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Developing Complex Systems Using Evolved
Pattern Generators

Vinod K. Valsalam, James A. Bednar, and Risto Miikkulainen

Abstract— Self-organization of connection patterns within
brain areas of animals begins prenatally, and has been shown to
depend on internally generated patterns of neural activity. The
neural structures continue to develop postnatally through exter-
nally driven patterns, when the sensory systems are exposed to
stimuli from the environment. The internally generated patterns
have been proposed to give the neural system an appropriate
bias so that it can learn reliably from complex environmental
stimuli. This paper evaluates the hypothesis that complex ar-
tificial learning systems can benefit from a similar approach,
consisting of initial training with patterns from an evolved pattern
generator, followed by training with the actual training set. To
test this hypothesis, competitive learning networks were trained
for recognizing handwritten digits. The results demonstrate how
the approach can improve learning performance by discovering
the appropriate initial weight biases, thereby compensating for
weaknesses of the learning algorithm. Because of the smaller
evolutionary search space, this approach was also found to
require much fewer generations than direct evolution of network
weights. Since discovering the right biases efficiently is critical for
solving large-scale problems with learning, these results suggest
that internal training pattern generation is an effective method
for constructing complex systems.

Index Terms— Artificial neural networks, competitive learning,
complex systems, evolutionary computation, pattern generator,
self-organization, spontaneous activity

I. I NTRODUCTION

T HE tradeoff between bias and variance is a well-known
issue in machine learning [28], [85]. Given a finite set

of example inputs and outputs (the training set), a learning
system needs to construct a mapping that produces correct
outputs for new examples (the test set). There is usually a
large, or even infinite, number of possible mappings consistent
with the training set, providing different outputs for the same
test inputs. Which mapping will be selected is determined by
the bias of the learner. The best results are obtained if the
bias matches the problem and is strong [34]. That way, the
outputs for new examples are likely to be correct, and the
same mapping is selected with different training sets and even
when the training examples are noisy. Such a learner has a
low variance in its behavior.

Unfortunately, it is usually not clear what the right bias is,
making it necessary to make the bias weaker. Which mapping
is selected then depends more on the training data. As a
result, the variance is increased: The selection of the mapping
becomes unpredictable, depending on which examples were
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included in the training set and the noise in those examples.
Choosing an appropriate point in the bias/variance tradeoff
is therefore critical for building large-scale systems. The
choice depends on how much is known about the problem
in advance, and whether such knowledge can be formulated
as an appropriate bias for the learning algorithm. In fact, for
many complex problems, establishing such a bias could be as
hard as solving the problem itself [28].

This paper is inspired by how nature handles this
bias/variance tradeoff. Complex neural systems are constructed
in a developmental process that combines both genetic and
environmental information, as opposed to a pure hardwiring
of neural connections (strong bias, small variance) or a
pure environment-induced learning process (weak bias, large
variance). Internally generated spontaneous activity in many
cortical and subcortical sensory areas before birth (see [62],
[70], [93] for reviews) may be one of the developmental mech-
anisms by which nature deals with this bias/variance tradeoff.
These activity patterns may be specified genetically as pattern
generators, allowing the system to use the same activity-
dependent learning mechanisms both prenatally to establish
bias, as well as postnatally to adapt to the environment. These
observations suggest that learning driven by both internaland
external inputs can be used to build structures that would be
too complex to determine directly genetically and too fragile
to learn directly from highly variable external inputs [4],[5].

The main hypothesis studied in this paper is that artificial
learning systems may achieve the same benefits as biological
learning systems using a similar approach for establishingbias.
This approach involves computationally evolving a pattern
generator and using the generated patterns in addition to real-
world data for training. Learning based on pattern generation
has already been successful in explaining computationallyhow
biological mechanisms for orientation processing and facede-
tection may develop [5], [54]. The advantages of this approach
for building complex systems are studied systematically inthis
paper.

In order to test this hypothesis and show how a learning
algorithm can benefit from this method, a winner-take-all
competitive learning neural network architecture was studied
in the task of recognizing handwritten digits. Experiments
were devised to evaluate the relative merits of three learn-
ing approaches: (1) competitive learning alone on a set of
training data, (2) evolving (i.e., hardcoding through simulated
evolution) the network connection weights directly based
on the same training data, and (3) competitive learning on
patterns produced by an evolved pattern generator, followed
by competitive learning on the real training data. Best possible
performance in the domain was not the main goal in these
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experiments; rather, the aim was to understand how these three
learning processes differ and how they might scale up in more
complex tasks.

The results show that competitive learning alone is weaker
than the other two methods. Both direct evolution and pattern
generation achieve good classification accuracy, but pattern
generation reaches the same level of performance in many
fewer generations. These results suggest that pattern genera-
tion may indeed help in constructing complex artificial sys-
tems. This paper presents a proof of concept of this approach,
paving way for possible applications in future work.

