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Abstract

Sorting networks are an interesting class of parallel sorting algorithms with applications in multi-
processor computers and switching networks. They are builtby cascading a series of comparison-
exchange units called comparators. Minimizing the number of comparators for a given number of
inputs is a challenging optimization problem. This paper presents a two-pronged approach called
Symmetry and Evolution based Network Sort Optimization (SENSO) that makes it possible to scale
the solutions to networks with a larger number of inputs thanpreviously possible. First, it uses the
symmetry of the problem to decompose the minimization goal into subgoals that are easier to solve.
Second, it minimizes the resulting greedy solutions further by using an evolutionary algorithm to
learn the statistical distribution of comparators in minimal networks. The final solutions improve
upon half-century of results published in patents, books, and peer-reviewed literature, demonstrat-
ing the potential of the SENSO approach for solving difficultcombinatorial problems.

Keywords: symmetry, evolution, estimation of distribution algorithms, sorting networks, combi-
natorial optimization

1. Introduction

A sorting network ofn inputs is a fixed sequence of comparison-exchange operations (comparators)
that sorts all inputs of sizen (Knuth, 1998). Since the same fixed sequence of comparators can sort
any input, it represents an oblivious or data-independent sorting algorithm, that is, the sequence
of comparisons does not depend on the input data. The resulting fixed pattern of communication
makes them desirable in parallel implementations of sorting, such as those on graphics processing
units (Kipfer et al., 2004). For the same reason, they are simple to implement in hardware and are
useful as switching networks in multiprocessor computers (Batcher, 1968; Kannan and Ray, 2001;
Baddar, 2009).

Driven by such applications, sorting networks have been thesubject of active research since
the 1950’s (Knuth, 1998). Of particular interest are minimal-size networks that use a minimal
number of comparators. Designing such networks is a hard combinatorial optimization problem,
first investigated in a U.S. Patent by O’Connor and Nelson (1962) for 4≤ n ≤ 8. Their networks
had the minimal number of comparators for 4, 5, 6, and 8 inputs, but required two extra comparators
for 7 inputs. This result was improved by Batcher (1968), whose algorithmic construction produces
provably minimal networks forn≤ 8 (Knuth, 1998).
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Figure 1: A 4-input sorting network. The input values{x1,x2,x3,x4} at the left side of the horizontal
lines pass through a sequence of comparison-exchange operations, represented by vertical
lines connecting pairs of horizontal lines. Each such comparator sorts its two values,
resulting in the horizontal lines containing the sorted output values{y1 ≤ y2 ≤ y3 ≤ y4}
at right. This network is minimal in terms of the number of comparators. Such minimal
networks are not known in general for input sizes larger than8 and designing them is a
challenging optimization problem.

Still today, provably minimal networks are known only forn≤ 8. Finding the minimum num-
ber of comparators forn > 8 is thus a challenging open problem. It has been studied by various
researchers using specialized techniques, often separately for each value ofn (Knuth, 1998; Koza
et al., 1999). Their efforts during the last few decades haveimproved the size of the networks for
9 ≤ n ≤ 16. For larger values ofn, all best known solutions are simply merges of smaller net-
works; the problem is so difficult that it has not been possible to improve on these straightforward
constructions (Baddar, 2009).

This paper presents a two-pronged approach to this problem,using symmetry and evolutionary
search, which makes it possible to scale the problem to larger number of inputs. This approach,
called Symmetry and Evolution based Network Sort Optimization (SENSO), learns the compara-
tor distribution of minimal networks from a population of candidate solutions and improves them
iteratively through evolution. Each such solution is generated by sampling comparators from the
previous distribution such that the required network symmetry is built step-by-step, thereby focus-
ing evolution on more likely candidates and making search more effective. This approach was able
to discover new minimal networks for 17, 18, 19, 20, 21, and 22inputs. Moreover, for the other
n≤ 23, it discovered networks that have the same size as the bestknown networks. These results
demonstrate that the approach makes the problem more tractable and suggests ways in which it can
be scaled further and applied to other similarly difficult combinatorial problems.

This paper is organized as follows. Section 2 begins by describing the problem of finding mini-
mal sorting networks in more detail and reviews previous research on solving it. Section 3 presents
the SENSO approach, based on symmetry and evolution. Section 4 discusses the experimental
setup for evaluating the approach and presents the results.Section 5 concludes with an analysis
of the results and discussion of ways to make the approach even more effective and general in the
future.

2. Background

Figure 1 illustrates a 4-input sorting network. The horizontal lines of the network receive the input
values{x1,x2,x3,x4} at left. Each vertical line represents a comparison-exchange operation that
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Batcher 0 1 3 5 9 12 16 19 26 31 37 41 48 53 59 63
Best 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

Table 1: The fewest number of comparators known to date for sorting networks of input sizes
n ≤ 16. These networks have been studied extensively, but the best results have been
proven to be minimal only forn≤ 8 (shown in bold; Knuth, 1998). Such small networks
are interesting because they optimize hardware resources in implementations such as mul-
tiprocessor switching networks.

takes two values and exchanges them if necessary such that the larger value is on the lower line. As
a result of these comparison-exchanges, the output values appear at the right side of the network in
sorted order:{y1 ≤ y2 ≤ y3 ≤ y4}.

Sorting networks withn≤ 16 have been studied extensively with the goal of minimizingtheir
sizes. The smallest sizes of such networks known to date are listed in Table 1 (Knuth, 1998).
The number of comparators has been proven to be minimal only for n ≤ 8 (Knuth, 1998). These
networks can be constructed using Batcher’s algorithm for odd-even merging networks (Batcher,
1968). The odd-even merge builds larger networks iteratively from smaller networks by merging
two sorted lists. The odd and even indexed values of these twolists are first merged separately using
small merging networks. Comparison-exchange operations are then applied to the corresponding
values of the resulting small sorted lists to obtain the fullsorted list.

Finding the minimum number of comparators required forn> 8 remains an open problem. The
results in Table 1, for these values ofn, improve on the number of comparators used by Batcher’s
method. For example, the 16-input case, for which Batcher’smethod requires 63 comparators, was
improved by Shapiro who found a 62-comparator network in 1969. Soon afterwards, Green (1972)
found a network with 60 comparators (Figure 2), which still remains the best in terms of the number
of comparators.

In Green’s construction, comparisons made after the first four levels (i.e., the first 32 compara-
tors) are difficult to understand, making his method hard to generalize to larger values ofn. For
such values, Batcher’s method can be extended with more complex merging strategies to produce
significant savings in the number of comparators (Van Voorhis, 1974; Drysdale and Young, 1975).
For example, the best known 256-input sorting network due toVan Voorhis requires only 3651
comparators, compared to 3839 comparators required by Batcher’s method (Drysdale and Young,
1975; Knuth, 1998). Asymptotically, the methods based on merging requireO(nlog2n) compara-
tors (Van Voorhis, 1974). In comparison, theAKS networkby Ajtai et al. (1983) produces better
upper bounds, requiring onlyO(nlogn) comparators. However, the constants hidden in its asymp-
totic notation are so large that these networks are impractical. Although still not practical, Leighton
and Plaxton (1990) showed that small constants are actuallypossible in networks that sort all but a
superpolynomially small fraction of then! input permutations.

Since better algorithms are not known for constructing networks that sort alln! input permu-
tations, Batcher’s or Van Voorhis’ algorithms are often used in practice for large values ofn, de-
spite their non-optimality. For example, these algorithmswere used to obtain the networks for
17≤ n≤ 32 listed in Table 2 by merging the outputs of smaller networks from Table 1 (Van Voorhis,
1971; Baddar, 2009).
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Figure 2: The 16-input sorting network found by Green. This network has 60 comparators, which
is the fewest known for 16 inputs (Green, 1972; Knuth, 1998).The comparators in such
hand-designed networks are often symmetrically arranged about a horizontal axis through
the middle of the network. This observation has been used by some researchers to bias
evolutionary search on this problem (Graham and Oppacher, 2006) and is also used as a
heuristic to augment the symmetry-building approach described in Section 3.

