirmed that gene scores from randomized data differed significantly from
those derived from the true data (FullRandom: p = 3.9 · 10−4; DegreePreserve:
p = 3.3 · 10−4), indicating that the true associations are unlikely to be reproduced
by random structure alone.

4.1.3 Discussion

This section establishes a fundamental link between gene expression and brain wiring,
as revealed by the static latent variable model. When reproducing the original con-
nectivity data, the learned latent variables show a strong association with true gene
expression. However, altering the connectivity data reduces this association, indicat-
ing that information embedded in the wiring itself drives the observed relationship.



42 CHAPTER 4. LATENT REPRESENTATIONS OF BRAIN CONNECTIVITY

Alternate randomization schemes, including those that retain specific aspects of the
brain’s connectivity, were evaluated to assess how much of this gene-expression asso-
ciation could be recovered from summary statistics alone. Notably, the gene scores
from true brain connectivity exceed those from the degree-preserving scheme, similar
to the results with full randomization. This suggests that connection density alone
does not account for the link between the modeled and true gene expression—a
notable finding given the wide variability in the number of connections each brain
region receives and projects.

The current analysis did not explicitly account for spatial structural patterns as
a potential explanation for the observed association. Future work could explore
alternative randomization strategies, such as distance-preserving randomization, to
assess the role of spatial autocorrelation as a confounding factor. This is particularly
relevant in light of the tendency for neural connections to form over short distances
due to wiring cost constraints (Bullmore and Sporns, 2012).

Despite these limitations, this dissertation demonstrates robustness under degree
preservation, strengthening the conclusion that gene expression serves as a structured
representation of regional identity—one that maps onto the mouse brain’s specific
wiring architecture.

4.2 Evaluating Various Latent Priors

The results above confirm that the model’s latent variables capture region-specific
identity in a manner aligned with biological gene expression. However, the represen-
tation and its association with true gene expressions may be influenced by the choice
of model. While the SVD-based analysis applied a classical algorithm to produce
variables explaining the connectivity, the treatment did not give consideration to
the probability distribution that these variables come from. Real biological systems
must balance the amount of information represented with a coding cost (discussed
in Section 2.3). Here, the coding cost is represented as a prior distribution over the
latent variables (defined in Section 3.2.1), and the variables are fit to balance the
reconstruction accuracy against the cost of the latent prior (algorithm described in
Section 3.2.3).

To address this concern, this chapter moves away from SVD for producing rep-
resentations. Instead, a gradient descent algorithm is employed to generate latent
representations, balancing the influence of the prior distribution with the goal of
maximizing connectivity likelihood. The aim is to show that, for a range of reason-
able prior distributions, an association remains between the latent variables and true
gene expression. If this relationship persists, then the model indicates a link between
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gene expression and connectivity that is not contingent on the specific prior beliefs
about the coding of connectivity.

4.2.1 Experimental Setup

In biological systems, various metabolic costs can influence the distribution of ex-
pressed factors, and different sources of noise or variable sensitivity may affect the
choice of a final distribution. Overall, these priors reflect the biological costs associ-
ated with encoding information through the physical medium of gene expression.

The different priors are sourced from classic representation theory Dayan and
Abbott (2005). Two different prior distributions are implemented. The first, the
Gaussian prior, is implemented using L2 regularization, which imposes a loss penalty
proportional to the sum-of-squares of each latent variable. The second, the Laplace
prior, corresponds to L1 regularization, which penalizes the latent variables propor-
tional to the sum of the absolute values. Each choice implies a hypothesis about how
genetic expression might encode connectivity.

The effect of regularization on mean gene scores was evaluated by comparing
models trained with and without L2 or L1 priors. A Welch’s t-test was conducted
to determine whether the mean gene score obtained without regularization differed
significantly from those obtained with regularization. To estimate these distri-
butions, multiple latent models were initialized with random weights and trained
under each condition, using a fixed regularization strength taking on the values
α ∈ {0.001, 0.004, 0.01, 0.04, 0.1}.

4.2.2 Results

The gene score metric (described in Section 3.3.2) was evaluated for each prior dis-
tribution. Figure 4.2 shows a representative run with α = 0.04, illustrating the
full distribution of gene scores across all ∼ 20, 000 genes. To assess the impact of
regularization, the mean gene score was compared across models trained with and
without L2 or L1 priors, using 10 random initializations per condition. A Welch’s
t-test found no significant difference in mean gene scores (p > 0.05 for all α values
tested), indicating that regularization did not affect this metric.

Reconstruction accuracy was also unaffected by regularization. In all cases, the
latent variable model reconstructed the connectivity within 5% of the baseline accu-
racy achieved without regularization (α = 0).
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Figure 4.2: Impact of the Latent Prior Distribution on Genetic Predic-
tion. The gene score histogram elicited by each prior distribution — the baseline
(“NoPrior”), the L1 prior, and the L2 prior — shows the effect of each prior on the
predictivity for each gene in the dataset. The choice of prior does not meaningfully
affect how the latent variables predict the genetic expression.

4.2.3 Discussion

The results remain consistent across a range of prior distributions over the latent
variables, including L1, L2, and Gaussian priors. This consistency indicates that the
observed correspondence between connectivity and gene expression is not dependent
on any single assumption about the latent factor distribution. Rather, it suggests
that a shared biological signal—reflected in both the connectivity matrix and the gene
expression data—drives a robust representation that holds across multiple modeling
assumptions. Although each prior imposes different structural constraints on the
latent space (e.g. promoting sparsity versus penalizing large values), gene expression
patterns consistently align with the learned latent factors well above chance. This
robustness supports the conclusion that the observed relationships are biologically
grounded rather than artifacts of a particular modeling choice.
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4.3 Untangling the Representations

The aim in this section is to examine the nature of how genes encode connectivity by
contrasting two primary hypotheses: a mixed coding approach versus an untangled
coding approach. In the mixed coding scenario, identity signatures overlap across
multiple genes, analogous to population coding in neuroscience. This overlap could
provide redundancy that reduces uncertainty, with each gene expression factor po-
tentially encoding multiple variables. Population coding has previously been invoked
to explain how networks of neurons with overlapping Gaussian receptive fields col-
lectively represent a continuous variable such as position Dayan and Abbott (2005).

By contrast, untangling using L1 regularization has been suggested as a method
to untangle variables, pulling variables out of a mixture to be represented uniquely
in the latent variables Bricken et al. (2023). Thus each gene expression factor inde-
pendently represents a specific aspect of cellular identity. Under this scheme, there
is little overlap or redundancy between genes, yielding a more straightforward but
potentially less robust code. Comparing these two coding strategies—mixed ver-
sus untangled—enables a deeper investigation into whether gene expression in the
brain encodes identity signatures in a blended, population-like manner or through
segregated, one-to-one mappings. While the results do not provide strong evidence
favoring either hypothesis, this analysis contributes to understanding how different
coding assumptions affect the interpretability of gene-latent relationships.

4.3.1 Experimental Setup

This experiment tests whether different priors over the latent variables influence their
correspondence to gene expression. Two regularization strategies are compared: an
L2 prior, which allows the latent variables to rotate and form mixed representa-
tions (referred to as the “mixed code” model), and an L1 prior, which promotes
sparse, decorrelated representations (referred to as the “untangled code” model).
Both models are trained to reconstruct the same connectivity data using 16 latent
variables, chosen because this dimensionality best highlights differences between the
regularization schemes.

To assess how individual latent dimensions align with gene expression, one-to-
one correlations were computed between each latent variable and each gene. For
each latent dimension, the gene with the highest correlation was recorded, and the
distribution of these maximum correlations was used to summarize the results. This
approach is appropriate given the large number of genes ( 20,000), as taking the
maximum highlights strong, specific alignments. Averaging correlations across all
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genes would obscure any increase in fit with key genetic variables of interest. The
L1 regularizer aims to encourage a more unique, one-to-one mapping between latent
dimensions and specific genes by redistributing information across the latent space.
To accentuate potential differences, the number of latent variables was fixed at 16.
Models were trained with regularizer strengths α = 0.004, chosen to maintain good
connectivity reconstruction. A Welch’s t-test was used to evaluate whether the mean
of the maximum correlation metric differed across regularization conditions, testing
the hypothesis that L1 regularization increases maximal gene-latent correlations on
average.

4.3.2 Results

While previous analyses showed that overall gene scores are stable across regular-
ization schemes (Section 4.2), one-to-one gene correlations were used to further ex-
amine how latent variables align with biological signals. As shown in Figure 4.3, no
statistically significant differences in one-to-one correlations were observed between
L1-regularized, L2-regularized, or unregularized models (Welch’s t-test, p > 0.05).
These results indicate that, under the conditions tested, the choice of prior does not
have a substantial effect on the alignment between latent variables and individual
gene expression profiles.

4.3.3 Discussion

This study aimed to test whether introducing sparsity through L1 regularization
would lead to more interpretable, one-to-one alignments between latent variables and
gene expression. Prior work has shown that sparse priors can help uncover distinct,
meaningful components in high-dimensional representations, such as monosemantic
features in language models (Bricken et al., 2023) and disentangled representations
in genetic data (Lopez et al., 2023). Based on these findings, it was hypothesized
that promoting sparsity in the static latent model would encourage a more modular
encoding of connectivity, with individual genes aligning more specifically to particular
latent factors.

However, under the conditions tested, L1 regularization did not produce a sta-
tistically significant difference in one-to-one gene-latent correlations compared to L2
regularization or no regularization. The choice of prior had limited influence on the
alignment between latent variables and gene expression, and no consistent advantage
for either coding strategy was observed.

These results suggest that, at least within the scope of this model and dataset,



4.3. UNTANGLING THE REPRESENTATIONS 47

Figure 4.3: Effect of Regularization on 1-to-1 Gene Correlations. One-to-
one correlations between latent variables and gene expression profiles were compared
across regularization conditions. While L1 regularization showed slightly higher mean
correlations than L2 or no regularization, these differences were not statistically
significant. The number of latent variables was fixed at 16 to emphasize potential
contrasts in representational structure. These results suggest that the choice of prior
has limited influence on the alignment between latent variables and individual genes
under the conditions tested.

gene expression may not naturally conform to a strongly modular or untangled code.
Alternatively, the dimensionality, model constraints, or the biological data itself may
mask more subtle effects of sparsity that could emerge under different conditions.
While the idea of modular genetic ”subroutines” (Levin, 2016) remains a compelling
theoretical framework, further investigation is needed to determine whether and how
such structure is reflected in the relationship between gene expression and connec-
tivity.
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4.4 Model Complexity

When comparing models across different levels of complexity, simpler models are
found to yield the best fit to gene expression data. This supports the principle of
Occam’s Razor—that the simplest explanation is often the most plausible. Moreover,
the model that achieves the highest gene score can be interpreted as revealing the
effective genetic complexity of the connectivity data. This interpretation is further
supported by experiments with artificially generated connectivity matrices, which
show reduced gene scores as model complexity increases.

Previous research (reviewed in 2.1) showed that brain connectivity in several ani-
mals exhibits biclique motifs, which are amenable to efficient encoding under a genetic
connectivity model. Such patterns are unlikely to emerge in a random graph model,
and their presence supports the hypothesis that connections emerge from homophilic
wiring principles, where the likelihood of connection depends on the similarity of gene
expression profiles between source and target neurons.

However, such analyses have previously relied on complete connectomes from
smaller organisms such as C. elegans, where the entire connectome is well-mapped
and consistently produced during development. In contrast, the mouse brain presents
greater challenges: its connectivity exhibits substantial individual variability, much of
which arises from experience-dependent plasticity. Additionally, mouse connectomic
data are typically derived from voxelized measurements, which introduce both noise
and sampling limitations. These factors raise uncertainty about whether the princi-
ples observed in simpler systems extend to large-scale, higher-dimensional datasets
like the mouse brain.

This section investigates whether voxel-level connectivity can be efficiently ex-
plained by a barcode-like genetic wiring scheme, in which structured network motifs
emerge from gene expression patterns. Section 4.4.1 presents experimental results
showing how model complexity affects both gene scores and the reconstruction accu-
racy of brain connectivity, revealing a peak complexity level that best aligns with the
genetic data. Section 4.4.3 offers an interpretation of this finding, and Section 4.4.4
extends the analysis to synthetic datasets, supporting the hypothesis that the ob-
served peak reflects the intrinsic latent complexity of the connectivity data.

