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Abstract

From Sensory Input to Cognitive Maps: Exploring the

Significance of Spatial Representations in Artificial

Hippocampal Models

Margaret C. von Ebers, MS
The University of Texas at Austin, 2024

SUPERVISORS: Xue-Xin Wei, Risto Miikkulainen

A wide range of computational models have been proposed to explain how

the hippocampus supports spatial and non-spatial reasoning. A recent model demon-

strated that prediction of observations alone creates representations which contain

spatial information and resemble the activity of hippocampal cells. This work ex-

plores three key questions. Does the prediction of visual elements in natural scenes

induce a true, usable world model, challenging the notion that specialized neural

architectures are necessary for spatial cognition? Do the ”place cells” identified in

this model function in accordance with our current understanding of their biological

counterparts? And, are functional cell types such as place cells truly ”functional”,

or are they heretofore mislabeled correlates of sensory information? This investiga-

tion reveals that prediction of visual elements in this scheme induces not a cognitive

map, but instead local and non-functional features which are easily misidentified as

true place cells. The study further proposes that genuine hippocampal features may

serve more complex functions than the image-processing artifacts that superficially

resemble them.
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Chapter 1: Introduction

Imagine driving a car through the downtown of a city you’ve never been to

before, looking for parking. Their street signs are a different color than your town’s,

but you’re still able to use them for navigation. You see a sports stadium, and un-

derstand that there’s probably a parking garage nearby. Upon finding a garage, you

realize that the front entrance is under construction, but you know to round the block

and enter the back instead. You can do all of this because you naturally relate your

specific sensory input to useful abstractions and then develop a flexible understanding

of how they relate to each other. How exactly is your brain able to do this? If an

artificial system existed whose ”neurons” responded like our neurons during this task,

would the system be able to navigate just the same? Scientists trying to understand

and replicate these powerful cognitive capacities have two sources of information: the

behavior of biological agents, and the neural response patterns that accompany it.

Understanding how these neural patterns give rise to flexible behavior is an open ques-

tion and one that is crucial for both neuroscience and artificial intelligence research.

This thesis investigates the question of whether the appearance of hippocampal ac-

tivity patterns in artificial models indicates the formation of a cognitive map of the

kind that supports such impressive functionality in biological agents.

1.1 Motivation

Ever since O’Keefe and Dostrovsky (O’Keefe and Dostrovsky, 1971) discov-

ered neurons in the rodent hippocampus which display striking preference for certain

locations in the environment, neuroscientists have been fascinated with cataloguing

the numerous hippocampal cell types and their purported functions. The ”cognitive

map” said to be generated by these cells initially appeared to support flexible be-

havior in space, such as planning routes or taking novel shortcuts. However, recent
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research has indicated that this spatial map may be one instance of a general coding

mechanism that synthesizes observations and gives them a relational structure so that

they can be retrieved and utilized flexibly. Striking non-spatial examples include grid

cells in the entorhinal cortex responding to stimuli which varies across two abstract

dimensions (Constantinescu et al., 2016), and so-called place cells tracking ”locations”

in other sensory domains such as sound frequencies (Aronov et al., 2017). Given the

wide variety of experimental results, and the fact that these cell type expressions are

often less amenable to interpretation, understanding how these representations form

and what role they take in supporting these functions is crucial for unraveling the

brain’s fundamental processing principles.

Computational neuroscientists have long been tackling this challenge by de-

veloping models that must generate representations resembling place and grid cells

in the process of solving (generally) spatial tasks. Concurrently, researchers in re-

inforcement learning and large language models, despite achieving impressive and

emergent advancements in model capabilities, are still striving to create systems that

can learn continuously and reason flexibly in novel domains as humans can. Harness-

ing the power of this biological ”GPS” could have far-reaching implications for any

field modeling complex real-world interactions, particularly in self-driving cars and

robotics. Although language and mathematical reasoning stem from different brain

regions, decoding the hippocampus’s ability to construct structure from sequences

could enhance general-purpose reasoning in AI systems across various domains.

Before this research uncovers fundamental insights about generalization, it

holds significant potential for validating experimental data and testing neuroscientific

theories in novel contexts. Robust computational models of cognitive functions can

be ablated, reconstructed, and applied to scenarios more difficult to study in vivo,

serving as valuable tools for validating and extending our understanding of previously

gathered experimental data.

12



1.2 Research Questions

Recent studies have used deep artificial neural networks to not only explain

some functional cell types in the hippocampus but also to raise fundamental ques-

tions about the way these cells are traditionally classified in biological studies. Two

currently prominent works challenge the long-held belief that specialized neural archi-

tectures are necessary for spatial cognition. The first, a work by Gornet and Thomson

(Gornet and Thomson, 2023), proposes that the prediction of visual input in natu-

ralistic environments induces a cognitive map which supports localization and gives

rise to striking place cell-like representations. The second, by Luo et al. (Luo et al.,

2024), makes the claim that not even prediction is necessary: spatial knowledge can

arise out of systems which create sufficiently complex representations of sensory input,

place cell-like representations can be observed in these systems, and these supposed

functional cells do not appear to uniquely support this spatial knowledge. Both works

raise important questions about the nature of the relationship between sensory inputs

and their corresponding downstream representations in the hippocampus.

Gornet and Thomson assert that their predictive coding model forms a cog-

nitive map because it replicates both the form and the function of place cells. In

this instance, ”form” refers to the model’s ability to generate units that preferen-

tially respond to different areas of the environment. ”Function” describes how the

model’s proposed mechanism of action induces a cognitive map which is indicated

by increased spatial information in the latent space. This thesis questions if such a

simple architecture does induce a true cognitive map, and does so by questioning the

form and function. Is the model’s purported mechanism actually being carried out,

or can its spatial information be attributed to simple local image feature prediction?

If the model is not operating as previously hypothesized, is it possible that the novel

place cell representations are instead supporting the cognitive map under the classical

understanding of place cell function, or can they be attributed to the same effects

as demonstrated in Luo et al.? Finally, do these findings suggest that the model’s
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”place cells” are superfluous, or that our traditional understanding of hippocampal

place cells may need revision?

This thesis provides experimental evidence to support arguments that the

predictive coding model does not and cannot support a flexible cognitive map of the

environment which could be used to support all the neural function attributed to the

hippocampal formation. The first two experimental findings support an alternative

hypothesis that spatial information in the model is attributable to general function of

attention blocks operating on image features, rather than encoded locations within a

broader map. First, agents with different movement characteristics are developed to

generate training observations for the model. It was found that spatial information

encoded in the model is not significantly affected by these changes in the movement,

which would not be the case for a model which relies on an encoded location being

shifted forward in time accurately. It was also found that when an additional stream

of information is integrated that directly tells the model about the movement which

corresponds to its observations, the model gets better at predicting the next observa-

tion, and its representations contain more spatial information. However, varying the

movement information did not result in expected changes in the model’s predicted

next observation, further supporting the theory that the model is not learning to rep-

resent the underlying movement. Next, it is shown that while the predictive coding

model displays a wealth of functional cell types including place cells, the ablation of

these does not cause performance deficits in localization in a way that would indicate

that these features are supporting a cognitive map. Finally, it is shown that the func-

tional cells shown in the image processing models from Luo et al. do not replicate

to the larger environment, leading to discussions on the validity of their methods

in supporting their theory that functional cell types in the hippocampus are truly

superfluous.
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1.3 Outline

This paper is divided into several sections. Chapter 2, ”Background”, gives

an overview of relevant previous work regarding cognitive maps, starting with the

experimental data and theories supporting different hippocampal cell types in mam-

mals. It also details relevant computational models, spanning efforts in reinforcement

and representation learning. This chapter ends with introductions to the works from

Gornet and Thomson and Luo et al. which are the focus of this paper. Chapter 3,

”The Effects of Transition Statistics on Localization”, introduces variations to the

way that data is collected for predictive coding models and discusses their effects

on performance across different tasks. Chapter 4, ”Integration of Vestibular Input”,

shows how the model makes use of a complementary stream of information during

training, and explains why action signals may be critical to cognitive map formation.

Chapter 5, ”Content of Image Latents”, applies methods from Luo et al. to draw

comparisons between the activations of image-processing networks and the predictive

coder in localization tasks. Chapter 6, ”Discussion and Future Work”, summarizes

the experimental findings found in this thesis, provides additional support from the

literature for the claims, and discuss future avenues towards complete cognitive map-

ping models. Chapter 5, ”Conclusion”, offers final reflections on the implications of

this work.
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Chapter 2: Background

This chapter presents a comprehensive overview of the biological and compu-

tational foundations underlying this research. It begins by exploring the historical

discoveries and recent assessments of hippocampal function in animals. The dis-

cussion then examines relevant computational models of cognitive maps, highlighting

the distinctions between various approaches and their current limitations. Finally, the

chapter introduces the two key studies central to this research, providing a detailed

overview of their methodologies that will be utilized in subsequent analyses.

2.1 Neural Substrates of Cognitive Maps

Decades of research in neuroscience have indicated that the hippocampus is

a critical region for functions such as spatial reasoning and episodic memory, as

well as more abstract social or logical cognition. (Whittington et al., 2022a) Most

experimental data in this area focuses specifically on space. The first and most striking

results came from rodents navigating mazes and small laboratory environments, where

a variety of functional cell type classifications were determined that might support the

cognitive map of space. These include place cells (O’Keefe and Dostrovsky, 1971),

which respond strongly to one area of the environment and do not generalize to

new locations; grid cells (Hafting et al., 2005), which smoothly tile the environment;

head-direction cells (Taube et al., 1990), and more.