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Best 73 79 88 93 103 110 118 123 133 140 150 156 166 172 180 185

Table 2: The fewest number of comparators known to date for sorting networks of input sizes
17≤ n ≤ 32. Networks for these values ofn were obtained by merging the outputs of
smaller networks from Table 1 using the non-optimal Batcher’s or Van Voorhis’ algorithms
(Van Voorhis, 1971; Baddar, 2009). The methods used to optimize networks forn≤ 16 are
intractable for these larger values ofn because of the explosive growth in the size of the
search space. The approach presented in this paper mitigates this problem by constraining
search to promising solutions and improves these results for input sizes 17, 18, 19, 20, 21,
and 22.

The difficulty of finding such minimal sorting networks prompted researchers to attack the prob-
lem using evolutionary techniques. In one such study by Hillis (1991), a 16-input network having
61 comparators was evolved. He facilitated the evolutionary search by initializing the population
with the first four levels of Green’s network, so that evolution would need to discover only the re-
maining comparators. This (host) population of sorting networks was co-evolved with a (parasite)
population of test cases that were scored based on how well they made the sorting networks fail.
The purpose of the parasitic test cases is to nudge the solutions away from getting stuck on local
optima.

Juillé (1995) improved on Hillis’ results by evolving 16-input networks that are as good as
Green’s network (60 comparators), from scratch without specifying the first 32 comparators. More-
over, Juillé’s method discovered 45-comparator networksfor the 13-input problem, which was an
improvement of one comparator over the previously known best result. His method, based on the
Evolving Non-Determinism (END) model, constructs solutions incrementally as paths in a search
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tree whose leaves represent valid sorting networks. The individuals in the evolving population are
internal nodes of this search tree. The search proceeds in a way similar to beam search by assigning
a fitness score to internal nodes and selecting nodes that arethe most promising. The fitness of an
internal node is estimated by constructing a path incrementally and randomly to a leaf node. This
method found good networks with the same number of comparators as in Table 1 for all 9≤ n≤ 16.

Motivated by observations of symmetric arrangement of comparators in many sorting networks
(Figure 2), Graham and Oppacher (2006) used symmetry explicitly to bias evolutionary search.
They compared evolutionary runs on populations initialized randomly with either symmetric or
asymmetric networks for the 10-input sorting problem. The symmetric networks were produced us-
ing symmetric comparator pairs, that is, pairs of comparators that are vertical mirror images of each
other. Although evolution was allowed to disrupt the initial symmetry through variation operators,
symmetric initialization resulted in higher success ratescompared to asymmetric initialization. A
similar heuristic is used to augment the SENSO approach discussed in this paper.

Evolutionary approaches must verify that the solution network sorts all possible inputs correctly.
A naive approach is to test the network on alln! permutations ofn distinct numbers. A better
approach requiring far fewer tests uses thezero-one principle(Knuth, 1998) to reduce the number
of test cases to 2n binary sequences. According to this principle, if a networkwith n input lines
sorts all 2n binary sequences correctly, then it will also sort any arbitrary sequence ofn non-binary
numbers correctly. However, the increase in the number of test cases remains exponential and is
a bottleneck in fitness evaluations. Therefore, some researchers have used FPGAs to mitigate this
problem by performing the fitness evaluations on a massivelyparallel scale (Koza et al., 1998;
Korenek and Sekanina, 2005). In contrast, this paper develops a Boolean function representation of
the zero-one principle for fitness evaluation, as discussednext.

3. Approach

This section presents the new SENSO approach based on symmetry and evolutionary search to min-
imize the number of comparators in sorting networks. It begins with a description of how the sorting
network outputs can be represented as monotone Boolean functions, exposing the symmetries of the
network. This representation makes it possible to decompose the problem into subgoals, which are
easier to solve. Each subgoal constitutes a step in buildingthe symmetries of the network with
as few comparators as possible. The resulting greedy solutions are optimized further by using an
evolutionary algorithm to learn the distribution of comparators that produce minimal networks.

3.1 Boolean Function Representation

The zero-one principle (Section 2) can be used to express theinputs of a sorting network as Boolean
variables and its outputs as functions of those variables. It simplifies the sorting problem to counting
the number of inputs that have the value 1 and setting that many of the lowermost outputs to 1 and
the remaining outputs to 0. In particular, the functionfi(xi , . . . ,xn) at outputi takes the value 1 if
and only if at leastn+1− i inputs are 1. That is,fi is the disjunction of all conjunctive terms with
exactlyn+1− i variables.

Since these functions are implemented by the comparators inthe network, the problem of de-
signing a sorting network can be restated as the problem of finding a sequence of comparators that
compute its output functions. Each comparator computes theconjunction (upper line) and disjunc-
tion (lower line) of their inputs. As a result, a sequence of comparators computes Boolean functions
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Figure 3: Boolean output functions of a 4-input sorting network. The zero-one principle can be used
to represent the inputs of the network as Boolean variables.Each comparator produces
the conjunction of its inputs on its upper line and their disjunction on its lower line. As
a result, the functions at the outputs of the network are compositions of conjunctions
and disjunctions of the input variables, that is, they are monotone Boolean functions. In
particular, the output functionfi at line i is the disjunction of all conjunctive terms with
exactlyn+ 1− i variables. Therefore, a sorting network is a sequence of comparators
that compute all its output functions from its input variables. This representation makes
it possible to express network symmetry, which turns out to be useful in constructing
minimal networks.

that are compositions of conjunctions and disjunctions of the input variables (Figure 3). Since the
number of terms in these functions can grow combinatoriallyas comparators are added, it is nec-
essary to use a representation that makes it efficient to compute them and to determine whether all
output functions have been computed.

Such functions computed using only conjunctions and disjunctions without any negations are
calledmonotone Boolean functions(Korshunov, 2003). For example, the functions for the 4-input
sorting network in Figure 3 are all monotone Boolean functions. Such a functionf on n binary
variables has the property thatf (a) ≤ f (b) for any distinct binaryn-tuplesa = a1, . . . ,an andb =
b1, . . . ,bn such thata ≺ b, wherea ≺ b if ai ≤ bi for 1 ≤ i ≤ n. The set of all 2n binary n-tuples
ordered by≺ is a partially ordered set called aBoolean lattice, which makes it possible to represent
monotone Boolean functions conveniently. The Boolean lattice forn= 4 is illustrated in Figure 4 as
an undirected graph (Hasse diagram) of 24 = 16 nodes. Any two nodes in the lattice arecomparable
and are connected by a path if they can be ordered by≺. A subset of nodes that are pair-wise
incomparable is called anantichain. A subsetX of nodes is said to bebounded aboveby the nodey
if x ≺ y for all x ∈ X. The termbounded belowis defined in a similar manner. These concepts are
used to characterize monotone Boolean functions in sortingnetworks.