4.4.1 Experimental Setup

An important lever in the static latent model is the number of latent variables al-
located per voxel, which directly determines the model’s complexity. To assess the
impact of this parameter, a series of models were trained at varying complexity lev-
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els. Two core metrics were evaluated: (1) the R2 score, measuring how well the
model reconstructs the observed connectivity matrix, and (2) the average gene score,
quantifying how closely the model’s latent variables align with empirical gene expres-
sion data. By systematically varying model complexity and tracking these metrics,
the experiment explores the tradeoff between fitting capacity and biological inter-
pretability.
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4.4.2 Results

Figure 4.4: Tradeoff Between Model Complexity and Genetic Predictivity.
As the number of latent variables per voxel increases, reconstruction accuracy of
the connectivity matrix (measured by R2) steadily improves, indicating better fit to
the data. However, the gene score peaks at an intermediate complexity level before
declining, suggesting that overly complex models may overfit the connectivity at the
cost of biological interpretability. This tradeoff highlights a critical point: the model
that best reflects genetic structure is not the most complex, but the one that balances
expressiveness with constraint.

As shown in Figure 4.4, increasing model complexity leads to a consistent rise in
R2, reflecting progressively better reconstruction of the connectivity data. However,
the gene score exhibits a non-monotonic trend: it rises to a peak at intermediate
complexity, then declines with further increases. This peak suggests that while high-
complexity models can memorize the connectivity matrix, they lose alignment with
the structured patterns found in biological gene expression. In other words, simpler
models yield latent variables that are more predictive of genetic structure, whereas
more complex models sacrifice biological relevance in favor of raw reconstruction
power.

4.4.3 Discussion

These results demonstrate a clear relationship between model complexity and the
alignment of latent representations with genetic expression. Although one might be
tempted to interpret the peak gene score as reflecting the “true” number of genetic
factors involved in shaping connectivity, several considerations argue for caution in
making such a direct inference. First, the genetic data itself is broader in scope
than connectivity alone. Gene expression governs an array of cellular and develop-
mental processes throughout the brain, which means only a portion of the genetic
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variation is directly tied to connectivity. At the same time, the connectivity data
available only captures a fraction of the total connectivity information—for instance,
some connections may be missing or subject to experience-dependent variability (see
Section 7.1 for discussion). Together, these factors imply that a strict one-to-one
mapping between the peak gene score and biologically meaningful gene transcription
factors is not supported by the data.

Beyond these constraints, increased model complexity beyond the point of optimal
association with genetic expression can be understood as overfitting, memorizing the
specific points of data rather than the underlying patterns. As the number of latent
variables grows, the model may begin to learn noise or spurious correlations that are
not grounded in true biological signals. Conversely, overly simplistic models fail to
capture important structural patterns. The key is to identify a “critical number” of
latent dimensions that accurately capture the meaningful variation without folding
in extraneous or noisy features.

4.4.4 Artificial Connectivity and Complexity

A key question is whether the observed peak in gene score reflects a bias introduced
by the modeling approach or whether it is driven by properties of the data itself. To
investigate this, artificially generated connectivity datasets with known underlying
complexity are used. The results show that the gene score peaks at the true level of
data complexity, indicating that the effect arises from the structure of the data—not
from limitations or artifacts of the model.

Experimental Setup

Artificial datasets were constructed to test how well the model recovers structure as
a function of the number of generating factors. Each voxel was assigned an artifi-
cial barcode, consisting of two randomly sampled vectors—a source signature and
a target signature—drawn independently from a D/2-dimensional standard multi-
variate normal distribution. The artificial connectivity matrix was computed as the
dot product between the source and target vectors for every voxel pair. Isotropic
Gaussian noise with variance 0.2 was then added to the matrix to simulate mea-
surement noise. Finally, the matrix was sparsified to match the overall density of
the real mouse brain connectivity by thresholding all values below the correspond-
ing percentile. This procedure yielded artificial connectivity data and corresponding
artificial barcodes, parameterized by the number of generating factors (D).

The standard latent variable modeling workflow is then applied: a static model
is trained on the artificial connectivity data, and the resulting latents are scored
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against the ground-truth artificial barcodes. This yields an “artificial gene score,”
which quantifies how well the model recovers the original generating factors. In
doing so, the analysis tests whether the true causes of the artificial connectivity can
be recovered by the modeling pipeline.

Results
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Figure 4.5: Model Complexity versus Data Complexity. In this figure, artificial
data was constructed using “artificial barcodes,” random vectors with 50 (top), 200,
(middle), or 10,000 (bottom) channels. These artificial codes formed the basis of an
artificial connectivity matrix, which was then run through the same analysis pipeline
used for the brain connectivity, resulting in gene scores (left) and R2 (right) metrics.
The figure indicates that the gene scores do pick up on the underlying complexity of
the generated data for these artificially constructed datasets.
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The experiment tested the hypothesis that if the connectivity is generated from
a known number of generating variables, then the gene score will peak at that same
dimensionality during model fitting. As shown in Figure 4.5, artificial connectivity
matrices were generated using barcodes of size 50 and 200. The resulting gene scores
peaked at 52 and 192 dimensions, respectively—representing errors of just 3.8% and
4% from the true number of latent factors. These results confirm that the gene score
reliably identifies the true number of generating factors embedded in the data.

The run using 10,000-dimensional barcodes tested whether the analysis pipeline
contains an intrinsic bias that would produce a peak in gene score even when the
data is generated by a highly complex, non-identifiable process. In this case, no
peak was observed; instead, the gene score steadily increased with model complexity.
However, the overall gene scores remained very low, reflecting the inability of the
model to generalize when the connectivity is determined by too many independent
factors. This result supports the interpretation that the peak observed in earlier
experiments arises from true structure in the data rather than from artifacts of the
modeling procedure.

Notably, in addition to shifting the x-location of the peak, changing the repre-
sentation size also had a pronounced effect on the magnitude of the gene scores.
Two aspects of the data construction process contribute to the difficulty of recover-
ing the original generating factors: the noise added to the connectivity matrix and
the thresholding applied during preprocessing. As a result, increasing the complex-
ity of the data makes it progressively more challenging for the model to accurately
reconstruct the underlying factors.

Discussion

This finding supports the conclusion that the observed peaks in gene score are driven
by the intrinsic complexity of the data, not by any artifact or bias in the modeling
framework. When the number of latent dimensions in the model matches the number
of generating factors used to construct the artificial connectivity, the gene score
reliably peaks—indicating that the model has correctly recovered the underlying
structure. In contrast, when the generating process includes too many independent
factors (as in the 10,000-dimensional case), no peak emerges. This suggests that the
gene score metric is sensitive to the true latent dimensionality of the system.

Biologically, these results are consistent with the hypothesis that mouse brain
connectivity may be shaped by a relatively low-dimensional developmental program.
The appearance of a gene score peak in both biological and artificial datasets suggests
that a limited number of interacting genetic and developmental factors could be
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sufficient to explain large-scale wiring patterns. While this does not prove that brain
connectivity is encoded in a strictly low-dimensional form, it does indicate that
low-complexity models are especially effective at capturing biologically meaningful
structure. This carries important implications: if a small number of core regulatory
signals guide the formation of brain architecture, then it may be possible to identify
interpretable, mechanistically grounded modules that drive neural development.

There is a discrepancy in the magnitude of gene scores between the artificial results
and the brain data (see Section 4.4), with gene scores derived from brain data being
substantially lower on average. In the artificial case, all latent variables contribute
to the construction of connectivity, whereas in the brain, many genes may not play
a direct role in this process. To address this, future work may focus on selecting
a subset of genes known to have mechanistic relevance to neural development (see
Section 7.1.4).

4.5 Conclusion

This chapter demonstrated that gene expression in the mouse brain can encode a
substantial amount of the observed connectivity patterns. By applying a latent
variable model, it was possible to uncover a robust association between voxel-level
connectivity and genetic data—even when tested against randomization baselines
that selectively preserve certain connectivity features. These baselines confirmed
that the link between gene expression and wiring is not explained by simpler factors
such as overall connection density, although additional analyses are required to isolate
the effects of spatial structure and other potential confounding features.

Further investigation using different priors—Gaussian (L2) and Laplace (L1)—showed
that the choice of prior had minimal impact on how latent variables aligned with in-
dividual gene expression profiles. Despite differences in regularization, the overall
association between the latent representations and genetic expression remained sta-
ble. This suggests that the observed biological signal is not an artifact of any specific
modeling assumption, but rather reflects a more general relationship between con-
nectivity and gene expression. While sparsity was hypothesized to promote more
disentangled representations, no consistent evidence was found to support this under
the conditions tested.

Exploring model complexity revealed a fundamental tradeoff between expressive-
ness and biological interpretability. As the number of latent variables increased,
the model became better at reconstructing connectivity (as reflected by higher R2),
but gene scores peaked and then declined. This suggests an optimal complexity
level—one that captures essential structure without introducing noise that obscures
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genetic correlations. This finding echoes Occam’s Razor: the simplest model that
explains the data is often the best. But it also reflects a deeper biological principle.
In development, systems must operate under limited informational and energetic
resources, favoring solutions that achieve maximal effect with minimal complexity.
The peak in gene score may thus reflect not just a modeling sweet spot, but a real
constraint shaping biological organization—one that reappears in the developmental
model, where imposing complexity limits produced stronger alignment with genetic
expression.

Finally, tests with artificially generated data corroborated the notion that peaks
in gene scores as a function of complexity are driven by the inherent complexity of the
data rather than a built-in bias of the model. When the artificial connectivity was
generated using a known number of “artificial genes,” the gene scores peaked exactly
at that dimensionality. This finding confirms that the latent variable framework can
indeed recover biologically meaningful factors when the data provide sufficient signal.

Altogether, these results support the view that gene expression influences the de-
velopmental wiring of the mouse brain, as evinced by latent-variable modeling. Dif-
ferent prior distributions, complexity levels, and randomization baselines all reinforce
the conclusion that genetic factors shape connectivity in structured and interpretable
ways. These insights advance the understanding of how genetic coding strategies
might give rise to the observed macroscale organization of neural circuits, while also
laying groundwork for future exploration of more nuanced or high-dimensional bio-
logical data. The analyses so far relied on a simple static model of connectivity. The
next chapter investigates how incorporating biological constraints—such as local in-
teractions and sequential development—may reveal deeper insights into the genetic
basis of brain wiring.



Chapter 5

Gene Expression as a
Developmental Scaffold

The previous chapter introduced a static latent model in which voxel-based latent
variables explained brain connectivity, offering a potential link between gene ex-
pression and neural wiring. However, the model did not account for how such latent
patterns might arise, nor did it incorporate the biological constraints of development.
In real tissues, complex three-dimensional structures emerge gradually, guided by lo-
cal information, constrained signaling, and a sequential unfolding of events (Turing,
1952). To better reflect these realities, this chapter introduces a developmental model
in which a compact set of parameters encodes a dynamic process that generates the
latent variables over time. By explicitly modeling the incremental, spatially localized
formation of connectivity, the developmental approach imposes stronger structural
constraints and yields representations that are more predictive of gene expression
and more consistent with biological organization.

To justify the constraints placed on the developmental model, a long-standing
theoretical framework is employed: morphogenesis (described in Section 2.2). Under
this framework, cells utilize signaling molecules to establish morphogenetic gradients
that structure and pattern the biological tissue, thus providing important informa-
tion to guide cell differentiation and specialization. Crucially, local processing of
these signaling chemicals, combined with diffusion and other transport mechanisms,
has been shown to explain the wide range of patterned structures found in nature.
This perspective is particularly effective for explaining repetitive or regular patterns,
where similar interactions are repeated across space and time .

The developmental model introduced here aims to uncover these morphogens
in addition to the signals that directly guide wiring. By imposing limits on how
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voxels communicate with one another, additional disambiguating information must
be encoded in the latent variables to ensure consistent reconstruction of the final
pattern. Under this developmental paradigm, voxels encode not only connectivity
but also scaffolding information relevant to generating the tissue’s overall form.

This chapter proposes that, in the mouse brain, gene expression conveys not only
connectivity signals but also morphogenic information essential for developmental
organization. Section 5.1 begins by arguing that such disambiguating information
is required for the consistent assembly of biological patterns. Through a denois-
ing model restricted by local signalling, evidence is presented that morphogens are
indispensable for pattern formation. The developmental model is then applied in
Section 5.2 to mouse brain reconstruction to illustrate that the added restrictions
from biology provide a more accurate representation of gene expression than simpler
alternatives.

5.1 Limitations of the Static Model

This section uses a toy example to illustrate a fundamental limitation of the static
model: the inability to recover or construct certain patterns using only local infor-
mation. The pattern in question is not derived from brain connectivity data, but
serves as a simplified analog to test whether local perception alone can reconstruct
a complex signal. This abstraction allows for controlled experimentation on the
kinds of informational bottlenecks that may also affect models of brain development.
The key idea is that if even a toy pattern cannot be regenerated without additional
signaling cues, then more complex biological patterns—such as those involved in
neural wiring—would almost certainly require them as well. This motivates the in-
troduction of a distinct morphogen-like signal in the developmental model, enabling
coordination and disambiguation during pattern formation.