How these internal representations are formed remains heavily debated. The

hippocampus receives highly processed inputs from multiple sensory modalities (e.g.

visual, olfactory, or vestibular systems) (Hitier et al., 2014) as well as information

about goals from the prefrontal cortex (Eichenbaum, 2017). Striking differences in

the experimental realizations of these cells have been observed across species, likely

due to differences in the quality, content, and sampling methods of these inputs. In
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particular, primates appear to exhibit much more mixed selectivity, with hippocampal

rhythmic theta oscillations occurring with eye saccades instead of during locomotion

as is the case with rodents. (Piza et al., 2024)

Further complicating the efforts to catalog cell types and understand the mech-

anism that they support is the fact that similar representations exist in varying de-

grees across the cortex. The hippocampus takes a role in shaping the representations

found in earlier sensory areas (Saleem et al., 2018) and grid-cell-like codes have been

found to organize conceptual knowledge in the entorhinal cortex and ventromedial

prefrontal cortex (Constantinescu et al., 2016).

2.2 Computational Cognitive Maps

Many computational models have been proposed to explain how hippocampal

representations might be formed. Spatial maps in the brain are typically considered to

be the result of networks that predict location by integrating the agent’s movements

from vestibular inputs, a process referred to as ”path integration”. (McNaughton

et al., 2006) This computation can be implemented in a class of models called contin-

uous attractor networks (Zhang, 1996; Samsonovich and McNaughton, 1997; Burak

and Fiete, 2009), and recurrent neural networks have been shown to form response

patterns resembling grid cells while solving the path integration task (Cueva and Wei,

2018). Similar bodies of work show how models can take advantage of an existing map

of an environment, literal or represented as place cells, in order to navigate (Banino

et al., 2018).

Another class of cognitive mapping models attempts to remove the focus from

mapping Euclidean space, instead focusing on how structure can be built out of more

general sequences. While these models are typically explained from a reinforcement

learning framework for convenience, they are generally trained without reinforcement

and show how prediction can allow for sequences of observations without rewards

to become a useful representation. Models such as the Tolman-Eichenbaum Machine
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(TEM; Whittington et al., 2020) or Spatial Memory Pipeline (SMP; Uria et al., 2022)

use an abstract path integration module which uses the content of sensory observa-

tions to create a representation which is made up of both the nonspecific and the

specific so that these representations might quickly generalize to new environments.

Doing away with path integration entirely, Clone Structured Causal Graphs (CSCG;

George et al., 2021; Raju et al., 2024) use a hidden Markov model with cloned la-

tent states to show how arbitrary representations can be used to detangle aliased

observations.

The throughline that can be seen across all of these implementations is that

they focus primarily on how an explicit history of actions might allow for the con-

struction of a map of space. In this realm, while sensory inputs have been recognized

to play an important role in anchoring and re-calibration of the map, action signaling

in the way of path integration or grid construction is considered to be the ultimate

backbone. However, all of the models mentioned above rely on some simplified input

representation which is not accurate to the actual biological system: the path integra-

tion models receive direct training signals or instantiations regarding the spatial map,

and TEM’s abstract path integrator operates on allocentric actions and observations.

CSCG makes use of egocentric actions and receives no additional training signal than

the history of observations it received, but it abstracts its (discrete) observations away

so much that they do not support generalization to new environments.

2.3 A Predictive Coding-Based Model

It is possible that one could learn all that is necessary to know about how

space works just from building a representation of sensory information in the right

way? Does the prediction task induce neural populations to learn both a flexible

and implicit path integration system, as well as a way to generalize observations so

that they can be used in the future? The model here under examination by Gor-

net and Thomson shows how a model might encode information about an agent’s
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location in an environment simply through the prediction of the next observation.

This is informed by the theory of predictive coding, which proposes that the gen-

eral function of neural processes across the brain is to efficiently encode an expected

representation of what sensory observations will appear in the next moment in time,

making use of spatial-temporal regularities in the world. Originally introduced to ex-

plain the inhibitory response in the retina, Rao and Ballard (1999) further developed

this framework for the primary visual cortex. Outside of the realm of neuroscience,

Poincaré (2015) discussed how movement across space could generate regular and

predictable transformations of observations which could be stitched together to form

an understanding of the structure of the environment.

2.3.1 Methods and Results

Gornet and Thomson first motivated the predictive coding model with a math-

ematical theorem. First-person images I0, I1, . . . , In were sampled from positions and

associated orientations (x0, θ0), (x1, θ1), . . . , (xn, θn). Statistical inference of predict-

ing the next image In+1 initially takes the form:

P (Ik+1 | I0, I1, . . . , Ik) =
P (I0, I1, . . . , Ik, Ik+1)

P (I0, I1, . . . , Ik)
(2.1)

Because the movement of the agent is determined by a variable velocity applied

to the position with a fixed time step, the motion of the agent is generated by a Markov

process with transition probabilities P (xi+1|xi). Thus, since P (I0, I1, . . . , Ik, Ik+1) can

be considered to be a function on an implicit set of spatial coordinates, the equation

can be rewritten to reflect this as an integral over all possible paths in the environment

Ω:

P (Ik+1 | I0, I1, . . . , Ik) =
∫
Ω

dxP (x0 . . . xk)
P (I0, I1, . . . , Ik | x0 . . . xk)

P (I0, I1, . . . , Ik)
P (xk+1 | xk)P (Ik+1 | xk+1)

=

∫
Ω

dx P (x0 . . . xk | I0, I1, . . . , Ik)︸ ︷︷ ︸
encoding (1)

P (xk+1 | xk)︸ ︷︷ ︸
spatial transition probability (2)

P (Ik+1 | xk+1)︸ ︷︷ ︸
decoding (3)

(2.2)
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Fixed-length sequences of these observations are individually encoded with

a ResNet-18 encoder (He et al., 2016) to produce a sequence of latents. This en-

coder uses a U-Net (Ronneberger et al., 2015) architecture to pass latents into a

residual stream for the subsequent three blocks of alternating multi-headed attention

(Vaswani, 2017) (with eight heads and a causal mask to enforce temporal structure)

and feed-forward layers. The output of these attention blocks is hypothesized to be

a set of latent predictions that represent the model’s expectation of the agent’s next

position and thus what the next observation will look like. These latents are then

passed through a matching ResNet-18 decoder with transposed convolutions to make

the predicted next image. The model is trained with a mean-squared error loss in

pixel space. It is hypothesized that the encoder, by producing a set of processed

visual feature latents, is encoding an estimate of the probability that an agent has

traveled along a path of positions associated with the provided image sequence. The

self-attention blocks should learn the transition probabilities between the inferred

current position (xk, θk) and the next estimated position (xk+1, θk+1), and finally the

model’s decoder computes P (Ik+1|xk+1, θk+1). Model architecture and an example of

how agent movement generates training data is illustrated in Figure 2.1.

Gornet and Thomson use the Malmo package to build a test environment

within Minecraft (Johnson et al., 2016). The environment is a complex scene measur-

ing 40 x 65 blocks, displayed in Figure 2.2. The original model presented is trained for

200 epochs with gradient descent optimization with Nesterov momentum (Sutskever

et al., 2013), a weight decay of 5 × 10−6, and a learning rate of 101 adjusted by

OneCycle learning rate scheduling (Smith and Topin, 2019), with which it achieves

an MSE of 0.094.

Gornet and Thomson first compared the predictive coding model with an au-

toencoder which has the same ResNet-18 encoder and decoder architecture. This

autoencoder reconstructs individual images without prediction and serves as a base-

line indicator for how much spatial content can be gleaned from the similarity between
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Figure 2.1: Depiction of the data collection process and model architecture.
a, An agent navigates in a virtual environment and collects visual observations at
every step. These image sequences are used to train the model. b, The neural
network is trained to predict future visual input on the basis of current visual input.
A representation of space should emerge from the self-attention module after training
the network to solve the visual prediction task. Figure from (von Ebers and Wei,
2024).
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Figure 2.2: A bird’s eye view of the test environment. A bridge restricts the
agent’s motion, trees provide visual occlusion, and a large cave serves as a global
landmark.
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images instead of the underlying geometry of the environment. The latents recov-

ered from the predictive coding model outperform those from the autoencoder in two

downstream tasks: predicting location and recovering accurate distances between lo-

cations. Importantly, the latent population in the predictive coding model before the

predictive attention blocks is demonstrated in supplementary information from Gor-

net and Thomson to not have this additional spatial content, and performs similarly

to the autoencoder latents in the localization task.

Additionally, individual activations from just before the decoder in the predic-

tive coding model were treated as potential cells in the hippocampus. Each activation

was thresholded at its 90th percentile value, and for each location, the cell was con-

sidered to be ”activated” if it was above this threshold. It was found that these cells

tend to activate at localized regions across the environment. Finally, they show that

every location in the environment can be represented by unique combinations of over-

lapping ”place field” regions and that the Hamming distance given by counting the

number of overlapping regions can recover the physical distance between locations.

2.3.2 What is Missing?

While Gornet and Thomson’s work presents impressive initial results support-

ing a novel theory of hippocampal function, several critical questions remain. Their

model, if accurately described by the proposed mathematical formulation, could in-

duce a cognitive map capable of supporting various navigational behaviors. This

formulation, which maps sensory observations to latent states and describes transi-

tions between these states, does indeed align with other cognitive mapping models

discussed earlier. However, the presence of spatial content in the model’s latents

and place cell-like activations, while noteworthy, does not conclusively prove that the

model functions as hypothesized. Alternative explanations that do not necessarily

result in a flexible map warrant consideration.

Two main factors challenge the notion that the model is encoding images into
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estimated locations:

1. Gornet and Thomson demonstrate that latents before the attention heads con-

tain significantly less spatial content than those after. While they interpret this

as evidence that prediction is necessary to induce a spatial map, it contradicts

their hypothesis that the encoder learns a direct mapping between images and

their associated locations and poses.

2. The authors present their model as probabilistic, implying that the encoder

and decoder estimate distributions. However, it’s important to note that these

encoder-decoder architectures are not variational autoencoders, which would di-

rectly estimate distributions. Instead, they primarily deal with sets of processed

image features. They provide further support for this setup in the supplemental

information, but it opens the door for alternative hypotheses.