For any monotone Boolean functionf , the subset of lattice nodes at which it takes the value
1 are bounded above by the topmost node in the lattice and are bounded below by an antichain of
nodes corresponding to the conjunctive terms in its disjunctive normal form. That is, the nodes in
this antichain form a boundary in the lattice, separating the nodes at whichf takes the value 1 from
those at which it takes the value 0. Therefore, it is sufficient to specify the antichain of boundary
nodes to define a monotone Boolean function. Moreover, nodesin the same leveli (numbered from
the top of the lattice) form an antichain of boundary nodes because they all have the same number
n+ 1− i of 1s in their binary representations and are therefore incomparable. In fact, they are
the boundary nodes of functionfi at outputi of the sorting network since they correspond to the
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(b) f (x1,x2,x3,x4) = x1∨ (x2∧x3)

Figure 4: Representation of monotone Boolean functions on four variables in the Boolean lattice.
The 24 = 16 nodes of the lattice are organized in levels (numbered on the left), each
containing the binary value assignments to the 4-tuplex1x2x3x4 with the same number
of 1s. The truth table for any Boolean functionf (x1,x2,x3,x4) can be represented in
this lattice by shading all the nodes for whichf takes the value 1. Furthermore, a node
b1b2b3b4 has a path to a lower nodea1a2a3a4 if ai ≤ bi for 1≤ i ≤ 4. As a result, if node
a1a2a3a4 is shaded for a monotone functionf , then all higher nodes reachable from it
are also shaded, that is,f is defined completely by the nodes in the lower boundary of its
shaded region. This set of nodes (shown by bold outline) corresponds to the conjunctive
terms in the disjunctive normal form off . For example, it contains just the node 1000 for
f = x1 and two nodes 1000 and 0110 forf = x1∨ (x2∧x3). This representation makes it
possible to compute monotone Boolean functions more efficiently.

disjunction of all conjunctive terms with exactlyn+1− i variables. Thus, levels 1 ton of the lattice
have a one-to-one correspondence with the output functionsof then-input network. Moreover, it is
possible to efficiently determine whetherfi has been computed at outputi just by verifying whether
it takes the value 1 at all leveli boundary nodes.

Monotone Boolean functions can thus be represented by theirantichain of boundary nodes in
the Boolean lattice. In a lattice of size 2n, the maximum size of this representation is equal to the
size of the longest antichain, which is only

( n
⌈n/2⌉

)

nodes (by Stirling’s approximation,
( n
⌈n/2⌉

)

=

O
(

2n√
n

)

). However, computing conjunctions and disjunctions usingthis representation produces

combinatorially more redundant, non-boundary nodes that have to be removed (Gunter et al., 1996).
A more efficient representation is based on storing the values of the function in its entire truth table
as a bit-vector of length 2n. Its values are grouped according to the levels in the Boolean lattice
so that values for any level can be retrieved easily. This representation also allows computing
conjunctions and disjunctions efficiently as the bitwise AND and bitwise OR of the bit-vectors,
respectively. Moreover, efficient algorithms for bit-counting can be used to determine if a given
sorting network is valid by checking if its function at output i has the value 1 at all leveli nodes for
1≤ i ≤ n, which is the case when all output functionsfi are computed correctly.

309



VALSALAM AND M IIKKULAINEN

DNF CNF

f1 x1∧x2∧x3∧x4 x1∧x2∧x3∧x4

f2 (x1∧x2∧x3)∨ (x1∧x2∧x4)∨ . . . (x1∨x2)∧ (x1∨x3)∧ . . .

f3 (x1∧x2)∨ (x1∧x3)∨ . . . (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ . . .

f4 x1∨x2∨x3∨x4 x1∨x2∨x3∨x4

Table 3: Symmetries of the 4-input sorting network in terms of its output functions. Writing the
Boolean output functions of the sorting network in both the disjunctive normal form (DNF)
and in the conjunctive normal form (CNF) is a good way to visualize the symmetries of
the output functions. For example, swapping the conjunctions∧ and disjunctions∨ in the
DNF form of either functionf2 or f3 yields the CNF form of the other function. Therefore,
for the operation of swapping∧ and∨ in both f2 and f3 and also swapping their row
positions in the table, the resulting table of functions remains the same as the original
table. Moreover, this assertion holds for any pair of functions fi and f5−i , not just for f2
and f3. Such an operation that preserves the output functions of the network is called a
symmetry. These symmetries can be used to minimize the number of comparators in the
network.

Finding a minimum sequence of comparators that computes allthe output functions is a chal-
lenging combinatorial problem. It can be made more tractable by using the symmetries of the
network, represented in terms of the symmetries of its output functions, as will be described next.

3.2 Sorting Network Symmetries

A sorting networksymmetryis an operation on the ordered set of network output functions that
leaves the functions invariant, that is, the resulting network outputs remain unchanged. For example,
swapping the outputs of all comparators of a network to reverse its sorting order and then flipping the
network vertically to restore its original sorting order isa symmetry operation. Swapping the com-
parator outputs swaps the conjunctions∧ and disjunctions∨ in the output functions. The resulting
reversal of the network sorting order can be expressed asfi(xi , . . . ,xn,∧,∨)= fn+1−i(xi , . . . ,xn,∨,∧)
for all 1≤ i ≤ n, that is, the output functionfn+1−i can be obtained fromfi by swapping its∧ and
∨, and vice versa. Therefore, in addition to swapping∧ and∨, if the dual functions fi and fn+1−i

are also swapped, then the network outputs remain the same. This type of symmetry is illustrated in
Table 3 for the 4-input sorting network.

It is thus possible to define symmetry operationsσi for 1≤ i ≤
⌈

n
2

⌉

that act on the ordered set of
network output functions by swapping the functionfi and its dualfn+1−i and swapping their∧ and
∨. The compositions of these symmetry operations are also symmetries becauseσi andσ j operate
independently on different pairs of output functions. Thatis, this set of operations are closed under
composition, and they are associative. Moreover, each operation is its own inverse, producing the
identity when applied twice in a row. Thus they satisfy all the axioms of agroup for representing
symmetries mathematically. Since every element of this group can be expressed as the composition
of finitely many elements of the setΣ = {σ1, . . . ,σ⌈ n

2⌉}, the group is said to begeneratedby Σ and

is denoted〈Σ〉.
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Similarly, the subgroupsof 〈Σ〉, that is, subsets that satisfy the group axioms, can be used
to represent the symmetries of partial networks created in the process of constructing a full sorting
network. In particular, computing pairs of dual output functions produces symmetries corresponding
to a subgroup of〈Σ〉 (Figure 5). Since each symmetry element inΣ operates on disjoint pairs of
dual functions, any such subgroup can be written as〈Γ〉, whereΓ is a subset ofΣ.

Initially, before any comparators have been added, each line i in the network has the trivial
monotone Boolean functionxi . As a result, the network does not have any symmetries, that is,
Γ = {}. Adding comparators to compute the output functionfi and its dualfn+1−i yieldsΓ = {σi}
for the resulting partial network. Adding more comparatorsto compute bothf j and its dualfn+1− j

creates a new partial network withΓ = {σi ,σ j}, that is, the new partial network is more symmetric.
Continuing to add comparators until all output functions have been constructed produces a complete
sorting network withΓ = Σ.

Thus adding comparators to the network in a particular sequence builds its symmetry in a corre-
sponding sequence of increasingly larger subgroups. Conversely, building symmetry in a particular
sequence constrains the comparator sequences that are possible. Symmetry can therefore be used to
constrain the search space for designing networks with desired properties. In particular, a sequence
of subgroups can represent a sequence of subgoals for minimizing the number of comparators in the
network. Each subgoal in this sequence is defined as the subgroup that can be produced from the
previous subgoal by adding the fewest number of comparators.

Applying this heuristic to the initial network with symmetry Γ = {}, the first subgoal is defined
as the symmetry that can be produced from the input variablesby computing a pair of dual output
functions with the fewest number of comparators (Figure 6).The functionsf1 = x1∧ . . .∧ xn and
fn = x1∨ . . .∨ xn have the fewest number of variable combinations and can therefore be computed
by adding fewer comparators than any other pair of dual output functions. Thus the first subgoal is
to produce the symmetryΓ = {σ1} using as few comparators as possible.