In essence, the developmental model imposes additional constraints on how pat-
terns form, mandating that each stage arise through locally perceptive processes.
The argument made here is that these developmental coordination constraints —
specifically, the need for cells to first establish identity signatures that subsequently
guide wiring — necessitate signaling extra disambiguating information. This concept
serves as an explanation for the results observed in the developmental model.

To illustrate the limitation of patterns produced by the static model, an exper-
iment was designed to test whether such a pattern contains enough information to
remove noise when limited to local perception. In developmental systems, counter-
acting noise is a central challenge, since biological development can be understood
as resisting a thermodynamic entropy gradient (as discussed in Chapter 2.3.1). This



5.1. LIMITATIONS OF THE STATIC MODEL 59

section addresses the denoising problem using a denoising diffusion model, which re-
moves noise from an image using only local perceptual constraints. As will be shown,
the information contained in the image alone is insufficient to recover from extensive
damage or to regenerate the pattern from a minimal seed. Therefore, in a devel-
opmental context where cells are limited to local perception, the patterns produced
by the static model fall short. Additional disambiguating information is required
to guide the developmental trajectory and determine the final identity signatures of
each region.

The following subsections introduce the denoising task and the local perceptual
module, followed by a presentation of the findings and a discussion of their implica-
tions.

5.1.1 Experimental Setup

To test whether a pattern can be reconstructed under local perceptual constraints, a
denoising diffusion model is trained to reconstruct a single target image from noisy
input. Denoising diffusion models are generative systems that learn to reverse a
gradual noise process: images are corrupted by incremental Gaussian noise, and the
model is trained to reverse this process step-by-step, denoising the image until it
approximates the original.

Typically, diffusion models are trained across large datasets and learn general
strategies for image restoration. In this case, however, only a single target image—a
salamander emoji—is used. The goal is not to train a general-purpose model, but
to assess whether the image can be reconstructed from noise under strict perceptual
limitations. The emoji image is chosen for its simplicity and its patterned, symmetric
structure, which resembles the kinds of spatial regularities found in biological forms.

To constrain the model’s perceptual capacity, a 3×3 convolutional filter is applied
to the image at each time step. In the original full-image setup, the network receives
the entire image as input and produces a denoised version of the entire image as out-
put. In the constrained setup, however, the model is restricted to a sliding 3×3 tile
centered on each pixel. The input to the model becomes just this local 3×3 neigh-
borhood, and the output is a prediction of the denoised value for the center pixel.
This localized processing mimics the conditions of biological development, where cells
must make decisions based on limited, neighborhood-level information. The model
is trained to reconstruct the target image from noisy versions using only these local
observations, simulating the restricted perceptual context of developmental systems.
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5.1.2 Results

Figure 5.1: Denoising with Local Perception. The top image shows the target
pattern used for training. The bottom row displays snapshots from a reverse diffusion
process, which begins from a heavily noised version of the target and incrementally
removes noise over 100 time-steps. The model is constrained to observe only local
pixel neighborhoods. Although the system converges to a stable and locally self-
consistent output, it fails to reconstruct many global features of the original pattern.
This illustrates how local perception alone is insufficient for accurate reconstruction
without additional disambiguating signals.

When trained with full perception—allowing access to the entire image at once—the
model was able to accurately reconstruct the target image from noise. However, when
limited to local perception via 3×3 filters, the model failed to recover the global struc-
ture of the salamander. Although the output converged to a stable, locally consistent
pattern, it lacked many of the essential details of the target, as shown in Figure 5.1.

This result demonstrates a key limitation of local perception: even when local
cues are present, they may be insufficient to resolve global ambiguity. In the context
of development, this illustrates why additional signals—such as morphogens or other
global patterning cues—are necessary to guide the emergence of complex structures.

5.1.3 Discussion

These experiments demonstrate that introducing local perceptual constraints alters
the information available during reconstruction. When the denoising system had ac-
cess to the entire image—as in standard diffusion setups—it successfully reproduced
the target. But when perception was restricted to local neighborhoods, the system
was unable to recover the global structure, even though the output remained locally
self-consistent. It is not that local rules are inherently insufficient, but that they
require additional structure to resolve ambiguities that emerge when global context
is unavailable.

In biological development, morphogen signals play this role. Although they are
locally sensed, their gradients encode broader positional information—allowing indi-
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vidual cells to infer their place within a larger structure. This helps overcome the
ambiguities introduced by strictly local perception and enables coordinated pattern
formation across tissues.

The developmental model introduced in the following sections adopts this frame-
work: it simulates a process where structure emerges from locally informed updates.
To succeed, it must incorporate signals—analogous to morphogens—that provide
disambiguating context needed for organizing complex patterns under perceptual
constraints.

5.2 The Developmental Model

The developmental model (defined in Section 3.2.4) aims not only to generate la-
tent variables that account for connectivity but also to explain how these latent
variables originate through a constrained process that reflects developmental biol-
ogy—specifically, a sequential process governed by local perception. The preceding
section demonstrated that explaining the source of latent patterns inevitably involves
modeling additional guidance signals, which are needed to resolve local ambiguities
and properly assemble the overall pattern. An important question, therefore, is
whether including these coordinating signals leads to a better fit between the model
and the observed genetic expression. If a closer match is indeed observed, it implies
that genetic expression in the brain not only encodes the regional identity signatures
essential for wiring but also carries disambiguating information required to establish
those identity signatures in the first place.

To investigate this possibility, the developmental model is introduced as an alter-
native coding hypothesis. Like the static model, the developmental model generates
the mouse brain’s connectome. However, in contrast to the static approach, the
developmental model also accounts for the origin of latent variables by describing
their spatial distribution through a developmental program. This program defines a
sequence of states for each voxel, where each state update relies on the local neighbor-
hood of voxels. As a result, the developmental model is fundamentally constrained
by local perception and decision-making. A full description of this architecture is
provided in Section 3.2.4. Here the model is evaluated as a hypothesis explaining
the biological development of brain wiring.

5.2.1 Experimental Setup

To evaluate whether additional disambiguating information improves the model’s
ability to predict genetic expression, a developmental model was trained to reproduce
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voxel-wise mouse brain connectivity data. The gene score metric was then assessed
at the final developmental step—the same state used to construct the predicted
connectivity. Because this final state emerges from a sequential process governed by
local interactions, it naturally incorporates auxiliary information that may support
more structured pattern formation.

In the static model, the number of latent variables played a critical role in con-
trolling model complexity—too many led to overfitting, while a moderate number
yielded the strongest correspondence to gene expression (see Section 4.4). To explore
this constraint in the developmental model, an analogous parameter was varied: the
size of the hidden layer in the NCA update rule. While the developmental and static
models differ in architecture, reducing the hidden layer size serves as a proxy for
lowering the model’s internal capacity. This allowed the developmental model to be
evaluated under varying complexity regimes, mirroring the insights gained from the
static case and enabling analysis of how representational quality changes with model
capacity. Hidden sizes were tested at 256, 128, 64, and 32 units.

Because substantial variation was observed in gene score across different hidden
sizes, an additional set of trials was conducted with the hidden size fixed at 32. In
these experiments, the only factor varied was the random initialization of the NCA
parameters, allowing for an assessment of how much variation in gene predictivity
could be attributed to initialization alone, independent of model complexity. The
outcomes of these fixed-size trials were taken to represent the core developmental
model used in comparisons with the static model.

The hypothesis tested was that the developmental model achieves higher mean
gene scores than the static model. To evaluate this, five independent runs of each
model type were trained with randomized initializations, and a Welch’s t-test was
conducted to compare the resulting gene score distributions.

5.2.2 Results
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Figure 5.2: Model Comparison: Gene Scores. Mouse brain genetic predictivity
is shown for the static and developmental models as well as randomized controls. The
developmental model outperforms the static model in explaining gene expression.
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Figure 5.3: Tradeoff Between Model Complexity and Biological Predictiv-
ity. Gene scores (top) and connectivity reconstruction accuracy (bottom) are shown
for developmental models at varying levels of complexity. As model complexity in-
creases, reconstruction performance improves—but the ability to predict measured
genetic expression declines. This tradeoff suggests that simpler models capture a
structure more consistent with biological pattern formation.
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The developmental model achieves higher genetic predictivity than the static
model (Welch’s t-test, p = 0.0049). As shown in Figure 5.2, the best-performing
developmental model reaches a gene score of 0.202, compared to 0.120 for the static
model. While the static model achieves better performance in reconstructing con-
nectivity—explaining 68.6% of the variance compared to 55.6% for the developmen-
tal model—the developmental model produces latent representations that are more
aligned with gene expression. This result suggests that the developmental model, by
simulating a sequential and spatially constrained growth process, captures additional
structure that is present in biological gene expression patterns.

To examine how model complexity affects performance, developmental models
were trained across a range of hidden layer sizes. As shown in Figure 5.3, both
connectivity reconstruction and gene expression prediction vary systematically with
model complexity. Larger models achieve better reconstruction of the observed con-
nectome, but perform worse on gene expression prediction. In contrast, smaller mod-
els—particularly those with 32 hidden units—produce more biologically aligned gene
scores, despite reduced accuracy in connectivity prediction. These findings support
the hypothesis that constraining perceptual and computational capacity encourages
the model to adopt simpler, more generalizable developmental strategies that better
reflect the structure of biological gene expression.

5.2.3 Discussion

This section compared two hypotheses for coding wiring patterns in the mouse brain:
the static model and the developmental model. In the static model, latent variables
are fit to maximize the likelihood of observed data. In contrast, the developmental
model employs a sequential process with local perception to generate latent variables.
Findings indicate that the developmental model achieves higher predictivity of ge-
netic expression, thus providing computational evidence that the developing brain
leverages morphogenetic cues, materialized as gene expression patterns, to coordinate
the emergence of region-specific cell identities.

An additional result of interest was that for the developmental model to exceed the
static model as a hypothesis of gene expression coding, it was necessary to introduce
a measure of complexity within the developmental process itself. In the static model,
performance improved when the complexity of the latent variables was kept relatively
low. However, simply limiting the number of latent variables in the developmental
model did not suffice to outperform the static model. It was also essential to constrain
the developmental model’s perception and decision-making capability. This finding
highlights a broader insight: biological development operates under resource and
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complexity constraints, and successful models must reflect those limitations. To
understand how gene expression gives rise to wiring patterns, it is not enough to
search for patterns in the data; models must be structured to reflect the bounded
computational and physical processes by which real biological systems operate.

The next section will assess an interpretation of why the developmental model
performs so well: it is modeling the spatial structure of the biological data.

5.3 Ablating Spatial Structure

The higher mean gene scores achieved by the developmental model, compared to the
static model, may be attributed to its ability to capture spatial structure inherent in
the data. While the static model treats each voxel independently, the developmental
model defines complex, nonlinear interactions between neighboring voxels that shape
the emergent voxel states. As a result, the developmental model learns a represen-
tation that reflects the spatial organization of brain connectivity, which enhances its
alignment with gene expression patterns.

To test this interpretation, an experiment was conducted in which the develop-
mental model was applied to data with spatial structure removed. Both the connec-
tivity and gene expression data were randomly shuffled, thereby disrupting spatial
relationships while preserving the underlying voxel-level associations between con-
nectivity and gene expression. This ablation led to a marked deterioration in the
gene scores achieved by the developmental model, confirming that its performance
relies on capturing spatial structure present in the original data.

5.3.1 Experimental Setup

The gene expression and connectivity data were both shuffled using a common per-
mutation of voxel indices. The brain interior (see Section 3.1.4) was used to define
the set of candidate vertices for shuffling. A random permutation was generated to
reassign the spatial positions of these vertices, resulting in a shuffled gene expres-
sion dataset and a shuffled connectivity dataset. While the underlying connectivity
values and gene expression levels remained unchanged, their spatial locations were
reassigned, effectively destroying the spatial structure of the data.

Gene scores were evaluated for both the shuffled and baseline datasets. In the
shuffled condition, the model’s latent representations were compared to the shuffled
gene expression data, consistent with the input used during training. In the baseline
condition, unshuffled gene expression data was used for both training and evaluation.
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A Welch’s t-test was conducted to test the hypothesis that ablating spatial struc-
ture through shuffling results in reduced mean gene scores. Five models were trained
for each condition, using independent random permutations in the shuffled case and
different parameter initializations in both cases.

