Journal of Machine Learning Research 14 (2013) 303-331 8tduhi/12; Revised 10/12; Published 2/13

Using Symmetry and Evolutionary Search
to Minimize Sorting Networks

Vinod K. Valsalam VKV @CS.UTEXAS.EDU
Risto Miikkulainen RISTO@CS.UTEXAS.EDU
Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712, USA

Editor: Una-May O'Reilly

Abstract

Sorting networks are an interesting class of parallel sgréilgorithms with applications in multi-
processor computers and switching networks. They arelipitascading a series of comparison-
exchange units called comparators. Minimizing the numibeomparators for a given number of
inputs is a challenging optimization problem. This pape&sgnts a two-pronged approach called
Symmetry and Evolution based Network Sort OptimizationNSP) that makes it possible to scale
the solutions to networks with a larger number of inputs thaaviously possible. First, it uses the
symmetry of the problem to decompose the minimization gaalsubgoals that are easier to solve.
Second, it minimizes the resulting greedy solutions furtheusing an evolutionary algorithm to
learn the statistical distribution of comparators in mialmetworks. The final solutions improve
upon half-century of results published in patents, bookd,@eer-reviewed literature, demonstrat-
ing the potential of the SENSO approach for solving diffimadinbinatorial problems.

Keywords: symmetry, evolution, estimation of distribution algorith, sorting networks, combi-
natorial optimization

1. Introduction

A sorting network of inputs is a fixed sequence of comparison-exchange opesgtiomparators)
that sorts all inputs of size (Knuth, 1998). Since the same fixed sequence of comparatarsart
any input, it represents an oblivious or data-independerting algorithm, that is, the sequence
of comparisons does not depend on the input data. The magtikied pattern of communication
makes them desirable in parallel implementations of sgrtsnch as those on graphics processing
units (Kipfer et al., 2004). For the same reason, they arglsito implement in hardware and are
useful as switching networks in multiprocessor computBeggher, 1968; Kannan and Ray, 2001;
Baddar, 2009).

Driven by such applications, sorting networks have beenrstligect of active research since
the 1950’s (Knuth, 1998). Of particular interest are mirlisiae networks that use a minimal
number of comparators. Designing such networks is a hardic@torial optimization problem,
first investigated in a U.S. Patent by O’Connor and Nelso6Z)l%or 4 < n < 8. Their networks
had the minimal number of comparators for 4, 5, 6, and 8 infuisrequired two extra comparators
for 7 inputs. This result was improved by Batcher (1968), séhalgorithmic construction produces
provably minimal networks fon < 8 (Knuth, 1998).

©2013 Vinod K. Valsalam and Risto Miikkulainen.

VALSALAM AND MIIKKULAINEN

I Y1
T2 Y2
T3 Y3
T4 Y4

Figure 1: A 4-input sorting network. The input valueg, X2, X3, X4 } at the left side of the horizontal
lines pass through a sequence of comparison-exchangdiopsyaepresented by vertical
lines connecting pairs of horizontal lines. Each such coatpa sorts its two values,
resulting in the horizontal lines containing the sortecpbotitvalues{y; <y, <ys <ya}
at right. This network is minimal in terms of the number of garators. Such minimal
networks are not known in general for input sizes larger Biamd designing them is a
challenging optimization problem.

Still today, provably minimal networks are known only foK 8. Finding the minimum num-
ber of comparators fon > 8 is thus a challenging open problem. It has been studied byus
researchers using specialized techniques, often selyai@teeach value oh (Knuth, 1998; Koza
et al., 1999). Their efforts during the last few decades hiagroved the size of the networks for
9 < n<16. For larger values af, all best known solutions are simply merges of smaller net-
works; the problem is so difficult that it has not been posstblimprove on these straightforward
constructions (Baddar, 2009).

This paper presents a two-pronged approach to this prohisimg symmetry and evolutionary
search, which makes it possible to scale the problem todangeber of inputs. This approach,
called Symmetry and Evolution based Network Sort Optinnira{SENSO), learns the compara-
tor distribution of minimal networks from a population ofnthdate solutions and improves them
iteratively through evolution. Each such solution is gated by sampling comparators from the
previous distribution such that the required network syimynis built step-by-step, thereby focus-
ing evolution on more likely candidates and making searchereffective. This approach was able
to discover new minimal networks for 17, 18, 19, 20, 21, andnp2its. Moreover, for the other
n < 23, it discovered networks that have the same size as th&hesnh networks. These results
demonstrate that the approach makes the problem moretti@etad suggests ways in which it can
be scaled further and applied to other similarly difficulbrddmnatorial problems.

This paper is organized as follows. Section 2 begins by d@sgrthe problem of finding mini-
mal sorting networks in more detail and reviews previousaesh on solving it. Section 3 presents
the SENSO approach, based on symmetry and evolution. Segttiscusses the experimental
setup for evaluating the approach and presents the ressdistion 5 concludes with an analysis
of the results and discussion of ways to make the approadchravee effective and general in the
future.

2. Background

Figure 1 illustrates a 4-input sorting network. The horiabtines of the network receive the input
values{xy,x2,x3,Xs} at left. Each vertical line represents a comparison-exghasperation that

304

MINIMIZING SORTING NETWORKS

n [1]2][3[4|5]6[7[8]9]10]11]12][13[14]15]16
Batcher| 0[1[3[5[9[12][16[19[26][31[37[41]48][53]59]63
Best [[0]1]3[5[9]12]16[19|25]29[35/39|45|51]56]60

Table 1: The fewest number of comparators known to date fdaingonetworks of input sizes
n < 16. These networks have been studied extensively, but therbsults have been
proven to be minimal only fon < 8 (shown in bold; Knuth, 1998). Such small networks
are interesting because they optimize hardware resouréegplementations such as mul-
tiprocessor switching networks.

takes two values and exchanges them if necessary suchéhatdler value is on the lower line. As
a result of these comparison-exchanges, the output vahpesaaat the right side of the network in
sorted order{y; <y, <y3<ya}.

Sorting networks witm < 16 have been studied extensively with the goal of minimizhnejr
sizes. The smallest sizes of such networks known to dateistesl lin Table 1 (Knuth, 1998).
The number of comparators has been proven to be minimal only £ 8 (Knuth, 1998). These
networks can be constructed using Batcher’s algorithm @o-even merging networks (Batcher,
1968). The odd-even merge builds larger networks itergtifrem smaller networks by merging
two sorted lists. The odd and even indexed values of thesédis@re first merged separately using
small merging networks. Comparison-exchange operatiomshan applied to the corresponding
values of the resulting small sorted lists to obtain thedguoltted list.

Finding the minimum number of comparators requiredrfor 8 remains an open problem. The
results in Table 1, for these valuesrmfimprove on the number of comparators used by Batcher’s
method. For example, the 16-input case, for which Batclmethod requires 63 comparators, was
improved by Shapiro who found a 62-comparator network ird1%oon afterwards, Green (1972)
found a network with 60 comparators (Figure 2), which séithains the best in terms of the number
of comparators.

In Green’s construction, comparisons made after the fitstlvels (i.e., the first 32 compara-
tors) are difficult to understand, making his method hardeoegalize to larger values of For
such values, Batcher's method can be extended with morelegmperging strategies to produce
significant savings in the number of comparators (Van Vaprh®74; Drysdale and Young, 1975).
For example, the best known 256-input sorting network du¥ao Voorhis requires only 3651
comparators, compared to 3839 comparators required byn&anethod (Drysdale and Young,
1975; Knuth, 1998). Asymptotically, the methods based orging requireO(nIog2 n) compara-
tors (Van Voorhis, 1974). In comparison, tA&S networkby Ajtai et al. (1983) produces better
upper bounds, requiring oni®(nlogn) comparators. However, the constants hidden in its asymp-
totic notation are so large that these networks are immactAlthough still not practical, Leighton
and Plaxton (1990) showed that small constants are actoeadlyible in networks that sort all but a
superpolynomially small fraction of th& input permutations.

Since better algorithms are not known for constructing peits that sort alh! input permu-
tations, Batcher’s or Van Voorhis’ algorithms are oftenduge practice for large values af, de-
spite their non-optimality. For example, these algorithwere used to obtain the networks for
17<n< 32listed in Table 2 by merging the outputs of smaller netwdram Table 1 (Van Voorhis,
1971; Baddar, 2009).

305

VALSALAM AND MIIKKULAINEN

—¢ 69 6o 6—9¢ 06— oo o6—9¢ o

Figure 2: The 16-input sorting network found by Green. Thasaork has 60 comparators, which
is the fewest known for 16 inputs (Green, 1972; Knuth, 1998)e comparators in such
hand-designed networks are often symmetrically arranedta horizontal axis through
the middle of the network. This observation has been usedimegesearchers to bias
evolutionary search on this problem (Graham and OppacBég)2and is also used as a
heuristic to augment the symmetry-building approach dlesdrin Section 3.

n [[17]18[19[20] 21 [22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32
Best] 73] 79[88 93] 103] 110] 118] 123 | 133 140 150 | 156 | 166 | 172 | 180] 185

Table 2: The fewest number of comparators known to date fdaingonetworks of input sizes
17 < n < 32. Networks for these values afwere obtained by merging the outputs of
smaller networks from Table 1 using the non-optimal Batsh@arVan Voorhis’ algorithms
(Van Voorhis, 1971; Baddar, 2009). The methods used to aeimetworks fon < 16 are
intractable for these larger valuesmbecause of the explosive growth in the size of the
search space. The approach presented in this paper nstipeggroblem by constraining
search to promising solutions and improves these resultagat sizes 17, 18, 19, 20, 21,
and 22.