The remainder of the paper is organized as follows. Sec-
tion II reviews biological and computational background and
related research on learning and evolution. The general hypoth-
esis studied in this paper, i.e., that prenatal training based on
evolved pattern generators is an effective way to build complex
artificial learning systems, is formulated in Section III. The
learning architecture and the algorithms used to evaluate the
hypothesis are presented in Section IV, and experimental
results on the handwritten digit recognition task in Section V.
In order to understand the benefits of the pattern generationap-
proach better, a simpler task of line categorization is analyzed
in Section VI. Finally, discussions and possible directions for
future work are presented in Section VII.

II. BACKGROUND AND RELATED WORK

In the following subsections, the biological motivation for
pattern-generation-based prenatal learning is reviewed.This
review is not meant to be comprehensive, but intended to serve
as the inspiration for formulating the computational approach
presented in this paper. Studies verifying the advantage of
combining learning with evolution in computation, and pre-
vious computational work involving pattern generators, are
briefly reviewed as well.

A. Biological Motivation

Many researchers have argued that much of the structure of
the primary visual cortex in mammals develops through self-
organization of input connections from the thalamus, driven by
visual experience (see e.g. [57], [73] for reviews). A number of
classic experiments by Hubel, Wiesel and others showed that
altering the visual environment, especially during a critical
period of early life, can dramatically change the organization
of the visual cortex [40], [41]. For instance, if kittens are
raised in environments containing a single orientation during
the critical period, a disproportionately large number of their
primary visual cortex neurons become responsive to that
orientation compared to the orthogonal orientation [8], [71].
Even in normal adult animals, the distribution of orientation
preferences is slightly biased toward horizontal and vertical
contours [14], [20]. Such a bias would be expected if the
neurons learned orientation selectivity from typical environ-
ments, which have a similar orientation bias [83]. Conversely,
kittens who were raised without patterned visual experience at
all, e.g. by suturing their eyelids shut, have few orientation-
selective neurons in their visual cortex as an adult [9], [22].

Thus, visual experience can influence how the neural circuitry
for orientation processing develops.

However, relying on environmental input alone has two
inherent weaknesses: (1) Self-organization takes time, and the
animal would not be able to act on visual input until the
process is almost complete. (2) The self-organized structure
depends critically on the specific input patterns available: if the
visual environment is variable, the organism may not develop
predictably, and what the learning algorithm discovers maynot
be the information most relevant to the organism. Therefore,
the neonatal visual system needs to have the proper bias to
address these issues.

There is significant evidence that such a bias exists as
genetically determined visual cortex structures [31], [44].
For example, orientation-selective cells are found in newborn
kittens and ferrets even before they open their eyes; an altered
environment has only limited effects [9], [16], [39]. Psycholog-
ical studies further suggest that human newborns can already
discriminate between patterns based on orientation [78], [79].
Experiments also show that large-scale orientation processing
structures exist prior to visual experience, and that these
cortical structures have many of the same features found in
adults [17], [22], [29]. Prenatal or pre-visual ocular dominance
structures (corresponding to binocular vision processing) have
also been observed in animal brains [23], [38], [65]. Thus,
although environmental input clearly influences visual cortex
structure, many aspects of the visual system appear to be
constructed from a specific blueprint encoded in the genome.

What are the biological mechanisms responsible for estab-
lishing such genetically hardcoded biases, while also allowing
the system to learn and adapt based on the environment?
The large-scale structures of the brain, such as the division
into different brain areas, are constructed primarily through
chemical gradients [56], [66], [89], [91] (see [31] for a
review). These gradients direct the growing connections to
a general location on the cortical sheet. The gradients are
largely unaffected by environmental stimuli, making the bias
very strong. Incorporating environmental information into this
process would be difficult, requiring a transduction mechanism
between an environmental stimulus and the developmental
hardware.

On the other hand, at the level of individual neurons and
connections between small groups, sensory systems act as
just such a transduction mechanism. In a sensory system,
patterns in the environment are represented as patterns in
neural activity, and these patterns in turn change how the
orientation, ocular dominance, and similar map-level organiza-
tion in the cortex develop (as discussed above). At this level,
the question becomes howgeneticcues could be expressed
to give the system its bias. First, the system is structured to
utilize information in input activity; second, the amount of
information necessary to specify individual connections may
be too large to store genetically.

The recent discovery of spontaneous activation provides an
important clue to how such genetic bias is expressed: Much
of the neural activity in developing sensory systems is not
caused by the external environment, but generated internally
in many cortical and subcortical sensory areas, such as the
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Fig. 1. Retinal wave patterns.Each of the frames shows a calcium concentration image of approximately 1 mm2 of newborn ferret retina, measuring how
active the retinal cells are. Dark gray indicates areas of increased activity. This activity is spontaneous (internally generated), because the photoreceptors
have not yet developed at this time. From left to right, the frames on the top row form a 4-second sequence showing the start and expansion of a wave of
activity. The bottom row shows a similar wave 30 seconds later. Such activity could be responsible for biasing the visual system before learning begins from
environmental experience. Reprinted with permission from [26], copyright 1996 by the American Association for the Advancement of Science.

visual cortex, the retina, the auditory system, and the spinal
cord ( [26], [48], [53], [63], [92], [94]; see [62], [70], [93]
for reviews). Such activity may serve several developmental
functions, such as guiding cell migration, cortical innervation,
cortical patterning, and others that are still unknown [95].
However, one possible role for it is to express a genetic bias
within a system that is designed to learn from the environment
[19], [49], [50], [67], [72], [74]. The genetic informationis
represented in the same way as environmental information at
the neural level: as patterns of activity in the input seen bya
brain area. In this way, “hardwiring” may actually be learned.
The genome thus needs to specify only a simple pattern
generator, a mechanism capable of producing activity patterns,
rather than specifying billions of individual connections.