This thesis proposes that, instead, the attention heads may be learning trans-

formations between processed image features rather than transformations between

encoded locations. Experiments in Chapters 3 and 4 aim to demonstrate model be-

havior more consistent with this alternate formulation.

Under this hypothesis, the increased success in location decoding tasks could

be attributed to the fact that image features processed by attention blocks will contain

information about previous images in the sequence. This effect might be compara-

ble to providing the downstream model with multiple images for location prediction

instead of just one. However, the question remains: do these post-attention image

features still represent an implicit code of location within a connected map? Exist-

ing research on vanilla transformers suggests they can achieve impressive next-step

prediction without a coherent world model (discussed further in Chapter 6).

Gornet and Thomson take care to not attribute too much biological meaning to

their place cells, and do not claim that their model’s conception of space is functionally

supported by these cells, instead simply noting that it is encouraging that their model
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of hippocampal function appears to display hippocampal response patterns. However,

in the absence of evidence supporting their proposed mechanism of action, it would be

useful to their argument if these functional cells were uniquely critical for performance.

This would support the model’s function under the classical view of place cells, which

is that they are meaningful and necessary for localization within space. The next

section introduces a work that directly contradicts the idea that these cells are unique

or functional in artificial systems, and applies its methods to the predictive coding

model in Chapter 5 to exhaust this last potential avenue of support for the cognitive

map hypothesis.

2.4 Critically Examining Functional Cell Types

The predictive coding model previously introduced asserts that prediction is

an essential component of the function of the hippocampus, and demonstrates that

prediction induces place cell-like representations. (Luo et al., 2024) make the further

claim that instead of a cognitive map-supporting system being necessary, essentially

any sensory processing system with enough complexity contains significant informa-

tion about space to solve simple localization tasks, and that place cell representations

arise from these systems but do not contribute to their function in ways previously

ascribed to functional cell types.

This could be interpreted on its face as a caution against confusing the in-

variant representations formed in artificial image processing with those that support

spatial reasoning in the hippocampus. Instead, Luo et al. propose that this is all

that real place cells are, or at least that real place cells are similarly inevitable and

superfluous. This new theory of hippocampal representations is a salacious one, but

not unfounded by the literature. Several ablation studies in the hippocampus have re-

ported inconclusive results, and mixed coding responses have been widely observed in

the place of the immediately intuitive place cells, particularly in species like primates

that have advanced visual systems. Additionally, there are contemporary movements
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in both neuroscience and computer science to move away from examining single neu-

rons as interpretable units of computation.

2.4.1 Methods and Results

Luo et al. propose an experimental setup to demonstrate their claims, utiliz-

ing a small Unity environment that resembles a typical laboratory setting used for

studying free-moving rodents. They expose several deep image-processing networks

to first-person images from this environment. These networks vary in architecture,

including convolutional networks like VGG-16 (Simonyan, 2014) as well as the non-

convolutional Vision Transformers (ViT; Dosovitskiy et al., 2021), with weights either

pretrained on ImageNet-1k (Deng et al., 2009) or randomly initialized. Notably, these

models are not further trained on the laboratory setting. The researchers use the ac-

tivations from these models, when shown the observations, to train linear regression

models. These decoders predict three key aspects of spatial cognition: location, head

direction, and distance to the nearest wall – all functions hypothesized to be per-

formed by various hippocampal cell types. Importantly, all models achieved high

accuracy across all tasks.

Furthermore, Luo et al. classify the model activations according to typical

guidelines applied to functional cell types in neuroscience. They discover that all

models exhibit large, diverse populations of functional cell types when exposed to this

laboratory setting, including significant mixed encoding of head direction and place,

which closely resembles primate data. To test the importance of these functional cells,

they then sort the model activations by their rankings according to these metrics and

progressively remove increasing amounts of the top-ranked units. Surprisingly, they

find that removing these functional cells does not result in a significant decrease in

the performance indicated by their purported function. For instance, lesioning place

cells does not lead to a substantial decline in localization performance, and lesioning

border cells do not affect the ”distance to nearest wall” task.
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2.4.2 What is Missing?

The emergence of place cell-like representations across diverse architectures,

without uniquely contributing to localization tasks, offers a potential explanation for

the presence of place fields in the predictive coding model. However, to establish a

useful baseline for subsequent analyses, it is crucial to consider the limitations of this

study. A primary concern lies in the experimental environment’s potential biases.

The small size of the environment, absence of aliasing or visual occlusions, and the

visually-grounding presence of a low wall may contribute to the observed diversity of

functional cell types and potentially diminish the significance of the lesioning study

results. In this setting, ablating place cells may not significantly impair localiza-

tion, as the agent’s position remains easily determinable from other functional cells.

It remains to be seen whether the predictive coding model induces place cell-like

activations in larger environments and whether baseline, untrained models exhibit

similar behavior. Additionally, is it possible that the larger environment might lead

to different outcomes in the lesioning study?

This thesis primarily examines these limitations in the context of the predic-

tive coding model and does not adopt the further conclusion of Luo et al. that real

hippocampal cell types are superfluous. Operating under the assumption that hip-

pocampal functional cells really are functional could provide a stronger point against

the predictive coding model. However, the analysis is still strong without this con-

clusion. A full rebuttal of these claims would be out of the scope of this work as

this is an open question within neuroscience, though since this thesis does try to use

artificial systems to develop an understanding of how sensory information is used to

create hippocampal representations, some initial evidence and argumentation casting

doubt on the broad claims of Luo et al. is offered in Chapters 5 and 6.

This thesis primarily examines these limitations within the context of the pre-

dictive coding model, without adopting Luo et al.’s broader conclusion regarding the

superfluity of real hippocampal cell types. Operating under the assumption that hip-
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pocampal functional cells serve genuine functions could provide a stronger argument

against the predictive coding model. However, the analysis remains robust without

this conclusion. While a comprehensive rebuttal of the claims of Luo et al. falls out-

side the scope of this work, given that it remains an open question in neuroscience,

Chapters 5 and 6 present initial evidence and argumentation casting some doubt. This

discussion aligns with the thesis’s aim to leverage artificial systems in understanding

the connection between sensory information and hippocampal representations.
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Chapter 3: The Effects of Transition Statistics on

Localization

If the contents of the encoded representation are in doubt, one first place to

look is at how the attention blocks learn transitions between what’s being encoded,

whether that is image features or a more explicit code of location and pose. These

transitions are determined by the underlying movement of an agent which generates

image observations. Supplementary information from Gornet and Thomson indicates

that an agent randomly sampling angular velocity at each time step results in signifi-

cantly reduced spatial content in post-prediction latents. This finding supports their

proposed mechanism: the model learns how locations and poses arise from observa-

tions, and accurate prediction of location transitions may enable the construction of

a comprehensive environmental understanding, leading to high spatial content in the

post-prediction latent space.

This section presents a more robust version of this experiment by varying ran-

domness qualities in the trajectories in a more systematic manner by introducing an

additional class of agents with more biologically accurate movement. The perfor-

mance of models trained on this data instead provides evidence for the alternative

hypothesis and establishes a foundation for examining these model variants under

different testing conditions in subsequent chapters.

3.1 Methods

The first major change made to the agent’s movement was to add the option

to modulate randomness in the trajectory with a coefficient. Previously, data for

the model was generated by an agent selecting two random points in the Minecraft

environment and following a path between them determined by the A* algorithm,

recording observations at every time step. In the new setup at a low randomness
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coefficient, the agent starts at a random location in the environment and samples

speed and angular velocity values such that it generally travels in a straight line, with

some small addition for both variables from normal distributions. As the randomness

coefficient increases, the variance of the two distributions is increased, such that the

trajectory eventually becomes overpowered by random movements. The agent will

also make some necessary moves to avoid obstacles. 32510 images from each of these

coefficients make up datasets for training.

Figure 3.1: Examples of the effects of increasingly random movements in
head-fixed models. Trajectories resembling these examples will be used to train
three separate instances of the predictive coding model.

Figure 3.2: Examples of the effects of increasingly random movements in
non-head-fixed models. Trajectories resembling these examples will be used to
train three separate instances of the predictive coding model.

These datasets represent a trade-off: at lower coefficients, the transition statis-

tics are much more regular and presumably easier for the self-attention blocks to
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predict. However, a straighter trajectory also implies a final position that is much

further away from the initial, which would generally induce more visual changes and

less ability to build up evidence. Examples of these trajectories are shown in Figure

3.1.

A second class of agent motion models detangles the head direction and the

movement direction. Reflective of sensory input, the exploration strategies of rodents

and non-human primates are the primary driver between the differences in hippocam-

pal representations between the two species. Risking oversimplification, Piza et al.

(2024) found that rats primarily sample their environment by locomoting to differ-

ent locations with very small head turns, while primates tend to stop and scan the

environment with large, sweeping head movements. Adding a moving head direction

tests whether the predictive coding model can accommodate an additional degree

of complexity, and adds more biological plausibility to a model that relies on visual

input which is closer to the signal strength of a primate instead of a rat. Examples

of these trajectories can be seen in Figure 3.2.

The performance impacts of these model data adjustments were measured in

two primary ways. First, the model’s performance on the validation set for the next-

step prediction task is examined. Additionally, the effects of these changes on the

spatial content in the post-prediction model activations were measured using both

nonlinear and linear decoders. Modified methods from Gornet and Thomson were

employed to train a nonlinear decoder in the form of a small convolutional neural

network. This decoder receives normalized post-prediction activations as input and

is trained to minimize the mean squared error for the predicted 2D location. The

decoder distinguishes between multiple views for every location and measures perfor-

mance on a held-out set of random locations and views from across the environment,

representing a more stringent test than that used in the original work. Details of

the original architecture and the modifications used in this study can be found in

Appendix A. The localization plots include an upper bound in the form of a noise

model, which returns the actual position with some additive Gaussian noise, as well as
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a lower bound model, where predicted positions were randomly sampled from the oc-

cupancy distribution of the training data. As a more rigorous test of spatial content,

a simple linear decoder is also introduced, trained on the same data as the nonlinear

decoder. This support vector machine reports five-fold cross-validated results.

