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Abstract

From Sensory Input to Cognitive Maps: Exploring the
Significance of Spatial Representations in Artificial

Hippocampal Models

Margaret C. von Ebers, MS
The University of Texas at Austin, 2024

SUPERVISORS: Xue-Xin Wei, Risto Miikkulainen

A wide range of computational models have been proposed to explain how
the hippocampus supports spatial and non-spatial reasoning. A recent model demon-
strated that prediction of observations alone creates representations which contain
spatial information and resemble the activity of hippocampal cells. This work ex-
plores three key questions. Does the prediction of visual elements in natural scenes
induce a true, usable world model, challenging the notion that specialized neural
architectures are necessary for spatial cognition? Do the "place cells” identified in
this model function in accordance with our current understanding of their biological
counterparts? And, are functional cell types such as place cells truly ”functional”,
or are they heretofore mislabeled correlates of sensory information? This investiga-
tion reveals that prediction of visual elements in this scheme induces not a cognitive
map, but instead local and non-functional features which are easily misidentified as
true place cells. The study further proposes that genuine hippocampal features may
serve more complex functions than the image-processing artifacts that superficially

resemble them.
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Chapter 1: Introduction

Imagine driving a car through the downtown of a city you've never been to
before, looking for parking. Their street signs are a different color than your town’s,
but you’re still able to use them for navigation. You see a sports stadium, and un-
derstand that there’s probably a parking garage nearby. Upon finding a garage, you
realize that the front entrance is under construction, but you know to round the block
and enter the back instead. You can do all of this because you naturally relate your
specific sensory input to useful abstractions and then develop a flexible understanding
of how they relate to each other. How exactly is your brain able to do this? If an
artificial system existed whose "neurons” responded like our neurons during this task,
would the system be able to navigate just the same? Scientists trying to understand
and replicate these powerful cognitive capacities have two sources of information: the
behavior of biological agents, and the neural response patterns that accompany it.
Understanding how these neural patterns give rise to flexible behavior is an open ques-
tion and one that is crucial for both neuroscience and artificial intelligence research.
This thesis investigates the question of whether the appearance of hippocampal ac-
tivity patterns in artificial models indicates the formation of a cognitive map of the

kind that supports such impressive functionality in biological agents.

1.1 Motivation

Ever since O’Keefe and Dostrovsky (O’Keefe and Dostrovsky, |1971) discov-
ered neurons in the rodent hippocampus which display striking preference for certain
locations in the environment, neuroscientists have been fascinated with cataloguing
the numerous hippocampal cell types and their purported functions. The ”cognitive
map” said to be generated by these cells initially appeared to support flexible be-

havior in space, such as planning routes or taking novel shortcuts. However, recent
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research has indicated that this spatial map may be one instance of a general coding
mechanism that synthesizes observations and gives them a relational structure so that
they can be retrieved and utilized flexibly. Striking non-spatial examples include grid
cells in the entorhinal cortex responding to stimuli which varies across two abstract
dimensions (Constantinescu et al.,|2016), and so-called place cells tracking ”locations”
in other sensory domains such as sound frequencies (Aronov et al., 2017). Given the
wide variety of experimental results, and the fact that these cell type expressions are
often less amenable to interpretation, understanding how these representations form
and what role they take in supporting these functions is crucial for unraveling the

brain’s fundamental processing principles.

Computational neuroscientists have long been tackling this challenge by de-
veloping models that must generate representations resembling place and grid cells
in the process of solving (generally) spatial tasks. Concurrently, researchers in re-
inforcement learning and large language models, despite achieving impressive and
emergent advancements in model capabilities, are still striving to create systems that
can learn continuously and reason flexibly in novel domains as humans can. Harness-
ing the power of this biological ”GPS” could have far-reaching implications for any
field modeling complex real-world interactions, particularly in self-driving cars and
robotics. Although language and mathematical reasoning stem from different brain
regions, decoding the hippocampus’s ability to construct structure from sequences

could enhance general-purpose reasoning in Al systems across various domains.

Before this research uncovers fundamental insights about generalization, it
holds significant potential for validating experimental data and testing neuroscientific
theories in novel contexts. Robust computational models of cognitive functions can
be ablated, reconstructed, and applied to scenarios more difficult to study in vivo,
serving as valuable tools for validating and extending our understanding of previously

gathered experimental data.
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1.2 Research Questions

Recent studies have used deep artificial neural networks to not only explain
some functional cell types in the hippocampus but also to raise fundamental ques-
tions about the way these cells are traditionally classified in biological studies. Two
currently prominent works challenge the long-held belief that specialized neural archi-
tectures are necessary for spatial cognition. The first, a work by Gornet and Thomson
(Gornet and Thomson|, 2023), proposes that the prediction of visual input in natu-
ralistic environments induces a cognitive map which supports localization and gives
rise to striking place cell-like representations. The second, by Luo et al. (Luo et al.,
2024)), makes the claim that not even prediction is necessary: spatial knowledge can
arise out of systems which create sufficiently complex representations of sensory input,
place cell-like representations can be observed in these systems, and these supposed
functional cells do not appear to uniquely support this spatial knowledge. Both works
raise important questions about the nature of the relationship between sensory inputs

and their corresponding downstream representations in the hippocampus.

Gornet and Thomson assert that their predictive coding model forms a cog-
nitive map because it replicates both the form and the function of place cells. In
this instance, "form” refers to the model’s ability to generate units that preferen-
tially respond to different areas of the environment. ”Function” describes how the
model’s proposed mechanism of action induces a cognitive map which is indicated
by increased spatial information in the latent space. This thesis questions if such a
simple architecture does induce a true cognitive map, and does so by questioning the
form and function. Is the model’s purported mechanism actually being carried out,
or can its spatial information be attributed to simple local image feature prediction?
If the model is not operating as previously hypothesized, is it possible that the novel
place cell representations are instead supporting the cognitive map under the classical
understanding of place cell function, or can they be attributed to the same effects

as demonstrated in Luo et al.? Finally, do these findings suggest that the model’s
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"place cells” are superfluous, or that our traditional understanding of hippocampal

place cells may need revision?

This thesis provides experimental evidence to support arguments that the
predictive coding model does not and cannot support a flexible cognitive map of the
environment which could be used to support all the neural function attributed to the
hippocampal formation. The first two experimental findings support an alternative
hypothesis that spatial information in the model is attributable to general function of
attention blocks operating on image features, rather than encoded locations within a
broader map. First, agents with different movement characteristics are developed to
generate training observations for the model. It was found that spatial information
encoded in the model is not significantly affected by these changes in the movement,
which would not be the case for a model which relies on an encoded location being
shifted forward in time accurately. It was also found that when an additional stream
of information is integrated that directly tells the model about the movement which
corresponds to its observations, the model gets better at predicting the next observa-
tion, and its representations contain more spatial information. However, varying the
movement information did not result in expected changes in the model’s predicted
next observation, further supporting the theory that the model is not learning to rep-
resent the underlying movement. Next, it is shown that while the predictive coding
model displays a wealth of functional cell types including place cells, the ablation of
these does not cause performance deficits in localization in a way that would indicate
that these features are supporting a cognitive map. Finally, it is shown that the func-
tional cells shown in the image processing models from Luo et al. do not replicate
to the larger environment, leading to discussions on the validity of their methods
in supporting their theory that functional cell types in the hippocampus are truly

superfluous.

14



1.3 Outline

This paper is divided into several sections. Chapter 2, ”Background”, gives
an overview of relevant previous work regarding cognitive maps, starting with the
experimental data and theories supporting different hippocampal cell types in mam-
mals. It also details relevant computational models, spanning efforts in reinforcement
and representation learning. This chapter ends with introductions to the works from
Gornet and Thomson and Luo et al. which are the focus of this paper. Chapter 3,
"The Effects of Transition Statistics on Localization”, introduces variations to the
way that data is collected for predictive coding models and discusses their effects
on performance across different tasks. Chapter 4, ”Integration of Vestibular Input”,
shows how the model makes use of a complementary stream of information during
training, and explains why action signals may be critical to cognitive map formation.
Chapter 5, "Content of Image Latents”, applies methods from Luo et al. to draw
comparisons between the activations of image-processing networks and the predictive
coder in localization tasks. Chapter 6, ”Discussion and Future Work”, summarizes
the experimental findings found in this thesis, provides additional support from the
literature for the claims, and discuss future avenues towards complete cognitive map-
ping models. Chapter 5, ”Conclusion”, offers final reflections on the implications of

this work.
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Chapter 2: Background

This chapter presents a comprehensive overview of the biological and compu-
tational foundations underlying this research. It begins by exploring the historical
discoveries and recent assessments of hippocampal function in animals. The dis-
cussion then examines relevant computational models of cognitive maps, highlighting
the distinctions between various approaches and their current limitations. Finally, the
chapter introduces the two key studies central to this research, providing a detailed

overview of their methodologies that will be utilized in subsequent analyses.