The bias constructed through such prenatal self-organization
can guarantee that each organism has a rudimentary level of
performance from the start and that initial development does
not depend solely on the details of the external environment,
while retaining the flexibility of the neural system to adapt
to environmental input. Thus, internally generated patterns
can preserve the benefits of a blueprint, within a learning
system capable of much higher complexity and performance.
Evolution has therefore determined a point in the bias/variance
tradeoff that allows constructing a reliable but flexible system
by combining genetic and environmental information.

Although spontaneous activity can arise at all levels of the
developing nervous system, retinal waves and ponto-geniculo-
occipital (PGO) waves are the best known, and can be used
to illustrate the general properties of internally generated
patterns.

1) Retinal Waves:In the developing retina of e.g. cats
and ferrets, internally generated activity occurs as intermittent,
local waves across groups of ganglion cells [53], [77], [92].
Fig. 1 shows such an activity in the retina of a newborn ferret.
The waves begin before photoreceptors have developed [49],

so they cannot result from visual input. Instead, they arise
from spontaneous recurrent activity in networks of developing
amacrine cells that provide input to the ganglion cells [13],
[26], [74]. Like visual images, these waves are locally coherent
in space and time and thus they could act as visual-like training
input for the developing visual cortex [72].

Recent experiments have focused on whether spontaneous
activity is merely permissive for development, perhaps by
keeping newly formed connections alive until visual input
occurs, or whether it is truly instructive, determining howthe
structures develop [15], [21], [45], [55], [64], [81], [82], [84].
One such experiment showing an instructive role involved
introducing artificially correlated activity into the developing
visual pathway of ferrets. As a result, the number of orientation
selective cells in the primary visual cortex was significantly
reduced [90]. This result shows that spontaneous activity
cannot be only permissive; it has a specific instructional role
at least in shaping receptive field tuning properties of cortical
neurons.

2) Ponto-Geniculo-Occipital Waves: Ponto-geniculo-
occipital (PGO) waves have been shown to be the hallmark of
rapid-eye-movement (REM) sleep in cats, ferrets, monkeys,
and humans (see [80] for a review). REM sleep has long been
believed to be important for development, for two reasons:
Developing mammalian embryos spend a large percentage
of their time in states that look much like adult REM sleep,
and the duration of REM sleep is strongly correlated with
how plastic the neural system is, both over development and
across different species [42], [67], [76].

During and just before REM sleep, PGO waves originate
in the brainstem and travel to the LGN, many areas of the
visual cortex, and a variety of subcortical areas (see [11]
for a review). In adults, PGO waves are strongly correlated
with eye movements and with vivid visual imagery in dreams,
suggesting that they activate the visual system as if they were
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visual inputs [50]. Experimental studies also suggest thatPGO
waves are under genetic control: They elicit different activity
patterns in different species [24], and the eye movement
patterns that are associated with PGO waves are more similar
in identical twins than in unrelated age-matched subjects [18].
Thus, PGO waves are another possible source for genetically
controlled training patterns for the visual system.

In sum, the hypothesis that internally generated patterns
play a role in self-organization of the visual system is well
established biologically. This idea has already inspired com-
putational explanations of developmental phenomena, as will
be reviewed next.

B. Computational Modeling of Pattern Generators

The pattern-generation hypothesis was previously tested
using a computational map model of the visual cortex called
HLISSOM [5]–[7], [54]. Two developmental phenomena were
studied: (1) How orientation-selective responses developin the
visual cortex prenatally and postnatally, and (2) how human
newborns come to prefer face-like visual input prenatally and
how these preferences change in early life.

The HLISSOM orientation model resulted in detailed con-
nectivity patterns that match known biological orientation
processing circuitry in animals. Training the model prenatally
with three-dot input patterns in turn caused it to respond pref-
erentially to pictures of faces, and these preferences changed
as they do in infants in later training with visual images. The
experiments with HLISSOM therefore elucidate computation-
ally how self-organization based on internal pattern generation
can account for the observed biological structures, resulting in
species-specific biases such as face preferences. Buildingon
the prior work with HLISSOM, the goal of this paper is to
study the pattern generator approach as a machine learning
technique for constructing complex artificial learning systems.
Instead of designing the generator by hand, generators are
evolved computationally to provide a suitable bias for final
learning in the actual task.