After computing f1 and fn, the next pair of dual output functions with the fewest number of
variable combinations aref2 and fn−1. Therefore, the second subgoal is to compute them and
produce the symmetryΓ = {σ1,σ2}. In this way, the number of variable combinations in the output
functions continues to increase from the outer lines to the middle lines of the network. Therefore,
from any subgoal that adds the symmetryσk to Γ, the next subgoal adds the symmetryσk+1 to Γ.
This sequence of subgoals continues until all the output functions are computed, producing the final
goal symmetryΓ = {σ1, . . . ,σ⌈ n

2⌉}.

Although this subgoal sequence specifies the order in which to compute the output functions, it
does not specify an optimal combination of comparators for each subgoal. However, it is easier to
minimize the number of comparators required for each subgoal than for the entire network, as will
be described next.

3.3 Minimizing Comparator Requirement

In order to reach the first subgoal, the same comparator can compute a conjunction forf1 and
also a disjunction forfn simultaneously (Figure 6). Sharing the same comparator to compute dual
functions in this manner reduces the number of comparators required in the network. However,
such sharing between dual functions of the same subgoal is possible only in some cases. In other
cases, it may still be possible to share a comparator with thedual function of a later subgoal. Thus,
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Figure 5: Symmetries of 4-input sorting networks. The numbers below the comparators indicate
the sequence in which the comparators are added during network construction. The last
comparator touching horizontal linei completes computing the output functionfi for that
line. Functionsfi and fn+1−i form a dual, and computing them both gives the network
the symmetryσi . In network (a), adding comparator 3 completes computingf1 and when
comparator 4 is added to complete computing its dualf4, the network gets the symme-
try σ1. Adding comparator 5 then completes computing bothf2 and its dualf3, giving
the network its second symmetryσ2. Network (b) also produces the same sequence of
symmetries and has the same number of comparators. In network (c), adding comparator
5 completes computing bothf3 and f4, but not their dualsf1 and f2. Only when com-
parator 6 is added to complete computingf1 and f2 does it get both its symmetriesσ1

andσ2. Network (d) is similar to (c), and they both require one morecomparator than
networks (a) and (b). Thus the sequence in which the comparators are added determines
the sequence in which the network gets its symmetries. Conversely, a preferred sequence
of symmetries can be specified to constrain the sequence in which comparators are added
and to minimize the number of comparators required.

minimizing the number of comparators requires determiningwhich comparators can be shared and
then adding those comparators that maximize sharing.
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Figure 6: Subgoals for constructing a minimal 4-input sorting network. The final goal is to produce
the symmetryΓ = {σ1,σ2} by computing all four output functionsfi while using the
minimum number of comparators. This goal can be decomposed into a sequence of
subgoals specified as subgroups of the final symmetry group〈Γ〉. At any stage in the
construction, the next subgoal is the subgroup that can be produced by adding the fewest
number of comparators. Initially, the network does not haveany symmetries, that is,
Γ = {}. The dual functionsf1 and f4 are the easiest to compute, having fewer variable
combinations and therefore requiring fewer comparators than f2 and f3. Hence the first
subgoal is to produce the symmetryΓ = {σ1}. Notice that comparators 1 and 2 compute
parts of bothf1 and f4 to achieve this subgoal with the minimum number of comparators.
The second subgoal is to produce the symmetryΓ = {σ1,σ2} by computing the functions
f2 and f3. Adding comparator 5 completes this subgoal since comparators 3 and 4 have
already computedf2 and f3 partially. Optimizing the number of comparators required
to reach each subgoal separately in this way makes it possible to scale the approach to
networks with more inputs.

The Boolean lattice representation of functions discussedin Section 3.1 can be used to determine
whether or not sharing a comparator for computing parts of two functions simultaneously is possible
(Figure 7). Assume that the current subgoal is to compute theoutput functionfi and its dualfn+1−i.
That is, functions for outputs less thani and greater thann+1− i have already been fully computed,
implying that each of these functionsf j has the value 1 at all nodes in levels less than or equal to
j and the value 0 everywhere else. Moreover, the functions forthe remaining outputs have been
partially computed. In particular, each of these intermediate functions are guaranteed to have the
value 1 at all nodes in levels less than or equal toi and the value 0 at all nodes in levels greater than
n+1− i. If that was not the case, it will be impossible to compute at least one of the remaining output
functions by adding more comparators since conjunctions preserve 0s and disjunctions preserve 1s
of the intermediate functions they combine.

The current subgoal of computing functionfi requires setting its value at all nodes in leveli
to 1 and its value at all nodes in leveli + 1 to 0, thus defining its node boundary in the lattice.
Its monotonicity then implies that it has the value 1 at all nodes in levels less thani and the value
0 at all nodes in levels greater thani + 1. Moreover, since the intermediate functionsf ′j on lines
i ≤ j ≤ n+1− i already have the value 1 at all nodes in levels less than or equal to i, computingfi
from them will retain that value at those nodes automatically. Therefore,fi can be computed just by
setting its value at all nodes in leveli +1 to 0.
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Figure 7: Comparator sharing to compute dual output functions in a 4-input sorting network. This
figure illustrates the Boolean lattice representation of the functions computed by com-
parator 1 in Figure 6. The levels of the lattices are numberedon the left and the nodes
at which the function takes the value 1 are shaded. Comparator 1 computes the conjunc-
tion (c) and the disjunction (d) of the functions (a) and (b) for the subgoal of computing
the output functionsf1 = x1∧ x2∧ x3∧ x4 and f4 = x1∨ x2∨ x3∨ x4. Function f1 can be
computed by using conjunctions to set its value at all nodes in level 2 of the lattice to 0.
Similarly, f4 can be computed by using disjunctions to set its value at all nodes in level 4
to 1. Thus, comparator 1 contributes to computing bothf1 and f4 by setting the values at
two nodes in level 2 of its conjunction to 0 and the values at two nodes in level 4 of its
disjunction to 1. Sharing comparators in this manner reduces the number of comparators
required to construct the sorting network.

The value of fi at a node in leveli + 1 can be set to 0 by adding a comparator that computes
its conjunction with another function that already has the value 0 at that node, thus increasing the
number of 0-valued nodes. The disjunction that this comparator also computes has fewer 0-valued
nodes than either of its input functions and is therefore notuseful for computingfi. However, the
disjunction will be used to compute the other remaining output functions, implying that it has the
value 1 at all nodes in leveli+1 as required by those functions. Since the disjunction doesnot have
any 0-valued nodes in leveli +1, its inputs do not have any common 0-valued nodes in that level.
That is, exactly one of the intermediate functionsf ′j has the value 0 for any particular node in level
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i +1. Adding a comparator between a pair of such functions collects the 0-valued nodes from both
functions in their conjunction. Repeating this process recursively collects the 0-valued nodes in
level i+1 from all functions to the function on linei, thus producingfi . Similarly, its dual function
fn+1−i can be computed from the functionsf ′j by using disjunctions instead of conjunctions to set
its values at all nodes in leveln+1− i to 1.

The leaves of the resulting binary recursion tree forfi are the functionsf ′j that have 0-valued
nodes in leveli+1 and its internal nodes are the conjunctive comparator outputs. Since the number
of nodes of degree two in a binary tree is one less than the number of leaves (Mehta and Sahni,
2005), the number of comparators required depends only on the number of functions with which the
recursion starts, that is, it is invariant to the order in which the recursion pairs the leaves. However,
the recursion trees forfi and fn+1−i may have common leaves, making it possible to use the same
comparator to compute a conjunction forfi and a disjunction forfn+1−i . Maximizing such sharing
of comparators between the two recursion trees minimizes the number of comparators required for
the current subgoal.