2.1 Neural Substrates of Cognitive Maps

Decades of research in neuroscience have indicated that the hippocampus is
a critical region for functions such as spatial reasoning and episodic memory, as
well as more abstract social or logical cognition. (Whittington et al., [2022a) Most
experimental data in this area focuses specifically on space. The first and most striking
results came from rodents navigating mazes and small laboratory environments, where
a variety of functional cell type classifications were determined that might support the
cognitive map of space. These include place cells (O’Keefe and Dostrovsky, (1971)),
which respond strongly to one area of the environment and do not generalize to
new locations; grid cells (Hafting et al., [2005), which smoothly tile the environment;

head-direction cells (Taube et al., [1990)), and more.

How these internal representations are formed remains heavily debated. The
hippocampus receives highly processed inputs from multiple sensory modalities (e.g.
visual, olfactory, or vestibular systems) (Hitier et al., 2014) as well as information
about goals from the prefrontal cortex (Eichenbaum| 2017). Striking differences in
the experimental realizations of these cells have been observed across species, likely

due to differences in the quality, content, and sampling methods of these inputs. In
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particular, primates appear to exhibit much more mixed selectivity, with hippocampal
rhythmic theta oscillations occurring with eye saccades instead of during locomotion

as is the case with rodents. (Piza et al., [2024)

Further complicating the efforts to catalog cell types and understand the mech-
anism that they support is the fact that similar representations exist in varying de-
grees across the cortex. The hippocampus takes a role in shaping the representations
found in earlier sensory areas (Saleem et al., |2018) and grid-cell-like codes have been
found to organize conceptual knowledge in the entorhinal cortex and ventromedial

prefrontal cortex (Constantinescu et al., 2016).

2.2 Computational Cognitive Maps

Many computational models have been proposed to explain how hippocampal
representations might be formed. Spatial maps in the brain are typically considered to
be the result of networks that predict location by integrating the agent’s movements
from vestibular inputs, a process referred to as ”path integration”. (McNaughton
et al., [2006) This computation can be implemented in a class of models called contin-
uous attractor networks (Zhang), |1996; Samsonovich and McNaughton, [1997; [Burak
and Fiete, 2009), and recurrent neural networks have been shown to form response
patterns resembling grid cells while solving the path integration task (Cueva and Wei,
2018)). Similar bodies of work show how models can take advantage of an existing map
of an environment, literal or represented as place cells, in order to navigate (Banino

et al., 2018).

Another class of cognitive mapping models attempts to remove the focus from
mapping Euclidean space, instead focusing on how structure can be built out of more
general sequences. While these models are typically explained from a reinforcement
learning framework for convenience, they are generally trained without reinforcement
and show how prediction can allow for sequences of observations without rewards

to become a useful representation. Models such as the Tolman-Eichenbaum Machine
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(TEM; Whittington et al., 2020) or Spatial Memory Pipeline (SMP; Uria et al.,|[2022)
use an abstract path integration module which uses the content of sensory observa-
tions to create a representation which is made up of both the nonspecific and the
specific so that these representations might quickly generalize to new environments.
Doing away with path integration entirely, Clone Structured Causal Graphs (CSCG;
George et al., 2021; Raju et al., |2024)) use a hidden Markov model with cloned la-
tent states to show how arbitrary representations can be used to detangle aliased

observations.

The throughline that can be seen across all of these implementations is that
they focus primarily on how an explicit history of actions might allow for the con-
struction of a map of space. In this realm, while sensory inputs have been recognized
to play an important role in anchoring and re-calibration of the map, action signaling
in the way of path integration or grid construction is considered to be the ultimate
backbone. However, all of the models mentioned above rely on some simplified input
representation which is not accurate to the actual biological system: the path integra-
tion models receive direct training signals or instantiations regarding the spatial map,
and TEM’s abstract path integrator operates on allocentric actions and observations.
CSCG makes use of egocentric actions and receives no additional training signal than
the history of observations it received, but it abstracts its (discrete) observations away

so much that they do not support generalization to new environments.

2.3 A Predictive Coding-Based Model

It is possible that one could learn all that is necessary to know about how
space works just from building a representation of sensory information in the right
way? Does the prediction task induce neural populations to learn both a flexible
and implicit path integration system, as well as a way to generalize observations so
that they can be used in the future? The model here under examination by Gor-

net and Thomson shows how a model might encode information about an agent’s
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location in an environment simply through the prediction of the next observation.
This is informed by the theory of predictive coding, which proposes that the gen-
eral function of neural processes across the brain is to efficiently encode an expected
representation of what sensory observations will appear in the next moment in time,
making use of spatial-temporal regularities in the world. Originally introduced to ex-
plain the inhibitory response in the retina, Rao and Ballard| (1999)) further developed
this framework for the primary visual cortex. Outside of the realm of neuroscience,
Poincaré (2015)) discussed how movement across space could generate regular and
predictable transformations of observations which could be stitched together to form

an understanding of the structure of the environment.

2.3.1 Methods and Results

Gornet and Thomson first motivated the predictive coding model with a math-
ematical theorem. First-person images Iy, [, ..., I,, were sampled from positions and
associated orientations (xg,6y), (z1,61),. .., (x,,0,). Statistical inference of predict-

ing the next image I, initially takes the form:

P(ly, I, ..., I, Ip 1)

P(Iys1 | lo, L1, ..., Iy) = Po Ty 7o)

(2.1)

Because the movement of the agent is determined by a variable velocity applied
to the position with a fixed time step, the motion of the agent is generated by a Markov
process with transition probabilities P(x;11|z;). Thus, since P(ly, I1,. .., Iy, Ix+1) can
be considered to be a function on an implicit set of spatial coordinates, the equation

can be rewritten to reflect this as an integral over all possible paths in the environment
Q:

Py, Li,.... I | zo...x
P(Lisy | Io, Iy, ... I}) = / dz Pz ... x3) Uo, b k] %o k)P(ka | 1) P(Ins1 | Zhs)
Q P(ly, I1,..., 1) (2 2)
= / da P(xo... 2k | Lo, L1, .. Ix) P(apg | zp) P(lr | 2es1)
¢ encoding (1) spatial transition probability (2) decoding (3)
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Fixed-length sequences of these observations are individually encoded with
a ResNet-18 encoder (He et al., |2016) to produce a sequence of latents. This en-
coder uses a U-Net (Ronneberger et al., 2015) architecture to pass latents into a
residual stream for the subsequent three blocks of alternating multi-headed attention
(Vaswani, 2017) (with eight heads and a causal mask to enforce temporal structure)
and feed-forward layers. The output of these attention blocks is hypothesized to be
a set of latent predictions that represent the model’s expectation of the agent’s next
position and thus what the next observation will look like. These latents are then
passed through a matching ResNet-18 decoder with transposed convolutions to make
the predicted next image. The model is trained with a mean-squared error loss in
pixel space. It is hypothesized that the encoder, by producing a set of processed
visual feature latents, is encoding an estimate of the probability that an agent has
traveled along a path of positions associated with the provided image sequence. The
self-attention blocks should learn the transition probabilities between the inferred
current position (xy, 6x) and the next estimated position (zx41,0k+1), and finally the
model’s decoder computes P(lj1|Tg11,0k+1). Model architecture and an example of

how agent movement generates training data is illustrated in Figure [2.1

Gornet and Thomson use the Malmo package to build a test environment
within Minecraft (Johnson et al. 2016). The environment is a complex scene measur-
ing 40 x 65 blocks, displayed in Figure[2.2] The original model presented is trained for
200 epochs with gradient descent optimization with Nesterov momentum (Sutskever
et all [2013), a weight decay of 5 x 1075, and a learning rate of 10! adjusted by
OneCycle learning rate scheduling (Smith and Topin|, 2019), with which it achieves
an MSE of 0.094.

Gornet and Thomson first compared the predictive coding model with an au-
toencoder which has the same ResNet-18 encoder and decoder architecture. This
autoencoder reconstructs individual images without prediction and serves as a base-

line indicator for how much spatial content can be gleaned from the similarity between
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Timet-1

Self-attention

Current visual input ——s | Encoder
| module

Spatial representation in the latent space

Decoder

Time t+1

Lm» Future visual input

. . e

Figure 2.1: Depiction of the data collection process and model architecture.
a, An agent navigates in a virtual environment and collects visual observations at
every step. These image sequences are used to train the model. b, The neural
network is trained to predict future visual input on the basis of current visual input.
A representation of space should emerge from the self-attention module after training
the network to solve the visual prediction task. Figure from (von Ebers and Wei,

2024).
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Figure 2.2: A bird’s eye view of the test environment. A bridge restricts the
agent’s motion, trees provide visual occlusion, and a large cave serves as a global
landmark.
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images instead of the underlying geometry of the environment. The latents recov-
ered from the predictive coding model outperform those from the autoencoder in two
downstream tasks: predicting location and recovering accurate distances between lo-
cations. Importantly, the latent population in the predictive coding model before the
predictive attention blocks is demonstrated in supplementary information from Gor-
net and Thomson to not have this additional spatial content, and performs similarly

to the autoencoder latents in the localization task.