C. Computational Merging of Learning and Evolution

A related idea that has been explored extensively by several
researchers is combining evolution with learning from the
environment. In many such approaches, initial connection
weights are evolved for a neural network that later adapts them
through learning. Evolution selects individuals with weight
patterns that have the capacity to learn good performance,
rather than individuals with good performance at birth [37],
[58]. In other words, learning establishes exploration in the
local vicinity of the genetically specified solution. Evolution
can search a large search space efficiently, leaving local
optimization to the learning algorithm rather than having to
find the correct weight patterns directly. This process results
in the Baldwin effect [2]: learning influences evolution even
though acquired characteristics are not inherited.

A second approach is to use genetic algorithms to select
weight values for “teaching units” in a network rather than
the actual network weights [59], [60]. These units specify the
target outputs for training, which are not known in advance.

In essence, the genetic algorithm transforms the reinforcement
learning problem into a supervised learning problem, for which
strong learning algorithms exist. Along the same lines, the
outputs of existing well-performing networks in the population
can be used as targets for supervised training of newly evolved
networks [51], [52]. Such training indirectly selects bothfor
good performance and the ability to train other networks.

In each of the above cases the genetic algorithm is used to
select specific connection weights, either those that are later
tuned by learning or those that generate the target outputs.
Such a direct genetic encoding limits the network size and
complexity, because the search space of all possible connection
weights in a fully connected network grows exponentially with
the number of neurons [61]. Thus it may take a prohibitively
long time for the genetic algorithm to explore the search
space. A third approach aims at solving this problem by
drawing motivation from nature, where the size of the genome
is several orders of magnitude smaller than the number of
connections it is coding [10], [43], [47], [75], [87]: the actual
neural connections are established in a developmental process
driven by the genome. Thesedevelopmentalencoding schemes
map genotype to a phenotype [12], [32], [33], [61] through a
mechanism that imitates how biological organisms develop.
The genome encodes a process for constructing an individual
through interaction with its environment, rather than simply
specifying the individual itself.

The pattern-generation hypothesis tested in this paper is
based on the developmental approach as well: the genome
encodes a pattern generator which is then used together with
the environment to construct the individual. This approachis
described in more detail in the next section.

III. H YPOTHESIS

The simulations with HLISSOM demonstrated how genetic
and environmental influences may interact in the developing
visual system. A more general hypothesis is evaluated in this
paper: Learning from generated patterns followed by learning
from the actual training data is a general-purpose problem-
solving approach that can be used to construct complex
artificial systems effectively. Following the biological analogy,
the two phases are called prenatal and postnatal learning in
this paper. The following subsections develop this approach
and discuss how it facilitates designing an appropriate bias
for complex systems. The hypothesis is tested experimentally
and the results analyzed in the later sections.

A. Approach

In the most straightforward approach, the pattern generator
can be designed specifically for the task, as was done with
HLISSOM. Such a generator allows the engineer to express a
desired bias without having to hard-code it into a particular,
inflexible architecture. Biasing the learning system in this
way may allow it to solve problems that would otherwise be
difficult to solve. For example, simple patterns can be learned
before real data, which establishes the necessary bias by
moving the starting point closer to the solution, thus avoiding
local optima in the search space of solutions [25].
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More significantly, the pattern generator can be constructed
automatically using evolutionary algorithms (EA). In this
approach, detailed domain-specific knowledge necessary to
design the generator by hand is not needed. For instance,
studying real faces may lead one to suggest that a three-dot
configuration would be a good training pattern to bootstrap
a face detector as was done with HLISSOM. However, often
such knowledge can only be obtained through trial and error,
and it would be desirable to have an algorithm to do it automat-
ically. Indeed, the learning system, the pattern generator, and
the EA together can be considered a single general-purpose
adaptive algorithm.

This approach consists of three parts: (1) evolving the
pattern generator, (2) prenatal learning from generated pat-
terns, and (3) postnatal learning from actual training data. As
in nature, the combination of learning and evolution in this
approach represents a balance between adaptation at different
time scales (i.e., determines a proper tradeoff between bias and
variance; Section I). Short-term learning (prenatal followed
by postnatal learning) allows an individual learner to become
well suited for the particular tasks on which it is tested. Long-
term adaptation (i.e., selection by the EA), along with prenatal
learning ensures that postnatal learning is properly biased,
avoiding getting stuck in local optima, and therefore more
likely to succeed.

B. Constructing Complex Systems

The bias/variance discussion in Section I suggests that
choosing the right bias for learning systems is both important
and difficult. As an illustrative instance of such a system,
consider the task of learning to recognize two-dimensional
objects from training examples. This task is difficult for
several reasons. First, the number of objects (target classes for
classification) that the system needs to be able to distinguish
from each other can be very large. Second, the system needs to
be able to identify these objects in a transformation-invariant
manner, i.e., regardless of their location, orientation, and scale.
Third, a host of other variables such as noise, occlusions, and
background changes can further distort the input. Let us next
see how combining learning with evolved pattern generators
facilitates designing the appropriate bias to make learning such
a complex system possible.