5.3.2 Results

Figure 5.4: Shuffled Performance. Gene scores were evaluated for the baseline
brain data and on the shuffled dataset. The shuffled data results in lower gene
scores, indicating that the spatial structure is critical for the developmental model’s
representation of the data.

The mean gene scores obtained from the baseline data were significantly higher
than those from the shuffled dataset (Figure 5.4), with the shuffled condition produc-
ing markedly lower scores (p = 0.039). This result indicates that spatial structure
plays a critical role in the developmental model’s ability to align with gene expression.

5.3.3 Discussion

These findings demonstrate that the developmental model’s ability to align with
gene expression critically depends on the spatial structure of the data. When spa-
tial relationships between voxels were disrupted through shuffling, the model’s gene
scores significantly declined, indicating that spatial context plays an essential role in
the model’s representational capacity. This suggests that the developmental model
leverages broader spatial patterns to infer biologically meaningful structure.
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5.4 Conclusion

Chapter 5 has illustrated the critical role of gene expression in guiding both the
connectivity patterns of the mouse brain and the broader morphogenetic processes
that organize developing tissue. By contrasting a static latent variable approach
with a developmental model constrained to local perception, it became evident that
a sequential process with local signalling provides a more comprehensive explanation
of gene expression data—especially when the developmental program’s complexity is
carefully managed.

A toy example of denoising diffusion under local perception constraints demon-
strated why, in some cases, local information alone is insufficient to reconstruct
complex patterns. Additional signals, akin to morphogens, must resolve ambiguities
that otherwise prevent the faithful recovery or generation of intricate structures. Ex-
periments on the mouse brain further underscored this necessity: the developmental
model outperformed the static model in capturing gene expression, indicating that
morphogen-like cues are indeed embedded in the genetic code.

These findings suggest that gene expression does more than merely specify the
final wiring layout. It also carries essential information for orchestrating the orderly
emergence of regional identities—a process contingent on both connectivity require-
ments and developmental cues that unfold over time. The developmental model’s
success in representing these features highlights the need to view gene expression
as both a barcode for wiring and a scaffold for pattern formation, offering valuable
insights into the genetic basis of complex neural development.

While this chapter focused on the developmental model as a tool for understanding
biological processes, the next chapter asks a different question: can the same model
be repurposed as a general-purpose network encoder? Specifically, Chapter 6 explores
whether developmental programs can be leveraged for efficient architecture search,
compressed representations, and robust circuit formation—extending their utility
beyond neuroscience into the domain of machine learning and artificial systems.



Chapter 6

Developmental Models as Network
Encoders

Having established that developmental models can more accurately capture the ge-
netic underpinnings of brain connectivity, this chapter turns to their broader utility as
general-purpose network encoders. Developmental models are not only biologically
grounded representations of brain wiring, but they also offer practical advantages
for architecture search and robust computing. In architecture search, the goal is
to optimize the design of model architectures themselves, often across vast search
spaces. While conventional practice requires human engineers to hand-craft archi-
tectures suited to specific tasks, automated methods, including neural architecture
search and zero-shot modeling, seek to automate this process, albeit at significant
computational cost. Developmental encodings offer a more compact and efficient
alternative, capable of inducing structured architectural changes through minimal
modifications to a generative program.

Developmental programs are introduced as a novel way to encode the space of neu-
ral architectures. By modifying a small number of parameters in a developmental
program, one can induce large-scale, structured changes in an architecture—changes
that would typically require multiple individual alterations in a standard encoding
scheme. This property suggests that developmental encoding functions as a com-
pressed representation of connectivity, potentially offering significant savings in both
computation and design effort. Furthermore, as models of biological development,
the specific kinds of patterned changes and architectures formed may resemble neu-
ral architectures in biology. And the wiring is grounded in 3-dimensional space, a
property that facilitates biologically grounded architecture search, a topic that will
be further discussed in Section 7.3.

69



70 CHAPTER 6. DEVELOPMENTAL MODELS AS NETWORK ENCODERS

Another advantage of developmental programs is their capacity for self-repair,
a feature largely absent from conventional circuit designs. Physical damage to a
silicon-based circuit is typically irreparable, requiring costly redundancy to ensure
reliability in mission-critical applications such as satellites. Developmental architec-
tures, by contrast, embed the information needed to rebuild connectivity within the
system itself. This built-in resilience enables the possibility of self-repairing com-
puting systems, which could prove valuable in settings where physical maintenance
is infeasible or prohibitively expensive. The broader implications of such robust
architectures are explored further in Section 7.5.

Among the many properties that make biological development remarkable, two
stand out in the context of this work: efficiency and robustness. Developing organ-
isms build complex structures from compact genetic programs, often reusing sub-
routines to produce repeated or modular anatomy. They also maintain resilience,
correcting local errors and, in some cases, regenerating lost tissues. In the sec-
tions that follow, the developmental model introduced in this dissertation is exam-
ined through this lens. Although it is a computational abstraction, it demonstrates
analogous behaviors—efficiently encoding structure and recovering from simulated
damage—offering insight into how such biological strategies might be captured and
explored through modeling.

6.1 Efficiency

To evaluate the efficiency of the developmental model, it is compared with a static
approach that provides a baseline for compression. The static model uses singular
vector decomposition (SVD), which yields the most efficient linear approximation
for a given number of dimensions (as discussed in Section 3.2.2). Both models are
evaluated across a range of compression levels, with reconstruction accuracy and
parameter count used to assess performance. The results show that while the static
model performs well at higher complexities, the developmental model is more efficient
in the low-parameter regime, capturing essential structure with fewer resources. This
analysis clarifies the extent to which a developmental process can serve as a compact
encoding of brain-like structure.

6.1.1 Results

The performance metric used in this comparison is R2, which measures the amount of
variance in the observed connectivity that each model explains. As shown in Figure
6.1, developmental models achieve higher R2 scores than static models when model
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Figure 6.1: Complexity and Reconstruction Quality. The amount of the con-
nectivity explained (R2 value) is plotted against the complexity of the model, for a
selection of static and developmental models. The results indicate that small devel-
opmental models are particularly efficient representations of the connectivity.

size is small, suggesting greater efficiency in this low-complexity regime. However,
when the model size continues to increase, static models eventually surpass devel-
opmental models in efficiency. When the number of static latent variables grows
sufficiently, the static model approaches of the connectivity variance.

6.1.2 Discussion

Singular value decomposition (SVD) is a standard compression method for network-
level connectivity. It treats the connectivity matrix as a low-rank approximation
problem, identifying global structure without taking spatial context into account.

In contrast, the developmental model is explicitly grounded in spatial relation-
ships. The efficiency comparison between the two sheds light on spatial regularities
in the data that SVD does not exploit. Such regularities are expected for several
reasons. First, neural connectivity often follows energetically efficient patterns, with
connections more likely between nearby regions (Bullmore and Sporns, 2012). Sec-
ond, the dataset, produced by viral tracer imaging, includes not only source and
target regions but also the full trajectory of axonal projections, which introduces
additional spatial correlations that static linear models like SVD are not equipped
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to compress efficiently.
The developmental model’s strong performance at lower complexity levels sug-

gests that these spatial patterns are not only present but structured in a way that
can be captured by a simple generative process. In natural systems, developmental
programs often reuse local subroutines to build repeated anatomical motifs—for ex-
ample, the modular patterning of leaves or vertebrae—reducing the need to encode
each structure independently. The efficiency of the developmental model suggests
that similar patterned regularities may exist in brain wiring. These regularities may
reflect basic spatial trends or more complex motifs embedded in the developmental
process. The results provide computational evidence that the connectivity in this
dataset is structured in a way that can be effectively captured by a developmental
mechanism.

6.2 Robustness

Developing biological systems must contend with injury, noise, and uncertainty.
Physical lesions, toxic interference, or stochastic developmental fluctuations can all
disrupt normal pattern formation. A system is said to be robust if it can recover
from such disruptions—either by correcting deviations during growth or by actively
repairing damage after the fact. In multicellular organisms, this robustness is enabled
by local communication and feedback: cells perceive their environment, assess local
discrepancies, and make decisions that collectively guide global pattern stability.

To explore whether these principles can be captured in a computational develop-
mental model, this section evaluates the regenerative capacity of the developmental
system when trained on simulated injuries. While the mammalian brain lacks ex-
tensive regenerative ability, modeling recovery in this context serves as a test of
the model’s general robustness. The results illustrate how a locally informed, self-
organizing system can recover from significant structural loss—demonstrating re-
silience, adaptability, and the potential utility of such models in future applications,
including regenerative medicine and self-assembling machines (see Section 7.4).

6.2.1 Experimental Setup

To evaluate the model’s capacity for self-repair, the training procedure includes sim-
ulated developmental lesions. These lesions are introduced by taking partially de-
veloped brain states—intermediate outputs of the model—and ablating a contiguous
region of voxels. The lesion erases the latent variables within that region, reverting
them to the initial seed state. Lesions are spherical, with a radius equal to 20% of
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the brain’s width, and are placed at randomly sampled interior locations to ensure
a wide range of injury types.

The model is trained to recover from these injuries through additional training
steps. In this setup, backpropagation plays a role analogous to evolution: it adjusts
the developmental rules by presenting a more complex environment in which injuries
must be overcome. During training, a pool of previously grown brain patterns is
maintained. For 20% of training steps, the model is initialized from a lesioned inter-
mediate state drawn from this pool. The remaining 80% of training steps initialize
the model from the seed state. No specialized loss function is used for lesion recovery.
The model is trained to produce the same final connectivity pattern regardless of its
initial condition, forcing it to discover local mechanisms that support regeneration.

Once trained, the model is tested by applying new lesions to fully developed brain
states and running the model forward without further learning. In these test-time
conditions, the model receives no additional gradient updates; regeneration occurs
entirely through the forward application of the learned cellular update rules. In this
sense, the capacity for self-repair is embedded in the developmental program itself—a
learned, general-purpose strategy for restoring structure based on local cues.

6.2.2 Results

As shown in Figure 6.2, the developmental model is able to recover a substantial
portion of the original wiring structure following lesion. On average, the model
regains approximately 92% of the original R2 performance achieved when grown
from the seed state. The degree of recovery depends on lesion size: smaller lesions
destroy less of the original structure and permit more accurate repair, while larger
lesions degrade both performance and the system’s ability to fully regenerate the
target pattern.

The recovery trajectory is gradual. After lesioning, the system initially exhibits
a drop in connectivity accuracy. Over subsequent time steps, the latent variables
rebuild toward the original state, guided by local interactions. The final recovered
state does not fully match the original—but it stabilizes at a new plateau, with
substantial recovery of connectivity structure, demonstrating the model’s ability to
self-heal.

6.2.3 Discussion

The regenerative behavior observed here demonstrates that a developmental model
based on local perception and sequential updates is capable of recovering from dam-



74 CHAPTER 6. DEVELOPMENTAL MODELS AS NETWORK ENCODERS

Figure 6.2: Repair After Injury. As the developmental model produces the initial
pattern (blue curve), it incrementally builds up the predicted connectome, increasing
the amount of the true brain network predicted (R2). Then, a lesion is applied to the
system (red line). Despite being in a state it has never experienced during training,
the developmental model is able to rebuild the ablated region (green curve) and
partially recover the original predicted connectome. The plot illustrates the model’s
capacity for self-directed structural repair.

age it has not previously encountered. This behavior arises not from memoriza-
tion, but from general-purpose rules learned during training that allow the system
to recognize and repair discrepancies in local structure. These perception-action
loops—wherein each voxel continuously integrates information from its neighbors
and updates accordingly—form the basis of the model’s robustness.

Such dynamics are significant not only for computational modeling but for broader
scientific and technological goals. Robust developmental models open new paths
toward synthetic biological systems that can self-correct or maintain structure in the
face of disruption. In regenerative medicine, they suggest avenues for engineering
pattern-forming systems capable of autonomous repair. In biological computing or
self-assembling machines, they offer a proof-of-concept for architectures that sustain
functionality through local feedback and adaptation.

While not intended as a direct simulation of mammalian brain regeneration (which
is limited in real organisms), this system offers a toy model of regenerative capacity.
It demonstrates that recovery can emerge naturally from local, distributed rules
without centralized control or special-purpose reprogramming.

That said, important limitations remain. The injury model used here is highly
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simplified—lesions are spherical, clean, and spatially isolated. Real-world devel-
opmental damage is likely to be more irregular and may involve diffuse effects or
conflicting chemical cues. Additionally, in biology, regeneration often uses a distinct
set of mechanisms from development. For example, limb regeneration in salamanders
involves the migration of epithelial cells to form a wound epithelium, the dediffer-
entiation of mature cells, and a dependence on nerve-derived signals such as nAG
to sustain cell proliferation—none of which are involved in initial limb development
(Vervoort, 2011). Despite these limitations, the present work highlights how even
simple developmental models can be made resilient, offering a first step toward un-
derstanding and designing robust self-organizing systems.