Additionally, individual activations from just before the decoder in the predic-
tive coding model were treated as potential cells in the hippocampus. Each activation
was thresholded at its 90th percentile value, and for each location, the cell was con-
sidered to be ”activated” if it was above this threshold. It was found that these cells
tend to activate at localized regions across the environment. Finally, they show that
every location in the environment can be represented by unique combinations of over-
lapping ”place field” regions and that the Hamming distance given by counting the

number of overlapping regions can recover the physical distance between locations.

2.3.2 What is Missing?

While Gornet and Thomson’s work presents impressive initial results support-
ing a novel theory of hippocampal function, several critical questions remain. Their
model, if accurately described by the proposed mathematical formulation, could in-
duce a cognitive map capable of supporting various navigational behaviors. This
formulation, which maps sensory observations to latent states and describes transi-
tions between these states, does indeed align with other cognitive mapping models
discussed earlier. However, the presence of spatial content in the model’s latents
and place cell-like activations, while noteworthy, does not conclusively prove that the
model functions as hypothesized. Alternative explanations that do not necessarily

result in a flexible map warrant consideration.

Two main factors challenge the notion that the model is encoding images into
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estimated locations:

1. Gornet and Thomson demonstrate that latents before the attention heads con-
tain significantly less spatial content than those after. While they interpret this
as evidence that prediction is necessary to induce a spatial map, it contradicts
their hypothesis that the encoder learns a direct mapping between images and

their associated locations and poses.

2. The authors present their model as probabilistic, implying that the encoder
and decoder estimate distributions. However, it’s important to note that these
encoder-decoder architectures are not variational autoencoders, which would di-
rectly estimate distributions. Instead, they primarily deal with sets of processed
image features. They provide further support for this setup in the supplemental

information, but it opens the door for alternative hypotheses.

This thesis proposes that, instead, the attention heads may be learning trans-
formations between processed image features rather than transformations between
encoded locations. Experiments in Chapters 3 and 4 aim to demonstrate model be-

havior more consistent with this alternate formulation.

Under this hypothesis, the increased success in location decoding tasks could
be attributed to the fact that image features processed by attention blocks will contain
information about previous images in the sequence. This effect might be compara-
ble to providing the downstream model with multiple images for location prediction
instead of just one. However, the question remains: do these post-attention image
features still represent an implicit code of location within a connected map? Exist-
ing research on vanilla transformers suggests they can achieve impressive next-step

prediction without a coherent world model (discussed further in Chapter 6).

Gornet and Thomson take care to not attribute too much biological meaning to
their place cells, and do not claim that their model’s conception of space is functionally

supported by these cells, instead simply noting that it is encouraging that their model
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of hippocampal function appears to display hippocampal response patterns. However,
in the absence of evidence supporting their proposed mechanism of action, it would be
useful to their argument if these functional cells were uniquely critical for performance.
This would support the model’s function under the classical view of place cells, which
is that they are meaningful and necessary for localization within space. The next
section introduces a work that directly contradicts the idea that these cells are unique
or functional in artificial systems, and applies its methods to the predictive coding
model in Chapter 5 to exhaust this last potential avenue of support for the cognitive

map hypothesis.

2.4 Critically Examining Functional Cell Types

The predictive coding model previously introduced asserts that prediction is
an essential component of the function of the hippocampus, and demonstrates that
prediction induces place cell-like representations. (Luo et al., 2024)) make the further
claim that instead of a cognitive map-supporting system being necessary, essentially
any sensory processing system with enough complexity contains significant informa-
tion about space to solve simple localization tasks, and that place cell representations
arise from these systems but do not contribute to their function in ways previously

ascribed to functional cell types.

This could be interpreted on its face as a caution against confusing the in-
variant representations formed in artificial image processing with those that support
spatial reasoning in the hippocampus. Instead, Luo et al. propose that this is all
that real place cells are, or at least that real place cells are similarly inevitable and
superfluous. This new theory of hippocampal representations is a salacious one, but
not unfounded by the literature. Several ablation studies in the hippocampus have re-
ported inconclusive results, and mixed coding responses have been widely observed in
the place of the immediately intuitive place cells, particularly in species like primates

that have advanced visual systems. Additionally, there are contemporary movements
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in both neuroscience and computer science to move away from examining single neu-

rons as interpretable units of computation.

2.4.1 Methods and Results

Luo et al. propose an experimental setup to demonstrate their claims, utiliz-
ing a small Unity environment that resembles a typical laboratory setting used for
studying free-moving rodents. They expose several deep image-processing networks
to first-person images from this environment. These networks vary in architecture,
including convolutional networks like VGG-16 (Simonyan, 2014) as well as the non-
convolutional Vision Transformers (ViT;|Dosovitskiy et al.,[2021), with weights either
pretrained on ImageNet-1k (Deng et al. 2009) or randomly initialized. Notably, these
models are not further trained on the laboratory setting. The researchers use the ac-
tivations from these models, when shown the observations, to train linear regression
models. These decoders predict three key aspects of spatial cognition: location, head
direction, and distance to the nearest wall — all functions hypothesized to be per-
formed by various hippocampal cell types. Importantly, all models achieved high

accuracy across all tasks.

Furthermore, Luo et al. classify the model activations according to typical
guidelines applied to functional cell types in neuroscience. They discover that all
models exhibit large, diverse populations of functional cell types when exposed to this
laboratory setting, including significant mixed encoding of head direction and place,
which closely resembles primate data. To test the importance of these functional cells,
they then sort the model activations by their rankings according to these metrics and
progressively remove increasing amounts of the top-ranked units. Surprisingly, they
find that removing these functional cells does not result in a significant decrease in
the performance indicated by their purported function. For instance, lesioning place
cells does not lead to a substantial decline in localization performance, and lesioning

border cells do not affect the ”distance to nearest wall” task.
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2.4.2 What is Missing?

The emergence of place cell-like representations across diverse architectures,
without uniquely contributing to localization tasks, offers a potential explanation for
the presence of place fields in the predictive coding model. However, to establish a
useful baseline for subsequent analyses, it is crucial to consider the limitations of this
study. A primary concern lies in the experimental environment’s potential biases.
The small size of the environment, absence of aliasing or visual occlusions, and the
visually-grounding presence of a low wall may contribute to the observed diversity of
functional cell types and potentially diminish the significance of the lesioning study
results. In this setting, ablating place cells may not significantly impair localiza-
tion, as the agent’s position remains easily determinable from other functional cells.
It remains to be seen whether the predictive coding model induces place cell-like
activations in larger environments and whether baseline, untrained models exhibit
similar behavior. Additionally, is it possible that the larger environment might lead

to different outcomes in the lesioning study?

This thesis primarily examines these limitations in the context of the predic-
tive coding model and does not adopt the further conclusion of Luo et al. that real
hippocampal cell types are superfluous. Operating under the assumption that hip-
pocampal functional cells really are functional could provide a stronger point against
the predictive coding model. However, the analysis is still strong without this con-
clusion. A full rebuttal of these claims would be out of the scope of this work as
this is an open question within neuroscience, though since this thesis does try to use
artificial systems to develop an understanding of how sensory information is used to
create hippocampal representations, some initial evidence and argumentation casting

doubt on the broad claims of Luo et al. is offered in Chapters 5 and 6.

This thesis primarily examines these limitations within the context of the pre-
dictive coding model, without adopting Luo et al.’s broader conclusion regarding the

superfluity of real hippocampal cell types. Operating under the assumption that hip-
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pocampal functional cells serve genuine functions could provide a stronger argument
against the predictive coding model. However, the analysis remains robust without
this conclusion. While a comprehensive rebuttal of the claims of Luo et al. falls out-
side the scope of this work, given that it remains an open question in neuroscience,
Chapters 5 and 6 present initial evidence and argumentation casting some doubt. This
discussion aligns with the thesis’s aim to leverage artificial systems in understanding

the connection between sensory information and hippocampal representations.
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Chapter 3: The Effects of Transition Statistics on
Localization

If the contents of the encoded representation are in doubt, one first place to
look is at how the attention blocks learn transitions between what’s being encoded,
whether that is image features or a more explicit code of location and pose. These
transitions are determined by the underlying movement of an agent which generates
image observations. Supplementary information from Gornet and Thomson indicates
that an agent randomly sampling angular velocity at each time step results in signifi-
cantly reduced spatial content in post-prediction latents. This finding supports their
proposed mechanism: the model learns how locations and poses arise from observa-
tions, and accurate prediction of location transitions may enable the construction of
a comprehensive environmental understanding, leading to high spatial content in the

post-prediction latent space.

This section presents a more robust version of this experiment by varying ran-
domness qualities in the trajectories in a more systematic manner by introducing an
additional class of agents with more biologically accurate movement. The perfor-
mance of models trained on this data instead provides evidence for the alternative
hypothesis and establishes a foundation for examining these model variants under

different testing conditions in subsequent chapters.

3.1 Methods

The first major change made to the agent’s movement was to add the option
to modulate randomness in the trajectory with a coefficient. Previously, data for
the model was generated by an agent selecting two random points in the Minecraft
environment and following a path between them determined by the A* algorithm,

recording observations at every time step. In the new setup at a low randomness
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coefficient, the agent starts at a random location in the environment and samples
speed and angular velocity values such that it generally travels in a straight line, with
some small addition for both variables from normal distributions. As the randomness
coefficient increases, the variance of the two distributions is increased, such that the
trajectory eventually becomes overpowered by random movements. The agent will
also make some necessary moves to avoid obstacles. 32510 images from each of these

coefficients make up datasets for training.