It may also be possible to share a comparator with a later subgoal, for example, when it computes
a conjunction forfi and a disjunction forfn+1−k, wherei < k≤

⌈

n
2

⌉

. In order to prioritize subgoals
and determine which comparators maximize sharing, each pair of lines where a comparator can
potentially be added is assigned a utility. Comparators that contribute to bothfi and fn+1−i for the
current subgoal get the highest utility. Comparators that contribute to an output function for the
current subgoal and an output function for the next subgoal get the next highest utility. Similarly,
other comparators are also assigned utilities based on the output functions to which they contribute
and the subgoals to which those output functions belong. Many comparators may have the same
highest utility; therefore, one comparator is chosen randomly from that set and it is added to the
network. Repeating this process produces a sequence of comparators that optimizes sharing within
the current subgoal and between the current subgoal and later subgoals.

Optimizing for each subgoal separately in this manner constitutes a greedy algorithm that pro-
duces minimal-size networks with high probability forn≤ 8. However, for larger values ofn, the
search space is too large for this greedy approach to find a global optimum reliably. In such cases,
stochastic search such as evolution can be used to explore the neighborhood of the greedy solutions
for further optimization, as will be described next.

3.4 Evolving Minimal-Size Networks

The most straightforward approach is to initialize evolution with a population of solutions that the
greedy algorithm produces. The fitness of each solution is the negative of its number of comparators
so that improving fitness will minimize the number of comparators. In each generation, two-way
tournament selection based on this fitness measure is used toselect the best individuals in the popu-
lation for reproduction. Reproduction mutates the parent network, creating an offspring network in
two steps: (1) a comparator is chosen from the network randomly and the network is truncated after
it, discarding all later comparators, and (2) the greedy algorithm is used to add comparators again,
reconstructing a new offspring network. Since the greedy algorithm chooses a comparator with the
highest utility randomly, this mutation explores a new combination of comparators that might be
more optimal than the parent.

This straightforward approach restricts the search to the space of comparator combinations sug-
gested by the greedy algorithm and assumes that it contains aglobally minimal network. In some
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Figure 8: State representation of the functionx1 ∧ x2 used in the EDA. The state (shown on the
right) is a bit-string with two bits for each level of the Boolean lattice. The first bit is 1
only if the value of the function for all nodes in that level is0 and the second bit is 1 only
if its value for all nodes in that level is 1. This condensed representation of the function
is based on the information used by the symmetry-building greedy algorithm and it is
therefore useful for constructing minimal-size sorting networks.

cases, however, the globally minimal networks may use comparators that are different from those
suggested by the greedy algorithm. Therefore, a more powerful (but still brute force) approach is
to let evolution use such comparators as well: with a probability determined empirically, the sug-
gestions of the greedy algorithm are ignored and instead thenext comparator to be added to the
network is selected randomly from the set of all potential comparators.

A more effective way to combine evolution with such departures from the greedy algorithm
is to use an Estimation of Distribution Algorithm (EDA) (Bengoetxea et al., 2001; Alden, 2007;
Mühlenbein and Höns, 2005). The idea is to estimate the probability distribution of comparator
combinations in the smallest networks evolved thus far and to use this distribution to generate com-
parator suggestions for the next generation. The EDA is initialized as before with a population of
networks generated by the greedy algorithm. In each generation, a set of networks with the highest
fitness are selected from the population. These networks areused in three ways: (1) to estimate the
distribution of comparators for a generative model of smallnetworks, (2) as elite networks, passed
unmodified to the next generation, and (3) as parent networks, from which new offspring networks
are created for the next generation.

The generative model of the EDA specifies the probabilityP(C|S) of adding a comparatorC
to an n-input partial network with stateS. The state of a partial network is defined in terms of
the n Boolean functions that its comparators compute. These functions determine the remaining
comparators that are needed to finish computing the output functions, making them a good repre-
sentation of the partial network. However, storing the state as the concatenation of then functions
is computationally intractable since each function is represented as a vector of 2n bits. Therefore, a
condensed state representation is computed based on the observation that the greedy algorithm does
not use the actual function values for the nodes in the Boolean lattice; it only checks whether the
values in a given level are all 0s or all 1s. This information,encoded as 2(n+1) bits (Figure 8), is
suitable as the state representation for the model as well.
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Since the model is estimated from the set of the smallest networks in the population, it is likely
to generate small networks as well. Although it can generatenew networks from scratch, it is
used as part of the above reproduction mechanism to reconstruct a new offspring network from the
truncated parent network, that is, it is used in Step 2 of reproduction instead of the greedy algorithm.
In this step, some comparators are also chosen randomly fromthe set of all potential comparators
to encourage exploration of comparator combinations outside the model. Moreover, if the model
does not generate any comparators for the current state, then the reconstruction step falls back to
the greedy algorithm for adding a comparator.

As discussed in Section 3.3, the greedy algorithm chooses the comparator to be added to the
network randomly from those that have the highest utility (Variant 1). This random choice can
be modified slightly to prefer comparators that are symmetric with respect to another comparator
that is already in the network (Variant 2). Doing so makes thearrangement of comparators more
bilaterally symmetric about a horizontal axis through the middle of the network. This heuristic was
motivated by Graham and Oppacher (2006), who found that biasing evolutionary search using such
symmetric comparator pairs was beneficial. The EDA works well with both of these variants of the
greedy algorithm, learning to find smaller sorting networksthan previous results, as demonstrated
next.

4. Results

SENSO was run with a population size of 200 for 500 generations to evolve minimal-size networks
for different input sizes. In each generation, the top half of the population (i.e., 100 networks with
the fewest number of comparators) was selected for estimating the model. The same set of networks
was copied to the next generation without modification. Eachof them also produced an offspring
network to replace those in the bottom half of the population. A Gaussian probability distribution
was used to select the comparator from which to truncate the parent network. This Gaussian distri-
bution was centered at the middle of its comparator sequencewith a standard deviation of one-fourth
of its number of comparators. As a result, parent networks were more likely to be truncated near
the middle than near the ends. When reconstructing the truncated network, the next comparator to
be added to the network was generated either by the estimatedmodel (with probability 0.5) or was
selected randomly from the set of all potential comparators(with probability 0.5). Results were
insensitive to small changes in these probabilities. The SENSO source code to run this experiment
is available from the websitehttp://nn.cs.utexas.edu/?sorting-code.

The above experiment was repeated 20 times for each variant of the greedy algorithm and for
each input sizen≤ 23, each time with a different random number seed. The smallest network found
in each set of 20 runs was recorded as the result for that particular combination of algorithmic
variant and input size. This procedure was repeated 25 timesfor each set of 20 runs to determine
which of the two variants produced smaller networks. According to the Mann-Whitney U-test, the
median number of comparators in the smallest networks foundby variant 2 was significantly fewer
for input sizes 13, 15, 18, 20, 22 (p< 0.02, one-tailed). There was no significant difference between
the two variants for the other input sizes. That is, the symmetry heuristic used in variant 2 makes it
better or as good as variant 1 for finding small networks.

The fewest number of comparators found for each input size islisted in Table 4. For input sizes
n≤ 11, the initial population of SENSO already contained networks with the smallest-known sizes,
that is, the greedy algorithm was sufficient to find the smallest-known networks. For input sizes 12
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n 12 13 14 15 16 17 18 19 20 21 22 23

Previous best
Hand-design and END Batcher’s and Van Voorhis’ merge
39 45 51 56 60 73 79 88 93 103 110 118

SENSO 39 45 51 56 60 71 78 86 92 102 108 118

Table 4: Sizes of the smallest networks for different input sizes found by SENSO. For input sizes
n ≤ 11, networks with the smallest-known sizes (Section 2) werealready found in the
initial population of SENSO, that is, the greedy algorithm using symmetry was sufficient.
These sizes are therefore omitted from this table. For larger input sizes, evolution found
networks that matched previous best results (indicated initalics) or improved them (in-
dicated inbold). Appendix A lists examples of these networks. These results demon-
strate that the SENSO approach is effective at designing minimal-size sorting networks.
Prospects of extending these results to input sizes greaterthan 23 will be discussed in
Section 5.

to 16, and 23, SENSO evolved networks that have the same size as the best known networks. For 15
inputs, networks matching previous best results were obtained indirectly by removing the bottom
line of the evolved 16-input networks and all comparators touching that line (Knuth, 1998). Most
importantly, SENSO improved the previous best results for input sizes 17, 18, 19, 20, 21, and 22 by
one or two comparators. Examples of these networks are listed in Appendix A.