6.3 Conclusion

This chapter demonstrated how developmental architectures could enable efficient,
robust network formation. By encoding connectivity through a small set of pa-
rameters that guided sequential, locally informed updates, developmental programs
offered a compressed representation of the underlying structure, outperforming static
models at lower complexity levels. This efficiency stemmed from the ability to induce
large-scale changes in network connectivity through minimal parameter shifts.

Additionally, the capacity for self-repair underscored a key advantage of devel-
opmental architectures. When portions of the pattern were erased or otherwise dis-
rupted, the same local decision-making process that constructed the network could
regenerate lost structure, ensuring greater resilience than conventional systems. This
approach drew inspiration from biological processes, which often relied on iterative
developmental signals and morphogenetic gradients to build, maintain, and even
regenerate tissues.

Taken together, these findings highlighted two powerful benefits of developmen-
tal programs for generative architecture design: efficiency in encoding large-scale
connectivity patterns, and robustness through local self-repair mechanisms. The fol-
lowing section, Future Work, discussed additional insights—particularly how these
architectures compared with, and potentially drew from, similar processes in biol-
ogy.
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Chapter 7

Discussion and Future Work

This section begins by outlining the limitations of the findings presented in the
preceding chapters. It then describes planned extensions to the training framework,
including a new line of research that uses connectomic data to ground the search
for brain-like AI architectures. Ethical considerations are addressed as a necessary
component of this work, given its implications for both neuroscience and artificial
intelligence. The chapter concludes with a discussion of the broader context in which
developmental modeling takes place, highlighting areas where these insights may have
meaningful applications in science, medicine, and engineering.

7.1 Limitations

Developmental models, broadly defined and potentially incorporating greater biolog-
ical complexity in the future, are well positioned to leverage the large-scale connec-
tomic datasets anticipated to emerge in the coming years. The computational model
presented in this dissertation relies on numerous simplifying assumptions about bi-
ological development, axonal targeting mechanisms, and gene expression patterns.
Additionally, the dataset provides only a partial representation of the true develop-
mental processes, omitting biological dynamism and being further reduced in gran-
ularity through post-processing routines necessary for generative modeling analysis.
Explicitly identifying these limitations is critical because it clarifies the boundaries
of the current approach, highlights areas for methodological refinement, and under-
scores the importance of future work aimed at achieving greater biological fidelity
and computational efficiency.
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7.1.1 Capturing Developmental Dynamics with Latent Vari-
ables

This dissertation compared different voxel-based latent variable models based on
how well their latent variables predicted measured gene expression. Latent coding
strategies that more closely align with observed genetic expression are taken to better
reflect the biological development of neural wiring.

However, the recorded genetic expression is only a snapshot of the developmental
process. In fact, gene expressions in developing systems often change significantly
over time, with certain genes becoming inactive or less expressed after their initial
developmental role is complete. This temporal regulation of expression often oc-
curs in genes involved in early neural patterning and embryonic tissue formation.
One example is the role of the LIN-14 protein in C. elegans, which regulates de-
velopmental timing by being highly expressed during early larval stages and then
declining to allow progression to later stages (Ambros, 2000). Additionally, the seg-
mentation clock in vertebrates uses oscillatory expression of genes like those in the
Notch signaling pathway to generate a periodic pattern along the antero-posterior
axis during embryogenesis (Baker et al., 2006; Kageyama et al., 2009). Dynamics
in expression are a normal part of cellular development, as epigenetic mechanisms
such as DNA methylation or histone modifications can suppress previously active
genes, effectively silencing them after they fulfill their developmental function (Reik
et al., 2001). Early developmental genes (such as pluripotency markers) often de-
crease expression as cells commit to specific fates, replaced by lineage-specific genes
that define the final function of the cell (Christophersen and Helin, 2010). Particu-
larly in neural development, some genes active during initial growth phases become
suppressed once neural circuits are established (Cantera et al., 2014; Gurok et al.,
2004) and refined (Flavell and Greenberg, 2008). Altogether, the evidence points to
a complex time-varying program of gene expression.

A limitation of the present study arises from the fact that neural wiring is mod-
eled based on a single static snapshot (the latent variables), and is compared against
a similarly static snapshot of genetic expression data. In reality, gene expressions in
the developing brain change dynamically over time. A potential solution would in-
volve leveraging dynamic genetic expression data, such as that provided by the Allen
Institute’s Developing Mouse Brain project (Lein et al., 2007), which offers in situ
hybridization (ISH) datasets from various developmental stages. However, the de-
velopmental model is not fully equipped to make use of such a resource. Specifically,
the developing brain’s genetic expression data are aligned to a different coordinate
system compared to the adult brain data, making direct comparisons difficult. Even
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if alignment methods were successfully developed, the complexity of mechanical pro-
cesses in brain tissue development—currently not represented in the developmental
model—would create further complications for mapping expression between devel-
opmental stages.

A related extension to improve realism in our developmental model could involve
explicitly incorporating intermediate developmental states into the wiring process,
mirroring the gradual and cumulative nature of biological neural development. While
this would enhance the biological fidelity of the model, it would significantly increase
complexity. Additionally, evaluation remains a challenge because, again, our primary
reference point is currently limited to genetic expression snapshots at one time-
point. Developing robust evaluation methods capable of assessing dynamic model
predictions against dynamic biological data is an open area for future progress.

7.1.2 Mechanics of Development

Biological development involves significant mechanical forces, including bending,
shaping, and tissue deformation. In neural development specifically, mechanical pro-
cesses such as neuronal migration play a crucial role in determining the final struc-
ture and connectivity of the brain. Currently, the developmental model used in this
dissertation does not explicitly incorporate these mechanical aspects. A promising
direction for extending this model would involve integrating mechanical simulations
that account for forces shaping tissue morphology and guiding neuronal migration,
thus capturing additional biological realism.

Another aspect to consider is the locality inherent in neuronal wiring decisions. In
biological systems, neuronal growth cones sense and respond to environmental cues
locally, in contrast to the global wiring rule currently employed by our developmental
model, which transforms latent variables into wiring patterns in a single global step.
An iterative process, where axons and dendrites grow, branch, and form connections
based on local cues over multiple time-steps, would reflect actual neuronal develop-
ment better. Such iterative, local decision-making mechanisms could be introduced
to enhance the biological fidelity of our developmental model.

Integrating mechanical simulations and iterative local wiring decisions into the
developmental model represents exciting avenues for future research. However, these
enhancements would significantly complicate error gradient backpropagation, posing
potential obstacles for optimization. A notable advantage of the neural cellular au-
tomata model currently employed is its balance between realism (local interactions)
and ease of gradient propagation. Future work should explore methods to maintain
or adapt these gradient-propagation properties while introducing more biologically
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detailed mechanisms.

7.1.3 Modeling Uncertainty

In this dissertation, the latent variables encoding connectivity are treated as maxi-
mum a posteriori (MAP) estimates (see Section 3.2.1). However, the encoding prin-
ciple is more general: a full variational distribution, Q(z), can represent uncertainty
over the latent variables. This has particular relevance given the findings in Chap-
ters 4 and 5, where constrained model complexity was shown to significantly influence
performance. Within the variational free energy framework, complexity takes on a
precise mathematical definition, offering a principled way to balance parsimony and
reconstruction accuracy. Adopting a fully Bayesian perspective, where uncertainty
in both latent variables and model parameters is explicitly modeled, could thus yield
models that are better aligned with biological data by naturally including only the
necessary level of complexity. Although this dissertation does not implement such an
approach, future research might leverage this framework to improve interpretability
and better capture the underlying biological mechanisms.

7.1.4 Modeling Specific Genes

A key direction for future work is to refine the genetic input by selecting a subset
of genes known to play a role in neural development. The current model includes
nearly 20,000 genes (see Chapter 3.1), many of which are unlikely to contribute
meaningfully to connectivity formation. By leveraging Gene Ontology (GO) data —
curated functional annotations describing biological processes, cellular components,
and molecular functions (Ashburner et al., 2000) — a more focused set of genes
associated with developmental processes can be used. This targeted selection is
expected to improve gene scores by reducing noise from irrelevant genes, thereby
enhancing the signal relating gene expression to morphogenesis and neural wiring.
Notably, gene scores derived from biological data were lower than those obtained
from artificial data (see Section 4.4.4), where all latent variables contribute directly
to connectivity. In contrast, only a subset of genes in biological systems may be
functionally relevant, and isolating this subset could provide a more accurate measure
of the genetic basis for developmental connectivity.



7.1. LIMITATIONS 81

7.1.5 Data Limitations

There are several important limitations inherent in the connectivity dataset used in
this work. While the data provides a useful signal, it is important to acknowledge
that the data are not perfectly representative of the underlying neural connectivity.

One significant limitation is the absence of synapse-level information. The dataset
employed was derived from tracing experiments, a method that lacks the high-
resolution capacity of, e.g. electron microscopy, which can explicitly map individual
synapses. The distinction is critical because neural connectivity depends fundamen-
tally on synaptic connections rather than mere proximity or anatomical adjacency.
Axons frequently traverse regions without forming synaptic contacts; hence, the
adjacency matrix used to represent connectivity might represent these scenarios in-
correctly as connections.

Another key limitation arises from the voxelization process applied to the dataset.
Voxelization effectively reduces the spatial resolution of the data, which in turn im-
pacts the granularity of the analysis. While this process does offer the advantage
of noise reduction through averaging signals within voxels, it nonetheless constrains
the detail achievable in modeling neural connectivity. After voxelization, the analysis
was conducted on 1,544 interior brain voxels, which, while substantial, is significantly
reduced from the original dataset. Voxelization served to address a limitation stem-
ming from the developmental model, which requires substantial memory resources.
The developmental states at each timestep must be stored explicitly to facilitate
gradient backpropagation, significantly increasing memory demands.

One possible avenue for reducing these memory requirements involves borrowing
techniques from reinforcement learning—particularly those used in Proximal Policy
Optimization (PPO). In PPO and related policy gradient methods, it is common to
use partial rollout windows, or truncated sequences, to approximate gradients while
avoiding the need to store entire trajectories. A similar approach could be applied
to the developmental model by training on shorter subsequences of the developmen-
tal rollout, or by selectively storing a sparse set of intermediate states. This would
relax the requirement to retain the full developmental history for backpropagation
and could enable scaling to higher-resolution voxelizations. Exploring such hybrid
methods, which blend ideas from reinforcement learning and morphogenetic model-
ing, may offer a path forward for handling larger and more complex developmental
simulations.

Future research is poised to scale up these analyses substantially. Addressing the
technical limitations outlined above will unlock significant potential for modeling
large-scale connectomic datasets. Connectomics is a rapidly advancing field, with
increasingly comprehensive datasets expected in the near future. Anticipated devel-
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opments and emerging methodologies in large-scale connectomics will be discussed
in greater detail in Section 7.2.

7.2 The Role of Connectome Data

This dissertation implemented a generative model of connectivity data. Like other
generative models used in goal-driven deep learning (Chapter 2.3.2), such generative
models benefit from large archives of data, which offer the models richer patterns to
encode. This dissertation relied on the MBCA (see Chapter 3.1.2), which offers a
comprehensive coverage of the adult mouse brain collected via hundreds of viral tracer
experiments (Oh et al., 2014). While the data collected is invaluable, the experiments
are very costly, as a unique animal subject is used in each experiment to avoid
overlapping signal, and data must be laboriously registered to the CCF. This section
highlights recent technological advances that may enable more efficient collection of
data, paving the way for more sophisticated descriptive generative models, among
other uses.

7.2.1 Whole-Brain Connectomes Across Species

While current scanning technology (electron microscopy) is expensive, a recent land-
mark project concluded in 2024 with a complete connectomic map of an adult fruit
fly, comprising 140,000 neurons and 50 million synaptic connections (Dorkenwald
et al., 2024). This stands as the largest fully mapped brain wiring diagram to date,
far surpassing the C. elegans roundworm connectome of 302 neurons. The inter-
national FlyWire Consortium of researchers combined AI with painstaking manual
validation to analyze over 100 terabytes of electron microscopy (EM) data to produce
the circuit diagram. The previous record, set in 2023, collected the connectomic map
of a larval fruit fly, consisting 3,016 neurons and 548,000 synapses (Winding et al.,
2023). These studies reflect the rapid rate of progress and investment in large-scale
connectomic mapping.