Trajectory coefficient: 0.1
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Trajectory coefficient: 0.9
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Figure 3.1: Examples of the effects of increasingly random movements in
head-fixed models. Trajectories resembling these examples will be used to train
three separate instances of the predictive coding model.
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Figure 3.2: Examples of the effects of increasingly random movements in
non-head-fixed models. Trajectories resembling these examples will be used to
train three separate instances of the predictive coding model.

These datasets represent a trade-off: at lower coefficients, the transition statis-

tics are much more regular and presumably easier for the self-attention blocks to
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predict. However, a straighter trajectory also implies a final position that is much
further away from the initial, which would generally induce more visual changes and

less ability to build up evidence. Examples of these trajectories are shown in Figure

B.I

A second class of agent motion models detangles the head direction and the
movement direction. Reflective of sensory input, the exploration strategies of rodents
and non-human primates are the primary driver between the differences in hippocam-
pal representations between the two species. Risking oversimplification, [Piza et al.
(2024)) found that rats primarily sample their environment by locomoting to differ-
ent locations with very small head turns, while primates tend to stop and scan the
environment with large, sweeping head movements. Adding a moving head direction
tests whether the predictive coding model can accommodate an additional degree
of complexity, and adds more biological plausibility to a model that relies on visual
input which is closer to the signal strength of a primate instead of a rat. Examples

of these trajectories can be seen in Figure [3.2]

The performance impacts of these model data adjustments were measured in
two primary ways. First, the model’s performance on the validation set for the next-
step prediction task is examined. Additionally, the effects of these changes on the
spatial content in the post-prediction model activations were measured using both
nonlinear and linear decoders. Modified methods from Gornet and Thomson were
employed to train a nonlinear decoder in the form of a small convolutional neural
network. This decoder receives normalized post-prediction activations as input and
is trained to minimize the mean squared error for the predicted 2D location. The
decoder distinguishes between multiple views for every location and measures perfor-
mance on a held-out set of random locations and views from across the environment,
representing a more stringent test than that used in the original work. Details of
the original architecture and the modifications used in this study can be found in
Appendix A. The localization plots include an upper bound in the form of a noise

model, which returns the actual position with some additive Gaussian noise, as well as

31



a lower bound model, where predicted positions were randomly sampled from the oc-
cupancy distribution of the training data. As a more rigorous test of spatial content,
a simple linear decoder is also introduced, trained on the same data as the nonlinear

decoder. This support vector machine reports five-fold cross-validated results.

3.2 Results
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Figure 3.3: Final mean squared error of predicted images on the validation
set. Head-fixed models were shown in blue and non-head-fixed models were shown
in orange. Both classes of models exhibit decreasing performance with additional
randomness.

Results for the training objective of mean squared error between images in

pixel space were shown in Figure for all variations of the predictive coding model.
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Figure 3.4: Prediction errors of positions from the predictive coder’s latent
space, across different head-fixed model trajectory randomness settings.
All models report similar localization performance with a trained nonlinear decoder,
indicating that the development of spatial content is not closely tied to transition
statistics.

Predictably, increasing randomness in both the head-fixed and non-head-fixed classes
of models universally results in decreasing performance for this task. Notably, the
least random models of the two classes have almost exact prediction performance,
despite the additional complexity of movement, and the models with increased head
direction randomness outperform the models with increased movement randomness.
This could be explained by the fact that the non-head-fixed models only really induce
randomness in one degree of freedom (angular velocity), while the other models have

two (angular velocity and speed).

Results for the location decoding task with the nonlinear decoders are pre-
sented in Figure 3.6f The performance indicated by the predictive coding model

trained on the original movement scheme was successfully replicated. All models,
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Figure 3.5: Prediction errors of positions from the predictive coder’s latent
space, across different model trajectory randomness settings, in head-fixed
models. All models report similar localization performance with linear decoders,
indicating that the development of spatial content is not closely tied to transition
statistics.

across varying levels of randomness and in both head-fixed and non-head-fixed classes,
demonstrate similar and impressive localization performance. This effect is further
corroborated by trained linear decoders, as shown in Figures and [3.7] Notably,
these findings do not align with the results reported by Gornet and Thomson, which
suggest that increased randomness in model trajectory should increase the difficulty
in constructing a cognitive map from individual locations, leading to decreased spatial
content. The most random models in this study exhibit movements that are consid-
erably more extreme and unpredictable than those reported by Gornet and Thomson.
Possible explanations for this discrepancy include a more even distribution of visits
across the environment in the current study, the provision of more training data, and

the implementation of a more robust spatial content test.
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Figure 3.6: Prediction errors of positions from the predictive coder’s latent
space, across different non-head-fixed model trajectory randomness set-
tings. All models report similar localization performance with a trained nonlinear
decoder, indicating that the development of spatial content is not closely tied to tran-
sition statistics.

Instead, these results support the hypothesis that the model is not construct-
ing representations of location, but rather learning simple local transitions between
image features. Under this interpretation, performance in the next-step prediction
task would indeed decrease with more random transitions. However, the spatial con-
tent contained in the post-prediction representations may be explained as follows:
attention performed on image features will produce an output set of image features
containing information about previous images in the sequence. While Gornet and
Thomson present more striking results in a different environment with severely aliased
observations, it remains that under the alternative hypothesis, if the sequence includes
information from before the aliased observation, a nonlinear decoder would be able

to use that to distinguish locations.
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Figure 3.7: Prediction errors of positions from the predictive coder’s la-
tent space, across different model trajectory randomness settings, in non-
head-fixed models. All models report similar localization performance with linear
decoders, indicating that the development of spatial content is not closely tied to
transition statistics.

It remains possible that the predictive coding model could be encoding space
in a manner both explicit, as hypothesized by Gornet and Thomson, and robust to
the findings presented in this section. ”Localization” alone may not be a sufficiently
stringent test of representations in a system that should be capable of using these
representations for flexible navigation. The next chapter continues to add supporting
information to the conclusions of this thesis by further examining the content of the

transitions learned by the predictive portion of the network.
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Chapter 4: Integration of Vestibular Input

One of the original strengths of the predictive coder model is its reliance solely
on sensory data, without direct training signals regarding its location within the
environment. If the model functions as originally intended, additional information
appears to be unnecessary. However, integrating a stream of information that de-
scribes observational changes in a manner reflecting the underlying environment and
maintaining an egocentric perspective offers several advantages to this investigation
without compromising the biological plausibility of the predictive coding model. This
chapter details the effects of including vestibular signaling in the form of information
about the agent’s speed and angular velocity (and, when applicable, the separate

head direction angular velocity).

The hippocampal formation is known to receive and be affected by vestibular
signaling (Hitier et al., 2014; [Stackman et al., 2002)), which carries information about
how the agent’s body position changes in response to actions taken. These signals
are hypothesized to stabilize representations of space when sensory information is
insufficient or confusing. For example, in primates, representations of angular head
velocity serve to modulate principal hippocampal cells during rapid head-gaze move-
ments. (Piza et al., [2024)) This also can be illustrated by a common-sense example:
imagine closing one’s eyes in an unfamiliar environment and taking a few steps. The
vestibular signal is noisy, but it allows for the maintenance of a mental map of the
local environment and an understanding of how short-term future actions will alter it.
However, the exact mechanisms by which sensory and vestibular signals collaborate

to perform these functions remain an open problem in the field.

For the purposes of this study, adding action signals represents another test
of what the predictive coding model is actually learning transitions between. While
transformations between image features, as indicated in the alternate hypothesis,

will to some degree reflect metrics such as speed and angular velocity that shift the
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egocentric frame of the environment, it is expected that this relationship will be
less direct than one in which locations are directly encoded and the attention blocks
must learn to represent speed and angular velocity in order to model the transitions

between them.

4.1 Method

The success of this integration is examined in three ways: performance on
the next-image-prediction training objective, latent localization performance, and
steering ability. In the steering test, images were taken from the localization dataset
such that every sequence comprised observations from the same position with a small
amount of noise in the position. These were fed to a trained model, and a new action
signal was provided with an angular velocity set to 0 for each time step and a constant
speed, which was varied. This speed variation should produce predictable changes
in the model’s image outputs as well as the estimated position outputted by trained

nonlinear and linear location decoders from the previous chapter.

Several methods of integrating vestibular inputs were attempted. Initially,
code from Gornet and Thomson, not included in their final work, was utilized. Here,
the model was given not only a sequence of images but also a sequence of corre-
sponding speed and angular velocity pairs. These action signals were scaled up with
a feedforward network to match the size and shape of the image latents. They were
then concatenated onto the encoded image data and convolved together, resulting in
the same shape as the original image latents. These latents were then passed through
the rest of the network as normal. Similarly, image latents were scaled down with a
convolutional layer to 10 dimensions, added to scaled-up action latents, and scaled
up to the original size of the pre-attention latents before being passed through the
rest of the network. Under the assumption that the encoder is transforming input
images into representations of location and view, these methods can be understood

as adding ”intentionality” before prediction.
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Ultimately, neither of these two methods was sufficiently performant in any
metric to display results. In both cases, performance actually declined slightly in the
next-step prediction and localization tasks, and when examining steering, an applied
speed at every step produced no significant change in the decoded images or in the
predicted location. Inspired by relative positional encodings in large language models,
an attempt was made to remove any convolution that might destroy information in
the two streams, instead either simply adding the transformed action latents before
prediction or concatenating them. The last method doubles the size of the latents
which pass through the self-attention blocks and into the decoder from 128x8x8 to
256x8x8, and the network architecture was scaled to match. The results of this last

method will be discussed in the next section.