1) Expressing bias in the input space:In the pattern-
generator approach, domain-specific knowledge is specified
through the pattern generator, i.e., in the input space, rather
than in the parameter space of the learner. This approach is
effective because knowledge of the problem is usually avail-
able in the input space. For example, in the two-dimensional
object recognition domain, we may be told that all objects have
straight edges, thus restricting the number of target classes the
system needs to identify. In this case, we may choose to encode
a pattern generator that generates straight line segments or
combinations of them as prenatal training patterns. Similarly,
in constructing a face-recognition system, three-dot patterns
may be used to bias the system towards the essential facial
features (i.e. the eyes and the mouth) before training the
system with images of real faces. Learning such patterns

prenatally gives the system the required bias for successfully
learning more complex shapes in the postnatal phase. In
contrast, it is not immediately clear how such knowledge could
be expressed as constraints on the parameters of the learning
system.

2) Optimizing bias by evolutionary search:Postnatal train-
ing with actual training examples, when combined with evo-
lution, further refines the bias that was initially encoded in
the pattern generator. In the example above, evolution might
discover that prenatal training patterns containing intersecting
line segments leads to better postnatal training performance
in identifying polygons, and might consequently include such
features in the generated patterns. The features could appear
in different locations, orientations, and scales, allowing the
learning system to adapt to various geometric transformations.
The result is a pattern generator that is able to express a more
specific bias, making postnatal learning even more effective.
Extracting the features needed for expressing such a bias by
manually examining the training set is generally very difficult.

3) Compact encoding of bias in generator encoding:Pat-
tern generators can generally be specified in a highly compact
manner. For instance, line segments can be specified in terms
of their end points and Gaussian blobs in terms of location
and width. Such compact encodings facilitate evolutionary
search, making it possible to arrive at different input patterns
by few simple manipulations. Efficient data representations of
this type are an essential part of designing the right bias for
complex systems [1], [28].

4) Transforming bias to parameter space through learning:
The bias must be specified in terms of the learning system
parameters before learning from actual training examples can
begin. This transformation is achieved through prenatal learn-
ing. Depending on the sophistication and complexity of the
learning algorithm, it is possible to synthesize biases having
complex and emergent properties in the parameter space from
simple input patterns. For example, using the “noisy disk”
model of retinal waves as prenatal training patterns, HLISSOM
experiments demonstrated how complex orientation processing
circuitry similar to that seen in the visual cortex of animals
can develop [5], [54]. Thus, prenatal training makes it possible
to express the bias in complex parameter spaces, which may
be difficult to achieve by other means. Moreover, the bias
established by prenatal learning is likely to be robust against
distortions in the input, because the learning system becomes
better tuned to the relevant features in the input.

The above four properties make it possible to establish
the proper bias efficiently. As a result, the pattern-generator
approach may allow constructing complex systems that would
be infeasible to build by applying postnatal learning directly.
Instead of pattern generation, complex systems may also be
built using more traditional approaches, such as evolving them
directly. The obvious disadvantage of the direct EA approach
is that it requires optimizing a large number of parameters,
which could take prohibitively long. In contrast, pattern gen-
erators are evolved in the smaller space of few generator
parameters, and such a system is therefore expected to find
a good solution in fewer generations. Thus, the approach
should be able to perform better than direct EA in constructing
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Fig. 2. The architecture of the competitive learning network.The binary
activations from the input pattern consisting of 64 pixels are fed to the input
units of the network, which also contains a bias unit. The 10 output units each
correspond to a classification of the input as one of the 10 digits; the one with
the highest activation is chosen as the answer of the network. During training,
the weights to this unit are adjusted towards the input pattern, making that
unit more likely to win similar patterns in the future.

complex systems.

IV. T ESTING THEHYPOTHESIS

The hypothesis is tested in this paper on the task of
constructing a single-layer artificial neural network to identify
the handwritten digits 0 to 9. The network receives the digits
as its input and produces the classification of each digit as its
output. Classification accuracy and learning effort is compared
for postnatal learning, direct evolution, and pattern generator
approaches. These experiments are not designed to produce
the best possible performance for classification of handwritten
digits, but to verify the hypothesis that an appropriate bias
for learning can be established using the pattern-generator
approach.

A. Competitive Learning

The hypothesis is tested using competitive learning [35],
[69] as the learning algorithm. Even though other algorithms
may be more powerful in classification tasks in general,
competitive learning is a good choice for four reasons: (1)
it is a well known abstraction of biological learning, basedon
Hebbian adaptation of synaptic efficacies and winner-take-all
competition [36], and a good surrogate for a whole class of
learning algorithms; (2) it is sensitive to initial weight settings,
i.e., prenatal training is likely to have a significant effect; (3)
it is relatively simple, so that analyzing and understanding this
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Fig. 3. The postnatal learning approach.Inducer1 produces a classifier
network by performing competitive learning on the set of training examples.
This method corresponds to postnatal learning (there is no prenatal learning
phase).
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Fig. 4. The direct evolution approach.Inducer2 produces a classifier network
by evolving the weights of a network that has the same architecture as that
produced by Inducer1. This method corresponds to hardwiringthe behavior
genetically (there is no learning). The thick lines indicate the entire population
of networks.

effect is possible; and (4) it is a self-organizing, unsupervised
algorithm, which makes the pattern generator design simpler
by not having to produce targets for the inputs it generates for
prenatal learning.