The difficulty of finding such minimal sorting networks protag researchers to attack the prob-
lem using evolutionary techniques. In one such study byiHil991), a 16-input network having
61 comparators was evolved. He facilitated the evolutipsaarch by initializing the population
with the first four levels of Green’s network, so that evalatwould need to discover only the re-
maining comparators. This (host) population of sortingwoeks was co-evolved with a (parasite)
population of test cases that were scored based on how veglinfade the sorting networks fail.
The purpose of the parasitic test cases is to nudge the@wusiway from getting stuck on local
optima.

Juille (1995) improved on Hillis’ results by evolving 16gut networks that are as good as
Green's network (60 comparators), from scratch withoutgpag the first 32 comparators. More-
over, Juillé’s method discovered 45-comparator netwéokshe 13-input problem, which was an
improvement of one comparator over the previously known tesilt. His method, based on the
Evolving Non-Determinism (END) model, constructs solasancrementally as paths in a search

306

MINIMIZING SORTING NETWORKS

tree whose leaves represent valid sorting networks. Theidchudls in the evolving population are
internal nodes of this search tree. The search proceedsay aimilar to beam search by assigning
a fitness score to internal nodes and selecting nodes thdteareost promising. The fithess of an
internal node is estimated by constructing a path increallgrand randomly to a leaf node. This
method found good networks with the same number of comparatoin Table 1 for all £ n < 16.

Motivated by observations of symmetric arrangement of canajers in many sorting networks
(Figure 2), Graham and Oppacher (2006) used symmetry @kplio bias evolutionary search.
They compared evolutionary runs on populations initializandomly with either symmetric or
asymmetric networks for the 10-input sorting problem. Tyrametric networks were produced us-
ing symmetric comparator pairs, that is, pairs of compasdtwat are vertical mirror images of each
other. Although evolution was allowed to disrupt the inisgmmetry through variation operators,
symmetric initialization resulted in higher success ra@spared to asymmetric initialization. A
similar heuristic is used to augment the SENSO approachisksd in this paper.

Evolutionary approaches must verify that the solution ekveorts all possible inputs correctly.
A naive approach is to test the network on @lllpermutations ofn distinct numbers. A better
approach requiring far fewer tests uses zkeo-one principlgKnuth, 1998) to reduce the number
of test cases to™binary sequences. According to this principle, if a netwaith n input lines
sorts all 2 binary sequences correctly, then it will also sort any aabjt sequence af non-binary
numbers correctly. However, the increase in the numbersbfdases remains exponential and is
a bottleneck in fitness evaluations. Therefore, some relsea have used FPGAS to mitigate this
problem by performing the fithess evaluations on a massipahallel scale (Koza et al., 1998;
Korenek and Sekanina, 2005). In contrast, this paper deseldoolean function representation of
the zero-one principle for fithess evaluation, as discussst!

3. Approach

This section presents the new SENSO approach based on sggnamétevolutionary search to min-

imize the number of comparators in sorting networks. It begvith a description of how the sorting

network outputs can be represented as monotone Booleatiofus\aexposing the symmetries of the
network. This representation makes it possible to decomiius problem into subgoals, which are
easier to solve. Each subgoal constitutes a step in builtiegsymmetries of the network with

as few comparators as possible. The resulting greedy sotutire optimized further by using an
evolutionary algorithm to learn the distribution of comgiars that produce minimal networks.

3.1 Boolean Function Representation

The zero-one principle (Section 2) can be used to expressphes of a sorting network as Boolean
variables and its outputs as functions of those variabtesmplifies the sorting problem to counting
the number of inputs that have the value 1 and setting thay roftie lowermost outputs to 1 and
the remaining outputs to 0. In particular, the functif(x;,...,x,) at outputi takes the value 1 if
and only if at leash+ 1 —1i inputs are 1. That isf; is the disjunction of all conjunctive terms with
exactlyn+1—i variables.

Since these functions are implemented by the comparatdiginetwork, the problem of de-
signing a sorting network can be restated as the problem dihfijra sequence of comparators that
compute its output functions. Each comparator computesdhginction (upper line) and disjunc-
tion (lower line) of their inputs. As a result, a sequenceashparators computes Boolean functions

307

VALSALAM AND MIIKKULAINEN

x1 N\ Zo

T fi=xi Nag ANx3 Axy

T2 21V T2 fo=(x1 ANxa Aa3)V(eg Aza Axg) V...
T3 L3 N\ T4 fa=(x1 ANaa) V(zy Azxs) V...

T4 T3 V T4 fi=x1VaaVasVay

Figure 3: Boolean output functions of a 4-input sorting reekw The zero-one principle can be used
to represent the inputs of the network as Boolean varialfash comparator produces
the conjunction of its inputs on its upper line and their whigtion on its lower line. As
a result, the functions at the outputs of the network are @mitipns of conjunctions
and disjunctions of the input variables, that is, they areotone Boolean functions. In
particular, the output functioy at linei is the disjunction of all conjunctive terms with
exactlyn+ 1 —i variables. Therefore, a sorting network is a sequence opeoators
that compute all its output functions from its input varedal This representation makes
it possible to express network symmetry, which turns outeaubeful in constructing
minimal networks.

that are compositions of conjunctions and disjunctionshefibput variables (Figure 3). Since the
number of terms in these functions can grow combinatoriafycomparators are added, it is nec-
essary to use a representation that makes it efficient to gtEntpem and to determine whether all
output functions have been computed.

Such functions computed using only conjunctions and djans without any negations are
calledmonotone Boolean functiorfgorshunov, 2003). For example, the functions for the 44tnp
sorting network in Figure 3 are all monotone Boolean fumddio Such a functiorf on n binary
variables has the property thata) < f(b) for any distinct binaryn-tuplesa = ay,...,a, andb =
by,...,by such thata < b, wherea < b if g <b; for 1 <i < n. The set of all 2 binary n-tuples
ordered by< is a partially ordered set calledBoolean lattice which makes it possible to represent
monotone Boolean functions conveniently. The Booleaickaforn = 4 is illustrated in Figure 4 as
an undirected graph (Hasse diagram)5£216 nodes. Any two nodes in the lattice ammparable
and are connected by a path if they can be ordereek byA subset of nodes that are pair-wise
incomparable is called aamtichain A subsetX of nodes is said to beounded abovby the nodey
if x <y for all x € X. The termbounded belovis defined in a similar manner. These concepts are
used to characterize monotone Boolean functions in soni@tgorks.

For any monotone Boolean functidn the subset of lattice nodes at which it takes the value
1 are bounded above by the topmost node in the lattice andoarabd below by an antichain of
nodes corresponding to the conjunctive terms in its digjuaaormal form. That is, the nodes in
this antichain form a boundary in the lattice, separatirgribdes at which takes the value 1 from
those at which it takes the value 0. Therefore, it is sufficterspecify the antichain of boundary
nodes to define a monotone Boolean function. Moreover, nodbg same leval(numbered from
the top of the lattice) form an antichain of boundary nodesabee they all have the same number
n+1—i of 1s in their binary representations and are thereforenmperable. In fact, they are
the boundary nodes of functiofy at outputi of the sorting network since they correspond to the

308

MINIMIZING SORTING NETWORKS

(@) f(x1,%2,%3,X4) = X1 (b) f(X1,%2,%3,%4) = X1 V (X2 A X3)

Figure 4. Representation of monotone Boolean functionsoan Yariables in the Boolean lattice.
The 2 = 16 nodes of the lattice are organized in levels (numberecherieft), each
containing the binary value assignments to the 4-tuplexsxs with the same number
of 1s. The truth table for any Boolean functidiix;, x2,X3,X4) can be represented in
this lattice by shading all the nodes for whi€htakes the value 1. Furthermore, a node
bibobsbs has a path to a lower nodgazazay if & < bj for 1 <i < 4. As aresult, if node
aiapazay is shaded for a monotone functidn then all higher nodes reachable from it
are also shaded, that ikjs defined completely by the nodes in the lower boundary of its
shaded region. This set of nodes (shown by bold outlineesponds to the conjunctive
terms in the disjunctive normal form ¢t For example, it contains just the node 1000 for
f = x; and two nodes 1000 and 0110 fbe x; V (X2 A X3). This representation makes it
possible to compute monotone Boolean functions more «ftigie

disjunction of all conjunctive terms with exacthy+ 1 —i variables. Thus, levels 1 tof the lattice
have a one-to-one correspondence with the output functibtinge n-input network. Moreover, it is
possible to efficiently determine whethfhas been computed at outpydist by verifying whether
it takes the value 1 at all leveboundary nodes.

Monotone Boolean functions can thus be represented bydhéchain of boundary nodes in
the Boolean lattice. In a lattice of siz€,2he maximum size of this representation is equal to the
size of the longest antichain, which is only,,,) nodes (by Stirling’s approximatior(;),,) =

O<27"n>). However, computing conjunctions and disjunctions ughng representation produces

combinatorially more redundant, non-boundary nodes ta ko be removed (Gunter et al., 1996).
A more efficient representation is based on storing the sadfighe function in its entire truth table
as a bit-vector of length™ Its values are grouped according to the levels in the Boolatiice
so that values for any level can be retrieved easily. Thisessmtation also allows computing
conjunctions and disjunctions efficiently as the bitwise Aldnd bitwise OR of the bit-vectors,
respectively. Moreover, efficient algorithms for bit-cémg can be used to determine if a given
sorting network is valid by checking if its function at outpunas the value 1 at all levéhodes for

1 <i < n, which is the case when all output functiofisare computed correctly.