4.2 Results

As shown in Figures and the vestibular signal as a relative positional
encoding which is concatenated to the image latents created models with significantly
improved performance on the next-image prediction task in both head-fixed and non-
head-fixed models, as well as across all types of trajectory. However, it was not
the case that this entirely stabilized the performance of the more random trajectory
models, even though the model is now receiving and evidently making use of noiseless
information that should almost entirely determine the content of the next image.

Adding vestibular information also improves the quality of the localization in post-

prediction latents, as seen in Figures and

The steering capability of the vestibular predictive coding model was tested
using two datasets: one with the heading direction consistently set to 0 degrees, and
another at 90 degrees. Given the environment’s layout, it was anticipated that a
speed input greater than one and an angular velocity of zero applied to image inputs
facing 0 degrees should result in an increase in the z coordinate, while for images

facing 90 degrees, a decrease in the x coordinate was expected. Both directions were
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Figure 4.1: Final image prediction mean squared error on the validation
set, for head-fixed agents. Models with vestibular signaling display overall better
performance, but increasingly random trajectories still affect model performance.

studied to eliminate potential biases induced by the environment’s shape. The effect
was examined using both the last predicted latent in the sequence (after 20 speed
applications) and the first predicted latent (where no previous image inputs could
overpower the speed input). It was hypothesized that models with more random
trajectories might make greater use of the vestibular signal. Figure displays the
results for the 0.9 head-fixed predictive coding model. However, none of the head
turn or non-head turn models across all randomness levels demonstrated the expected

effect.

These results paint a complicated picture of function in the predictive coding
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Figure 4.2: Final image prediction mean squared error on the validation
set, for agents with variable head direction. The non-head-fixed agents display
similar performance improvements with the addition of vestibular signaling to the
head-fixed agents.

model. In the last section, it was reported that invariance of spatial content in the face
of input information supported the alternative hypothesis, and yet here, results show
that an additional stream of information does improve the spatial content. While
these results might initially appear to support the conclusion that location is being
encoded and transitions between locations are being learned, two factors suggest

otherwise.

Firstly, the models continue to exhibit significant differences in next-step pre-

diction across randomness settings. Given that the provided speed and angular ve-
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Figure 4.3: Prediction error as reported by a nonlinear decoder on the
post-prediction latents in the head-fixed predictive coding models with
vestibular signalling. Vestibular signalling increases the amount of spatial content
found in the predictive coding model’s post-prediction latents.

locity signals are noiseless, it is puzzling that the model, over an extended training
period with ample data, fails to produce consistent results for this task regardless of
the quality of trajectory. Secondly, the observed lack of steering ability is concern-
ing. If this occurred without any performance improvement, it could be attributed to
the model learning to prioritize the denser image signal over information regarding
movement statistics, potentially indicating a need for reconsideration of the methods
applied here. However, the fact that this signal is utilized by the model to realize
performance gains, yet fails to produce expected results when varied suggests that
the attention heads are not learning a single egocentric transition reflected across
multiple modalities. Instead, this gives more credence to the idea that local image
feature transitions are being learned, and vestibular signaling, while related to these

transitions, cannot be employed to produce equivalent egocentric transformations in
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Figure 4.4: Prediction error as reported by a nonlinear decoder on the post-
prediction latents in the non-head-fixed predictive coding models with
vestibular signalling. Vestibular signalling increases the amount of spatial content
found in the predictive coding model’s post-prediction latents.

the observations.

It is conceivable that an alternative method of integrating vestibular signals
could be more effective and might predict the intended effect. This possibility could
imply a model in which action signals do induce a cognitive map, a concept explored
further in Chapter 6. Nevertheless, these findings, in conjunction with arguments
and results from previous chapters, provide substantial evidence to suggest that the
predictive coding model is not stitching together locations into a map through pre-

diction.

One last potential mechanism for a cognitive map in the predictive coding
model remains through its display of post-prediction place cell-like units. These rep-

resentations, which have been recharacterized as simple image latents so far in this
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Figure 4.5: The result of speed inputs on predicted location. Increasing
amounts of speed were applied to the model, and predicted position was decoded
using a trained nonlinear decoder. The model facing 0 degrees should produce an
increase in position along the z-axis (left). This effect is not observed. The model
facing 90 degrees should produce a decrease in position along the x-axis (right). This
effect is not observed.

work, do exhibit striking similarities to place cells. This observation raises the possi-
bility that prediction transforms visual features into a representation resembling place
cells both superficially and functionally. Such a finding would suggest that the re-
sults of this chapter and the previous one do not disprove the predictive coding model,
but rather indicate intriguing conclusions about how cognitive maps are computed

through prediction.
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Chapter 5: Content of Image Latents

While the appearance of place cells in the predictive coding model is a novel
and encouraging sign for a model of the hippocampus, Gornet and Thomson are
cautious not to place undue importance or meaning on their place cell-like represen-
tations. They state: "The appearance of place cell-like firing is common in simpler
networks that perform spatial navigation such as (Treves et al., [1992) and (Franzius
et al., 2007)). It is currently unclear whether artificial place cell-like behavior corre-
sponds to biological place cells. Artificial place cell-like behavior could be an artifact
of the simplified inputs or spatial coordinates.” It is possible that the place cell-like
behavior in their work is indeed just an artifact of simplified visual inputs, a conclu-
sion which would lead to the end of the search for mechanisms supporting a cognitive
map. If this is the case, a further discussion arises regarding the claims of |Luo et al.:

are real hippocampal cells explainable through the same mechanism?

This chapter replicates the cataloging and lesioning experiments from (Luo
et al., |2024), first described in Chapter 2, to the larger environment which has been
used to test the predictive coding model thus far. It also newly applies these exper-
iments to the predictive coding model. The primary aim remains to test functional
cell types in the predictive coding model. However, the implications of replicating

results with the baseline models in the larger environment are also discussed.

5.1 Functional Cell Classification
5.1.1 Methods

Images from different grid locations and viewing angles were collected within
a small square environment, which is bordered by a short wall and is generally rem-
iniscent of a typical laboratory environment. Individual images were processed by

image-processing deep neural network architectures including VGG-16 (Simonyan,
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2014), ResNet-50 (He et al., 2016), and ViT-16 (Dosovitskiy et al. 2021), and each
architecture was additionally varied by either being pretrained on the image classi-
fication dataset ImageNet-1k (Deng et al., [2009), or by having their weights totally
randomized. None of the models were further trained with images from the laboratory

setting.

Activations from these models after they were shown views from the environ-
ment were classified ”based on standard criteria for place, direction, and border cells
(Banino et al., [2018)) (Tanni et al., [2022))”. Place fields can be identified by charac-
teristics such as size, number of place fields, or maximal activations within each field,
and so several are examined — any unit that has at least one qualifying place field
is classified as a place cell. Luo et al. use adapted methods from the cited works
to define a qualified place field as one that contains at least 10 pixels but less than
half the size of the environment. This is linearly scaled to 30 pixels for the Minecraft
recreation of the smaller environment to adapt for its slightly increased size, and to
90 pixels for the larger environment. Furthermore, some of the stricter barriers to
the classification of place cells such as stability of the field across multiple visits and
iterative thresholding (to ensure that the field arises smoothly from the environment)
were originally left out of Luo et al. and have been added back into this analysis.

Head direction and border cell classification was left unaltered.

Finally, the setting has been changed from Unity to Minecraft, and the size
of the environment from 17x17 to 24x24 (to accommodate for scaling differences
between the two platforms), as well as the number of evenly-spaced head directions
samples per location from 25 to 17 (to accommodate for computational demands). In
accordance with the Unity environment, the Minecraft environment is situated with
several different types of trees in the background of the setting in order to decrease
aliasing. These changes did not have a significant effect when replicating results with
any of their stated models. An example of an observation in the Minecraft recreation

can be seen in Figure [5.1}
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Figure 5.1: The small world testing environment. The Luo et al. environment
was replicated in Minecraft for the experiments in this work. Different types of trees
were added outside of the testing area to de-alias observations as in the original Unity
testing environment.