However, the challenge also scales exponentially progressing to more complex
brains — from ∼102 of neurons (worm) to ∼103 (fly larva), ∼105 (adult fly), ∼108

(mouse), and finally ∼1011 (human) — marking the the next frontier in neuron-level
connectomics. One notable project, called MICrONS, focused on a cubic millimeter
of mouse cortex (visual cortex), which itself contains 75,000 neurons and about 500
million synapses (The MICrONS Consortium et al., 2023). While still too expensive
for single-neuron mapping, the study, which utilized electron microscopy with AI
analysis, yielded a nanometer-resolution voxel-based map, the most detailed look at
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mammalian circuitry to date. A 2023 analysis by the Wellcome Trust estimated that
with current technologies (EM), the cost of a neuron-scale mouse connectome is $7.5-
21.7 billion and would take 10-15 years. This is due to the high cost of EM methods,
which require special infrastructure — vibration-free, temperature-controlled, and
electromagnetically shielded rooms, in addition to the upfront cost and operation
of the machines. It would take about 20 scanning electron microscopes, operating
around the clock, about five years to complete the project. For human brain tissue, a
full-brain map is out of the question, but in 2024 a small cube of tissue one millimeter
wide was analyzed with EM and AI, resulting in a map with 150 million synapses
(Shapson-Coe et al., 2024). This study demonstrated a powerful AI system which
processed the imaging data.

There is immense focus on high-resolution connectomics, which is now made pos-
sible with automated processing of large EM imaging datasets to produce more
meaningful (but still large-scale) maps of neuronal wiring. This dissertation unveiled
a way to make sense of connectomic data with a developmental framework. Future
advances promise to enable high-fidelity reconstruction using a developmental pro-
gram, which not only serves as a simpler explanation of the observed data but also
provides a foundation for practical applications, discussed in Section 7.4.

7.2.2 High-throughput Brain Mapping Techniques

A key driver of today’s connectomics boom is technological innovation that has
vastly accelerated data collection. High-speed, automated electron microscopy (EM)
is central — for example, in 2020 the fly hemibrain project used focused ion beam
scanning EM (FIB-SEM) to image half a fly brain at 8 nm voxel resolution over
months of continuous operation, the largest EM data collection at the time (Xu
et al., 2020). Similarly, automated tape-collecting ultramicrotome systems (ATUM-
SEM) and multi-beam SEM allow rapid imaging of large voluumes. These advances
mean researchers can now aquire petabyte-scale datasets with synapse-level detail.

Another revolution has come from machine learning. Modern deep learning al-
gorithms handle the otherwise intractable task of tracing each neurite and synapse
in EM images. Automated segmentation tools label neurons in the dense EM data,
yielding draft connectomes that are later refined by human experts.

Beyond EM, molecular mapping techniques are emerging. DNA-barcoding meth-
ods, for instance, can map long-range connections by sequencing rather than mi-
croscopy. MAPseq (Multiplexed Analysis of Projections by Sequencing) first demon-
strated that individual neurons could be “tagged” with unique RNA barcodes to
trace where they project in the brain (Kebschull et al., 2016). A more recent in-
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novation, BRICseq, extends this idea to achieve brain-wide individual connectome
sequencing (Huang et al., 2020). BRICseq uses DNA barcodes at both source and
target sites, building upon the single-source technique of MAPseq, to enable neuron-
to-neuron connectivity mapping across the whole mouse brain in single animals. This
technique enables rapid and cost-effective wiring diagrams without needing hundreds
of anatomical tracings.

These molecular mapping techniques build upon light microscopy with cell tracing
techniques used in several large-scale projects. For example, Janelia’s MouseLight
project and the Allen Institute’s cell atlases reconstruct the shapes of thousands of
individual neurons across the mouse brain using fluorescent labeling and light-sheet
microscopes. While not synapse-level, these give wiring blueprints at the single-
cell level for long-range connections. Additionally, advances in tissue clearing and
expansion microscopy promise to make larger volumes optically transparent and
physically enlarged, so that high-resolution imaging of circuits could be done with
light microscopes instead of EM in the future (Chen et al., 2015).

Rapid technological advancement in connectomics has enabled orders-of-magnitude
growth in the size of feasible datasets. The ongoing frontier includes innovations to
EM methods as well as barcoded light microscopy. These advancements foretell a
promising future for downstream analysis such as the developmental models proposed
in this dissertation.

7.3 Brain-like Functional Architectures

How can machines be made to think like people? In recent years, large language mod-
els (LLMs) have revolutionized the field of general intelligence. Despite this, there
is still a gap to close to human-level intelligence (AGI). This section proposes that
connectomic datasets provide a useful guiding signal toward human-like intelligence,
and developmental models provide a solution space that, crucially, can iteratively
complexify in a manner mimicking biological evolution, thus opening a path to func-
tional human-like architectures. This section will compare the approach to current
paradigms in AGI and then propose the method of phylogenetic refinement toward
brain-like functional architectures.
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7.3.1 Cognitive, Emergent, and Connectomic Approaches to
AGI

How to close the cognitive gap between LLMs and humans? One method seeks
to build intelligence by hand-crafting architectures or modules analogous to human
cognitive faculties — called here the ”cognitive” approach. Another strategy, the
”emergent” approach, posits that general intelligence can arise from sufficiently rich
data environments and learning algorithms without predefined modules. The first
strategy models human cognition, while the second strategy models the tasks that
give rise to human-like cognition. The current proposal is a third path, in which
developmental models of wiring link functional architectures to biological connec-
tomic data, thus providing a useful training signal to search for architectures that
not only solve computational tasks, but also resemble the connective structure of
biological networks. By grounding the search for general intelligence in the connec-
tomics of intelligent species, there is a path to machines that think like humans that
relies on fewer a priori assumptions about the nature of human cognition or human
evolutionary environment (ethology). Here we describe the cognitive and emergent
approaches.

The cognitive camp has produced numerous AGI blueprints in the past five years.
Marcus (2020), for example, argued for a hybrid AI that integrates human-like knowl-
edge and reasoning via explicit cognitive models, and Rathi (2022) similarly con-
cluded that integrated cognitive architectures — systems of interacting modules for
different mental functions — offer the most plausible path to human-level intelli-
gence. The MICrONS Consortium et al. (2023) extended this idea by identifying a
comprehensive set of cognitive functions (memory, goal management, social reason-
ing, ethics, etc.) required for general intelligence and proposing a new architecture
that incorporates these interrelated components. LeCun (2022) likewise outlined
an architectural vision combining a predictive world model, hierarchical represen-
tations, and intrinsic motivation, enabling machines to learn and plan more like
animals or humans via self-supervised objectives. Goertzel et al. (2023) advocated
for an integrative design (OpenCog Hyperon) that spans symbolic reasoning and neu-
ral learning, arguing that only a system with sufficient breadth of built-in cognitive
capabilities and modules can achieve AGI.

By contrast, the emergent camp emphasized learning and environment over in-
nate structure, arguing that broad data and experience can yield general intelligence
through emergent behavior. Silver et al. (2021) represented this view by hypoth-
esizing that reward-based reinforcement learning is enough” to drive an agent to
acquire all the abilities associated with intelligence, without the need for hand-coded
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sub-skills. Clune (2020) similarly proposed AI-generating algorithms that meta-learn
their own architectures and learning strategies while creating their own training envi-
ronments, an open-ended approach inspired by biological evolution to ultimately pro-
duce AI. In the same spirit, Hughes et al. (2024) argued that endlessly self-improving
agents — for example, large pre-trained models continually exploring novel tasks and
data — are essential to eventually achieve superhuman intelligence. The outstanding
success of LLMs, which produce seemingly intelligent behavior derived from a large
text corpus, is another trend, and recent studies even reported sparks of AGI” in
GPT-4 (Bubeck et al., 2023).

This work proposes a connectomic approach. Like in the emergent approach,
open-ended environments or AI-generating algorithms produce tasks that drive the
learning architecture to emergently acquire cognitive abilities. However, an addi-
tional training signal is provided, which has to do with the connective architecture,
and which pulls architectures to more closely resemble connectomic data. The con-
nectomic signal can be applied in an outer training loop, thus tuning the task param-
eters until the corresponding architecture resembles biology. In this way, not only are
assumptions removed about the nature of cognition, but also fewer assumptions are
made about the nature of the tasks that generate AI, since the task itself is selected
algorithmically.

7.3.2 Proposed Approach: Connectome-Generating AI-Generating
Algorithms

The approach proposed here combines two fundamental biological processes—evolution
and development—as a means of constructing artificial general intelligence (AGI),
mirroring the processes by which intelligence emerged in nature. This section de-
velops two lines of argument. The first is that leveraging connectomic data pro-
vides a grounded, biologically informed approach to constructing AGI, in contrast to
frameworks rooted in abstract cognitive or behavioral modeling. The second is that
developmental models offer a powerful mechanism for efficiently exploring the space
of neural architectures.

A central challenge in pursuing AGI is that its target remains ill-defined: the func-
tional boundaries of general intelligence—exemplified only by the human brain—are
still poorly understood. Grounding AGI efforts in connectomic data offers a way to
sidestep this ambiguity by anchoring development in the structure of real biological
systems. As discussed in the previous section, cognitive science has not yet produced
a definitive account of the full set of components required for general intelligence,
leaving cognitive-modeling approaches to AGI fundamentally underspecified. Mean-
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while, AI-generating algorithms circumvent the need to explicitly define a cognitive
model, but in doing so, they place the burden on the design of an environment ca-
pable of producing general intelligence—that is, they rely on an implicit ethological
model. Consequently, any attempt to engineer AGI risks omitting essential capac-
ities—such as empathy, social reasoning, or embodied perception—simply because
they are not yet fully formalized or represented in benchmark tasks.

A more grounded approach involves modeling not just the behaviors of the human
mind, but its underlying biological substrate. Extensive empirical data exists on the
brain’s connective architecture. If a model, shaped solely by environmental demands,
independently converges on this structure—a statistically unlikely outcome—there
is strong reason to believe it is approximating the functional dynamics of biological
intelligence.

The motivation for incorporating development alongside evolution arises from the
limitations of evolving neural connectivity directly. By shifting the focus from final
connections to the rules that generate them, developmental models enable the reuse of
local subroutines across space. This mechanism allows for the construction of highly
regular and complex architectures from compact parameterizations, as discussed in
Chapter 6.1. This approach falls under the broader framework of indirect encoding,
in which compact, rule-based genetic descriptions generate large, structured archi-
tectures by leveraging regularities such as symmetry, repetition, and gradient-based
variation. As reviewed by Stanley et al. (2019), these encodings enable the expres-
sion of vast, high-dimensional networks from a relatively small number of parameters,
making it possible to evolve scalable and functionally rich neural systems without
hand-designing their connectivity.

In the developmental model in this dissertation, the wiring pattern emerges from
the interactions of self-organizing agents that cooperate to form the network ar-
chitecture. This creates a rich design space in which the system effectively learns
an emergent multi-agent communication protocol—a powerful mechanism for con-
structing flexible, adaptive architectures. The results presented in this dissertation
demonstrate that such an approach is viable in producing functionally meaningful
structure.

The problem of human-level intelligence would be solved if a network could be
constructed that matches the functional architecture of the human brain — but how
does one get there? As in biology, the answer is a stepwise process. The most promis-
ing way to recapitulate the evolutionary trajectory of brain networks is to produce
them in the same way biology does: through development. Biological complexity
emerges incrementally, a process described by concepts such as phylogenetic iner-
tia—the evolutionary retention of ancestral traits—and the theory of phylogenetic
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refinement of Cisek (2019), which posits that complex neural circuits arise through
iterative elaboration of simpler, functional precursors.

This principle—that functional complexity emerges through incremental refine-
ment—has an analogue in software engineering, where Gall’s Law states that “a
complex system that works is invariably found to have evolved from a simple system
that worked” (Gall, 1977). Therefore, if the goal is to construct a machine learning
architecture capable of solving problems at the level of complexity seen in human cog-
nition, then it must be built through a stepwise process. Developmental systems offer
the most promising pathway toward this end, as they naturally articulate structural
motifs observed in neurobiology. By introducing complexity gradually—through the
same kinds of generative mechanisms used in biological development—such systems
are well positioned to recapitulate the functional architecture of the brain through an
iteratively complexifying process. As demonstrated in Chapter 5, the developmental
model employed in this dissertation exhibits key similarities to biological develop-
ment, suggesting that it captures essential features of the processes by which brain
connectivity emerges. If the goal is to construct systems that mirror the architecture
of the brain, then they must be built the way the brain is built—through a devel-
opmental process that introduces complexity gradually and in biologically plausible
ways.