The digits are written in an8×8 grid of pixels (Fig. 2). The
inputs to the network consist of the binary activations at the
64 grid locations and a bias unit. The network has 10 outputs,
one for each of the 10 digits to be recognized. Each output
unit is connected directly to each of the inputs (including the
bias).

Learning starts by initializing the network connection
weights wij between an input uniti and an output unitj
randomly, and normalizing such that the squares of the weights
to each output unit sum to one:

wij =
wij

√

∑

u w2

uj

. (1)

When the network is presented with an input pattern, each
output unit j computes the weighted sumsj of its input
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Fig. 5. The pattern generator approach.Inducer3 evolves pattern generators in its main computational loop. The patterns produced by each generator train
a competitive learning network in the prenatal training phase. This phase is followed by a postnatal competitive learningphase where the network is trained
further with a training pattern set, like Inducer1. The evolution run produces two results: the champion pattern generator and the classifier network trained
using it. The thick lines indicate the entire population of pattern generators or corresponding networks.

activationsxi:
sj =

∑

i

wijxi. (2)

The output unit with the highest sum is the winner for that
pattern. The weights to this unitv are then updated as

wiv(t + 1) = wiv(t) + η(xi − wiv(t)), (3)

where η is the learning rate. After the update, the weights
to this unit are again normalized such that their squares sum
to one. This process constitutes a basic competitive learning
method that is at the core of many unsupervised learning
algorithms [3], [27], [30], [46], [88].

B. Experiments

To evaluate the benefits of training with generated patterns,
three different ways of constructing the neural network are
compared.

1) Inducer1: First, a network is trained using competitive
learning alone (Fig. 3). This process involves initializing the
network with random weights and training it using a set of
examples until its weights converge. In other words, learning
is carried out without any intentional bias. Using a biologi-
cal analogy, this method corresponds to an organism whose
learning is entirely postnatal, without any specific genetically
determined biases.

2) Inducer2: In the second method (Fig. 4), the connec-
tion weights of the network are evolved directly; there is
no competitive learning phase at all. However, the network
architecture is the same as in Inducer1, and classification of
examples is done by competition between the output units

as in Inducer1. A population of networks is initialized with
random weights at the beginning of evolution. In any given
generation, the classification accuracy of each network on the
training set is measured to compute its fitness, after which
the next generation of networks is produced. The evolution is
terminated once the fitness on a validation set begins to level
off, and the network at that point is output as the classifier.The
encoding and evolution of the network weights are discussed
in detail in Section IV-C. This method demonstrates a direct
evolutionary algorithm in constructing complex systems; in
biological terms, it represents an organism whose behavioris
entirely genetically determined.

3) Inducer3: Constructing the third classifier network in-
volves evolving a pattern generator (Fig. 5). The network
architecture is the same as in Inducer1. The process begins by
initializing a population of pattern generators with random pa-
rameter values. In any given generation of evolution, a network
initialized with random weights is produced for each pattern
generator in the population. This network is then trained (using
competitive learning) with a set of patterns produced by the
pattern generator during the prenatal training phase. After the
prenatal training is complete, the resulting network is trained
on a set of examples during the postnatal training phase.
After postnatal training, the fitness of the pattern generator is
calculated based on how well the final network performs on the
training set. After all pattern generators in the population have
been evaluated in this manner, the next generation of pattern
generators is created. The evolution is terminated once the
fitness on a validation set begins to level off, and the network
and the corresponding pattern generator at that point are output
as the result of evolution. The encoding and evolution of the
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pattern generator are discussed in detail in Section IV-D. This
method implements the approach outlined in Section III-A
for constructing a complex system based on evolved pattern
generators; biologically, it corresponds to determining the bias
of the learning system genetically.

The expected outcome of these comparisons is that the
environmentally driven learner (Inducer1) is likely to get
stuck in suboptimal local optima, because it will start far
from the desired solution, without any bias toward it. The
direct EA (Inducer2), on the other hand, would require a
prohibitively large number of iterations to produce a successful
classifier network, because it has to search in an extremely
high-dimensional space of network weights (650 weights, as
explained below in Section IV-C). In contrast, the pattern-
generator-driven system (Inducer3) should be able to discover
a solution quickly compared to the direct EA approach because
it only needs to evolve a small number of parameters of the
generator (10 parameters, as explained below in Section IV-D).

The competitive learning method used in Inducer1 was
already described completely in Section IV-A; the evolutionary
approach of Inducer2 and Inducer3 will be described in the
next two subsections.