5.1.2 Results

The results from Luo et al. were replicated in this work for ResNet-50 (pre-
trained) due to the similarity to the predictive coding model’s encoder architecture
of ResNet-18. This analysis revealed several findings of interest. Before making any
change to the place cell classification, the previous ResNet-50 results were replicated
in the smaller Minecraft environment. These were overwhelmed with cells of mixed
place and view encoding, which is noted by the authors to mirror many findings in
primates. However, two changes were made in this thesis that explain the differences

in results reported here. Firstly, the stricter place cell classification used here led to
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Figure 5.2: Cell type breakdowns for the predictive coding model in the
large world. In the small environment, the ResNet-50 model produces a diverse
population of cell types across multiple layers.
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Figure 5.3: Cell type breakdowns for the predictive coding model in the
small world. In the small environment, the head-fixed predictive coding model
produces a diverse population of cell types in the post-attention latents.

most cells not fitting the criteria for any cell type. Secondly, an error was found in
the open source code released by Luo et al. which mistakenly was using the mean of
the activation map to classify direction rather than the method detailed in Appendix
B. Results are shown in Figure[5.2] Cell types vanished even further in the more com-
plex environment across all layers, though most strikingly in the final layers, where
more invariant visual features would typically be expected. Results for the bigger

environment are shown in Figure [5.5

Next, the same examination was applied to the predictive coding model. An

early convolutional block in the encoder was chosen, as well as the pre-prediction
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Figure 5.4: Cell type breakdowns for the predictive coding model in the
large world. In the complex environment, the head-fixed predictive coding model
produces a diverse population of cell types in the post-attention latents.
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Figure 5.5: Cell type breakdowns for the ResNet-50 model in the large
world. In the complex environment, the ResNet-50 model displays almost only place
cells.

latents and the post-prediction latents. One predictive coding model was trained on
the small environment for further comparison, and another low randomness head-fixed
predictive coding model was used for investigating in the big environment. The pre-
prediction results for the predictive coding model in both environments approximately
mirror the ResNet-50 results, but the post-prediction latents appear to splinter off
into a much more diverse population of different cell types in both environments.
Example activation maps for classified place cells for the ResNet-50 model and the

predictive coding model in the large world can be found in Appendix B.

It is particularly intriguing that the post-prediction latents in the predictive
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coding model appear to support many more types of functional cells in the larger
environment, even including some of the mixed encoding that was originally reported
in Luo et al. under the looser standards. One potential explanation for this is that
the predictive coding model really is inducing a cognitive map and that it uses these
diverse types to navigate in the complex environment. Another explanation follows
from the observation that these results have a striking similarity to the reported
results of the Vision Transformer (ViT) in Luo et al., not only in the diversity of
the cell types observed, but also in the appearance of a sizable population of inactive
units. Vision transformers of course imbue image representations with contextual
information in the same way that this thesis proposes the predictive coding model
works. If it is to be proven that the predictive coding model is inducing these cell
types to support localization, rather than as a consequence of their architecture, it

must next be examined how their removal affects localization.

5.2 Functional Cell Performance and Lesioning
5.2.1 Methods

Luo et al. also examined the performance of the model activations in predict-
ing location, head direction, and distance to the closest wall: tasks meant to target the
respective responsibilities of place, head direction, and border cells. The examination
here will focus on the location task. Linear regression models were trained on repre-
sentations from selected layers to predict these targets, with 70% of the locations and
views held out for a rigorous test of generalization across the environment. Chance
decoding results were calculated in two ways: in one, locations (or head direction)
were randomly shuffled, in the other, the center location/direction is always predicted.
The decision was made to allow the linear decoder to train on 80% of the locations
in the large world, in order to produce a better baseline for the lesioning studies.
Distance error for these figures are represented as Minecraft units, normalized to the

size of the environment.
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Performance in these tasks was additionally measured under several methods
of lesioning model units. In the original analysis, Luo et al. lesions increasingly
large populations of model units in order to determine which population has the
most impact on performance in location prediction tasks. They show that across all
models, lesioning the cells which show the highest ”placeness”, ”directionness”, or
"borderness” by the previously-specified metrics does not have more of an effect on
performance in any task than randomly shuffling the units and lesioning the same
amounts that way. Because metrics such as the number of place fields, max value
across fields, place field size, etc. all contribute to an understanding of the ” placeness”
of a unit, these were considered separately. These results were compared to lesioning
of the model units which report the highest coefficients in the linear regression model
trained for each task, which shows a much larger effect than lesioning by functional
cell type. This effect is expected to be true for the predictive coding model as well
(as lesioning the units with high coefficients in a linear decoding model has a foregone
conclusion in any study, and serves primarily as a baseline) and focus instead on the
lesioning of cell types. This thesis will display results on the lesioning task for the
number of place fields and the maximal activations within those place fields, as well
as for directionness, although future work should also examine the lesioning effects of

cells with the most spatial information content.

5.2.2 Results

Lesioning performance was calculated across the two models in the small envi-
ronment. The results of lesioning the measures of the size and number of place fields.
The ResNet-50 model is able to achieve significant location decoding performance, in
line with the results previously shown for the predictive coding models. The ResNet-
50 model displays the same lesioning behavior in the Minecraft version of the small

environemnt as was previously reported in the small Unity environment, shown in
Figures [77] and

It should be noted here that the random lesioning is applied to any active unit
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Figure 5.6: Results on localization task for lesioning by ”directionness” on
the ResNet-50 model in the small environment. The ResNet-50 model does
not exhibit significantly worse than chance performance when units which display
increased directional preference are increasingly removed from the population. Le-
sioning randomly (left), lesioning top units (right).
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Figure 5.7: Results on localization task for lesioning by the number of place
fields on the ResNet-50 model in the small environment. The ResNet-50
model does not exhibit worse than chance performance when units which display
increased amounts of place fields are increasingly removed from the population. Le-
sioning randomly (left), lesioning top units (right).
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Figure 5.8: Results on localization task for lesioning by the maximum acti-
vation value across the place fields on the ResNet-50 model in the small en-
vironment. The ResNet-50 model does not exhibit worse than chance performance
when units that display place fields with high activations are increasingly removed
from the population. Lesioning randomly (left), lesioning top units (right).

o4



Location Decoding Location Decoding

final e final
0.40 4 — post_pred 0.400 1 post_pred

baseline: center baseline: center

—e— baseline: random 0.375 1 —e— baseline: random

0.350 1
0.35

0.325 -
0.30 1 0.300 1
0.275 -

0.25 0.250

0.225 1

0.20 i : i : i 0.200 4 i

Figure 5.9: Results on localization task for lesioning by ”directionness”
on the predictive coding model in the small environment. The predictive
coding model does not exhibit worse than chance performance when units which
display increased directional preference are increasingly removed from the population.
Lesioning randomly (left), lesioning top units (right).

in the population, whereas the top-most lesioning can only be applied, in the case of
the two place field analyses, to units which display any place field at all. Results for
directionness do not have this constraint. The baseline location decoding performance
for the predictive coding model is very similar to the results of the linear decoder
in previous sections. The predictive coding model displays very similar lesioning

performance as the ResNet-50 model, results of which are displayed in Figures [5.9]

[5.10f and [5.11} No type of sorted lesioning induced any above-chance performance

deficits, including the more rigorously defined place fields. The predictive coding
model’s lesioning induced such large drops in performance due to the small number
of units available, however, the lesioning of the top units is still not more significant

than the lesioning of random units, indicating no relationship.

One argument that was made earlier is that the localization test may be too

easy and overdefined to produce meaningful results in the ablation study. Future
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Figure 5.10: Results on localization task for lesioning by the number of
place fields on the predictive coding model in the small environment. The
predictive coding model does not exhibit worse than chance performance when units
which display increased amounts of place fields are increasingly removed from the
population. Lesioning randomly (left), lesioning top units (right).
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Figure 5.11: Results on localization task for lesioning by the maximum
activation value across the place fields in the predictive coding model in
the small environment. The predictive coding model does not exhibit worse than
chance performance when units that display place fields with high activations are
increasingly removed from the population. Lesioning randomly (left), lesioning top
units (right).
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work should examine this effect in the larger and more complex environment.

These results paint the compelling story that the image features of the predic-
tive coding model are not unique: their activation patterns can be explained through
other networks that embody the alternative proposed mechanism of action as sug-
gested by this thesis. Additionally, they are not functional: when trained to minimize
prediction error, these latent units do not take on interpretable roles to achieve this
goal. This work has now, across the last three chapters, completed its argument that
the cognitive map is not being supported. Additionally, results in this chapter, while
not a conclusive argument against the strong conclusions of Luo et al., suggest a
further line of experiments that could be used to explore this issue. The following
chapter uses these results to draw final conclusions about the predictive coding model

and further discusses the implications of the Luo et al. claims.
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Chapter 6: Discussion and Future Work

This chapter includes a wealth of information supporting the conclusions of
the thesis and expanding on its implications. First, it summarizes the results found
experimentally in this thesis. Next, it provides further discussion on the sweeping
claims made in Luo et al. that were not directly addressed in the experimental
findings of this thesis. Further support is next provided for the claim that local
image features in a vanilla transformer model cannot form a broad cognitive map,
that has been proposed earlier in this thesis but not yet substantiated. Finally, while
the predictive coding model is insufficient in its current form, it represents an exciting
opportunity to advance the field of artificial cognitive maps. This chapter discusses
potential improvements to the current formulation of the predictive coding model

that could enable it to form a cognitive map from its simple and compelling design.