3.2 Results

Figure 3.3: Final mean squared error of predicted images on the validation
set. Head-fixed models were shown in blue and non-head-fixed models were shown
in orange. Both classes of models exhibit decreasing performance with additional
randomness.

Results for the training objective of mean squared error between images in

pixel space were shown in Figure 3.3 for all variations of the predictive coding model.
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Figure 3.4: Prediction errors of positions from the predictive coder’s latent
space, across different head-fixed model trajectory randomness settings.
All models report similar localization performance with a trained nonlinear decoder,
indicating that the development of spatial content is not closely tied to transition
statistics.

Predictably, increasing randomness in both the head-fixed and non-head-fixed classes

of models universally results in decreasing performance for this task. Notably, the

least random models of the two classes have almost exact prediction performance,

despite the additional complexity of movement, and the models with increased head

direction randomness outperform the models with increased movement randomness.

This could be explained by the fact that the non-head-fixed models only really induce

randomness in one degree of freedom (angular velocity), while the other models have

two (angular velocity and speed).

Results for the location decoding task with the nonlinear decoders are pre-

sented in Figure 3.6. The performance indicated by the predictive coding model

trained on the original movement scheme was successfully replicated. All models,
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Figure 3.5: Prediction errors of positions from the predictive coder’s latent
space, across different model trajectory randomness settings, in head-fixed
models. All models report similar localization performance with linear decoders,
indicating that the development of spatial content is not closely tied to transition
statistics.

across varying levels of randomness and in both head-fixed and non-head-fixed classes,

demonstrate similar and impressive localization performance. This effect is further

corroborated by trained linear decoders, as shown in Figures 3.5 and 3.7. Notably,

these findings do not align with the results reported by Gornet and Thomson, which

suggest that increased randomness in model trajectory should increase the difficulty

in constructing a cognitive map from individual locations, leading to decreased spatial

content. The most random models in this study exhibit movements that are consid-

erably more extreme and unpredictable than those reported by Gornet and Thomson.

Possible explanations for this discrepancy include a more even distribution of visits

across the environment in the current study, the provision of more training data, and

the implementation of a more robust spatial content test.
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Figure 3.6: Prediction errors of positions from the predictive coder’s latent
space, across different non-head-fixed model trajectory randomness set-
tings. All models report similar localization performance with a trained nonlinear
decoder, indicating that the development of spatial content is not closely tied to tran-
sition statistics.

Instead, these results support the hypothesis that the model is not construct-

ing representations of location, but rather learning simple local transitions between

image features. Under this interpretation, performance in the next-step prediction

task would indeed decrease with more random transitions. However, the spatial con-

tent contained in the post-prediction representations may be explained as follows:

attention performed on image features will produce an output set of image features

containing information about previous images in the sequence. While Gornet and

Thomson present more striking results in a different environment with severely aliased

observations, it remains that under the alternative hypothesis, if the sequence includes

information from before the aliased observation, a nonlinear decoder would be able

to use that to distinguish locations.
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Figure 3.7: Prediction errors of positions from the predictive coder’s la-
tent space, across different model trajectory randomness settings, in non-
head-fixed models. All models report similar localization performance with linear
decoders, indicating that the development of spatial content is not closely tied to
transition statistics.

It remains possible that the predictive coding model could be encoding space

in a manner both explicit, as hypothesized by Gornet and Thomson, and robust to

the findings presented in this section. ”Localization” alone may not be a sufficiently

stringent test of representations in a system that should be capable of using these

representations for flexible navigation. The next chapter continues to add supporting

information to the conclusions of this thesis by further examining the content of the

transitions learned by the predictive portion of the network.
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Chapter 4: Integration of Vestibular Input

One of the original strengths of the predictive coder model is its reliance solely

on sensory data, without direct training signals regarding its location within the

environment. If the model functions as originally intended, additional information

appears to be unnecessary. However, integrating a stream of information that de-

scribes observational changes in a manner reflecting the underlying environment and

maintaining an egocentric perspective offers several advantages to this investigation

without compromising the biological plausibility of the predictive coding model. This

chapter details the effects of including vestibular signaling in the form of information

about the agent’s speed and angular velocity (and, when applicable, the separate

head direction angular velocity).

The hippocampal formation is known to receive and be affected by vestibular

signaling (Hitier et al., 2014; Stackman et al., 2002), which carries information about

how the agent’s body position changes in response to actions taken. These signals

are hypothesized to stabilize representations of space when sensory information is

insufficient or confusing. For example, in primates, representations of angular head

velocity serve to modulate principal hippocampal cells during rapid head-gaze move-

ments. (Piza et al., 2024) This also can be illustrated by a common-sense example:

imagine closing one’s eyes in an unfamiliar environment and taking a few steps. The

vestibular signal is noisy, but it allows for the maintenance of a mental map of the

local environment and an understanding of how short-term future actions will alter it.

However, the exact mechanisms by which sensory and vestibular signals collaborate

to perform these functions remain an open problem in the field.

For the purposes of this study, adding action signals represents another test

of what the predictive coding model is actually learning transitions between. While

transformations between image features, as indicated in the alternate hypothesis,

will to some degree reflect metrics such as speed and angular velocity that shift the
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egocentric frame of the environment, it is expected that this relationship will be

less direct than one in which locations are directly encoded and the attention blocks

must learn to represent speed and angular velocity in order to model the transitions

between them.

4.1 Method

The success of this integration is examined in three ways: performance on

the next-image-prediction training objective, latent localization performance, and

steering ability. In the steering test, images were taken from the localization dataset

such that every sequence comprised observations from the same position with a small

amount of noise in the position. These were fed to a trained model, and a new action

signal was provided with an angular velocity set to 0 for each time step and a constant

speed, which was varied. This speed variation should produce predictable changes

in the model’s image outputs as well as the estimated position outputted by trained

nonlinear and linear location decoders from the previous chapter.

Several methods of integrating vestibular inputs were attempted. Initially,

code from Gornet and Thomson, not included in their final work, was utilized. Here,

the model was given not only a sequence of images but also a sequence of corre-

sponding speed and angular velocity pairs. These action signals were scaled up with

a feedforward network to match the size and shape of the image latents. They were

then concatenated onto the encoded image data and convolved together, resulting in

the same shape as the original image latents. These latents were then passed through

the rest of the network as normal. Similarly, image latents were scaled down with a

convolutional layer to 10 dimensions, added to scaled-up action latents, and scaled

up to the original size of the pre-attention latents before being passed through the

rest of the network. Under the assumption that the encoder is transforming input

images into representations of location and view, these methods can be understood

as adding ”intentionality” before prediction.
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Ultimately, neither of these two methods was sufficiently performant in any

metric to display results. In both cases, performance actually declined slightly in the

next-step prediction and localization tasks, and when examining steering, an applied

speed at every step produced no significant change in the decoded images or in the

predicted location. Inspired by relative positional encodings in large language models,

an attempt was made to remove any convolution that might destroy information in

the two streams, instead either simply adding the transformed action latents before

prediction or concatenating them. The last method doubles the size of the latents

which pass through the self-attention blocks and into the decoder from 128x8x8 to

256x8x8, and the network architecture was scaled to match. The results of this last

method will be discussed in the next section.

4.2 Results

As shown in Figures 4.1 and 4.2, the vestibular signal as a relative positional

encoding which is concatenated to the image latents created models with significantly

improved performance on the next-image prediction task in both head-fixed and non-

head-fixed models, as well as across all types of trajectory. However, it was not

the case that this entirely stabilized the performance of the more random trajectory

models, even though the model is now receiving and evidently making use of noiseless

information that should almost entirely determine the content of the next image.

Adding vestibular information also improves the quality of the localization in post-

prediction latents, as seen in Figures 4.3 and 4.4.

The steering capability of the vestibular predictive coding model was tested

using two datasets: one with the heading direction consistently set to 0 degrees, and

another at 90 degrees. Given the environment’s layout, it was anticipated that a

speed input greater than one and an angular velocity of zero applied to image inputs

facing 0 degrees should result in an increase in the z coordinate, while for images

facing 90 degrees, a decrease in the x coordinate was expected. Both directions were
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Figure 4.1: Final image prediction mean squared error on the validation
set, for head-fixed agents. Models with vestibular signaling display overall better
performance, but increasingly random trajectories still affect model performance.

studied to eliminate potential biases induced by the environment’s shape. The effect

was examined using both the last predicted latent in the sequence (after 20 speed

applications) and the first predicted latent (where no previous image inputs could

overpower the speed input). It was hypothesized that models with more random

trajectories might make greater use of the vestibular signal. Figure 4.5 displays the

results for the 0.9 head-fixed predictive coding model. However, none of the head

turn or non-head turn models across all randomness levels demonstrated the expected

effect.

These results paint a complicated picture of function in the predictive coding
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Figure 4.2: Final image prediction mean squared error on the validation
set, for agents with variable head direction. The non-head-fixed agents display
similar performance improvements with the addition of vestibular signaling to the
head-fixed agents.

model. In the last section, it was reported that invariance of spatial content in the face

of input information supported the alternative hypothesis, and yet here, results show

that an additional stream of information does improve the spatial content. While

these results might initially appear to support the conclusion that location is being

encoded and transitions between locations are being learned, two factors suggest

otherwise.