For 23 inputs, SENSO required about 4GB of memory and 46 hoursto complete 500 generations
on a Xeon X5440 processor running at 2.83GHz. These requirements approximately double for
every unit increase in the number of inputs due to theO(2n) complexity of the algorithm. Prospects
for mitigating the effects of this exponential growth and for extending the results ton> 23, including
to larger power-of-two networks, will be discussed in Section 5.

The previous best results for input sizes 12 through 16 were obtained either by hand design or
by the END evolutionary algorithm (Knuth, 1998; Juillé, 1995; Van Voorhis, 1971; Baddar, 2009).
The END algorithm improved a 25-year old result for the 13-input case by one comparator and
matched the best known results for other input sizes up to 16.However, it is a massively parallel
search algorithm, requiring very large computational resources, for example, a population size of
65,536 on 4096 processors to find minimal-size networks for 13 and 16 inputs (Table 5). In contrast,
the SENSO approach finds such networks with much less resources (e.g., population size of 200 on
a single processor in a similar number of generations), making it promising for larger problems, as
will be discussed in the next section.

5. Discussion and Future Work

Previous results on designing minimal-size networks automatically by search have been limited to
small input sizes (n ≤ 16) because the number of valid sorting networks near the optimal size is
very small compared to the combinatorially large space thathas to be searched (Juillé, 1995). The
symmetry-building approach presented in Section 3 mitigates this problem by using symmetry to
focus the search on the space of networks near the optimal size. As a result, it was possible to
search for minimal-size networks with more inputs (n≤ 23), improving the previous best results in
five cases.
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END SENSO (variant 2)

Processor family MasPar MP-2 Xeon X5440
Number of processors used 4,096 @ 17Gop/s 1 @ 2.83GHz

Memory used unknown 37MB
Population size 65,536 200

Runs that produced 60 comparators 2 out of 3 18 out of 20
Number of generations 300 to 500 500

Execution time for each run 48 to 72 hours 15 min

Table 5: Performance metrics of END and SENSO for the 16-input problem. This table compares
the performance of SENSO with the END algorithm (Juillé, 1995) for finding 16-input
networks with 60 comparators, which is the best known resultfor that input size. In con-
trast to the massively parallel END algorithm, SENSO finds such networks using much
less computational resources.

These improvements can be transferred to larger values ofn by using Batcher’s or Van Voorhis’
merge to construct such larger networks from the improved smaller networks (Knuth, 1998). The
resulting networks accumulate the combined improvement ofthe smaller networks. For example,
since the 22-input network has been improved by two comparators, two copies of it can be merged
to construct a 44-input network with four fewer comparatorsthan previous results. This merging
procedure can be repeated to construct even larger networks, doubling the improvement in each step.
Such networks are useful in massively parallel applications such as sorting in GPUs with hundreds
of cores (Kipfer and Westermann, 2005).

It should be possible to improve these results further by extending SENSO in the following
ways. First, the greedy algorithm for adding comparators can be improved by evaluating the sharing
utility of groups of one or more comparators instead of single comparators. Such groups that have
the highest average utility will then be preferred.

Second, the greedy algorithm can be made less greedy by considering the impact of current
comparator choices on the number of comparators that will berequired for later subgoals. This
analysis will make it possible to optimize across subgoals,potentially producing smaller networks
at the cost of additional computations.

Third, the state representation that the EDA algorithm usescontains only sparse information
about the functions computed by the comparators. Extendingit to include more relevant information
should make it possible for the EDA to disambiguate overlapping states and therefore to model
comparator distribution more accurately.

Fourth, in some cases, goodn-input networks can be obtained fromn+ 1-input networks by
simply removing its bottom line and all comparators touching that line (Knuth, 1998), as was done in
the 15-input case in this paper. This observation suggests that a potentially more powerful approach
is to augment the information contained in the state representation of the EDA with the comparator
distribution for multiple input sizes.

Fifth, the EDA generates comparators to add to the network only if the state of the network
matches a state in the generative model exactly. Making thismatch graded, based on some similarity
measure, may produce better results by exploring similar states when an exact match is not found.
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Sixth, evolutionary search can be parallelized, for example, using the massively parallel END
algorithm that has been shown to evolve the best known network sizes forn ≤ 16 (Juillé, 1995).
Conversely, using the symmetry-building approach to constrain the search space should make it
possible to run the END algorithm on networks with more inputs.

Seventh, the symmetry-building approach itself can be improved. For example, it uses only the
symmetries resulting from the duality of the output functions. It may be possible to extend this
approach by also using the symmetries resulting from the permutations of the input variables.

Eighth, large networks can be constructed from smaller networks by merging the outputs of the
smaller networks. Since smaller networks are easier to optimize, they can be evolved first and then
merged by continuing evolution to add more comparators. This approach is similar to constructing
minimal networks forn> 16 by merging smaller networks (Batcher, 1968; Van Voorhis,1974).

In addition to finding minimal-size networks, the SENSO approach can also be used to find
minimal-delay networks. Instead of minimizing the number of comparators, it would now minimize
the number of parallel steps into which the comparators are grouped. Both these objectives can be
optimized simultaneously as well, either by preferring oneobjective over the other in the fitness
function or by using a multi-objective optimization algorithm such as NSGA-II (Deb et al., 2000).

Moreover, this approach can potentially be extended to design comparator networks for other
related problems such as rank-order filters (Chakrabarti and Wang, 1994; Hiasat and Hasan, 2003;
Chung and Lin, 1997). A rank order filter with rankr selects therth largest element from an input
set ofn elements. Such filters are widely used in image and signal processing applications, for
example, to reduce high-frequency noise while preserving edge information. Since these filters are
often implemented in hardware, minimizing their comparator requirement is necessary to minimize
their chip area. More generally, similar symmetry-based approaches may be useful for designing
stack filters, that is, circuits implementing monotone Boolean functions, which are also popular
in signal processing applications (Hiasat and Hasan, 2003;Shmulevich et al., 1995). Furthermore,
such approaches can potentially be used to design rearrangeable networks for switching applications
(Seo et al., 1993; Yeh and Feng, 1992).

6. Conclusion

Minimizing the number of comparators in a sorting network isa challenging optimization problem.
This paper presented an approach called SENSO that simplifies it by converting it into the problem
of building the symmetry of the network optimally. The resulting structure makes it possible to
construct the network in steps and to minimize the number of comparators required for each step
separately. However, the networks constructed in this manner may be sub-optimal greedy solutions,
and they are optimized further by an evolutionary algorithmthat learns to anticipate the distribution
of comparators in minimal networks. This approach focuses the solutions on promising regions of
the search space, thus finding smaller networks more effectively than previous methods.
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Appendix A. Evolved Minimal-Size Sorting Networks

This appendix lists examples of minimal-size sorting networks evolved by SENSO. For each exam-
ple, the sequence of comparators is illustrated in a figure and also listed as pairs of horizontal lines
numbered from top to bottom.

Figure 9: Evolved 9-input network with 25 comparators: [3, 7], [1, 6], [2, 5], [8, 9], [1, 8], [2, 3],
[4, 6], [5, 7], [6, 9], [2, 4], [7, 9], [1, 2], [5, 6], [3, 8], [4,8], [4, 5], [6, 7], [2, 3], [2, 4],
[7, 8], [5, 6], [3, 5], [6, 7], [3, 4], [5, 6].