6.1 Summary of Results

This thesis has provided significant evidence challenging the purported func-
tion of the predictive coding model. The model was originally proposed by Gornet
and Thomson to implement a mechanism that would generate a mathematically-
motivated and robust map of space. Supporting evidence for their mechanistic claim
included the spatial content induced by the predictive mechanism and the emergence
of place cell-like representations. The alternative theory supported in this thesis
proposed that image features, rather than explicit location and pose information,
are being encoded and decoded by the model. This other proposal would indicate
that the transition statistics learned by the attention heads reflect only surface-level

feature changes, albeit with impressive performance.

Chapter 3 supported this hypothesis by demonstrating that difficult-to-learn

transition statistics do not affect the encoding of location information in the way that
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they should under the old understanding of the model. Chapter 4 further corroborated
this claim, producing evidence that the transitions learned by the predictive portion
of the network only superficially relate to egocentric movement signals. If integrated
correctly under the originally proposed method, these signals would provide the model
with noiseless information to directly solve the prediction task under all levels of

trajectory randomness. However, this effect was not observed.

The place cell-like representations observed by Gornet and Thomson were
not fully explained by the alternative hypothesis proposed in this thesis. Therefore,
further experiments were conducted to explore whether these cell types were uniquely
produced by the prediction task and if they could potentially support a cognitive
map. Such a result would lend support to both the predictive coding model and
traditional understandings of place cell functionality. Chapter 5 applied methods
from Luo et al. to demonstrate that these representations are not unique, as they
have been observed in a broader class of image processing models. This chapter tied
the observed functional cell types back to the alternative hypothesis and showed that
these representations do not uniquely support the model’s function. Consequently,
this final notion of support for Gornet and Thomson’s original claims cannot be relied

upon.

6.2 Does Experimental Setup Induce Superfluousness?

The further analysis of results from Luo et al. suggested a more complex
"functional cell type story” than initially reported. This thesis revealed that much of
the previously shown mixed encoding which mirrored primate data relied on either
mistakes or generous cataloguing methods. Additionally, many cell types seemed to
disappear in larger, more complex environments. However, this does not represent a

comprehensive refutation of the ideas presented in their work.

Several preliminary arguments and further tests could potentially address these

claims. While the diversity and quantity of place cells in spatial systems are note-
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worthy, the lack of significant deficits in localization tasks following lesioning of these
functional cell types is difficult to ignore. However, this test may not be sufficiently
stringent. It is unsurprising that in a simple environment with minimal visual aliasing
and smooth and predictable features such as a wall, a linear decoder might demon-
strate good localization performance when given image-processing model activations
from an untrained model. In such a setting, even linear decoders trained with pixel
activations alone might accomplish this task. This is supported by the surprising per-
formance and functional cell population of the earlier layers of the models examined
in Luo et al. Given these conditions, it is reasonable to expect that location is redun-
dantly encoded by various cell types, and that the linear decoder would ultimately

rely on a combination of the most convincing ones to decode location.

Luo et al. primarily reinforce the notion that place cells and similar structures
should not be strictly tied to Euclidean spatial concepts, a point that is not con-
tested in this thesis. However, it is premature to conclude that functional cell types
lack meaningful roles and functions. An alternative hypothesis is that functional cell
types arise from the processing of sensory information into a representation which is
invariant to selective types of transformations. This hypothesis would explain the po-
tential confusion with activations induced by deep image processing networks, as the
inductive bias of the model architecture produces invariant representations of image
features (via convolution and max pool operations, or even attention blocks). Under
this framework, hippocampal representations would be both reflective of sensory in-
put and genuinely meaningful, though this meaning may rely on a generalized space

contextualizing sensory input with information such as internal beliefs and goals.

The question of what hippocampal activations actually "mean”, and what role
they play, will likely be a hotly debated question in neuroscience for some time. The
primary argument in this thesis is that ablation studies should respect the complex-
ity and redundancy of the brain, and be conducted using tasks that are sufficiently

difficult and specific in order to produce a deficit when certain cell populations are
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targeted. The analysis provided by Luo et al. offers another reason to avoid in-
terpreting functional cells solely under their most literal and Euclidean space-based

definitions.

6.3 Limitations of Autoregressive Transformers in Cognitive
Map Construction

The experimental findings presented here suggest that the encoder and decoder
networks in the predictive coding model do not appear to be learning any special
mapping between images and location as indicated by Gornet and Thomson in their
probabilistic formulation. Results in Chapter 5 in tandem with previous arguments
even support that the model could still achieve good performance with an untrained
encoder. Therefore, this model does not appear to take any special performance from
being in a continuous domain and could be describable in similar terms as a vanilla
transformer, where existing literature on the subject can illuminate issues that this

architecture has with cognitive map building.

Gornet and Thomson mention in the last section of their paper that “pre-
dictive coding can be performed over any sensory modality that has some temporal
sequence. As natural speech forms a cognitive map, predictive coding may underlie
the geometry of human language. Intriguingly, large language models train on causal
word prediction, a form of predictive coding, build internal maps that support gener-
alized reasoning, answer questions, and mimic other forms of higher-order reasoning
(Brown, 2020). Similarities in spatial and non-spatial maps in the brain suggest that
large language models organize language into a cognitive map and chart concepts
geometrically.” This is true, but neglects to consider the large and quickly develop-
ing body of work which indicates that there might be large gaps in the reasoning
ability of large language models. [Momennejad et al. (2023) directly tested several
large language models using their custom cognitive mapping test suite, CogEval, re-

vealing severe deficits across all architectures. In an evaluation modeled on discrete
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finite automata, transformers given turn-by-turn sequences of textual descriptions of
Manhattan taxi rides displayed near-perfect results in predicting the next turn and
encoded current location in their state representations (Vafa et al.| 2024)). However,
the recovered world model deviated significantly from the ground truth, and the model

struggled with downstream tasks when environmental modifications were introduced.

Despite these limitations, the transformer may still serve as a valuable start-
ing point for predictive-coding-based models of the hippocampus. Transformers form
sequentially invariant representations and exhibit impressive in-context learning capa-
bilities, both desirable traits for architectures supporting general-purpose reasoning.
As language models grow in scale and complexity, these inherent strengths may facili-
tate the development of increasingly sophisticated internal representations resembling
cognitive maps. Several other promising architectures incorporate transformer blocks,
including TEM-t (Whittington et al., 2022b), Transformer with Discrete Bottleneck
(TDB; Dedieu et al., [2024), and various versions of Joint Embedding Predictive Ar-
chitecture (JEPA) models such as Vision JEPA (V-JEPA; Bardes et al., 2024), which
employs vision transformers. TEM-t, in particular, presents an interesting variant of
the previous cognitive mapping model, the Tolman-Eichenbaum Machine, leveraging
the fact that attention can be computed in modern Hopfield networks (Ramsauer

et al., 2020). These models will be further discussed in subsequent sections.

6.4 Possible future improvements on the predictive coding
model

The struggle to use action signaling in a biologically plausible way is considered
a major missing component of this predictive coding model. However, the model’s
inability to integrate these signals may stem from its training loss rather than its ar-
chitecture. From a biological perspective, the hippocampus typically receives highly
processed sensory input from areas associated with late-stage visual processing and

other sensory areas. A loss function operating in pixel space is akin to asking the
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hippocampus to reconstruct every early activation in the primary visual cortex. This
could contribute to the model’s apparent failure to build a better conceptual un-
derstanding of the environment’s underlying geometry, as evidenced by the issues in
steering efforts. Luo et al. note the presence of hippocampal-like activations in other
cortical areas. Rather than this fact being used as a way to explain how hippocam-
pal representation is not unique, this may indicate that the hippocampus extensively
utilizes the invariance and organization of these representations, or even plays a role

in shaping them.

Initially, a predictive coding model that takes visual inputs and predicts sim-
ply the presence of represented objects in a scene (either wholly or partially) was
considered for use in this thesis and implementation began. While this approach
would diverge from modeling primate hippocampal function (with their foveated and
detailed visual input), it could potentially allow for more general and accurate func-
tionality. A more flexible realization of this objective might be found in current
exciting work on world models in reinforcement learning, where action consequences
are predicted in latent space (Hu et al., 2023; Hafner et al.; 2023). Cognitive mapping
models are often framed in reinforcement learning terms, although they are primarily
distinguished by the quest to find accurate hippocampal representations and build
structure from sequences without rewards (despite much progress in reinforcement

learning world models being demonstrated in settings with sparse rewards).

Learning to predict the impact of actions in latent space can be further detan-
gled from rewards by taking a look at the very closely related JEPA class of models,
which takes in the latents of a transformed image and uses information about the
transformation to predict the inverse of this transformation, with the loss entirely in
the latent space. (Garrido et al., [2024) provides further motivation for the use of ac-
tion signaling in the context of a possible future predictive coding model: “If one does
not condition the predictor on the transformation parameters, then the best we can

hope for is learning representations that are invariant to the data transformations”.
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Action conditioning allows the JEPA class of models to instead learn equivariant rep-
resentations of their data, which are much more useful across a variety of downstream
tasks. This connection could allow the framing of the cognitive mapping problem as
one in which the hippocampus creates equivariant representations of sensory input

through action-informed prediction.