Firstly, the models continue to exhibit significant differences in next-step pre-

diction across randomness settings. Given that the provided speed and angular ve-
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Figure 4.3: Prediction error as reported by a nonlinear decoder on the
post-prediction latents in the head-fixed predictive coding models with
vestibular signalling. Vestibular signalling increases the amount of spatial content
found in the predictive coding model’s post-prediction latents.

locity signals are noiseless, it is puzzling that the model, over an extended training

period with ample data, fails to produce consistent results for this task regardless of

the quality of trajectory. Secondly, the observed lack of steering ability is concern-

ing. If this occurred without any performance improvement, it could be attributed to

the model learning to prioritize the denser image signal over information regarding

movement statistics, potentially indicating a need for reconsideration of the methods

applied here. However, the fact that this signal is utilized by the model to realize

performance gains, yet fails to produce expected results when varied suggests that

the attention heads are not learning a single egocentric transition reflected across

multiple modalities. Instead, this gives more credence to the idea that local image

feature transitions are being learned, and vestibular signaling, while related to these

transitions, cannot be employed to produce equivalent egocentric transformations in
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Figure 4.4: Prediction error as reported by a nonlinear decoder on the post-
prediction latents in the non-head-fixed predictive coding models with
vestibular signalling. Vestibular signalling increases the amount of spatial content
found in the predictive coding model’s post-prediction latents.

the observations.

It is conceivable that an alternative method of integrating vestibular signals

could be more effective and might predict the intended effect. This possibility could

imply a model in which action signals do induce a cognitive map, a concept explored

further in Chapter 6. Nevertheless, these findings, in conjunction with arguments

and results from previous chapters, provide substantial evidence to suggest that the

predictive coding model is not stitching together locations into a map through pre-

diction.

One last potential mechanism for a cognitive map in the predictive coding

model remains through its display of post-prediction place cell-like units. These rep-

resentations, which have been recharacterized as simple image latents so far in this
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Figure 4.5: The result of speed inputs on predicted location. Increasing
amounts of speed were applied to the model, and predicted position was decoded
using a trained nonlinear decoder. The model facing 0 degrees should produce an
increase in position along the z-axis (left). This effect is not observed. The model
facing 90 degrees should produce a decrease in position along the x-axis (right). This
effect is not observed.

work, do exhibit striking similarities to place cells. This observation raises the possi-

bility that prediction transforms visual features into a representation resembling place

cells both superficially and functionally. Such a finding would suggest that the re-

sults of this chapter and the previous one do not disprove the predictive coding model,

but rather indicate intriguing conclusions about how cognitive maps are computed

through prediction.
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Chapter 5: Content of Image Latents

While the appearance of place cells in the predictive coding model is a novel

and encouraging sign for a model of the hippocampus, Gornet and Thomson are

cautious not to place undue importance or meaning on their place cell-like represen-

tations. They state: ”The appearance of place cell-like firing is common in simpler

networks that perform spatial navigation such as (Treves et al., 1992) and (Franzius

et al., 2007). It is currently unclear whether artificial place cell-like behavior corre-

sponds to biological place cells. Artificial place cell-like behavior could be an artifact

of the simplified inputs or spatial coordinates.” It is possible that the place cell-like

behavior in their work is indeed just an artifact of simplified visual inputs, a conclu-

sion which would lead to the end of the search for mechanisms supporting a cognitive

map. If this is the case, a further discussion arises regarding the claims of Luo et al.:

are real hippocampal cells explainable through the same mechanism?

This chapter replicates the cataloging and lesioning experiments from (Luo

et al., 2024), first described in Chapter 2, to the larger environment which has been

used to test the predictive coding model thus far. It also newly applies these exper-

iments to the predictive coding model. The primary aim remains to test functional

cell types in the predictive coding model. However, the implications of replicating

results with the baseline models in the larger environment are also discussed.

5.1 Functional Cell Classification

5.1.1 Methods

Images from different grid locations and viewing angles were collected within

a small square environment, which is bordered by a short wall and is generally rem-

iniscent of a typical laboratory environment. Individual images were processed by

image-processing deep neural network architectures including VGG-16 (Simonyan,
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2014), ResNet-50 (He et al., 2016), and ViT-16 (Dosovitskiy et al., 2021), and each

architecture was additionally varied by either being pretrained on the image classi-

fication dataset ImageNet-1k (Deng et al., 2009), or by having their weights totally

randomized. None of the models were further trained with images from the laboratory

setting.

Activations from these models after they were shown views from the environ-

ment were classified ”based on standard criteria for place, direction, and border cells

(Banino et al., 2018) (Tanni et al., 2022)”. Place fields can be identified by charac-

teristics such as size, number of place fields, or maximal activations within each field,

and so several are examined – any unit that has at least one qualifying place field

is classified as a place cell. Luo et al. use adapted methods from the cited works

to define a qualified place field as one that contains at least 10 pixels but less than

half the size of the environment. This is linearly scaled to 30 pixels for the Minecraft

recreation of the smaller environment to adapt for its slightly increased size, and to

90 pixels for the larger environment. Furthermore, some of the stricter barriers to

the classification of place cells such as stability of the field across multiple visits and

iterative thresholding (to ensure that the field arises smoothly from the environment)

were originally left out of Luo et al. and have been added back into this analysis.

Head direction and border cell classification was left unaltered.

Finally, the setting has been changed from Unity to Minecraft, and the size

of the environment from 17x17 to 24x24 (to accommodate for scaling differences

between the two platforms), as well as the number of evenly-spaced head directions

samples per location from 25 to 17 (to accommodate for computational demands). In

accordance with the Unity environment, the Minecraft environment is situated with

several different types of trees in the background of the setting in order to decrease

aliasing. These changes did not have a significant effect when replicating results with

any of their stated models. An example of an observation in the Minecraft recreation

can be seen in Figure 5.1.
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Figure 5.1: The small world testing environment. The Luo et al. environment
was replicated in Minecraft for the experiments in this work. Different types of trees
were added outside of the testing area to de-alias observations as in the original Unity
testing environment.

5.1.2 Results

The results from Luo et al. were replicated in this work for ResNet-50 (pre-

trained) due to the similarity to the predictive coding model’s encoder architecture

of ResNet-18. This analysis revealed several findings of interest. Before making any

change to the place cell classification, the previous ResNet-50 results were replicated

in the smaller Minecraft environment. These were overwhelmed with cells of mixed

place and view encoding, which is noted by the authors to mirror many findings in

primates. However, two changes were made in this thesis that explain the differences

in results reported here. Firstly, the stricter place cell classification used here led to
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Figure 5.2: Cell type breakdowns for the predictive coding model in the
large world. In the small environment, the ResNet-50 model produces a diverse
population of cell types across multiple layers.

Figure 5.3: Cell type breakdowns for the predictive coding model in the
small world. In the small environment, the head-fixed predictive coding model
produces a diverse population of cell types in the post-attention latents.

most cells not fitting the criteria for any cell type. Secondly, an error was found in

the open source code released by Luo et al. which mistakenly was using the mean of

the activation map to classify direction rather than the method detailed in Appendix

B. Results are shown in Figure 5.2. Cell types vanished even further in the more com-

plex environment across all layers, though most strikingly in the final layers, where

more invariant visual features would typically be expected. Results for the bigger

environment are shown in Figure 5.5

Next, the same examination was applied to the predictive coding model. An

early convolutional block in the encoder was chosen, as well as the pre-prediction
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Figure 5.4: Cell type breakdowns for the predictive coding model in the
large world. In the complex environment, the head-fixed predictive coding model
produces a diverse population of cell types in the post-attention latents.

Figure 5.5: Cell type breakdowns for the ResNet-50 model in the large
world. In the complex environment, the ResNet-50 model displays almost only place
cells.

latents and the post-prediction latents. One predictive coding model was trained on

the small environment for further comparison, and another low randomness head-fixed

predictive coding model was used for investigating in the big environment. The pre-

prediction results for the predictive coding model in both environments approximately

mirror the ResNet-50 results, but the post-prediction latents appear to splinter off

into a much more diverse population of different cell types in both environments.

Example activation maps for classified place cells for the ResNet-50 model and the

predictive coding model in the large world can be found in Appendix B.

It is particularly intriguing that the post-prediction latents in the predictive
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coding model appear to support many more types of functional cells in the larger

environment, even including some of the mixed encoding that was originally reported

in Luo et al. under the looser standards. One potential explanation for this is that

the predictive coding model really is inducing a cognitive map and that it uses these

diverse types to navigate in the complex environment. Another explanation follows

from the observation that these results have a striking similarity to the reported

results of the Vision Transformer (ViT) in Luo et al., not only in the diversity of

the cell types observed, but also in the appearance of a sizable population of inactive

units. Vision transformers of course imbue image representations with contextual

information in the same way that this thesis proposes the predictive coding model

works. If it is to be proven that the predictive coding model is inducing these cell

types to support localization, rather than as a consequence of their architecture, it

must next be examined how their removal affects localization.

5.2 Functional Cell Performance and Lesioning

5.2.1 Methods

Luo et al. also examined the performance of the model activations in predict-

ing location, head direction, and distance to the closest wall: tasks meant to target the

respective responsibilities of place, head direction, and border cells. The examination

here will focus on the location task. Linear regression models were trained on repre-

sentations from selected layers to predict these targets, with 70% of the locations and

views held out for a rigorous test of generalization across the environment. Chance

decoding results were calculated in two ways: in one, locations (or head direction)

were randomly shuffled, in the other, the center location/direction is always predicted.

The decision was made to allow the linear decoder to train on 80% of the locations

in the large world, in order to produce a better baseline for the lesioning studies.

Distance error for these figures are represented as Minecraft units, normalized to the

size of the environment.
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Performance in these tasks was additionally measured under several methods

of lesioning model units. In the original analysis, Luo et al. lesions increasingly

large populations of model units in order to determine which population has the

most impact on performance in location prediction tasks. They show that across all

models, lesioning the cells which show the highest ”placeness”, ”directionness”, or

”borderness” by the previously-specified metrics does not have more of an effect on

performance in any task than randomly shuffling the units and lesioning the same

amounts that way. Because metrics such as the number of place fields, max value

across fields, place field size, etc. all contribute to an understanding of the ”placeness”

of a unit, these were considered separately. These results were compared to lesioning

of the model units which report the highest coefficients in the linear regression model

trained for each task, which shows a much larger effect than lesioning by functional

cell type. This effect is expected to be true for the predictive coding model as well

(as lesioning the units with high coefficients in a linear decoding model has a foregone

conclusion in any study, and serves primarily as a baseline) and focus instead on the

lesioning of cell types. This thesis will display results on the lesioning task for the

number of place fields and the maximal activations within those place fields, as well

as for directionness, although future work should also examine the lesioning effects of

cells with the most spatial information content.