309

VALSALAM AND MIIKKULAINEN

| DNF \ CNF
f1 X1 AXo A X3 A\ Xgq X1 AXo A X3 A\ Xg
fo || e AX2AX3)V (XaAX2AXa) V... (X1 VX2) A (X VX3) A ...
fa (X1 AX)V (XgAX3) V... (X1 VX VX3) A (X VXV Xa) A ...
fa X1V XV X3V Xq X1V X2V X3V Xg

Table 3: Symmetries of the 4-input sorting network in termh&ooutput functions. Writing the
Boolean output functions of the sorting network in both tiguthctive normal form (DNF)
and in the conjunctive normal form (CNF) is a good way to Vi@athe symmetries of
the output functions. For example, swapping the conjunstioand disjunctions/ in the
DNF form of either functionf, or f3 yields the CNF form of the other function. Therefore,
for the operation of swapping andV in both f, and f3 and also swapping their row
positions in the table, the resulting table of functions a@m the same as the original
table. Moreover, this assertion holds for any pair of fumtsif; and f5_;, not just for f;
and f3. Such an operation that preserves the output functionseohétwork is called a
symmetry. These symmetries can be used to minimize the nuohlsemparators in the
network.

Finding a minimum sequence of comparators that computeélealbutput functions is a chal-
lenging combinatorial problem. It can be made more traetddyl using the symmetries of the
network, represented in terms of the symmetries of its dutmctions, as will be described next.

3.2 Sorting Network Symmetries

A sorting networksymmetryis an operation on the ordered set of network output funstitat
leaves the functions invariant, that is, the resulting nekvwoutputs remain unchanged. For example,
swapping the outputs of all comparators of a network to mevis sorting order and then flipping the
network vertically to restore its original sorting ordeisymmetry operation. Swapping the com-
parator outputs swaps the conjunctionsand disjunctions/ in the output functions. The resulting
reversal of the network sorting order can be expresséds. .., Xy, A, V) = fri1-i (%, ..., X, V, A)
forall 1 <i < n, that is, the output functior,.1_j can be obtained fronfy by swapping itshn and

vV, and vice versa. Therefore, in addition to swappingnd v, if the dual functions f; and fn1_;

are also swapped, then the network outputs remain the sameetype of symmetry is illustrated in
Table 3 for the 4-input sorting network.

Itis thus possible to define symmetry operationgor 1 <i < [g] that act on the ordered set of
network output functions by swapping the functigrand its dualf,, 1_j and swapping thein and
V. The compositions of these symmetry operations are alsongjries because; ando; operate
independently on different pairs of output functions. Tisathis set of operations are closed under
composition, and they are associative. Moreover, eachatiperis its own inverse, producing the
identity when applied twice in a row. Thus they satisfy a# ixioms of egroup for representing
symmetries mathematically. Since every element of thisgian be expressed as the composition
of finitely many elements of the s&t= {0y, ... 0 1}, the group is said to bgeneratedby and

Lzﬁ
is denoted>).

310

MINIMIZING SORTING NETWORKS

Similarly, the subgroupsof (Z), that is, subsets that satisfy the group axioms, can be used
to represent the symmetries of partial networks createldrptocess of constructing a full sorting
network. In particular, computing pairs of dual output ftioes produces symmetries corresponding
to a subgroup ofZ) (Figure 5). Since each symmetry element€imperates on disjoint pairs of
dual functions, any such subgroup can be writteflfaswherel is a subset oE.

Initially, before any comparators have been added, eaehi lin the network has the trivial
monotone Boolean functior. As a result, the network does not have any symmetries, shat i
" = {}. Adding comparators to compute the output functfoand its dualf,1_; yields = {o;}
for the resulting partial network. Adding more comparatorsompute bothf; and its dualf, 1
creates a new partial network with= {0;,0j}, that is, the new partial network is more symmetric.
Continuing to add comparators until all output functiongehbeen constructed produces a complete
sorting network with™ = 2.

Thus adding comparators to the network in a particular sezpibuilds its symmetry in a corre-
sponding sequence of increasingly larger subgroups. Caslyebuilding symmetry in a particular
sequence constrains the comparator sequences that atdgpdSgmmetry can therefore be used to
constrain the search space for designing networks withietbproperties. In particular, a sequence
of subgroups can represent a sequence of subgoals for mingihe number of comparators in the
network. Each subgoal in this sequence is defined as theaybgnat can be produced from the
previous subgoal by adding the fewest number of comparators

Applying this heuristic to the initial network with symmegtr = {}, the first subgoal is defined
as the symmetry that can be produced from the input variddyleomputing a pair of dual output
functions with the fewest number of comparators (FigureT)e functionsf; = x; A... A X, and
fn = X1 V...V X, have the fewest number of variable combinations and caeftbrer be computed
by adding fewer comparators than any other pair of dual adtmetions. Thus the first subgoal is
to produce the symmetily = {01} using as few comparators as possible.

After computing f; and f,, the next pair of dual output functions with the fewest numdfe
variable combinations ar& and f,_;. Therefore, the second subgoal is to compute them and
produce the symmetry = {01,02}. In this way, the number of variable combinations in the atitp
functions continues to increase from the outer lines to tiddla lines of the network. Therefore,
from any subgoal that adds the symmaetiyto I', the next subgoal adds the symmaetry 1 toI".

This sequence of subgoals continues until all the outpudtions are computed, producing the final
goal symmetnj = {01,...,0[51 }.

Although this subgoal sequence specifies the order in whiclinpute the output functions, it
does not specify an optimal combination of comparators &mhesubgoal. However, it is easier to
minimize the number of comparators required for each sulibea for the entire network, as will
be described next.

3.3 Minimizing Comparator Requirement

In order to reach the first subgoal, the same comparator campwte a conjunction forf; and
also a disjunction foff, simultaneously (Figure 6). Sharing the same comparatoorntpate dual
functions in this manner reduces the number of comparataygined in the network. However,
such sharing between dual functions of the same subgoakslje only in some cases. In other
cases, it may still be possible to share a comparator witdtlaéfunction of a later subgoal. Thus,

311

VALSALAM AND MIIKKULAINEN

I'={o1} I'={o1}
r={} i ' ={01,02} r={} i T'={01,02}
xl H : H fl :El H - H fl
T2 1 fa T2 4 f2
" 3 5 s " 1 5 &
o 2 4 fe o 2 3 fe
(a) (b)
r'={} I'={o1,02} r={} I'={o1,02}
S . f1 y ' f1
T2 f2 T2 f2
1 6 1 4 6
z3 S f3 zs3 > s f3
334 2 3 5 fa o 3 fa

Figure 5: Symmetries of 4-input sorting networks. The nursleelow the comparators indicate
the sequence in which the comparators are added during rietwostruction. The last
comparator touching horizontal lineompletes computing the output functiérfor that
line. Functionsf; and f,.1_j form a dual, and computing them both gives the network
the symmetno;. In network (a), adding comparator 3 completes computirgnd when
comparator 4 is added to complete computing its dyathe network gets the symme-
try 1. Adding comparator 5 then completes computing bftland its dualfs, giving
the network its second symmetog. Network (b) also produces the same sequence of
symmetries and has the same number of comparators. In ketwypadding comparator
5 completes computing botfy and f4, but not their dualsf; and f,. Only when com-
parator 6 is added to complete computifigand f, does it get both its symmetriex
ando,. Network (d) is similar to (c), and they both require one mooenparator than
networks (a) and (b). Thus the sequence in which the congrarate added determines
the sequence in which the network gets its symmetries. Cselyea preferred sequence
of symmetries can be specified to constrain the sequenceiamwbmparators are added
and to minimize the number of comparators required.

minimizing the number of comparators requires determimitich comparators can be shared and
then adding those comparators that maximize sharing.

312

MINIMIZING SORTING NETWORKS

;: {} 1 ANx2 X1 ANT2 NT3 N\Ty FEI{Ul} F?{Jl’(}?}
2 1V T (1 Va2) A (z3 V 24) fo
s ! 3 ANxq | (x1 Aa2) V(23 A 2y) s
24 2:1:3\/3:43 4351\/552\/3;3\/504 ° fa

Figure 6: Subgoals for constructing a minimal 4-input swytietwork. The final goal is to produce
the symmetryl = {01,0,} by computing all four output function§ while using the
minimum number of comparators. This goal can be decompasedai sequence of
subgoals specified as subgroups of the final symmetry g(bup At any stage in the
construction, the next subgoal is the subgroup that candmuped by adding the fewest
number of comparators. Initially, the network does not hamg symmetries, that is,
I = {}. The dual functiond; and f, are the easiest to compute, having fewer variable
combinations and therefore requiring fewer comparataxs th and f3. Hence the first
subgoal is to produce the symmefry= {01 }. Notice that comparators 1 and 2 compute
parts of bothf; and f4 to achieve this subgoal with the minimum number of compasato
The second subgoal is to produce the symmietry{ 01,02} by computing the functions
f, and f3. Adding comparator 5 completes this subgoal since compar&tand 4 have
already computed, and f3 partially. Optimizing the number of comparators required
to reach each subgoal separately in this way makes it pessildcale the approach to
networks with more inputs.