C. Evolving Networks Directly

In order to evolve the weights of the network directly, in the
Inducer2 approach each gene is coded as an array of 65 weight
values (corresponding to 64 inputs and 1 bias) associated
with an output unit. The weights are floating point values
between 0 (inclusive) and a specified maximum bound of 1
(exclusive). The genes for all the output units are concatenated
to form a chromosome, which constitutes an individual in
the population. Each chromosome therefore consists of 10
genes, one for each output unit of the network. This encoding
contributes a total of 650 weight values for evolution to search
through.

The weights are mutated by applying Gaussian perturbations
on the floating-point values. The standard deviation of the
perturbation is calculated as the product of a “mutation factor”
and the maximum value allowed for weights. If the mutated
value lies outside the allowed legal range of values, the
mutation is ignored and the weight is not changed. The
probability of mutation is controlled by a “mutation rate”
evolution parameter.

For each individual chosen for mating, a partner is selected
randomly from the population and an offspring is created
through uniform crossover at two levels: individual weight
values and whole genes. That is, genes and weight fields in the
genes of the parent are randomly selected and replaced by the
corresponding piece of the genome from the partner to produce
the offspring. This process is controlled by a “mating rate”
parameter for gene fields and another one for whole genes.

In every generation, all individuals are given a chance to
improve their fitness either through mutation or by mating
with a randomly chosen individual. If the fitness improves as
a result of mutation or mating, then the offspring replaces the
parent in the population for the next generation; otherwisethe
parent is retained in the population, keeping the population
size constant.

dy

dx

θ

σy

σx

Fig. 6. Parameterization of prenatal training patterns.Oriented Gaussian
patterns are parameterized byσx, the standard deviation in thex-direction;
σy , the standard deviation in they-direction; θ, the rotation angle;dx, the
displacement in thex-direction; anddy , the displacement in they-direction.
By varying these parameters, a variety of prenatal training patterns can be
produced.

D. Evolving Pattern Generators

As prenatal training patterns in the Inducer3 approach,
single oriented two-dimensional Gaussian patterns of floating
point values between 0 and 1 were used. By varying the pa-
rameters of the Gaussian, a variety of shapes can be produced.
The parameters include the size, orientation, and center ofthe
Gaussian, and are defined as:σx, the standard deviation of
the Gaussian in thex-direction;σy, the standard deviation in
the y-direction;θ, the rotation angle;dx, the displacement in
the x-direction; anddy, the displacement in they-direction
(Fig. 6).

Each pattern generator encodes a distribution of such Gaus-
sians. For each of the five parameters, a normal probabil-
ity distribution is encoded as a mean and variance pair. A
pattern is generated by obtaining values for the Gaussian
parameters by sampling these distributions. Such an encoding
allows evolution to control which Gaussians are generated by
manipulating their probabilities.

The mean and variance parameters in the encoding are
constrained to restrict the search space, making evolutionmore
efficient. The means of the distributions from whichdx anddy

are drawn are constrained to lie inside the8×8 pixel grid, and
the variances are not allowed to be more than twice the size
of the grid. These constraints ensure that the centers of most
of the generated patterns lie within the grid. The means and
variances of theσx andσy distributions are constrained to lie
in the intervals[0, 2) and [0, 4) respectively, so that most of
the generated patterns are smaller than the grid. Similarly, the
mean and variance of the distribution ofθ are constrained
to lie in the ranges[0, π) and [0, π2

4
) respectively, so that

most samples lie in[0, π), which covers the entire range of
orientations.

The pattern generator chromosome is a simple string of
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Calibrate Network
by Labeling
Output Units

Network Network with

Labeled outputs
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Set
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Calculate Network
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Fig. 7. Measuring classification accuracy.The output units of the network
are first labeled using a validation set. Using these labels,the classification
accuracy of this network on the test set can be determined, by counting how
often a unit with the right label wins.

numbers, instead of being divided into genes like in Inducer2,
since it contains only one set of Gaussian specifications. The
encoding can in principle be generalized to multiple Gaussians,
each encoded in a separate gene. Such an encoding can
produce more complicated patterns; however, single Gaussians
were found to be sufficient to test the hypothesis. Selection,
mutation, and crossover (at the level of mean and variance
parameters) are performed as in the Inducer2 approach.

E. Estimating Classification Accuracy

Two methods are used to estimate how well the networks
perform in their task. The first measures classification accuracy
directly, and the second measures fitness more continuously.
Both methods require computing a10× 10 confusion matrix,
whose(i, j) entry is the number of times output unitj won
when examples of digiti were presented to the network.

1) Percentage Correct:The first method calculates the
percentage of examples that are correctly recognized from the
test set (Fig. 7). Since neither competitive learning nor the
evolved neural network have any inherent labels on the output
units to indicate which digits they each represent, the labeling
must be done after learning, based on the performance of the
network on the validation set. Each output unitj is assigned
the label of the first row with the highest value in columnj of
the confusion matrix on the validation set. In some cases, the
same label is assigned to multiple output units, some digits
may not be represented by any output unit, and some units
may not get labeled at all (if they do not win any inputs).
After labeling, the classification accuracy on the test set can
be determined.