5.2.2 Results

Lesioning performance was calculated across the two models in the small envi-

ronment. The results of lesioning the measures of the size and number of place fields.

The ResNet-50 model is able to achieve significant location decoding performance, in

line with the results previously shown for the predictive coding models. The ResNet-

50 model displays the same lesioning behavior in the Minecraft version of the small

environemnt as was previously reported in the small Unity environment, shown in

Figures ??, 5.7, and 5.8.

It should be noted here that the random lesioning is applied to any active unit
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Figure 5.6: Results on localization task for lesioning by ”directionness” on
the ResNet-50 model in the small environment. The ResNet-50 model does
not exhibit significantly worse than chance performance when units which display
increased directional preference are increasingly removed from the population. Le-
sioning randomly (left), lesioning top units (right).
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Figure 5.7: Results on localization task for lesioning by the number of place
fields on the ResNet-50 model in the small environment. The ResNet-50
model does not exhibit worse than chance performance when units which display
increased amounts of place fields are increasingly removed from the population. Le-
sioning randomly (left), lesioning top units (right).
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Figure 5.8: Results on localization task for lesioning by the maximum acti-
vation value across the place fields on the ResNet-50 model in the small en-
vironment. The ResNet-50 model does not exhibit worse than chance performance
when units that display place fields with high activations are increasingly removed
from the population. Lesioning randomly (left), lesioning top units (right).
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Figure 5.9: Results on localization task for lesioning by ”directionness”
on the predictive coding model in the small environment. The predictive
coding model does not exhibit worse than chance performance when units which
display increased directional preference are increasingly removed from the population.
Lesioning randomly (left), lesioning top units (right).

in the population, whereas the top-most lesioning can only be applied, in the case of

the two place field analyses, to units which display any place field at all. Results for

directionness do not have this constraint. The baseline location decoding performance

for the predictive coding model is very similar to the results of the linear decoder

in previous sections. The predictive coding model displays very similar lesioning

performance as the ResNet-50 model, results of which are displayed in Figures 5.9,

5.10 and 5.11. No type of sorted lesioning induced any above-chance performance

deficits, including the more rigorously defined place fields. The predictive coding

model’s lesioning induced such large drops in performance due to the small number

of units available, however, the lesioning of the top units is still not more significant

than the lesioning of random units, indicating no relationship.

One argument that was made earlier is that the localization test may be too

easy and overdefined to produce meaningful results in the ablation study. Future
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Figure 5.10: Results on localization task for lesioning by the number of
place fields on the predictive coding model in the small environment. The
predictive coding model does not exhibit worse than chance performance when units
which display increased amounts of place fields are increasingly removed from the
population. Lesioning randomly (left), lesioning top units (right).
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Figure 5.11: Results on localization task for lesioning by the maximum
activation value across the place fields in the predictive coding model in
the small environment. The predictive coding model does not exhibit worse than
chance performance when units that display place fields with high activations are
increasingly removed from the population. Lesioning randomly (left), lesioning top
units (right).
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work should examine this effect in the larger and more complex environment.

These results paint the compelling story that the image features of the predic-

tive coding model are not unique: their activation patterns can be explained through

other networks that embody the alternative proposed mechanism of action as sug-

gested by this thesis. Additionally, they are not functional: when trained to minimize

prediction error, these latent units do not take on interpretable roles to achieve this

goal. This work has now, across the last three chapters, completed its argument that

the cognitive map is not being supported. Additionally, results in this chapter, while

not a conclusive argument against the strong conclusions of Luo et al., suggest a

further line of experiments that could be used to explore this issue. The following

chapter uses these results to draw final conclusions about the predictive coding model

and further discusses the implications of the Luo et al. claims.
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Chapter 6: Discussion and Future Work

This chapter includes a wealth of information supporting the conclusions of

the thesis and expanding on its implications. First, it summarizes the results found

experimentally in this thesis. Next, it provides further discussion on the sweeping

claims made in Luo et al. that were not directly addressed in the experimental

findings of this thesis. Further support is next provided for the claim that local

image features in a vanilla transformer model cannot form a broad cognitive map,

that has been proposed earlier in this thesis but not yet substantiated. Finally, while

the predictive coding model is insufficient in its current form, it represents an exciting

opportunity to advance the field of artificial cognitive maps. This chapter discusses

potential improvements to the current formulation of the predictive coding model

that could enable it to form a cognitive map from its simple and compelling design.

6.1 Summary of Results

This thesis has provided significant evidence challenging the purported func-

tion of the predictive coding model. The model was originally proposed by Gornet

and Thomson to implement a mechanism that would generate a mathematically-

motivated and robust map of space. Supporting evidence for their mechanistic claim

included the spatial content induced by the predictive mechanism and the emergence

of place cell-like representations. The alternative theory supported in this thesis

proposed that image features, rather than explicit location and pose information,

are being encoded and decoded by the model. This other proposal would indicate

that the transition statistics learned by the attention heads reflect only surface-level

feature changes, albeit with impressive performance.

Chapter 3 supported this hypothesis by demonstrating that difficult-to-learn

transition statistics do not affect the encoding of location information in the way that
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they should under the old understanding of the model. Chapter 4 further corroborated

this claim, producing evidence that the transitions learned by the predictive portion

of the network only superficially relate to egocentric movement signals. If integrated

correctly under the originally proposed method, these signals would provide the model

with noiseless information to directly solve the prediction task under all levels of

trajectory randomness. However, this effect was not observed.

The place cell-like representations observed by Gornet and Thomson were

not fully explained by the alternative hypothesis proposed in this thesis. Therefore,

further experiments were conducted to explore whether these cell types were uniquely

produced by the prediction task and if they could potentially support a cognitive

map. Such a result would lend support to both the predictive coding model and

traditional understandings of place cell functionality. Chapter 5 applied methods

from Luo et al. to demonstrate that these representations are not unique, as they

have been observed in a broader class of image processing models. This chapter tied

the observed functional cell types back to the alternative hypothesis and showed that

these representations do not uniquely support the model’s function. Consequently,

this final notion of support for Gornet and Thomson’s original claims cannot be relied

upon.

6.2 Does Experimental Setup Induce Superfluousness?

The further analysis of results from Luo et al. suggested a more complex

”functional cell type story” than initially reported. This thesis revealed that much of

the previously shown mixed encoding which mirrored primate data relied on either

mistakes or generous cataloguing methods. Additionally, many cell types seemed to

disappear in larger, more complex environments. However, this does not represent a

comprehensive refutation of the ideas presented in their work.

Several preliminary arguments and further tests could potentially address these

claims. While the diversity and quantity of place cells in spatial systems are note-
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worthy, the lack of significant deficits in localization tasks following lesioning of these

functional cell types is difficult to ignore. However, this test may not be sufficiently

stringent. It is unsurprising that in a simple environment with minimal visual aliasing

and smooth and predictable features such as a wall, a linear decoder might demon-

strate good localization performance when given image-processing model activations

from an untrained model. In such a setting, even linear decoders trained with pixel

activations alone might accomplish this task. This is supported by the surprising per-

formance and functional cell population of the earlier layers of the models examined

in Luo et al. Given these conditions, it is reasonable to expect that location is redun-

dantly encoded by various cell types, and that the linear decoder would ultimately

rely on a combination of the most convincing ones to decode location.

Luo et al. primarily reinforce the notion that place cells and similar structures

should not be strictly tied to Euclidean spatial concepts, a point that is not con-

tested in this thesis. However, it is premature to conclude that functional cell types

lack meaningful roles and functions. An alternative hypothesis is that functional cell

types arise from the processing of sensory information into a representation which is

invariant to selective types of transformations. This hypothesis would explain the po-

tential confusion with activations induced by deep image processing networks, as the

inductive bias of the model architecture produces invariant representations of image

features (via convolution and max pool operations, or even attention blocks). Under

this framework, hippocampal representations would be both reflective of sensory in-

put and genuinely meaningful, though this meaning may rely on a generalized space

contextualizing sensory input with information such as internal beliefs and goals.

The question of what hippocampal activations actually ”mean”, and what role

they play, will likely be a hotly debated question in neuroscience for some time. The

primary argument in this thesis is that ablation studies should respect the complex-

ity and redundancy of the brain, and be conducted using tasks that are sufficiently

difficult and specific in order to produce a deficit when certain cell populations are
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targeted. The analysis provided by Luo et al. offers another reason to avoid in-

terpreting functional cells solely under their most literal and Euclidean space-based

definitions.

6.3 Limitations of Autoregressive Transformers in Cognitive
Map Construction

The experimental findings presented here suggest that the encoder and decoder

networks in the predictive coding model do not appear to be learning any special

mapping between images and location as indicated by Gornet and Thomson in their

probabilistic formulation. Results in Chapter 5 in tandem with previous arguments

even support that the model could still achieve good performance with an untrained

encoder. Therefore, this model does not appear to take any special performance from

being in a continuous domain and could be describable in similar terms as a vanilla

transformer, where existing literature on the subject can illuminate issues that this

architecture has with cognitive map building.