The Boolean lattice representation of functions discugs&ection 3.1 can be used to determine
whether or not sharing a comparator for computing parts offtlmctions simultaneously is possible
(Figure 7). Assume that the current subgoal is to computeukgut functionf; and its dualf, 1 ;.
That is, functions for outputs less thaand greater than+ 1 —i have already been fully computed,
implying that each of these functiorfg has the value 1 at all nodes in levels less than or equal to
j and the value 0 everywhere else. Moreover, the functionshimremaining outputs have been
partially computed. In particular, each of these interratlfunctions are guaranteed to have the
value 1 at all nodes in levels less than or equaland the value 0 at all nodes in levels greater than
n+1—i. If that was not the case, it will be impossible to computeast one of the remaining output
functions by adding more comparators since conjunctioeseswe 0s and disjunctions preserve 1s
of the intermediate functions they combine.

The current subgoal of computing functidnrequires setting its value at all nodes in level
to 1 and its value at all nodes in level- 1 to 0, thus defining its node boundary in the lattice.
Its monotonicity then implies that it has the value 1 at alle®in levels less thanand the value
0 at all nodes in levels greater tham 1. Moreover, since the intermediate functiofjson lines
i < j<n+1-—ialready have the value 1 at all nodes in levels less than @l égu computingf;
from them will retain that value at those nodes automaticdlherefore,f; can be computed just by
setting its value at all nodes in leviel- 1 to 0.

313

VALSALAM AND MIIKKULAINEN

(d) X1 VX2

Figure 7: Comparator sharing to compute dual output funstia a 4-input sorting network. This
figure illustrates the Boolean lattice representation efftinctions computed by com-
parator 1 in Figure 6. The levels of the lattices are numberethe left and the nodes
at which the function takes the value 1 are shaded. Compdraiomputes the conjunc-
tion (c) and the disjunction (d) of the functions (a) and @) the subgoal of computing
the output functiond; = x3 AXxo AXgAXq and fg = X3 VX2 V X3V X4. Functionf, can be
computed by using conjunctions to set its value at all nodésviel 2 of the lattice to O.
Similarly, f4 can be computed by using disjunctions to set its value abalks in level 4
to 1. Thus, comparator 1 contributes to computing bigtand f4 by setting the values at
two nodes in level 2 of its conjunction to 0 and the values & twdes in level 4 of its
disjunction to 1. Sharing comparators in this manner resltive number of comparators
required to construct the sorting network.

The value off; at a node in level + 1 can be set to 0 by adding a comparator that computes
its conjunction with another function that already has thki@ 0 at that node, thus increasing the
number of O-valued nodes. The disjunction that this conipaaso computes has fewer 0-valued
nodes than either of its input functions and is thereforeuseful for computingf;. However, the
disjunction will be used to compute the other remaining otifpnctions, implying that it has the
value 1 at all nodes in level- 1 as required by those functions. Since the disjunction doebave
any 0-valued nodes in levelt 1, its inputs do not have any common 0-valued nodes in that.lev
That is, exactly one of the intermediate functidrjﬁmas the value O for any particular node in level

314

MINIMIZING SORTING NETWORKS

i+ 1. Adding a comparator between a pair of such functions cslithe 0-valued nodes from both
functions in their conjunction. Repeating this processurgigely collects the 0-valued nodes in
leveli+ 1 from all functions to the function on linethus producingfi. Similarly, its dual function
fnir1-i can be computed from the functiorﬁ§ by using disjunctions instead of conjunctions to set
its values at all nodes in levaH1—ito 1.

The leaves of the resulting binary recursion tree fioare the functionsfj’ that have 0-valued
nodes in level + 1 and its internal nodes are the conjunctive comparatonutsitsince the number
of nodes of degree two in a binary tree is one less than the auofdeaves (Mehta and Sahni,
2005), the number of comparators required depends onlysonmuimber of functions with which the
recursion starts, that is, it is invariant to the order inethihe recursion pairs the leaves. However,
the recursion trees fof; and f,.1_j may have common leaves, making it possible to use the same
comparator to compute a conjunction fiprand a disjunction forf, . 1_j. Maximizing such sharing
of comparators between the two recursion trees minimizesitimber of comparators required for
the current subgoal.

It may also be possible to share a comparator with a latercgligr example, when it computes
a conjunction forf; and a disjunction foff 1k, wherei < k < [g} In order to prioritize subgoals
and determine which comparators maximize sharing, eaaghopdines where a comparator can
potentially be added is assigned a utility. Comparatorsdbatribute to bothf; and f,1_; for the
current subgoal get the highest utility. Comparators tloatribute to an output function for the
current subgoal and an output function for the next subgetttge next highest utility. Similarly,
other comparators are also assigned utilities based orutpbaetdunctions to which they contribute
and the subgoals to which those output functions belong. yMamparators may have the same
highest utility; therefore, one comparator is chosen ramgdrom that set and it is added to the
network. Repeating this process produces a sequence ofcators that optimizes sharing within
the current subgoal and between the current subgoal amdidigoals.

Optimizing for each subgoal separately in this manner domss a greedy algorithm that pro-
duces minimal-size networks with high probability fo< 8. However, for larger values of, the
search space is too large for this greedy approach to findalgbptimum reliably. In such cases,
stochastic search such as evolution can be used to exptoreifjhborhood of the greedy solutions
for further optimization, as will be described next.

3.4 Evalving Minimal-Size Networks

The most straightforward approach is to initialize evalntwith a population of solutions that the
greedy algorithm produces. The fitness of each solutioreiadigative of its number of comparators
so that improving fitness will minimize the number of compara. In each generation, two-way
tournament selection based on this fithess measure is usetét the best individuals in the popu-
lation for reproduction. Reproduction mutates the paretivark, creating an offspring network in
two steps: (1) a comparator is chosen from the network rahdand the network is truncated after
it, discarding all later comparators, and (2) the greedyprilgm is used to add comparators again,
reconstructing a new offspring network. Since the greedgrithm chooses a comparator with the
highest utility randomly, this mutation explores a new camakion of comparators that might be
more optimal than the parent.

This straightforward approach restricts the search togheesof comparator combinations sug-
gested by the greedy algorithm and assumes that it contgjlabally minimal network. In some

315

VALSALAM AND MIIKKULAINEN

01

00

00

10

10

Figure 8: State representation of the functiam x, used in the EDA. The state (shown on the
right) is a bit-string with two bits for each level of the Beah lattice. The first bit is 1
only if the value of the function for all nodes in that leveDisnd the second bit is 1 only
if its value for all nodes in that level is 1. This condensegresentation of the function
is based on the information used by the symmetry-buildirgedy algorithm and it is
therefore useful for constructing minimal-size sortingwaks.

cases, however, the globally minimal networks may use coaba that are different from those
suggested by the greedy algorithm. Therefore, a more palv@dt still brute force) approach is

to let evolution use such comparators as well: with a prdibaldetermined empirically, the sug-

gestions of the greedy algorithm are ignored and insteadhéixe comparator to be added to the
network is selected randomly from the set of all potentiahparators.

A more effective way to combine evolution with such depastufrom the greedy algorithm
is to use an Estimation of Distribution Algorithm (EDA) (Bgwetxea et al., 2001; Alden, 2007;
Muhlenbein and Hons, 2005). The idea is to estimate thbealmtity distribution of comparator
combinations in the smallest networks evolved thus far angé this distribution to generate com-
parator suggestions for the next generation. The EDA igliziéd as before with a population of
networks generated by the greedy algorithm. In each geoeyat set of networks with the highest
fitness are selected from the population. These networkssaain three ways: (1) to estimate the
distribution of comparators for a generative model of smativorks, (2) as elite networks, passed
unmodified to the next generation, and (3) as parent netwiidem which new offspring networks
are created for the next generation.

The generative model of the EDA specifies the probabHitZ|S) of adding a comparatd®
to ann-input partial network with stat& The state of a partial network is defined in terms of
the n Boolean functions that its comparators compute. Thesdituimscdetermine the remaining
comparators that are needed to finish computing the outpgtiins, making them a good repre-
sentation of the partial network. However, storing theeste the concatenation of thdunctions
is computationally intractable since each function is espnted as a vector of Bits. Therefore, a
condensed state representation is computed based on theaiitn that the greedy algorithm does
not use the actual function values for the nodes in the Bodktice; it only checks whether the
values in a given level are all Os or all 1s. This informatiencoded as(@+ 1) bits (Figure 8), is
suitable as the state representation for the model as well.

316

MINIMIZING SORTING NETWORKS

Since the model is estimated from the set of the smallestarksan the population, it is likely
to generate small networks as well. Although it can genenatg networks from scratch, it is
used as part of the above reproduction mechanism to reachstnew offspring network from the
truncated parent network, that is, it is used in Step 2 ofa@yction instead of the greedy algorithm.
In this step, some comparators are also chosen randomlytirerset of all potential comparators
to encourage exploration of comparator combinations detie model. Moreover, if the model
does not generate any comparators for the current state thkereconstruction step falls back to
the greedy algorithm for adding a comparator.

As discussed in Section 3.3, the greedy algorithm choosesdmparator to be added to the
network randomly from those that have the highest utilitar{g&t 1). This random choice can
be modified slightly to prefer comparators that are symmetith respect to another comparator
that is already in the network (Variant 2). Doing so makesairangement of comparators more
bilaterally symmetric about a horizontal axis through thdate of the network. This heuristic was
motivated by Graham and Oppacher (2006), who found thaingiavolutionary search using such
symmetric comparator pairs was beneficial. The EDA works wigh both of these variants of the
greedy algorithm, learning to find smaller sorting netwdthan previous results, as demonstrated
next.