Figure 10: Evolved 10-input network with 29 comparators: [2, 5], [8, 9], [3, 4], [6, 7], [1, 10],
[3, 6], [1, 8], [9, 10], [4, 7], [5, 10], [1, 2], [1, 3], [7, 10],[4, 6], [5, 8], [2, 9], [4, 5],
[6, 9], [7, 8], [2, 3], [8, 9], [2, 4], [3, 6], [5, 7], [3, 4], [7,8], [5, 6], [4, 5], [6, 7].

Figure 11: Evolved 11-input network with 35 comparators: [1, 10], [3, 9], [4, 8], [5, 7], [2, 6],
[2, 4], [3, 5], [7, 11], [8, 9], [6, 10], [1, 7], [2, 3], [9, 11],[10, 11], [1, 2], [6, 8], [4, 5],
[7, 9], [3, 7], [2, 6], [8, 9], [5, 10], [3, 4], [9, 10], [2, 3], [5, 7], [4, 6], [7, 8], [8, 9], [3, 4],
[5, 7], [6, 7], [4, 5], [7, 8], [5, 6].

321



VALSALAM AND M IIKKULAINEN

Figure 12: Evolved 12-input network with 39 comparators: [1, 6], [3, 8], [5, 11], [4, 7], [9, 12],
[2, 10], [6, 7], [2, 9], [1, 4], [3, 5], [10, 12], [8, 11], [8, 10], [11, 12], [2, 3], [7, 12],
[1, 2], [5, 9], [6, 9], [2, 5], [4, 8], [3, 6], [8, 11], [7, 10], [3, 4], [5, 7], [9, 11], [2, 3],
[10, 11], [7, 9], [4, 5], [9, 10], [3, 4], [6, 8], [5, 6], [7, 8],[8, 9], [6, 7], [4, 5].

Figure 13: Evolved 13-input network with 45 comparators: [5, 9], [1, 10], [4, 8], [3, 6], [7, 12],
[2, 13], [1, 7], [3, 5], [6, 9], [8, 13], [2, 4], [11, 12], [10, 12], [1, 2], [9, 13], [9, 11],
[3, 9], [12, 13], [1, 3], [8, 10], [6, 10], [4, 7], [4, 6], [2, 9], [5, 7], [5, 8], [11, 12], [7, 10],
[4, 5], [2, 3], [10, 12], [2, 4], [7, 11], [3, 5], [3, 4], [10, 11], [7, 9], [6, 8], [6, 7], [8, 9],
[4, 6], [9, 10], [5, 6], [7, 8], [6, 7].

Figure 14: Evolved 14-input network with 51 comparators: [1, 7], [3, 4], [9, 13], [5, 6], [2, 11],
[8, 14], [10, 12], [4, 7], [5, 8], [6, 14], [2, 9], [11, 13], [1,3], [12, 13], [1, 10], [2, 5],
[7, 14], [13, 14], [1, 2], [3, 8], [4, 6], [10, 11], [4, 9], [8, 11], [6, 9], [3, 10], [7, 12], [5, 7],
[9, 13], [2, 4], [11, 12], [3, 5], [12, 13], [2, 3], [9, 11], [4,10], [4, 5], [3, 4], [11, 12],
[6, 8], [8, 9], [7, 10], [6, 7], [5, 6], [9, 10], [7, 8], [10, 11], [4, 5], [6, 7], [8, 9], [7, 8].
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Figure 15: Evolved 15-input network with 56 comparators: [13, 14], [6, 8], [4, 12], [3, 11], [5, 10],
[7, 9], [2, 15], [12, 15], [2, 4], [8, 11], [1, 13], [5, 7], [3, 6], [9, 10], [1, 3], [10, 15],
[2, 5], [1, 2], [6, 7], [8, 9], [12, 14], [4, 13], [6, 12], [10, 11], [9, 13], [3, 5], [7, 14],
[4, 8], [3, 4], [13, 15], [11, 14], [2, 6], [14, 15], [2, 3], [4,6], [11, 13], [13, 14], [3, 4],
[9, 12], [5, 10], [11, 12], [7, 8], [6, 7], [5, 9], [8, 10], [5, 6], [10, 12], [12, 13], [4, 5],
[7, 9], [8, 11], [10, 11], [6, 7], [8, 9], [9, 10], [7, 8].

Figure 16: Evolved 16-input network with 60 comparators: [13, 14], [6, 8], [4, 12], [3, 11], [1, 16],
[5, 10], [7, 9], [2, 15], [12, 15], [2, 4], [8, 11], [1, 13], [5,7], [3, 6], [9, 10], [14, 16],
[11, 16], [1, 3], [10, 15], [2, 5], [1, 2], [15, 16], [6, 7], [8,9], [12, 14], [4, 13], [6, 12],
[10, 11], [9, 13], [3, 5], [7, 14], [4, 8], [3, 4], [13, 15], [11, 14], [2, 6], [14, 15], [2, 3],
[4, 6], [11, 13], [13, 14], [3, 4], [9, 12], [5, 10], [11, 12], [7, 8], [6, 7], [5, 9], [8, 10],
[5, 6], [10, 12], [12, 13], [4, 5], [7, 9], [8, 11], [10, 11], [6, 7], [8, 9], [9, 10], [7, 8].
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Figure 17: Evolved 17-input network with 71 comparators: [6, 12], [5, 10], [8, 13], [1, 15], [3, 17],
[2, 16], [4, 9], [7, 14], [4, 11], [9, 14], [5, 8], [10, 13], [1,3], [15, 17], [2, 7], [11, 16],
[4, 6], [12, 14], [1, 5], [13, 17], [2, 4], [14, 16], [1, 2], [16, 17], [3, 10], [8, 15], [6, 11],
[7, 12], [6, 8], [7, 9], [9, 11], [3, 4], [9, 15], [10, 12], [13,14], [5, 7], [11, 15], [5, 6],
[8, 10], [12, 14], [2, 3], [15, 16], [2, 9], [14, 16], [2, 5], [3, 6], [12, 15], [14, 15], [3, 5],
[7, 13], [10, 13], [4, 11], [4, 9], [7, 8], [11, 13], [4, 7], [4,5], [13, 14], [11, 12], [6, 7],
[12, 13], [5, 6], [8, 9], [9, 10], [7, 9], [10, 12], [6, 8], [7, 8], [10, 11], [9, 10], [8, 9].

Figure 18: Evolved 18-input network with 78 comparators: [5, 13], [6, 14], [1, 8], [11, 18], [3, 4],
[15, 16], [7, 9], [10, 12], [2, 17], [3, 7], [12, 16], [2, 10], [9, 17], [5, 11], [8, 14], [4, 13],
[6, 15], [1, 3], [16, 18], [2, 5], [14, 17], [1, 6], [13, 18], [1, 2], [17, 18], [4, 8], [11, 15],
[7, 10], [9, 12], [3, 16], [4, 9], [10, 15], [5, 6], [13, 14], [7, 11], [3, 7], [8, 12], [2, 5],
[14, 17], [15, 16], [3, 4], [12, 16], [16, 17], [2, 3], [12, 15], [4, 7], [14, 15], [4, 5],
[15, 16], [3, 4], [6, 7], [12, 13], [8, 10], [9, 11], [10, 11], [8, 9], [6, 12], [7, 13], [11, 13],
[6, 8], [13, 15], [4, 6], [11, 14], [5, 8], [13, 14], [5, 6], [9,10], [7, 10], [9, 12], [10, 13],
[6, 9], [7, 8], [11, 12], [7, 9], [10, 12], [8, 11], [10, 11], [8, 9].
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Figure 19: Evolved 19-input network with 86 comparators: [5, 11], [4, 13], [1, 17], [8, 15], [9, 12],
[7, 14], [16, 18], [2, 6], [10, 19], [3, 6], [12, 17], [8, 10], [2, 3], [7, 16], [11, 13], [4, 5],
[14, 18], [1, 9], [15, 19], [6, 17], [4, 8], [18, 19], [2, 7], [5, 16], [1, 2], [13, 17], [1, 4],
[17, 19], [3, 12], [10, 11], [14, 15], [7, 9], [8, 14], [3, 10],[12, 16], [2, 8], [6, 11],
[13, 18], [9, 15], [5, 7], [11, 15], [4, 5], [16, 17], [2, 3], [15, 18], [2, 4], [17, 18], [6, 8],
[7, 14], [6, 7], [11, 16], [3, 5], [15, 16], [3, 6], [12, 13], [16, 17], [3, 4], [9, 10], [8, 14],
[10, 13], [9, 12], [10, 11], [14, 15], [6, 9], [13, 15], [15, 16], [4, 6], [5, 7], [11, 14], [5, 9],
[5, 6], [14, 15], [8, 12], [7, 12], [7, 10], [8, 9], [12, 13], [7, 8], [13, 14], [6, 7], [10, 11],
[11, 12], [12, 13], [9, 10], [8, 9], [10, 11].