Gornet and Thomson mention in the last section of their paper that “pre-

dictive coding can be performed over any sensory modality that has some temporal

sequence. As natural speech forms a cognitive map, predictive coding may underlie

the geometry of human language. Intriguingly, large language models train on causal

word prediction, a form of predictive coding, build internal maps that support gener-

alized reasoning, answer questions, and mimic other forms of higher-order reasoning

(Brown, 2020). Similarities in spatial and non-spatial maps in the brain suggest that

large language models organize language into a cognitive map and chart concepts

geometrically.” This is true, but neglects to consider the large and quickly develop-

ing body of work which indicates that there might be large gaps in the reasoning

ability of large language models. Momennejad et al. (2023) directly tested several

large language models using their custom cognitive mapping test suite, CogEval, re-

vealing severe deficits across all architectures. In an evaluation modeled on discrete
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finite automata, transformers given turn-by-turn sequences of textual descriptions of

Manhattan taxi rides displayed near-perfect results in predicting the next turn and

encoded current location in their state representations (Vafa et al., 2024). However,

the recovered world model deviated significantly from the ground truth, and the model

struggled with downstream tasks when environmental modifications were introduced.

Despite these limitations, the transformer may still serve as a valuable start-

ing point for predictive-coding-based models of the hippocampus. Transformers form

sequentially invariant representations and exhibit impressive in-context learning capa-

bilities, both desirable traits for architectures supporting general-purpose reasoning.

As language models grow in scale and complexity, these inherent strengths may facili-

tate the development of increasingly sophisticated internal representations resembling

cognitive maps. Several other promising architectures incorporate transformer blocks,

including TEM-t (Whittington et al., 2022b), Transformer with Discrete Bottleneck

(TDB; Dedieu et al., 2024), and various versions of Joint Embedding Predictive Ar-

chitecture (JEPA) models such as Vision JEPA (V-JEPA; Bardes et al., 2024), which

employs vision transformers. TEM-t, in particular, presents an interesting variant of

the previous cognitive mapping model, the Tolman-Eichenbaum Machine, leveraging

the fact that attention can be computed in modern Hopfield networks (Ramsauer

et al., 2020). These models will be further discussed in subsequent sections.

6.4 Possible future improvements on the predictive coding
model

The struggle to use action signaling in a biologically plausible way is considered

a major missing component of this predictive coding model. However, the model’s

inability to integrate these signals may stem from its training loss rather than its ar-

chitecture. From a biological perspective, the hippocampus typically receives highly

processed sensory input from areas associated with late-stage visual processing and

other sensory areas. A loss function operating in pixel space is akin to asking the
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hippocampus to reconstruct every early activation in the primary visual cortex. This

could contribute to the model’s apparent failure to build a better conceptual un-

derstanding of the environment’s underlying geometry, as evidenced by the issues in

steering efforts. Luo et al. note the presence of hippocampal-like activations in other

cortical areas. Rather than this fact being used as a way to explain how hippocam-

pal representation is not unique, this may indicate that the hippocampus extensively

utilizes the invariance and organization of these representations, or even plays a role

in shaping them.

Initially, a predictive coding model that takes visual inputs and predicts sim-

ply the presence of represented objects in a scene (either wholly or partially) was

considered for use in this thesis and implementation began. While this approach

would diverge from modeling primate hippocampal function (with their foveated and

detailed visual input), it could potentially allow for more general and accurate func-

tionality. A more flexible realization of this objective might be found in current

exciting work on world models in reinforcement learning, where action consequences

are predicted in latent space (Hu et al., 2023; Hafner et al., 2023). Cognitive mapping

models are often framed in reinforcement learning terms, although they are primarily

distinguished by the quest to find accurate hippocampal representations and build

structure from sequences without rewards (despite much progress in reinforcement

learning world models being demonstrated in settings with sparse rewards).

Learning to predict the impact of actions in latent space can be further detan-

gled from rewards by taking a look at the very closely related JEPA class of models,

which takes in the latents of a transformed image and uses information about the

transformation to predict the inverse of this transformation, with the loss entirely in

the latent space. (Garrido et al., 2024) provides further motivation for the use of ac-

tion signaling in the context of a possible future predictive coding model: “If one does

not condition the predictor on the transformation parameters, then the best we can

hope for is learning representations that are invariant to the data transformations”.
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Action conditioning allows the JEPA class of models to instead learn equivariant rep-

resentations of their data, which are much more useful across a variety of downstream

tasks. This connection could allow the framing of the cognitive mapping problem as

one in which the hippocampus creates equivariant representations of sensory input

through action-informed prediction.

6.5 Context within other cognitive mapping architectures

Recontextualizing the predictive coder network allows for its consideration

within the broader realm of cognitive mapping models. This section will primarily

focus on two that have been previously introduced in Chapter 2. The first particu-

larly relevant model to this discussion is the Tolman-Eichenbaum Machine, or TEM,

which views hippocampal representations as a conjunction between sensory stimuli

(from the lateral entorhinal cortex) and structure information (from the medial en-

torhinal cortex, i.e., grid cells). An action signal can lead to the next remembered

observation, or the remembrance of an observation can inform which action signals

are available, enabling generalization between environments. However, TEM cannot

be the complete explanation in its current form as it requires a global coordinate

system and operates using allocentric actions.

The clone structured cognitive map (CSCG; Raju et al., 2024) also creates a

cognitive map by modeling how observations can be formulated as latent states and

the actions connecting these states. However, CSCG does not use observation content

for any purpose other than distinguishing them from their surroundings (even in the

continuous setting case, where images are condensed with a vector quantizer into

discrete states). Consequently, it cannot use this information to generalize and relies

on external algorithms to match the appropriate map to the situation. These two

models have been speculated to represent two forms of hippocampal function: map as

CSCG, and memory as TEM (Whittington et al., 2022a). Bridging the gap between

these models in a single framework would be an exciting development. One avenue for
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exploration involves variants of both models built with the transformer architecture.

TEM-Transformer (TEM-t) performs the same computation as TEM more efficiently

by replacing its Hopfield network and RNN with causally-masked attention blocks.

Locations in the environment are represented as observation-location pairs; in the

attention computation, the value is fixed to the observation (a one-hot vector) while

keys and queries rely entirely on the location.

On the other hand, the authors of CSCG propose TDB, or Transformers with

Discrete Bottlenecks, as a solution to path-planning in partially observed environ-

ments. This causal transformer accepts a sequence of alternating observations and

actions (x1, a1, x2, a2, . . . , xn, an). Processed observations Tn, now imbued with con-

textual information, are compressed with a vector quantizer to form a discrete code

d(Tn). The corresponding action an is then added to this code to produce xn+1. Due

to the sequence invariance of the transformer architecture, each code forms a repre-

sentation of state that includes both context and content. Interpretable graphs can

be derived from these codes and used for downstream tasks such as path planning.

However, George et al. note that this model relies on multiple sets of discrete codes

which are then coalesced, and these discrete codes do not form a detangled latent

space reflecting the environment.

The first application of sensory information in this setting is that, as acknowl-

edged by Dedieu et al., high dimensionality could help distinguish the codes and allow

for a detangled latent space. However, it would be additionally advantageous to fold

in continuous sensory information, as the codes could then be generalized to new

situations based on any useful aspect of the observation. One might also imagine a

version of TDB that operates primarily in latent space, similar to joint-embedding

models. While TDB does include one additional loss term of this nature, taking after

(Guo et al., 2022), their loss refers to the dictionary codes and is thus less flexible

than what is envisioned here.
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Chapter 7: Conclusion

The findings and analysis presented here highlight the complexities and limi-

tations of current approaches in modeling the form and function of cognitive maps.

The predictive coding model, while promising, needs additional constraints to piece

together observations into a coherent and flexible map of the environment. The

predictive coding model’s shortcomings in the cognitive mapping task align with

broader challenges observed in transformer-based models and large language mod-

els, which, despite their impressive capabilities, struggle with flexible reasoning in

out-of-distribution domains.

Moving forward, it is proposed that future research should focus on developing

models that can better integrate sensory information with action signals, possibly by

predicting consequences in latent space rather than pixel space, aligning with current

conceptions of the inputs to the hippocampal formation. This approach, inspired by

recent work in world models and joint embedding predictive architectures (JEPA),

could potentially bridge the gap between map-like (CSCG) and memory-like (TEM)

models of hippocampal function. By combining the strengths of these approaches

with the insights gained from the predictive coding experiments, it may be possible to

create more robust and generalizable models of spatial cognition that more accurately

reflect the flexibility and adaptability of biological systems.
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Appendix A: Predictive Coding Methods

The code published by Gornet and Thomson was heavily utilized with some

edits. The original codebase can be found at https://github.com/jgornet/predictive-

coding-recovers-maps. Thank you so much to the original authors for providing this

open source code.

A.1 Location Decoders

Gornet and Thomson trained a neural network to predict the agent’s position

from the predictive coder’s latent units. The prediction error of mean-squared error

between locations indirectly measures the predictive coder’s positional information.

Their simple neural network architecture consisted of a convolutional layer, a max-

pooling layer, two linear layers, and a ReLU.

Activations were gathered from the predictive coding model for this down-

stream task by giving the model sequences of input images. At every non-obstructed

grid location in the environment, 10 image observations were collected which were

approximately in the same location. The yaw of the agent was fixed to 0 degrees for

every image in this dataset. The predictive coding model takes in these 10 image

observations and produces a set of 10 predicted latents – only the last latent set in

the sequence is used to produce an observation. This means that every location was

seen once, with one viewing angle. Additionally, the localization model was trained

on the entire dataset with no locations held out. Generalization was measured by

adjusting the input image normalization by a constant factor.

Several changes were made to the localization model. First, the dataset was

changed such that every location has 50 evenly-spaced heading direction examples.

Several sequences of length 20 (as the model in this work uses a longer sequence

length than in Gornet and Thomson) are randomly generated from this set of 50
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views for each location. Instead of changing the image normalization, a test set

consisting of 20% of the view-position combinations randomly selected from across

the environment is now held out. The nonlinear location decoder is additionally

adjusted to add another convolutional layer, as well as dropout between the two

linear layers.

A linear position decoding model was also introduced in order to provide a

more robust test of positional content. This model is a linear support vector regres-

sor, trained with 5-fold cross validation to predict normalized locations on the same

dataset as the nonlinear model.
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Appendix B: Luo et al. Methods

This thesis uses the open source code from Luo et al., which can be found at

https://github.com/don-tpanic/Space. Thank you so much to the original authors

for providing this open source code.