4. Results

SENSO was run with a population size of 200 for 500 generatiorevolve minimal-size networks
for different input sizes. In each generation, the top hathe population (i.e., 100 networks with
the fewest number of comparators) was selected for estijmtie model. The same set of networks
was copied to the next generation without modification. Eafcthem also produced an offspring
network to replace those in the bottom half of the populatidriGaussian probability distribution
was used to select the comparator from which to truncateahenpnetwork. This Gaussian distri-
bution was centered at the middle of its comparator sequsithe standard deviation of one-fourth
of its number of comparators. As a result, parent network®ewore likely to be truncated near
the middle than near the ends. When reconstructing thedtedaetwork, the next comparator to
be added to the network was generated either by the estimaidd| (with probability 0.5) or was
selected randomly from the set of all potential comparafaigh probability 0.5). Results were
insensitive to small changes in these probabilities. TheSE source code to run this experiment
is available from the websitg t p: // nn. ¢s. ut exas. edu/ ?sorti ng- code.

The above experiment was repeated 20 times for each vaffidim¢ greedy algorithm and for
each input size < 23, each time with a different random number seed. The sstaléwork found
in each set of 20 runs was recorded as the result for thatcpkti combination of algorithmic
variant and input size. This procedure was repeated 25 fianesach set of 20 runs to determine
which of the two variants produced smaller networks. Acowdo the Mann-Whitney U-test, the
median number of comparators in the smallest networks foyngariant 2 was significantly fewer
for input sizes 13, 15, 18, 20, 2p & 0.02, one-tailed). There was no significant difference betwee
the two variants for the other input sizes. That is, the sytmyrteeuristic used in variant 2 makes it
better or as good as variant 1 for finding small networks.

The fewest number of comparators found for each input sistéxl in Table 4. For input sizes
n <11, the initial population of SENSO already contained neksavith the smallest-known sizes,
that is, the greedy algorithm was sulfficient to find the snsélkmown networks. For input sizes 12

317

VALSALAM AND MIIKKULAINEN

n [12]13|14|15]|16]17]18[19]20] 21 | 22 | 23
Hand-design and END Batcher’s and Van Voorhis’ merge
39| 45|51|56|60|73|79|88|93| 103|110 118
SENSO 39| 45|51|56|60|71|78|86|92| 102|108 | 118

Previous best

Table 4: Sizes of the smallest networks for different inpaés found by SENSO. For input sizes
n < 11, networks with the smallest-known sizes (Section 2) vedready found in the
initial population of SENSO, that is, the greedy algorithaing symmetry was sufficient.
These sizes are therefore omitted from this table. For tamgit sizes, evolution found
networks that matched previous best results (indicatethiics) or improved them (in-
dicated inbold). Appendix A lists examples of these networks. These residimon-
strate that the SENSO approach is effective at designingnmalrsize sorting networks.
Prospects of extending these results to input sizes grésar23 will be discussed in
Section 5.

to 16, and 23, SENSO evolved networks that have the samessihe hest known networks. For 15
inputs, networks matching previous best results were ddgindirectly by removing the bottom
line of the evolved 16-input networks and all comparatotghing that line (Knuth, 1998). Most
importantly, SENSO improved the previous best resultsrfput sizes 17, 18, 19, 20, 21, and 22 by
one or two comparators. Examples of these networks ard listAppendix A.

For 23 inputs, SENSO required about 4GB of memory and 46 lowamplete 500 generations
on a Xeon X5440 processor running at 2.83GHz. These regaiemapproximately double for
every unit increase in the number of inputs due to@(2") complexity of the algorithm. Prospects
for mitigating the effects of this exponential growth andéatending the results to> 23, including
to larger power-of-two networks, will be discussed in Smtt.

The previous best results for input sizes 12 through 16 wetaireed either by hand design or
by the END evolutionary algorithm (Knuth, 1998; Juille, 98 Van Voorhis, 1971; Baddar, 2009).
The END algorithm improved a 25-year old result for the 18dncase by one comparator and
matched the best known results for other input sizes up tdHgvever, it is a massively parallel
search algorithm, requiring very large computational veses, for example, a population size of
65,536 on 4096 processors to find minimal-size networks3arid 16 inputs (Table 5). In contrast,
the SENSO approach finds such networks with much less reso(gay., population size of 200 on
a single processor in a similar number of generations), ngaikipromising for larger problems, as
will be discussed in the next section.

5. Discussion and Future Work

Previous results on designing minimal-size networks aat@ally by search have been limited to
small input sizesr(< 16) because the number of valid sorting networks near thenapsize is
very small compared to the combinatorially large spacehhatto be searched (Juille, 1995). The
symmetry-building approach presented in Section 3 migahis problem by using symmetry to
focus the search on the space of networks near the optineal #ig a result, it was possible to
search for minimal-size networks with more inputs{ 23), improving the previous best results in
five cases.

318

MINIMIZING SORTING NETWORKS

| END | SENSO (variant 2)
Processor family MasPar MP-2 Xeon X5440
Number of processors used 4,096 @ 17Gop/s 1 @ 2.83GHz
Memory used unknown 37MB
Population size 65,536 200
Runs that produced 60 comparatars 2 out of 3 18 out of 20
Number of generations 300 to 500 500
Execution time for each run 48 to 72 hours 15 min

Table 5: Performance metrics of END and SENSO for the 16tippoblem. This table compares
the performance of SENSO with the END algorithm (Juillé94pfor finding 16-input
networks with 60 comparators, which is the best known rdsulthat input size. In con-
trast to the massively parallel END algorithm, SENSO findshsoetworks using much
less computational resources.

These improvements can be transferred to larger value®ylsing Batcher’s or Van Voorhis’
merge to construct such larger networks from the improvedllsmnetworks (Knuth, 1998). The
resulting networks accumulate the combined improvemetite@ksmaller networks. For example,
since the 22-input network has been improved by two compesaiwo copies of it can be merged
to construct a 44-input network with four fewer comparatiwan previous results. This merging
procedure can be repeated to construct even larger netvaanldsling the improvement in each step.
Such networks are useful in massively parallel applicatisunch as sorting in GPUs with hundreds
of cores (Kipfer and Westermann, 2005).

It should be possible to improve these results further bgredihg SENSO in the following
ways. First, the greedy algorithm for adding comparatorstesimproved by evaluating the sharing
utility of groups of one or more comparators instead of srgdmparators. Such groups that have
the highest average utility will then be preferred.

Second, the greedy algorithm can be made less greedy bydeoing the impact of current
comparator choices on the number of comparators that witeheired for later subgoals. This
analysis will make it possible to optimize across subgqgadéentially producing smaller networks
at the cost of additional computations.

Third, the state representation that the EDA algorithm wssgains only sparse information
about the functions computed by the comparators. Extentdiognclude more relevant information
should make it possible for the EDA to disambiguate ovellagpstates and therefore to model
comparator distribution more accurately.

Fourth, in some cases, gooeinput networks can be obtained fromt 1-input networks by
simply removing its bottom line and all comparators tougtimat line (Knuth, 1998), as was done in
the 15-input case in this paper. This observation suggdestatpotentially more powerful approach
is to augment the information contained in the state reptaien of the EDA with the comparator
distribution for multiple input sizes.

Fifth, the EDA generates comparators to add to the netwolk ibthe state of the network
matches a state in the generative model exactly. Makingrhish graded, based on some similarity
measure, may produce better results by exploring simigestwhen an exact match is not found.

319

VALSALAM AND MIIKKULAINEN

Sixth, evolutionary search can be parallelized, for exampsing the massively parallel END
algorithm that has been shown to evolve the best known nktgiaes forn < 16 (Juille, 1995).
Conversely, using the symmetry-building approach to cairsthe search space should make it
possible to run the END algorithm on networks with more isput

Seventh, the symmetry-building approach itself can be avgal. For example, it uses only the
symmetries resulting from the duality of the output funieo It may be possible to extend this
approach by also using the symmetries resulting from thepttions of the input variables.

Eighth, large networks can be constructed from smaller oidsvby merging the outputs of the
smaller networks. Since smaller networks are easier tonigei, they can be evolved first and then
merged by continuing evolution to add more comparatorss @pproach is similar to constructing
minimal networks fom > 16 by merging smaller networks (Batcher, 1968; Van Voorh@g/4).

In addition to finding minimal-size networks, the SENSO aagh can also be used to find
minimal-delay networks. Instead of minimizing the numbkca@mparators, it would now minimize
the number of parallel steps into which the comparators arepgd. Both these objectives can be
optimized simultaneously as well, either by preferring ofgective over the other in the fitness
function or by using a multi-objective optimization algbm such as NSGA-II (Deb et al., 2000).

Moreover, this approach can potentially be extended tagdesbmparator networks for other
related problems such as rank-order filters (ChakrabadtiViiang, 1994; Hiasat and Hasan, 2003;
Chung and Lin, 1997). A rank order filter with ranlselects the'" largest element from an input
set ofn elements. Such filters are widely used in image and signalegsing applications, for
example, to reduce high-frequency noise while preservitggénformation. Since these filters are
often implemented in hardware, minimizing their comparasguirement is necessary to minimize
their chip area. More generally, similar symmetry-basepraaches may be useful for designing
stack filters, that is, circuits implementing monotone Bawml functions, which are also popular
in signal processing applications (Hiasat and Hasan, 28B8julevich et al., 1995). Furthermore,
such approaches can potentially be used to design reaatslegeetworks for switching applications
(Seo et al., 1993; Yeh and Feng, 1992).