6.5 Context within other cognitive mapping architectures

Recontextualizing the predictive coder network allows for its consideration
within the broader realm of cognitive mapping models. This section will primarily
focus on two that have been previously introduced in Chapter 2. The first particu-
larly relevant model to this discussion is the Tolman-Eichenbaum Machine, or TEM,
which views hippocampal representations as a conjunction between sensory stimuli
(from the lateral entorhinal cortex) and structure information (from the medial en-
torhinal cortex, i.e., grid cells). An action signal can lead to the next remembered
observation, or the remembrance of an observation can inform which action signals
are available, enabling generalization between environments. However, TEM cannot
be the complete explanation in its current form as it requires a global coordinate

system and operates using allocentric actions.

The clone structured cognitive map (CSCG; Raju et al., 2024)) also creates a
cognitive map by modeling how observations can be formulated as latent states and
the actions connecting these states. However, CSCG does not use observation content
for any purpose other than distinguishing them from their surroundings (even in the
continuous setting case, where images are condensed with a vector quantizer into
discrete states). Consequently, it cannot use this information to generalize and relies
on external algorithms to match the appropriate map to the situation. These two
models have been speculated to represent two forms of hippocampal function: map as
CSCG, and memory as TEM (Whittington et al., [2022a)). Bridging the gap between

these models in a single framework would be an exciting development. One avenue for
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exploration involves variants of both models built with the transformer architecture.
TEM-Transformer (TEM-t) performs the same computation as TEM more efficiently
by replacing its Hopfield network and RNN with causally-masked attention blocks.
Locations in the environment are represented as observation-location pairs; in the
attention computation, the value is fixed to the observation (a one-hot vector) while

keys and queries rely entirely on the location.

On the other hand, the authors of CSCG propose TDB, or Transformers with
Discrete Bottlenecks, as a solution to path-planning in partially observed environ-
ments. This causal transformer accepts a sequence of alternating observations and
actions (z1,ay, Ta,as, ..., Ty, a,). Processed observations 7,,, now imbued with con-
textual information, are compressed with a vector quantizer to form a discrete code
d(T,). The corresponding action a, is then added to this code to produce x,;. Due
to the sequence invariance of the transformer architecture, each code forms a repre-
sentation of state that includes both context and content. Interpretable graphs can
be derived from these codes and used for downstream tasks such as path planning.
However, George et al. note that this model relies on multiple sets of discrete codes
which are then coalesced, and these discrete codes do not form a detangled latent

space reflecting the environment.

The first application of sensory information in this setting is that, as acknowl-
edged by Dedieu et al., high dimensionality could help distinguish the codes and allow
for a detangled latent space. However, it would be additionally advantageous to fold
in continuous sensory information, as the codes could then be generalized to new
situations based on any useful aspect of the observation. One might also imagine a
version of TDB that operates primarily in latent space, similar to joint-embedding
models. While TDB does include one additional loss term of this nature, taking after
(Guo et al., 2022), their loss refers to the dictionary codes and is thus less flexible

than what is envisioned here.
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Chapter 7: Conclusion

The findings and analysis presented here highlight the complexities and limi-
tations of current approaches in modeling the form and function of cognitive maps.
The predictive coding model, while promising, needs additional constraints to piece
together observations into a coherent and flexible map of the environment. The
predictive coding model’s shortcomings in the cognitive mapping task align with
broader challenges observed in transformer-based models and large language mod-
els, which, despite their impressive capabilities, struggle with flexible reasoning in

out-of-distribution domains.

Moving forward, it is proposed that future research should focus on developing
models that can better integrate sensory information with action signals, possibly by
predicting consequences in latent space rather than pixel space, aligning with current
conceptions of the inputs to the hippocampal formation. This approach, inspired by
recent work in world models and joint embedding predictive architectures (JEPA),
could potentially bridge the gap between map-like (CSCG) and memory-like (TEM)
models of hippocampal function. By combining the strengths of these approaches
with the insights gained from the predictive coding experiments, it may be possible to
create more robust and generalizable models of spatial cognition that more accurately

reflect the flexibility and adaptability of biological systems.
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Appendix A: Predictive Coding Methods

The code published by Gornet and Thomson was heavily utilized with some
edits. The original codebase can be found at https://github.com/jgornet/predictive-
coding-recovers-maps. Thank you so much to the original authors for providing this

open source code.

A.1 Location Decoders

Gornet and Thomson trained a neural network to predict the agent’s position
from the predictive coder’s latent units. The prediction error of mean-squared error
between locations indirectly measures the predictive coder’s positional information.
Their simple neural network architecture consisted of a convolutional layer, a max-

pooling layer, two linear layers, and a ReL.U.

Activations were gathered from the predictive coding model for this down-
stream task by giving the model sequences of input images. At every non-obstructed
grid location in the environment, 10 image observations were collected which were
approximately in the same location. The yaw of the agent was fixed to 0 degrees for
every image in this dataset. The predictive coding model takes in these 10 image
observations and produces a set of 10 predicted latents — only the last latent set in
the sequence is used to produce an observation. This means that every location was
seen once, with one viewing angle. Additionally, the localization model was trained
on the entire dataset with no locations held out. Generalization was measured by

adjusting the input image normalization by a constant factor.

Several changes were made to the localization model. First, the dataset was
changed such that every location has 50 evenly-spaced heading direction examples.
Several sequences of length 20 (as the model in this work uses a longer sequence

length than in Gornet and Thomson) are randomly generated from this set of 50
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views for each location. Instead of changing the image normalization, a test set
consisting of 20% of the view-position combinations randomly selected from across
the environment is now held out. The nonlinear location decoder is additionally
adjusted to add another convolutional layer, as well as dropout between the two

linear layers.

A linear position decoding model was also introduced in order to provide a
more robust test of positional content. This model is a linear support vector regres-
sor, trained with 5-fold cross validation to predict normalized locations on the same

dataset as the nonlinear model.
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Appendix B: Luo et al. Methods

This thesis uses the open source code from Luo et al., which can be found at
https://github.com/don-tpanic/Space. Thank you so much to the original authors

for providing this open source code.

B.1 Place Field Classification

Activations for every model unit across all locations in each environment were
collected to form activation maps. Place, head-direction, and border cells were iden-
tified based on specific firing characteristics from (Tanni et al., 2022; Banino et al.,
2018)). For place cells, the number and size of place fields were examined, defining a
qualified field as spanning 10 pixels to half the environment size. Head-direction cells
were assessed using the resultant vector length of the directional activity map. For

each direction, vectors representing angle and average intensity were created:

r; = [B; cos ay, B sin o] (B.1)

where «; and (3; are the angle and average intensity for direction . The mean resultant

vector was calculated as: N

Dot

Laun=1"1% (B.2)
N

> n=1 Bi

using 24 uniformly spaced angular directions. Border cells were identified using a

r =

border score, comparing wall activation to center activation:

bi —C
by = max
i€1,234 b; + ¢

(B.3)
where b; is the mean activation within 3 bins of wall 4, and ¢ is the average activity
beyond this threshold. Units with a border score > 0.5 were considered border-like.

The original work from Luo et al. uses a simplified method of calculating

place cells from the cited Tanni et al. work. This thesis uses the full method, which
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is distinct due to its higher demand on the continuity and ”smoothness” of the place
field which is achieved by iterative thresholding of the activations, as well as the
requirement that place fields be stable across multiple visits. Since activations were
recorded at 17 different heading directions for every location, these were split into

two populations for use in the stability analysis.

B.2 Lesioning Analysis

To analyze how different deep neural network model units contribute to the
decoding of spatial content in the network, two unit exclusion analyses are employed.
In the first, units are excluded based on their spatial profiles, ranking them according
to specific spatial measures like field count. The top n% of units with the strongest
spatial characteristics are progressively excluded, assessing the impact on decoding
performance for each unit type and associated task as the exclusion rate increases. A

control group with random unit exclusion is included for comparison.

The second analysis focuses on task-relevance, using the magnitude of learned
decoder coefficients to determine unit importance. Units are gradually excluded based
on these coefficient magnitudes, linear decoders are retrained with the remaining
units, and their performance on spatial tasks is evaluated. Again, a control analysis
with random unit exclusion is conducted. For both analyses, spatial decoders are
retrained on the remaining model units following the same procedure as in the original
decoding process. This approach allows for quantification of the relative importance of
different unit types and their specific contributions to spatial information processing

within the model. This thesis does not make sure of the coeflicient examination.

B.3 Examples of Functional Cell Types

This section contains examples of the functional cell types collected by the

adjusted methods in the large testing environments.
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Unit 117
3 vt b

Figure B.1: Activation maps for units classified as place cells from the post-
prediction predictive coding model in the big world.

Unit 101

Figure B.2: Additional activation maps for units classified as place cells
from the post-prediction predictive coding model in the big world.

180 180

Figure B.3: Activation maps for units classified as place cells from the last
layer of the ResNet-50 model in the big world.
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180 180 180 180

Figure B.4: Additional activation maps for units classified as place cells
from the last layer of the ResNet-50 model in the big world.
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