B.1 Place Field Classification

Activations for every model unit across all locations in each environment were

collected to form activation maps. Place, head-direction, and border cells were iden-

tified based on specific firing characteristics from (Tanni et al., 2022; Banino et al.,

2018). For place cells, the number and size of place fields were examined, defining a

qualified field as spanning 10 pixels to half the environment size. Head-direction cells

were assessed using the resultant vector length of the directional activity map. For

each direction, vectors representing angle and average intensity were created:

ri = [βi cosαi, βi sinαi]
T (B.1)

where αi and βi are the angle and average intensity for direction i. The mean resultant

vector was calculated as:

r̃ =

∑N
n=1 ri∑N
n=1 βi

(B.2)

using 24 uniformly spaced angular directions. Border cells were identified using a

border score, comparing wall activation to center activation:

bs = max
i∈1,2,3,4

bi − c

bi + c
(B.3)

where bi is the mean activation within 3 bins of wall i, and c is the average activity

beyond this threshold. Units with a border score > 0.5 were considered border-like.

The original work from Luo et al. uses a simplified method of calculating

place cells from the cited Tanni et al. work. This thesis uses the full method, which
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is distinct due to its higher demand on the continuity and ”smoothness” of the place

field which is achieved by iterative thresholding of the activations, as well as the

requirement that place fields be stable across multiple visits. Since activations were

recorded at 17 different heading directions for every location, these were split into

two populations for use in the stability analysis.

B.2 Lesioning Analysis

To analyze how different deep neural network model units contribute to the

decoding of spatial content in the network, two unit exclusion analyses are employed.

In the first, units are excluded based on their spatial profiles, ranking them according

to specific spatial measures like field count. The top n% of units with the strongest

spatial characteristics are progressively excluded, assessing the impact on decoding

performance for each unit type and associated task as the exclusion rate increases. A

control group with random unit exclusion is included for comparison.

The second analysis focuses on task-relevance, using the magnitude of learned

decoder coefficients to determine unit importance. Units are gradually excluded based

on these coefficient magnitudes, linear decoders are retrained with the remaining

units, and their performance on spatial tasks is evaluated. Again, a control analysis

with random unit exclusion is conducted. For both analyses, spatial decoders are

retrained on the remaining model units following the same procedure as in the original

decoding process. This approach allows for quantification of the relative importance of

different unit types and their specific contributions to spatial information processing

within the model. This thesis does not make sure of the coefficient examination.

B.3 Examples of Functional Cell Types

This section contains examples of the functional cell types collected by the

adjusted methods in the large testing environments.
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Figure B.1: Activation maps for units classified as place cells from the post-
prediction predictive coding model in the big world.

Figure B.2: Additional activation maps for units classified as place cells
from the post-prediction predictive coding model in the big world.

Figure B.3: Activation maps for units classified as place cells from the last
layer of the ResNet-50 model in the big world.
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Figure B.4: Additional activation maps for units classified as place cells
from the last layer of the ResNet-50 model in the big world.
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Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael

Widrich, Thomas Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović,

Geir Kjetil Sandve, et al. Hopfield networks is all you need. arXiv preprint

arXiv:2008.02217, 2020.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a

functional interpretation of some extra-classical receptive-field effects. Nature

neuroscience, 2(1):79–87, 1999.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In Medical image computing and

computer-assisted intervention–MICCAI 2015: 18th international conference,

Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241.

Springer, 2015.

Aman B. Saleem, E. Mika Diamanti, Julien Fournier, Kenneth D. Harris, and

Matteo Carandini. Coherent encoding of subjective spatial position in visual

cortex and hippocampus. Nature, 562(7725):124–127, October 2018. ISSN

1476-4687. doi: 10.1038/s41586-018-0516-1. URL https://www.nature.com/

articles/s41586-018-0516-1. Publisher: Nature Publishing Group.

Alexei Samsonovich and Bruce L. McNaughton. Path Integration and Cognitive

Mapping in a Continuous Attractor Neural Network Model. Journal of Neu-

roscience, 17(15):5900–5920, August 1997. ISSN 0270-6474, 1529-2401. doi:

10.1523/JNEUROSCI.17-15-05900.1997. URL https://www.jneurosci.org/

content/17/15/5900. Publisher: Society for Neuroscience Section: Articles.

Karen Simonyan. Very deep convolutional networks for large-scale image recog-

nition. arXiv preprint arXiv:1409.1556, 2014.

79

https://www.nature.com/articles/s41586-018-0516-1
https://www.nature.com/articles/s41586-018-0516-1
https://www.jneurosci.org/content/17/15/5900
https://www.jneurosci.org/content/17/15/5900


Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of

neural networks using large learning rates. In Artificial intelligence and machine

learning for multi-domain operations applications, volume 11006, pages 369–386.

SPIE, 2019.

Robert W. Stackman, Ann S. Clark, and Jeffrey S. Taube. Hippocampal Spatial

Representations Require Vestibular Input. Hippocampus, 12(3):291–303, 2002.

ISSN 1050-9631. doi: 10.1002/hipo.1112. URL https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC1823522/.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the

importance of initialization and momentum in deep learning. In International

conference on machine learning, pages 1139–1147. PMLR, 2013.

Sander Tanni, William De Cothi, and Caswell Barry. State transitions in the

statistically stable place cell population correspond to rate of perceptual change.

Current Biology, 32(16):3505–3514, 2022.

Jeffrey S Taube, Robert U Muller, and James B Ranck. Head-direction cells

recorded from the postsubiculum in freely moving rats. i. description and quan-

titative analysis. Journal of Neuroscience, 10(2):420–435, 1990.

Alessandro Treves, Orazio Miglino, and Domenico Parisi. Rats, nets, maps, and

the emergence of place cells. Psychobiology, 20(1):1–8, 1992.

Benigno Uria, Borja Ibarz, Andrea Banino, Vinicius Zambaldi, Dharshan Ku-

maran, Demis Hassabis, Caswell Barry, and Charles Blundell. A model of ego-

centric to allocentric understanding in mammalian brains, March 2022. URL

https://www.biorxiv.org/content/10.1101/2020.11.11.378141v2. Pages:

2020.11.11.378141 Section: New Results.

80

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1823522/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1823522/
https://www.biorxiv.org/content/10.1101/2020.11.11.378141v2


Keyon Vafa, Justin Y Chen, Jon Kleinberg, Sendhil Mullainathan, and Ashesh

Rambachan. Evaluating the world model implicit in a generative model. arXiv

preprint arXiv:2406.03689, 2024.

Ashish Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762,

2017.

Margaret C von Ebers and Xue-Xin Wei. Cognitive maps from predictive vision.

Nature Machine Intelligence, pages 1–2, 2024.

James C. R. Whittington, David McCaffary, Jacob J. W. Bakermans, and Tim-

othy E. J. Behrens. How to build a cognitive map. Nature Neuroscience,

25(10):1257–1272, October 2022a. ISSN 1097-6256, 1546-1726. doi: 10.1038/

s41593-022-01153-y. URL https://www.nature.com/articles/s41593-022-01153-y.

James C R Whittington, Joseph Warren, and Timothy E J Behrens. Relating

Transformers to Models and Neural Representations of the Hippocampal Forma-

tion. 2022b.

James C.R. Whittington, Timothy H. Muller, Shirley Mark, Guifen Chen, Caswell

Barry, Neil Burgess, and Timothy E.J. Behrens. The Tolman-Eichenbaum Ma-

chine: Unifying Space and Relational Memory through Generalization in the

Hippocampal Formation. Cell, 183(5):1249–1263.e23, November 2020. ISSN

00928674. doi: 10.1016/j.cell.2020.10.024. URL https://linkinghub.elsevier.

com/retrieve/pii/S009286742031388X.

K. Zhang. Representation of spatial orientation by the intrinsic dynamics of the

head-direction cell ensemble: a theory. Journal of Neuroscience, 16(6):2112–

2126, March 1996. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.

16-06-02112.1996. URL https://www.jneurosci.org/content/16/6/2112.

Publisher: Society for Neuroscience Section: Articles.

81

https://www.nature.com/articles/s41593-022-01153-y
https://linkinghub.elsevier.com/retrieve/pii/S009286742031388X
https://linkinghub.elsevier.com/retrieve/pii/S009286742031388X
https://www.jneurosci.org/content/16/6/2112


Vita

Margaret C. von Ebers was born in Des Moines, Iowa on October 17th 1997,

the daughter of Paul and Jill von Ebers. She received her Bachelor of Science degree

from Texas A&M University (Gig ’Em Ags) in the spring of 2020. She was accepted

into the Computer Science MS program at The University of Texas at Austin in

2022.

Address: 2102 East 8th Street, Austin, TX 78702

This thesis was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

82


	List of Figures
	Chapter 1: Introduction
	Motivation
	Research Questions
	Outline

	Chapter 2: Background
	Neural Substrates of Cognitive Maps
	Computational Cognitive Maps
	A Predictive Coding-Based Model
	Methods and Results
	What is Missing?

	Critically Examining Functional Cell Types
	Methods and Results
	What is Missing?


	Chapter 3: The Effects of Transition Statistics on Localization
	Methods
	Results

	Chapter 4: Integration of Vestibular Input
	Method
	Results

	Chapter 5: Content of Image Latents
	Functional Cell Classification
	Methods
	Results

	Functional Cell Performance and Lesioning
	Methods
	Results


	Chapter 6: Discussion and Future Work
	Summary of Results
	Does Experimental Setup Induce Superfluousness?
	Limitations of Autoregressive Transformers in Cognitive Map Construction
	Possible future improvements on the predictive coding model
	Context within other cognitive mapping architectures

	Chapter 7: Conclusion
	Appendix A: Predictive Coding Methods
	Location Decoders

	Appendix B: Luo et al. Methods
	Place Field Classification
	Lesioning Analysis
	Examples of Functional Cell Types

	Works Cited
	Vita