6. Conclusion

Minimizing the number of comparators in a sorting network shallenging optimization problem.
This paper presented an approach called SENSO that simplifig converting it into the problem
of building the symmetry of the network optimally. The rdsg structure makes it possible to
construct the network in steps and to minimize the numbepofgarators required for each step
separately. However, the networks constructed in this mamay be sub-optimal greedy solutions,
and they are optimized further by an evolutionary algorithat learns to anticipate the distribution
of comparators in minimal networks. This approach focukessblutions on promising regions of
the search space, thus finding smaller networks more efédgtihan previous methods.

Acknowledgments

We would like to thank Greg Plaxton for useful suggestionsfammalizing the problem. This
research was supported in part by the National Science Btiondunder grants 11S-0915038, 11S-

320

MINIMIZING SORTING NETWORKS

0757479, and EIA-0303609; the Texas Higher Education Goatitig Board under grant 003658-
0036-2007; and the College of Natural Sciences.

Appendix A. Evolved Minimal-Size Sorting Networ ks

This appendix lists examples of minimal-size sorting neks@volved by SENSO. For each exam-
ple, the sequence of comparators is illustrated in a figudeatso listed as pairs of horizontal lines
numbered from top to bottom.

{
11)
| 111
[1.1
1.1 1.1
| 1.1
[)
1 1

Figure 9: Evolved 9-input network with 25 comparators: [B,[Z, 6], [2, 5], [8, 9], [1, 8], [2, 3],
[4, 6], [5, 71, 6, 9], [2, 4], [7, 9], [1, 2], [5, 6], [3, 8], [48], [4, 5], [6, 7], [2, 3], [2, 4],
[7,8],[5, 6], [3, 5], [6, 7], [3, 4], [5, 6]

@
1 @
1 111
[))
1 11
1 1.1
1)
1 1
1

Figure 10: Evolved 10-input network with 29 comparators; 92 [8, 9], [3, 4], [6, 7], [1, 10],
[3, 6], [1, 8], [9, 10], [4, 7], [5, 10], [1, 2], [1, 3], [7, 10]4, 6], [5, 8], [2, 9], [4, 5],
[6. 9], [7. 8], [2, 3], [8, 9. [2, 4], [3, 6], [5, 7. [3, 4], [78], [5, 6], [4, 5], [6, 7].

1
I 1 1
11 1)
111 .1
[11,1
1 | 1,11
1T) 1
) 11 {
[1
11

Figure 11: Evolved 11-input network with 35 comparators; 10], [3, 9], [4, 8], [5, 7], [2, 6],
[2, 4], [3, 5], [7, 11], [8, 9], [6, 10], [1, 7], [2, 3], [9, 11][10, 11], [1, 2], [6, 8], [4, 5],
[7,9],[3, 71, [2, 6], [8, 9], [5, 10], [3, 4], [9, 10}, [2, 31,9, 7], [4, 6], [7, 8], [8, 91, [3, 4],
[5, 71,16, 7], [4, 5], [7, 8], [5, 6].

321

VALSALAM AND MIIKKULAINEN

[{ {
1 1 1
| 1
1 1. 1.1
11
[l 1
1 .1
[11
1)

Figure 12: Evolved 12-input network with 39 comparators; qJ, [3, 8], [5, 11], [4, 7], [9, 12],
[2, 10}, [6, 71, [2, 9], [1, 4], [3, 5], [10, 12], [8, 11], [8, 10[11, 12], [2, 3], [7, 12],
[, 2], [5, 9], [6, 91, [2, 5], [4, 8], [3, €], [8, 11], [7, 10],3, 4], [5, 7], [9, 11], [2, 3],
[10, 11], [7, 9], [4, 5], [9, 10], [3, 4], [6, 8], [5, 6], [7, 8]8, 9], [6, 7], [4, 5].

——4

——1

——1

—1—1

—1—1

—1—<

——4

——4
—o 9

—1—4

—o o—1—4

—9 ¢ 19
—4

[
1

—1—<

1

Figure 13: Evolved 13-input network with 45 comparators; 9 [1, 10], [4, 8], [3, 6], [7, 12],
[2, 13], [1, 7], [3, 5], [6, 91, [8, 13], [2, 4], [11, 12], [10,4], [1, 2], [9, 13], [9, 11],
[3,9], [12, 13], [1, 3], [8, 10], [6, 10], [4, 7], [4, 6], [2, 9I5, 7], [5, 8], [11, 12], [7, 10],
[4, 5], [2, 3], [10, 12], [2, 4], [7, 11], [3, 5], [3, 4], [10, 11[7, 9], [6, 8], [6, 7], [8, 9,

[4, 6], [9, 10}, [5, 6], [7, 8], [6, 7].

1.1
1 1
) J
[1 11 1
{ 1 [{
1 IT7T 1.1
1. 1.1
1
[{
[{ | {
IR 1.1
11
{

Figure 14: Evolved 14-input network with 51 comparators; 1, [3, 4], [9, 13], [5, 6], [2, 11],
[8, 14], [10, 12], [4, 7], [5, 8], [6, 14], [2, 9], [11, 13], [23], [12, 13], [1, 10], [2, 5],
[7,14],[13, 14], [1, 2], [3, 8], [4, 6], [10, 11], [4, 9], [8,11, [6, 9], [3, 10], [7, 12], [5, 7],
[9, 13], [2, 4], [11, 12], [3, 5], [12, 13], [2, 3], [9, 11], [410], [4, 5], [3, 4], [11, 12],
[6, 8], 18, 9], [7, 101, [6, 7], [5, 6], [9, 10], [7, 8], [10, 11]4, 5], [6, 7], [8, 9], [7, 8].

322

MINIMIZING SORTING NETWORKS

.1
T .1 1
l [1.1
1 [)
| 1 1
[11 T 1
T) SR I D
1 { 111
{ 1. 1.1
1 11
11 |
[1)
{ l (1.1
11

Figure 15: Evolved 15-input network with 56 comparators3,[14], [6, 8], [4, 12], [3, 11], [5, 10],
[7, 9], [2, 15], [12, 15], [2, 4], [8, 11], [1, 13], [5, 7], [3,16]9, 10], [1, 3], [10, 15],
[2, 5], [1, 2], [6, 7], [8, 9], [12, 14], [4, 13], [6, 12], [10,11, [9, 13], [3, 5], [7, 14],
[4, 8], [3, 4], [13, 15], [11, 14], [2, 6], [14, 15], [2, 3], [%6], [11, 13], [13, 14], [3, 4],
[9, 12], [5, 10], [11, 12], [7, 8], [6, 71, [5, 9], [8, 10], [5,]6[10, 12], [12, 13], [4, 5],
[7,9],[8, 11], [10, 11], [6, 71, [8, 91, [9, 10], [7, 8].

.1
T .1 1
1 [1.1
1 |)
[1 1
[11 1.1
1 [) S I D
1 1 111
) 1. 1.1
1 11
11 1
[1 {
1 1 1.1
[11
111

Figure 16: Evolved 16-input network with 60 comparators3,[14], [6, 8], [4, 12], [3, 11], [1, 16],
[5, 10], [7, 9], [2, 15], [12, 15], [2, 4], [8, 11], [1, 13], [57], [3, 6], [9, 10], [14, 16],
[11, 16], [1, 3], [10, 15], [2, 5], [1, 2], [15, 16], [6, 7], [0], [12, 14], [4, 13], [6, 12],
[10, 11], [9, 13], [3, 5], [7, 141, [4, 8], [3, 4], [13, 15], [1114], [2, €], [14, 15], [2, 3],
[4, 6], [11, 13], [13, 14], [3, 4], [9, 12], [5, 10], [11, 12]7] 8], [6, 7], [5, 9], [8, 10],
[5, 6], [10, 12], [12, 13], [4, 5], [7, 9], [8, 11], [10, 11], |61, [8, 91, [9, 10], [7, 8].

323

VALSALAM AND MIIKKULAINEN

[)
1 [1
111 [
[1 {
1 I 1
.1 |
Jl) 11
1 [1.1 {
[1 { {
11 I
1 I 1
[[1.1
1 111)
| 11
[1 1]
1 1

Figure 17: Evolved 17-input network with 71 comparators:1[#], [5, 10], [8, 13], [1, 15], [3, 17],
[2, 16], [4, 9], [7, 14], [4, 11], [9, 14], [5, 8], [10, 13], [13], [15, 17], [2, 7], [11, 16],
[4, 6], [12, 14], [1, 5], [13, 17], [2, 4], [14, 16], [1, 2], [26L7], [3, 10], [8, 15], [6, 11],
[7, 12], [6, 8], [7, 9, [9, 11], [3, 4], [9, 15], [10, 12], [1314], [5, 7], [11, 15], [5, 6],
[8,10], [12, 14], [2, 3], [15, 16], [2, 9], [14, 16], [2, 5], [F], [12, 15], [14, 15], [3, 5],
[7,13], [10, 13], [4, 11], [4, 9], [7, 8], [11, 13], [4, 7], [4B], [13, 14], [11, 12], [6, 7],
[12, 13], [5, 6], [8, 91, [9, 10], [7, 9], [10, 12], [6, 8], [7,]18[10, 11], [9, 10], [8, 9].