This proposal builds on the concept of AI-generating algorithms (AI-GAs) (Clune,
2020), which use meta-learning to evolve intelligent systems through interaction
with an environment. But rather than generating intelligence in an unconstrained
emergent process, the approach introduced here explicitly targets the emergence of
connectome-recapitulating architectures. The result is a connectome-generating AI-
generating algorithm (CGAIGA): a system designed not only to produce intelligent
agents, but to do so in a way that mirrors the structural logic of the biological brain.
By “generating the environment from the connectome,” the framework seeks to dis-
cover environmental conditions under which the emergence of a particular neural
structure becomes a likely outcome of the system’s adaptation—effectively treating
the connectome as a constraint on what kinds of tasks the agent must solve.

This is implemented as a nested-loop optimization process: the inner loop trains
the agent that develops within a given environment, while the outer loop adjusts the
environment itself to increase the likelihood that the resulting architecture matches
biological connectomic data. The system begins with minimal, functional architec-
tures—analogous to primitive neural circuits—and expands their complexity over
time, in a process that mirrors both ontogeny (development within an individual)
and phylogeny (evolution across generations). Each stage of structural growth is
shaped by task-based performance signals, ensuring that complexity emerges not
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from arbitrary elaboration or overfitting to a biological template, but from mean-
ingful adaptation to environmental demands. In doing so, this approach offers a
computational model for how intelligence may have emerged in natural systems.

7.4 Regenerative Medicine

Harnessing the power of self-assembling cells is an exciting avenue for technological
progress. Besides producing better AI systems, developmental models are a use-
ful foothold and computational aid in medicine and in the engineering of physical
computers, devices, and materials.

A major goal is to model develop and regeneration processes in silico, so that
we can eventually guide or recapitulate them for clinical purposes, such as limb
regeneration or organ repair (Pezzulo and Levin, 2015). This field, regenerative
medicine, draws on decades of theoretical biology combined with machine learning
to tackle the “big picture” of how cells collectively build and rebuild anatomical
structures.

Early work studied computational models of regeneration in highly regenerative
organisms. For example, in the 1970s, theoretical biologists like Gierer formulated
models of positional information and reaction-diffusion that explained phenomena
such as how a Hydra polyp can regenerate a head at the correct end of a fragment
(Birnbaum and Alvarado, 2008).

Planarian flatworms, long famous for the ability to regrow any cut part, were
the subject of a more recent computational model (Lobo and Levin, 2015). An
evolutionary algorithm optimized a gene network in a “virtual worm” so that its
simulated regeneration matched published experimental results. The resulting model
— essentially a set of rules for how cells decide what to rebuild — highlights how AI
can aid hypothesis discovery in developmental biology.

A core trend is using such models to identify intervention points – in other words,
guiding the search for treatments that can induce or enhance regeneration. La-
gasse and Levin (2023) dubbed the future interventions “morphoceuticals”: drugs
or stimuli that target the collective pattern-regulating mechanisms, rather than a
single molecular pathway. The idea is that by nudging the higher-level control sys-
tems (like bioelectric circuits or morphogen gradients) one could trigger the body to
regrow complex structures on its own, effectively telling tissues what to build.

Regenerative medicine thus moves from descriptive models (showing which gene
affects which) to predictive, constructive models that can be “run” like a recipe to
produce anatomic structures. Influential early works set the stage by asking how
patterns emerge in development, and now modern computational power and biolog-
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ical data are converging to finally decode those instructions and thus illuminating
how to engineer regeneration.

7.5 Self-assembly of Biological Machines

Beyond their relevance to brain development, models of biological self-assembly offer
promising directions for engineering novel forms of intelligent, adaptive machines. In
contrast to conventional systems built from fixed components and top-down instruc-
tions, these systems harness the innate capabilities of living cells—such as growth,
repair, and coordination—to build functional structures from the bottom up. This
section explores how principles of developmental biology and morphogenesis can in-
form the design of such systems, beginning with the role of self-organization, and
extending to the construction of large-scale grown structures and computing devices
assembled from living neurons.

7.5.1 Self-organization

Models of biological self-assembly can map the complex architecture of the human
body, but they also have use outside the body in engineering useful bio-hybrid ma-
chines. Nature demonstrates that complex, adaptive systems can arise without cen-
tral control. In swarms of insects or cells, numerous simple agents following local
rules can self-organize into sophisticated structures with collective intelligence (Risi,
2021). For example, ants form bridges and bees make group decisions with no master
planner. Such systems are highly robust—they adjust to new conditions, heal dam-
age, and continue functioning even if some components fail. These traits motivate
self-assembled biological machines: devices built from living cells that leverage cells’
innate behaviors (such as self-repair and adaptation) to achieve resilience beyond
that of rigid, engineered robots.

Levin’s “Darwin’s Agential Materials” (Levin, 2023) articulated why living cells
are powerful building blocks for machines. Evolution does not work with passive
Lego-like parts; cells have their own agendas and problem-solving competencies,
inherited from unicellular ancestors. Tissues and organs thus form a multiscale com-
petency architecture—they can regulate and adjust their growth or function to reach
a goal form even when perturbed. This built-in intelligence helps explain the speed
and robustness of biological evolution, as cellular collectives can creatively solve mor-
phogenetic problems on the fly. Applying this to engineering, a self-assembling bio-
machine made of such “agential” cells could likewise handle unexpected challenges,
self-correct, or find novel solutions without needing every scenario pre-programmed.
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Researchers note that the traditional line between “machine” and “organism” is blur-
ring: designed living robots have shown surprising, emergent behaviors that prompt
a rethinking of what machines can be. Rather than simple, rigid automatons, they
can exhibit novelty, intelligence, and self-directed actions arising from the collective
behavior of cells.

7.5.2 Grown Structures

Instead of fabricating every component, scientists are exploring how to grow bio-
mechanical structures the way organisms grow tissues or organs. A recent initiative
by DARPA openly imagines “large, self-assembled, mechanically stable biological
growths in space” that could serve as useful structures (Nayak, 2025). For exam-
ple, rather than launching a heavy antenna or space habitat from Earth, we might
seed cells or engineered organisms in microgravity and have them grow a tether, a
large net, or a space station wing in situ. This approach could radically cut costs
and enable structures over 500 m long, positioning biology as a key component of
future in-space construction. On Earth, engineered living materials (ELM) represent
a growing area of research focused on developing building materials that can grow
on demand, self-heal, and adapt to their environment (Wang et al., 2022). These
materials are envisioned as programmable biological systems—such as engineered
bacteria, fungi, or plant cells—that can be shipped as precursors and then culti-
vated in situ into walls, coatings, or structural components. Early examples include
mycelium-based packing foams and bacterial sand bricks (Heveran et al., 2024). The
goal is to preserve life’s dynamic abilities—such as self-repair and environmental
responsiveness—in the final material. Such capabilities could give rise to “smart”
infrastructure, including buildings that seal their own cracks or bridges that reinforce
themselves under stress, much like bone or tree wood.

Researchers are also pioneering synthetic morphogenesis, essentially bioengineer-
ing new multicellular life forms by guilding cell growth. Instead of sticking to evolved
body plans, the idea is to grow novel living structures (or “proto-organs”) from cells,
creating useful biohybrid devices. Ebrahimkhani and Levin (2021) highlight advances
in this field, emphasizing how emergent self-organization can be steered to produce
coherent anatomies with active functions. These “synthetic living machines” include
everything from biohybrid robots (muscle tissues on scaffolds) to entirely scaffold-
free living structures like xenobots. Xenobots are a prime example of a grown bio-
mechanical structure: they are neither traditional robots nor natural organisms, but
clusters of frog cells designed by an evolutionary algorithm and then assembled by
the cells themselves into a functional structure (Kriegman et al., 2021).
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7.5.3 Grown Computers (Neuron-based Machines)

Another frontier of self-assembled biological machines is computing devices made of
living neurons. In this paradigm, networks of neurons (often grown into 3D brain
organoids or arranged on electrode arrays) serve as hardware for processing informa-
tion. The emerging field of organoid intelligence (OI) aims to develop biocomputers
that harness brain cells’ computing capabilities (Morales Pantoja et al., 2023). By
tapping into biological neural networks, researchers hope to build computers that
are more efficient, adaptive, and capable of generalization than today’s silicon-based
AI.

Research on neuron-based computing spans from 2D cultures to complex organoids.
A landmark study in 2022 showed that a layer of living neurons can learn to play the
video game Pong (Kagan et al., 2022). For that setup, called “DishBrain,” scientists
connected 800,000 rat and human neurons grown on a microelectrode array to a
Pong simulation. Signals from the electrodes provided sensory information, telling
the neurons where the ball was, and the neuronal activity controlled the paddle in
the game. The neurons, initially placed randomly on the array, self-organized to
successfully hit the ball, essentially learning over time through feedback. This was
the first demonstration of a goal-directed task in a synthetic neural network. This
study was a proof-of-concept that live neural circuits can perform computations
and adapt based on experience. In three dimensions, brain organoids add architec-
tural complexity that more closely resembles biology. Researchers have successfully
grown organoids the size of peas (50,000 cells), and they plan to assemble clusters of
organoids to form a biological computer. As advances in biological computing blur
the line between engineered systems and living tissue, they also raise pressing ethi-
cal questions—particularly about the use of biological material and the development
of increasingly brain-like artificial intelligence. These concerns are the focus of the
following section.

7.6 Ethics

Computational modeling of development sits at the intersection of biology and ar-
tificial intelligence (AI). This dissertation draws on biological data—such as gene
expression and connectomics—and applies machine learning tools to model neural
development. It also proposes developmental modeling as a route to more brain-like
AI systems. These approaches offer powerful insights and open the door to new
technological capabilities. However, with this potential come ethical considerations.
This section examines the implications of working with sensitive biological data and
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developing systems that increasingly resemble human cognitive processes. Two areas
are addressed in particular: the ethical sourcing and use of biological data, and the
broader societal impacts of brain-inspired AI.

7.6.1 Ethical Use of Biological Data

Generative models of development rely heavily on biological datasets (e.g., connec-
tomic maps, genomic data) obtained from animal models and humans. It is essential
that such data be sourced in an ethical fashion. Research on animal brains is sub-
ject to stringent animal welfare standards. Internationally, scientists adhere to the
“3Rs” principle—Replace, Reduce, Refine—to minimize animal use and suffering
(Hubrecht and Carter, 2019). That is, when possible, researchers seek alternatives
to animal experiments, use the fewest necessary animals, and refine procedures to
cause the least harm. Institutional Animal Care and Use Committees (IACUCs) or
their equivalents review experimental protocols to ensure that the expected scientific
knowledge justifies any animal sacrifice or invasive procedure. For human-derived
data, ethical oversight is especially rigorous: donors and participants must give in-
formed consent, and protocols must comply with frameworks like the Common Rule
in the United States or the GDPR in Europe. Institutional review boards require that
any collection of human brain data (e.g., MRI scans, post-mortem tissue, stem-cell
derived organoids) uphold participants’ rights and privacy (Greely et al., 2018a). The
datasets used in this dissertation—including mouse brain connectomic data and gene
expression atlases—are sourced from publicly available repositories established under
these ethical guidelines. Such measures ensure that ethical integrity is maintained
throughout the research process, from biological data collection to computational
modeling.

After biological data is collected, additional challenges arise regarding its respon-
sible use and sharing. Large-scale neurodata repositories, such as those developed
in connectomics projects, exemplify the need to balance privacy concerns with open
science (Jwa and Poldrack, 2022). On one hand, sharing data accelerates discovery
and is viewed as an ethical duty to maximize the contribution of research partici-
pants. On the other hand, brain data can be deeply personal and identifying. Neu-
roimaging datasets, for example, often contain structural features that can reveal
a person’s identity; recent studies showed that facial images can be algorithmically
reconstructed even from MRI scans that have been “defaced” to remove identifi-
able facial anatomy (Jwa and Poldrack, 2022). Accordingly, data repositories im-
plement strict de-identification procedures and data use agreements that prohibit
re-identification attempts. The Human Connectome Project, for instance, elected
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to share only de-identified MRI data to protect participant anonymity (Elam et al.,
2021). Yet, as machine learning techniques advance, the risk of re-identification or
unintended inferences from neural data remains a moving target (Jwa and Poldrack,
2022). Researchers must therefore treat shared neurodata with caution and recog-
nize that protecting participant privacy is a dynamic and ongoing responsibility. In
this dissertation, all analyses were conducted using public datasets governed by such
safeguards.