Figure 20: Evolved 20-input network with 92 comparators: [3, 12], [9, 18], [1, 11], [10, 20], [5, 6],
[15, 16], [4, 7], [14, 17], [2, 13], [8, 19], [4, 15], [6, 17], [1, 2], [19, 20], [5, 14], [7, 16],
[8, 10], [11, 13], [3, 9], [12, 18], [5, 8], [13, 16], [1, 4], [17, 20], [1, 3], [18, 20], [1, 5],
[16, 20], [2, 15], [6, 19], [9, 11], [10, 12], [7, 14], [6, 10],[11, 15], [2, 4], [17, 19],
[7, 9], [12, 14], [3, 8], [13, 18], [2, 6], [2, 3], [15, 19], [5,7], [14, 16], [18, 19], [16, 19],
[2, 5], [4, 10], [11, 17], [3, 4], [17, 18], [14, 18], [3, 7], [16, 18], [3, 5], [8, 9], [12, 13],
[6, 11], [10, 15], [9, 13], [8, 12], [4, 8], [13, 17], [4, 6], [15, 17], [16, 17], [4, 5], [6, 7],
[14, 15], [15, 16], [5, 6], [11, 12], [9, 10], [12, 13], [8, 9],[8, 11], [10, 13], [6, 8],
[13, 15], [10, 14], [7, 11], [7, 8], [11, 12], [13, 14], [9, 10], [10, 12], [12, 13], [9, 11],
[8, 9], [10, 11].
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Figure 21: Evolved 21-input network with 102 comparators: [6, 10], [12, 16], [2, 20], [3, 15],
[7, 19], [1, 18], [4, 21], [5, 9], [13, 17], [8, 14], [2, 8], [14, 20], [3, 12], [10, 19], [5, 13],
[9, 17], [4, 6], [16, 18], [1, 11], [11, 21], [1, 7], [15, 21], [3, 4], [18, 19], [2, 5], [17, 20],
[1, 2], [20, 21], [1, 3], [19, 21], [8, 9], [13, 14], [10, 11], [5, 12], [6, 7], [15, 16], [11, 12],
[6, 13], [9, 16], [7, 14], [8, 15], [17, 18], [2, 4], [5, 10], [6, 8], [14, 16], [12, 19], [18, 20],
[2, 3], [19, 20], [5, 6], [2, 5], [16, 20], [14, 18], [3, 8], [12, 18], [10, 15], [5, 6], [16, 19],
[18, 19], [3, 5], [7, 11], [9, 17], [4, 13], [11, 15], [13, 17],[4, 9], [7, 10], [15, 17], [9, 13],
[4, 7], [5, 6], [16, 17], [17, 18], [4, 5], [12, 14], [6, 8], [14, 16], [7, 8], [16, 17], [5, 6],
[11, 12], [10, 12], [9, 10], [12, 13], [13, 15], [9, 11], [7, 9], [15, 16], [6, 7], [13, 14],
[14, 15], [7, 9], [8, 10], [11, 12], [8, 11], [8, 9], [10, 14], [12, 13], [10, 13], [10, 12],
[10, 11].
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Figure 22: Evolved 22-input network with 108 comparators: [11, 12], [3, 9], [14, 20], [4, 16],
[7, 19], [2, 17], [6, 21], [1, 18], [5, 22], [8, 10], [13, 15], [1, 5], [18, 22], [4, 13], [10, 19],
[2, 3], [20, 21], [8, 14], [9, 15], [6, 7], [16, 17], [6, 8], [15, 17], [2, 11], [12, 21], [1, 4],
[19, 22], [1, 6], [17, 22], [1, 2], [21, 22], [7, 9], [14, 16], [3, 5], [18, 20], [10, 12],
[11, 13], [3, 8], [15, 20], [4, 10], [13, 19], [7, 14], [9, 16],[5, 12], [11, 18], [6, 11],
[12, 17], [4, 7], [16, 19], [2, 3], [20, 21], [2, 4], [19, 21], [2, 6], [17, 21], [3, 7], [16, 20],
[12, 19], [3, 6], [17, 20], [4, 11], [3, 4], [19, 20], [10, 13],[5, 15], [8, 18], [9, 14],
[13, 18], [5, 10], [14, 15], [8, 9], [5, 8], [15, 18], [5, 6], [17, 18], [18, 19], [4, 5], [7, 11],
[12, 16], [6, 7], [16, 17], [5, 6], [17, 18], [10, 13], [9, 14],[11, 14], [9, 12], [8, 10],
[13, 15], [8, 9], [14, 15], [15, 17], [6, 8], [10, 11], [12, 13], [7, 10], [13, 16], [15, 16],
[7, 8], [9, 12], [11, 14], [9, 10], [13, 14], [8, 9], [14, 15], [11, 12], [12, 13], [10, 11].
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Figure 23: Evolved 23-input network with 118 comparators: [2, 21], [3, 22], [6, 14], [10, 18],
[1, 8], [16, 23], [5, 12], [7, 13], [11, 17], [9, 19], [15, 20],[4, 9], [5, 15], [12, 19],
[3, 7], [17, 21], [1, 10], [14, 23], [6, 16], [8, 18], [2, 11], [13, 22], [9, 20], [18, 23],
[1, 6], [21, 22], [2, 3], [19, 20], [4, 5], [22, 23], [1, 2], [20, 23], [1, 4], [13, 14], [10, 11],
[7, 16], [8, 17], [9, 12], [12, 15], [5, 12], [7, 9], [15, 17], [18, 21], [3, 6], [10, 13],
[11, 14], [16, 19], [11, 12], [5, 8], [21, 22], [2, 3], [8, 16],[4, 10], [14, 20], [17, 19],
[9, 15], [5, 7], [19, 22], [2, 5], [20, 22], [2, 4], [10, 11], [12, 14], [3, 7], [17, 21], [5, 10],
[14, 19], [20, 21], [3, 4], [19, 21], [3, 5], [6, 18], [13, 15],[9, 13], [6, 8], [16, 18], [6, 9],
[15, 18], [4, 6], [18, 20], [4, 5], [19, 20], [7, 11], [12, 17],[14, 17], [7, 10], [17, 18],
[6, 7], [5, 6], [8, 10], [18, 19], [13, 16], [15, 16], [9, 13], [8, 9], [14, 16], [16, 18], [6, 8],
[10, 11], [11, 15], [7, 12], [15, 17], [16, 17], [7, 8], [11, 12], [10, 13], [12, 14], [14, 15],
[9, 10], [8, 9], [15, 16], [10, 11], [9, 10], [13, 15], [12, 13], [13, 14], [11, 12], [12, 13].
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