[1
1 l
l {)
1 |
1 111
1 [
[1 @
1 1.1 111
Jl)
I 11 11
l [11
1 1
1 11
1 1
1))
[1
l 1

Figure 18: Evolved 18-input network with 78 comparators: 3], [6, 14], [1, 8], [11, 18], [3, 4],
[15, 16], [7, 9], [10, 12], [2, 17], [3, 7], [12, 16], [2, 10]9[17], [5, 11], [8, 14], [4, 13],
[6, 15], [1, 3], [16, 18], [2, 5], [14, 17], [1, 6], [13, 18], [12], [17, 18], [4, 8], [11, 15],
[7, 10], [9, 12], [3, 16], [4, 9], [10, 15], [5, 6], [13, 14], [711], [3, 7], [8, 12], [2, 5],
[14, 17], [15, 16], [3, 4], [12, 16], [16, 17], [2, 3], [12, 15]4, 7], [14, 15], [4, 5],
[15, 16], [3, 4], [6, 7], [12, 13], [8, 10], [9, 11], [10, 11]8[9], [6, 12], [7, 13], [11, 13],
[6, 8], [13, 15], [4, 6], [11, 14], [5, 8], [13, 14], [5, 6], [9.0], [7, 10], [9, 12], [10, 13],
[6,9],[7, 8], [11, 12], [7, 9], [20, 12], [8, 11], [10, 11], [&®].

324

Figure 19:

Figure 20:

MINIMIZING SORTING NETWORKS

) 1 [
1111
{ 1 [
| 1111
1.1 1 1
[1 1
[| 1.1
1))
) 1 1.1
[1
1) { 1
[{
1 11 1
) 1
[1)
1 [1
l l

Evolved 19-input network with 86 comparators: 19|, [4, 13], [1, 17], [8, 15], [9, 12],

[7, 14], [16, 18], [2, 6], [10, 19], [3, 6], [12, 17], [8, 10]2f 3], [7, 16], [11, 13], [4, 5],
[14, 18], [1, 9], [15, 19], [6, 17], [4, 8], [18, 19], [2, 7], [8L6], [1, 2], [13, 17], [1, 4],
[17, 19], [3, 12], [10, 11], [14, 15], [7, 9], [8, 14], [3, 10]12, 16], [2, 8], [6, 11],
[13, 18], [9, 15], [5, 7], [11, 15], [4, 5], [16, 17], [2, 3], B 18], [2, 4], [17, 18], [6, 8],
[7,14], [6, 7], [11, 16], [3, 5], [15, 16], [3, 6], [12, 13], B, 17], [3, 4], [9, 10], [8, 14],
[10, 13],[9, 12], [10, 11], [14, 15], [6, 9], [13, 15], [15, 1.44, 6], [5, 7], [11, 14], [5, 9],
[5, 6], [14, 15], [8, 12], [7, 12], [7, 10], [8, 9], [12, 13], [@], [13, 14], [6, 7], [10, 11],
[11, 12], [12, 13], [9, 10], [8, 9], [10, 11].

[)
1 111
1 [
1 | 1.1
1 1
[1 1
[1 1 { {
1 [))
1T 11
[1) 11
1 [1 1 1
1 11
[{ 1
1 1 .1
[11
[111
[1 {
{ 1

Evolved 20-input network with 92 comparators:13], [9, 18], [1, 11], [10, 20], [5, 6],

[15, 16], [4, 7], [14, 17], [2, 13], [8, 19], [4, 15], [6, 17]11] 2], [19, 20], [5, 14], [7, 16],
[8, 10], [11, 13], [3, 9], [12, 18], [5, 8], [13, 16], [1, 4], [4, 20], [1, 3], [18, 20], [1, 5],
[16, 20], [2, 15], [6, 19], [9, 11], [10, 12], [7, 14], [6, 10[11, 15], [2, 4], [17, 19],
[7,9],[12, 14], [3, 8], [13, 18], [2, 6], [2, 3], [15, 19], [%4], [14, 16], [18, 19], [16, 19],
[2, 5], [4, 10], [11, 17], [3, 4], [17, 18], [14, 18], [3, 7], B, 18], [3, 5], [8, 9], [12, 13],
[6, 11], [20, 15], [9, 13], [8, 12], [4, 8], [13, 17], [4, 6], B, 17], [16, 17], [4, 5], [6, 7],
[14, 15], [15, 16], [5, 6], [11, 12], [9, 10], [12, 13], [8, 9]8, 11], [10, 13], [6, 8],
[13, 15], [10, 14], [7, 11], [7, 8], [11, 12], [13, 14], [9, 10]10, 12], [12, 13], [9, 11],
[8, 9], [10, 11].

325

VALSALAM AND MIIKKULAINEN

@
111
1 1 [
[1 1
| 1) 1.1
1 [[1
1 11 [T
{ I 11711
11 |
1 1 I8
) 11 1 |
[1 l
1 1 [
| | 1.1
1 1 .1)
[111
1 {
1 |)
[11
11

Figure 21: Evolved 21-input network with 102 comparator§; 10], [12, 16], [2, 20], [3, 15],
[7,19], [1, 18], [4, 21], [5, 9], [13, 17], [8, 14], [2, 8], [14£0], [3, 12], [10, 19], [5, 13],
[9, 17], [4, 6], [16, 18], [1, 11], [11, 21], [1, 7], [15, 21]3[4], [18, 19], [2, 5], [17, 20],
[1, 2], [20, 21], [1, 3], [19, 21], [8, 9], [13, 14], [10, 11]5] 12], [6, 7], [15, 16], [11, 12],
[6, 13],[9, 16], [7, 14], [8, 15], [17, 18], [2, 4], [5, 10], |8], [14, 16], [12, 19], [18, 20],
[2, 3], [19, 20], [5, 6], [2, 5], [16, 20], [14, 18], [3, 8], [12.8], [10, 15], [5, 6], [16, 19],
[18,19], [3, 5], [7, 11], [9, 17], [4, 13], [11, 15], [13, 17K, 9], [7, 10], [15, 17], [9, 13],
[4, 71, [5, 6], [16, 17], [17, 18], [4, 5], [12, 14], [6, 8], [14L6], [7, 8], [16, 17], [5, 6],
[11, 12], [10, 12], [9, 10], [12, 13], [13, 15], [9, 11], [7, QI15, 16], [6, 7], [13, 14],
[14, 15], [7, 9], [8, 10], [11, 12], [8, 11], [8, 9], [10, 14]1p, 13], [10, 13], [10, 12],
[10, 11].

— D

326

MINIMIZING SORTING NETWORKS

)) [
[l 1
1 {
1.1
)) [
R 111
[1 1 [1
1 1 {
| 1 1
) Jl 1
1 1 1
[[l
l [1 11 1
11 11
1 1) 1
1.1
[{
1 | 1
)) 1
1

Figure 22: Evolved 22-input network with 108 comparator$l,[12], [3, 9], [14, 20], [4, 16],
[7,19], [2,17], [6, 21], [1, 18], [5, 22], [8, 10], [13, 15]1] 5], [18, 22], [4, 13], [10, 19],
[2, 3], [20, 21], [8, 14], [9, 15], [6, 7], [16, 17], [6, 8], [15L7], [2, 11], [12, 21], [1, 4],
[19, 22], [1, 6], [17, 22], [1, 2], [21, 22], [7, 9], [14, 16].3] 5], [18, 20], [10, 12],
[11, 13], [3, 8], [15, 20], [4, 10], [13, 19], [7, 14], [9, 16]5, 12], [11, 18], [6, 11],
[12, 17], [4, 7], [16, 19], [2, 3], [20, 21], [2, 4], [19, 21]2[6], [17, 21], [3, 7], [16, 20],
[12, 19], [3, €], [17, 20], [4, 11], [3, 4], [19, 20], [10, 13]5, 15], [8, 18], [9, 14],
[13, 18], [5, 10], [14, 15], [8, 9], [5, 8], [15, 18], [5, 6], @, 18], [18, 19], [4, 5], [7, 11],
[12, 16], [6, 7], [16, 17], [5, 6], [17, 18], [10, 13], [9, 1411, 14], [9, 12], [8, 10],
[13, 15], [8, 9], [14, 15], [15, 17], [6, 8], [10, 11], [12, 13]7, 10], [13, 16], [15, 16],
[7,8],]9, 12], [11, 14], [9, 10], [13, 14], [8, 9], [14, 15]1R, 12], [12, 13], [10, 11].

327

VALSALAM AND MIIKKULAINEN

1
{ l [
11T
1 1 I
[1)
1 [) [
[1 111
1 .1 1
| 1.1
1) 1
{ { 1
[[1.1
1 | [1, 1
| [1.1
[11 [1
1 [[11
[1 l 1
1 |)
1 [11
[11]
1 1 1
l

Figure 23: Evolved 23-input network with 118 comparator®; 21], [3, 22], [6, 14], [10, 18],
[1, 8], [16, 23], [5, 12], [7, 13], [11, 17], [9, 19], [15, 2014, 9], [5, 15], [12, 19],
[3, 7], [17, 21], [1, 10], [14, 23], [6, 16], [8, 18], [2, 11]1B, 22], [9, 20], [18, 23],
[1, 6], [21, 22], [2, 3], [19, 20], [4, 5], [22, 23], [1, 2], [2@3], [1, 4], [13, 14], [10, 11],
[7, 16], [8, 17], [9, 12], [12, 15], [5, 12], [7, 9], [15, 17],1B, 21], [3, 6], [10, 13],
[11, 14], [16, 19], [11, 12], [5, 8], [21, 22], [2, 3], [8, 16]4, 10], [14, 20], [17, 19],
[9, 15], [5, 7], [19, 22], [2, 5], [20, 22], [2, 4], [10, 11], R, 14], [3, 7], [17, 21], [5, 10],
[14, 19], [20, 21], [3, 4], [19, 21], [3, 5], [6, 18], [13, 15]9, 13], 6, 8], [16, 18], [6, 9],
[15, 18], [4, 6], [18, 20], [4, 5], [19, 20], [7, 11], [12, 17]14, 17], [7, 10], [17, 18],
[6, 71, [5, €], [8, 10], [18, 19], [13, 16], [15, 16], [9, 13]8[9], [14, 16], [16, 18], [6, 8],
[10, 11], [11, 15], [7, 12], [15, 17], [16, 171, [7, 8], [11, 1,410, 13], [12, 14], [14, 15],
[9, 10], [8, 9], [15, 16], [10, 11], [9, 10], [13, 15], [12, 1313, 14], [11, 12], [12, 13].