There is also a broader consideration of data governance and ownership regarding
biological data. Brain data might be seen as part of an individual’s identity, raising
the issue of who controls its use. Some ethicists advocate for “neurorights” to ensure
protections specific to the brain and mind, including rights to: freedom of thought,
or protection from external interference; mental privacy, or protection of personal
information; and mental integrity, or protection from harm (Ienca, 2021). These
proposed rights are part of a recognition that data derived from the brain deserves
special safeguarding due to its intimate link with personal identity and thought. In
practice, policy frameworks like the NIH BRAIN Initiative’s neuroethics guidelines
(Greely et al., 2018b) explicitly state as a guiding principle to “protect the privacy
and confidentiality of neural data” and to “attend to possible malign uses of neuro-
science tools and neurotechnologies.” Adhering to such codes of conduct throughout
the data lifecycle is critical to uphold public trust and to honor the biological contrib-
utors to the data. These concerns are especially relevant for this dissertation, which
draws from neural datasets and proposes new modeling approaches—underscoring
the need for rigorous, ethically grounded research practices.

Just as biological data must be ethically sourced and handled, there are also
important ethical considerations surrounding the application targets of this work in
artificial intelligence, as will be discussed in the next section.

7.6.2 The Ethics of Brain-Inspired AI

Brain-inspired AI techniques, such as those unlocked by developmental models, are
an emerging technology within the rapidly progressing front of AI innovation. The
implications of this emerging technology on social systems requires careful consider-
ation as AI technology is adopted in increasingly many facets of life.

One of the core challenges posed by brain-inspired AI is its inherent unpredictabil-
ity—especially in systems designed to emulate aspects of human cognition, such as
the connectomic-grounded models explored in this dissertation. If such generalist
agents are realized, they would have potentially many uses cases due to their ca-
pacity for continual learning and contextual understanding (Farisco et al., 2024).
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However, they may also be less transparent and harder to control than small-scope
agents. Unpredictability may in fact be a hallmark feature of general intelligent
agents. Traditional AI systems, such as reinforcement learning agents trained to
play games or optimize specific tasks, operate within well-defined goals. By con-
trast, general AI, such as that emerging from training in open-ended environments,
may not have a singular built in-goal, leading researchers to instead consider the
social values or principles baked into these models in an effort to align them with
human interests (Russell, 2019).

While the behavior of brain-inspired AI systems may be unpredictable, one out-
come is clear: AI will significantly reshape the nature of human labor (Raman et al.,
2025). Recent economic estimates suggest that up to 40% of current jobs globally
could be affected by AI-driven automation (Georgieva, 2024). Unlike earlier automa-
tion waves that primarily displaced routine manual labor, advanced AI—especially
flexible, brain-like systems—may extend automation into cognitive and decision-
making roles. This shift poses both opportunities and challenges, as AI begins to
encroach on professions once thought to require uniquely human intellect (Broady
et al., 2025). Some scholars argue that AI reduces dependence on human labor, con-
centrates productivity gains, and increases inequality by enhancing the bargaining
power of capital holders (Berg et al., 2016). While the long-term effects on la-
bor remain contested, there is broad agreement that proactive governance—through
re-skilling initiatives, economic policy, and labor protections—will be essential to
manage the transition (Shen and Zhang, 2024; Virgilio et al., 2024).

It is essential that AI systems benefit humanity as a whole and not only those who
control the technology. Therefore, access to AI becomes a justice issue, as differential
access across different groups and regions could entrench social inequalities. An
IMF analysis warns that AI could widen the gap between rich and poor nations by
funneling investment and productivity gains primarily to advanced economies already
at the forefront (Alonso et al., 2020). Recognizing these disparities, international
bodies like UNESCO have called for fair governance frameworks, as reflected in
their “Recommendation on the Ethics of Artificial Intelligence” (UNESCO, 2022).
Equally important is the issue of representation: If AI systems are designed and
controlled by a narrow group of people, they are more likely to reflect the values
and assumptions of that group—risking unfair outcomes and excluding people from
different backgrounds or experiences. Such embedded values are especially important
to consider when designing agents through the emergent environments proposed in
this dissertation. If a generalist AI system is trained in the context of a military
strategy game like StarCraft, for example, what kinds of values, assumptions, or
conflict-driven reasoning might emerge—and how might that shape its behavior in
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broader contexts?
As AI systems become more brain-like or human-like ethical questions arise about

the treatment of the agents themselves. Some ethicists argue that if an artificial sys-
tem exhibits a “will to live,” even in a minimal form, it may warrant some degree
of moral status (Coghlan and and Leins, 2020). These concerns are amplified as
AI systems grow more complex, autonomous, and biologically realistic. Philosoph-
ical debates about consciousness, sentience, and agency take on new urgency when
applied to systems that mimic neural computation. There is growing interest in
whether artificial agents may eventually deserve ethical consideration—either due to
cognitive sophistication or the potential capacity for suffering. While no current sys-
tem is believed to be sentient, precautionary principles and early rights frameworks
are beginning to take shape in the AI ethics discourse.

As developmental models begin to reflect biological processes more closely, this
work raises the question of where ethical limits should be placed in the design of
future machine intelligence. While such long-term concerns are relevant, more im-
mediate issues, including labor displacement, are already emerging alongside the
rapid expansion of AI capabilities. The models developed here, which move AI to-
ward brain-like and autonomous behavior, prompt careful attention to their potential
role in shaping social and economic outcomes.

7.7 Conclusion

The preceding sections have outlined both the promise and the challenges of us-
ing developmental models to understand and engineer complex systems. While the
models developed in this dissertation provide a compelling framework for explain-
ing brain connectivity, they are simplifications of biological reality, and extending
them with richer biological detail may yield deeper insights and more powerful pre-
dictive tools. As connectomic datasets grow in scale and resolution—particularly
in higher organisms—they enable more expressive developmental models that bet-
ter reflect the complexity of biological wiring. These models not only offer insights
into the structure of the brain; they also open new pathways toward regenerative
medicine, bio-hybrid machines, and brain-inspired AI architectures. Each of these
domains carries ethical considerations that must be addressed with care. Devel-
opmental modeling is thus not only a tool for scientific understanding, but also a
foundation for technologies with far-reaching societal impact.



Chapter 8

Conclusion

This dissertation applies a generative modeling framework to a developmental biol-
ogy dataset that captures detailed measurements of genetic expression and neural
connectivity in the mouse brain. The central task is to reconstruct connectivity using
a generative model trained without access to gene expression data. Then, following
techniques from neural representation studies, the learned latent variables are com-
pared to gene expression patterns to investigate how genetic factors encode wiring.
A core contribution of this work is the introduction of a biologically grounded de-
velopmental model—one that generates connectivity through a sequential, spatially
localized process. This developmental perspective offers a more faithful account of
how genetic programs unfold over time to shape brain structure.

8.1 Contributions

Chapter 2 established the foundation for the dissertation by forming a synthesis of
three core areas: statistical connectomic models, developmental biology, and compu-
tational neuroscience. It reviewed prior work that identified statistical correlations
between genetic expression and brain connectivity, highlighting the transition from
direct supervised mapping to more expressive latent variable approaches. Novel
methodologies introduced in this chapter extracted spatial “barcodes” that served
as latent representations, offering a richer explanation of how genetic coding might
underlie neural wiring. Building on this representational view, the chapter then
connected classical theories of morphogenesis—such as Turing’s reaction-diffusion
model and the concept of morphogenetic fields—with the deep learning tools used
in modern computational neuroscience. This connection motivated the use of devel-
opmental models not only as biologically inspired architectures, but as mechanisms
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for learning structured representations under spatial and temporal constraints, lay-
ing the groundwork for their application to mouse brain data in the chapters that
followed.

Chapter 3 established the computational framework to explore how genetic ex-
pression gave rise to brain connectivity. The methodology began by detailing the
integration of connectomic and transcriptomic biological data—from the Allen Brain
Atlas and Mouse Brain Connectivity Atlas—aligned to a common coordinate sys-
tem. This data was then pre-processed: gene expression was transformed into an
expression energy measure and voxelized, while connectivity data from viral tracer
experiments was log-scaled and thresholded to ensure balanced analysis.

Two complementary modeling architectures were then introduced to explore how
genetic expression might have encoded neural connectivity. The static model em-
ployed latent variable techniques, inspired by singular value decomposition, to derive
spatial “barcodes” that predicted connectivity patterns while incorporating biolog-
ically motivated cost constraints. Building on this foundation, the developmental
model extended the framework to a lower level of biological realism by simulating a se-
quential, locally interacting process. Drawing on principles of morphogenesis, it gen-
erated latent representations through an iterative growth mechanism implemented
using neural cellular automata. To assess how well these learned representations
reflected biological reality, a suite of evaluation metrics was introduced—quantifying
both how accurately the models reconstructed observed connectivity and how closely
their latent variables aligned with measured gene expression. These included one-
to-one gene correlations, cross-validated gene scores, and graph-level metrics such as
mean-squared error and variance explained.

Chapter 4 demonstrated that gene expression drove mouse brain connectivity by
showing that latent variables learned from actual connectivity data correlated ro-
bustly with genetic expression. Randomized connectivity baselines confirmed that
these associations arose from genuine wiring patterns rather than generic spatial fac-
tors. Testing different latent priors revealed that overall correlations remained stable,
with no significant differences observed between regularization strategies. Expand-
ing on this search for coding principles, an analysis of model complexity showed
that an optimal, intermediate level of latent dimensionality best captured mean-
ingful connectivity features without overfitting noise—suggesting that a relatively
simple, low-dimensional developmental program might have underlain the genetic
specification of brain wiring.

Chapter 5 extended the static latent framework by introducing a developmental
model that simulated a sequential, locally constrained process—akin to morphogene-
sis—to explain the emergence of gene expression patterns in the mouse brain. While
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the static model captured high-level coding relationships, the developmental model
operated at a lower level of biological detail, providing insight into how such coding
might have arisen through local interactions and patterning dynamics. By incorpo-
rating additional guidance signals into the latents, the developmental model captured
disambiguating information that the static model abstracted away, as demonstrated
by toy denoising experiments and complexity analyses. Although this model sacri-
ficed some connectivity reconstruction accuracy, it substantially improved prediction
of genetic expression, suggesting that developmental signals—such as morphogen-like
gradients—were reflected in the gene expression data itself. These findings supported
the view that gene expression not only encoded wiring but also guided the formation
of region-specific identities through structured, sequential processes.

Chapter 6 demonstrated that developmental encodings offered distinct advantages
in modeling how structure could emerge and adapt over time. By guiding connectiv-
ity adjustments in a developmental program, a small set of parameters could induce
large-scale, structured changes—offering a compact, process-based representation of
neural architecture. While static models described the end-state of connectivity, de-
velopmental models indirectly specified patterned connectivity in an efficient man-
ner through learned local rules. In addition to efficiency, their ability to respond to
simulated damage—by rebuilding missing parts of the network through local interac-
tions—highlighted their potential for capturing resilience and adaptability in neural
systems.

Chapter 7 discussed the limitations of the current approach and outlined future
directions. The work relied on static snapshots and simplified assumptions that did
not fully capture the dynamic, mechanical, and temporal aspects of neural devel-
opment. The discussion placed these limitations in the broader context of rapidly
advancing connectomics—from whole-brain maps across species to high-throughput
imaging—and argued that next-generation models should better reflect how develop-
ment actually unfolded over time through local interactions and feedback. Moreover,
the chapter explored the potential real-world impact of these models, ranging from
brain-like functional architectures for AGI to applications in regenerative medicine
and the self-assembly of biological machines, highlighting how a deeper understand-
ing of developmental principles could transform both computational modeling and
practical technology.

8.2 Implications

The findings in this dissertation advance the development of self-organizing mod-
els. A cellular automata model was successfully employed to construct a complex
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connectivity map that not only captures neural wiring but also demonstrates supe-
rior predictive power for genetic expression compared to a static latent model. This
work establishes a foundation for applying generative developmental models to in-
creasingly complex connectomic datasets, thereby offering deeper insights into the
underlying processes of biological development.

In the longer term, these models hold significant promise for applications in
medicine and engineering. For example, the ability to simulate a developing brain
may facilitate the exploration of novel treatment strategies and regenerative in-
terventions. Furthermore, the development of self-organizing bio-mechanical de-
vices—capable of autonomous assembly and repair—could transform traditional de-
sign and manufacturing processes.

These advances also have implications for the field of artificial intelligence. By
providing a developmental perspective on neuronal wiring, the work contributes to
a better understanding of the constraints and organizational principles that shape
brain structure and function, which are critical to addressing fundamental questions
regarding human-like intelligence. As introduced in the opening discussion using
the tree analogy, the developmental model now serves as a lens through which com-
plex biological structures can be understood—revealing how intricate and seemingly
intractable forms are, in fact, the outcome of systematic, local developmental pro-
cesses. This methodological innovation, powered by machine learning, represents
a scalable approach to decoding the intricacies of biological development and may
inform future advances across multiple scientific and technological domains.
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