328

MINIMIZING SORTING NETWORKS

References

M. Ajtai, J. Komlés, and E. Szemerédi. Sortingdlogn parallel stepsCombinatorica 3(1):1-19,
1983. ISSN 0209-9683. doi: http://dx.doi.org.ezprokyliexas.edu/10.1007/BF02579338.

M. E. Alden. MARLEDA.: Effective Distribution Estimation Through MavkBandom FieldsPhD
thesis, Department of Computer Sciences, The Universifyerés at Austin, 2007. URht t p:
/'1nn. cs. ut exas. edu/ keywor d?al den: phd07. Technical Report Al07-349.

S. W. A. Baddar.Finding Better Sorting NetworksPhD thesis, Kent State University, 2009. URL
http://rave. ohiolink. edu/ et dc/ vi ew?acc_num

K. E. Batcher. Sorting networks and their applicationsAFPS Spring Joint Computing Confer-
ence pages 307-314, 1968.

E. Bengoetxea, P. Larranaga, |. Bloch, and A. Perchantm@asitin of distribution algorithms: A
new evolutionary computation approach for graph matchimmiplems. InEnergy Minimization
Methods in Computer Vision and Pattern Recognitipages 454-469. Springer, 2001. URL
http://dx. doi.org.ezproxy.|ib. utexas.edu/10. 1007/ 3- 540- 44745- 8_30.

C. Chakrabarti and L.-Y. Wang. Novel sorting network-baaechitectures for rank order filters.
IEEE Transactions on Very Large Scale Integration (VLSBt&wns 2(4):502-507, 1994. ISSN
1063-8210. doi: http://dx.doi.org.ezproxy.lib.utexaki/10.1109/92.335027.

K.-L. Chung and Y.-K. Lin. A generalized pipelined mediantefil network. Signal Pro-
cessing 63(1):101 — 106, 1997. |ISSN 0165-1684. doi: DOI:10.100665-1684(97)
00144-8. URLhttp://ww. sci encedirect.coni sciencel/articlel/ B6V18- 3SNYT5C 1B/
2/ 38110bb682311c8cc6169b64b233dacs.

K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast dlitisn-dominated sorting genetic
algorithm for multi-objective optimization: NSGA-IPPSN V] pages 849-858, 2000.

R. L. Drysdale and F. H. Young. Improved divide/sort/mergetisg networks.SIAM Journal on
Computing 4(3):264-270, 1975.

L. Graham and F. Oppacher. Symmetric comparator pairs iimttiglization of genetic algorithm
populations for sorting networkslIEEE Congress on Evolutionary Computation, 2006 (CEC
2006) pages 2845—-2850, 2006. doi: 10.1109/CEC.2006.1688666.

M. W. Green. Some improvements in non-adaptive sortingrilgns. InProceedings of the Sixth
Annual Princeton Conference on Information Sciences aste8ys pages 387-391, 1972.

C. A. Gunter, T.-H. Ngair, and D. Subramanian. Sets as d@ins. InASIAN '96: Proceedings
of the Second Asian Computing Science Conference on Cencyrand Parallelism, Program-
ming, Networking, and Securjtpages 116-128, London, UK, 1996. Springer-Verlag. ISBN
3-540-62031-1.

A. Hiasat and O. Hasan. Bit-serial architecture for rankeorand stack filters.Integration, the
VLSI Journa) 36(1-2):3 — 12, 2003. ISSN 0167-9260. doi: DOI:10.1016£09260(03)
00017-8. URLhttp://wmv sci encedirect.conl science/articl e/ B6VIM 48NKGY5- 1/ 2/
53c0e6¢c9df bdef 44292e616c4eab3356.

329

VALSALAM AND MIIKKULAINEN

W. D. Hillis. Co-evolving parasites improve simulated ext@n as an optimization procedure. In
J. D. Farmer, C. Langton, S. Rasmussen, and C. Taylor, editdificial Life 1. Addison-Wesley,
Reading, MA, 1991.

H. Juille. Evolution of non-deterministic incrementagatithms as a new approach for search in
state spaces. IRroceedings of the 6th International Conference on Genf&lgorithms pages
351-358, San Francisco, CA, USA, 1995. Morgan Kaufmannishgs Inc.

R. Kannan and S. Ray. Sorting networks with applicationsdcanchical optical interconnects. In
2001 International Conference on Parallel Processing \8bdps pages 327-332. IEEE Com-
puter Society, 2001. ISBN 0-7695-1260-7. doi: http://@@ecomputersociety.org/10.1109/
ICPPW.2001.951969.

P. Kipfer and R. Westermann. Improved GPU sorting. In M. Bheditor, GPU Gems 2: Pro-
gramming Techniques for High-Performance Graphics andearPurpose Computatigrchap-
ter 46. Addison-Wesley, 2005.

P. Kipfer, M. Segal, and R. Westermann. Uberflow: A gpu-basadicle engine. ITHWWS
'04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confereon Graphics hard-
ware, pages 115-122, New York, NY, USA, 2004. ACM. ISBN 3-905@530. doi: http:
//doi.acm.org.ezproxy.lib.utexas.edu/10.1145/10931058146.

D. E. Knuth. Art of Computer Programming: Sorting and Searchinglume 3, chapter 5, pages
219-229. Addison-Wesley Professional, 2 edition, Apr®89

J. Korenek and L. Sekanina. Intrinsic evolution of sortirgworks: A novel complete hardware
implementation for FPGAs. lEvolvable Systems: From Biology to Hardwapages 46-55.
Springer, 2005. URIhttp://dx. doi.org. ezproxy.|ib. utexas. edu/ 10. 1007/ 11549703 _

5.

A. D. Korshunov. Monotone boolean functionRussian Mathematical Surveys8(5):929, 2003.
URL http://stacks.iop.org/0036-0279/58/i =5/ a=R02.

J. R. Koza, J. R. Koza, |. Forest H. Bennett, |. Forest H. B&nde L. Hutchings, S. L. Bade,
M. A. Keane, and D. Andre. Evolving computer programs usiagjdly reconfigurable field-
programmable gate arrays and genetic programmingEPGA '98: Proceedings of the 1998
ACM/SIGDA Sixth International Symposium on Field Prograabhla Gate Arrayspages 209—
219, New York, NY, USA, 1998. ACM. doi: 10.1145/275107.24%1

J. R. Koza, D. Andre, F. H. Bennett, and M. A. Kean&enetic Programming Ill: Darwinian
Invention and Problem Solvinghapter 21, pages 335-348. Morgan Kaufmann Publishers Inc
San Francisco, CA, USA, 1999. ISBN 1558605436.

T. Leighton and C. G. Plaxton. A (fairly) simple circuit th@atsually) sorts. IfSFCS '90: Pro-
ceedings of the 31st Annual Symposium on Foundations of @em@Bciencepages 264—274
vol.1, Washington, DC, USA, 1990. IEEE Computer Society.BNS0-8186-2082-X. doi:
http://dx.doi.org.ezproxy.lib.utexas.edu/10.11092I551990.89545.

D. P. Mehta and S. Sahridandbook of Data Structures and Applicatipohapter 3, pages 3.4-3.7.
CRC Press, 2005. ISBN 9781584884354.

330

MINIMIZING SORTING NETWORKS

H. Mihlenbein and R. Hons. The estimation of distribusicand the minimum relative entropy
principle. Evolutionary Computationl3(1):1-27, 2005.

D. G. O’Connor and R. J. Nelson. Sorting system with n-linisg switch. United States Patent
number 3,029,413, April 1962. Filed Feb 21, 1957. Issued1&pr962.

S.-W. Seo, T. yun Feng, and Y. Kim. A simulation scheme inresayeable networks. IRroceed-
ings of the 36th Midwest Symposium on Circuits and Systeages 177 — 180 vol. 1, Aug 1993.
doi: 10.1109/MWSCAS.1993.343100.

I. Shmulevich, T. M. Sellke, M. Gabbouj, and E. J. Coyle. &tilters and free distributive lattices.
In Proceedings of the 1995 IEEE Workshop on Nonlinear Signdllarage Processingpages
927-930. IEEE Computer Saociety, 1995.

D. C. Van Voorhis. A generalization of the divide-sort-meigfrategy for sorting networks. Tech-
nical Report 16, Digital Systems Laboratory, Stanford @mty, Stanford, California, August
1971.

D. C. Van Voorhis. An economical construction for sortingtwarks. In Proceedings of
AFIPS National Computer Conferencpages 921-927, New York, NY, USA, 1974. ACM.
doi: http://doi.acm.org/10.1145/1500175.1500347. URit p: // doi . acm or g/ 10. 1145/
1500175. 1500347.

Y.-M. Yeh and T.-y. Feng. On a class of rearrangeable netsvdikEE Transactions on Comput-
ers 41(11):1361-1379, 1992. ISSN 0018-9340. doi: http:ddixorg.ezproxy.lib.utexas.edu/10.
1109/12.177307.

331