2) Fitness Estimation:The second method measures classi-
fication accuracy based on how close to orthogonal the rows of
the confusion matrix are. If the classifier is perfect then there
can be only one non-zero entry in each column, corresponding
to the digit that the unit recognizes. The average angle between
the rows can therefore be used as a measure of classification
accuracy without having to label the output units.

During evolution, the confusion matrix is calculated from
the training set, and the average angle is used as fitness of
networks and pattern generators. Such a fitness provides a
smoother fitness landscape for evolution than the percentage-
correct method. It rewards changes in the confusion matrix
that may not result in any immediate increase in the percentage
accuracy, but are likely to do so when accumulated over several
generations. In contrast, the performance of final networks
produced by all three approaches is measured using percentage
correct.

Fig. 8. Example inputs in the handwritten digit recognition domain. The
original39×39 gray-scale images from the NIST database were downsampled
and thresholded to form a simple but challenging set of examples for an 11-
fold crossvalidation experiment.

TABLE I

PARAMETERS FOR EVOLUTION AND LEARNING

Inducer1 Inducer2 Inducer3

Prenatal learning rate 0.005
Prenatal max. epochs 100
Postnatal learning rate 0.0005 0.0005
Postnatal max. epochs 1000 1000

Mutation factor 0.2 0.2
Mutation rate 0.9 0.5

Mating rate (fields) 0.1 0.05
Mating rate (genes) 0.05 0.025
Number of genes 10 1
Size of pattern set 100

Population size 25 25
Max. generations 9000 9000

V. RESULTS

In order to compare the performance of the three ap-
proaches, a crossvalidation experiment was run on the hand-
written digit recognition domain. In this section, the dataset
and the parameterization of the experiment will be described,
the accuracy of the resulting networks measured, and the
performance of the networks analyzed in terms of evolved
patterns and network weights.

A. Method

The three classifier network inducers were evaluated using a
2992 image subset of the National Institute for Standards and
Technology (NIST) handwritten digit database. The images
were originally gray-scale values on a39× 39 grid, and were
downsampled to8×8 binary values to make the inputs simpler
to code and represent in the network, and at the same time to
make the recognition task more challenging. A few examples
from the resulting dataset are shown in Fig. 8. The dataset
was shuffled and split into 11 equal-size parts so that a 11-
fold crossvalidation experiment could be run on it. In each
of the 11 splits, a different part was used for testing the
classifier accuracy, another different part for validation(i.e.,
determining when to stop evolution), and the remaining nine
parts for training. The validation set was also used for labeling
the output units, in order to obtain labels that generalize well
to unseen examples.

Suitable values for the evolution and competitive learning
parameters were determined experimentally prior to the exper-
iment (Table I). Competitive learning in Inducer1 and Inducer3
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Fig. 9. Improvement in fitness and accuracy during one representative evolution run of Inducer2 and Inducer3.The final performance of Inducer1 is also
shown for comparison. The pattern-generator-based learner(Inducer3) reaches the same good level of performance much earlier than the direct evolution
learner (Inducer2), suggesting that it may be an effective strategy for constructing complex systems.

TABLE II

AVERAGE CLASSIFICATION ACCURACIES

Inducer1 Inducer2 Inducer3

Average Accuracy(%) 63.37 75.77 72.23
Average Generations 2781 337

was continued until all weights changed less than10−3 in an
epoch, or when a maximum number of epochs was reached,
and the network of the final epoch was taken as the result.
The training examples were presented in a different random
order in each epoch. Evolution in Inducer2 and Inducer3 was
continued until the fitness on the validation set leveled off,
i.e., did not improve by more than10−5 over the next 700
generations, and the champion of this generation was then
selected as the result of evolution.

B. Performance

The average classification accuracy over the 11-fold cross-
validation experiment is shown in Table II. The first result is
that Inducer1 is significantly less accurate than either Inducer2
or Inducer3 (the difference is statistically significant according
to pairwise Student’st-test, with p < 0.01, df = 10).
Apparently, Inducer3 is able to discover suitable biases that
allow competitive learning to avoid local optima. Second,
Inducer3 achieves the same high level of accuracy in a much
smaller number of generations than Inducer2 (their difference
is statistically not significant according to pairwise Student’st-
test, withp > 0.18, df = 10). Evolution only needs to discover
a suitable bias for learning instead of the final network,
which can be done much quicker. These results are further
illustrated in Fig. 9, where fitness and accuracy are plotted
over generations for one example evolution run. Inducer3
achieves the same good level of performance much earlier
than Inducer2, and both are significantly better than Inducer1.

C. Analysis of Patterns and Networks

Because each output unit in the competitive learning net-
work is connected directly to each input unit, it is possibleto
visualize its connection weights in the same way as the input
patterns, i.e., on a8 × 8 grid. Such a visualization makes it
clear what kinds of input patterns that output unit is most
likely to win in the competition (Equation 2).

The connection weights of the network initialized with ran-
dom weights, used as the starting point for postnatal learning
in Inducer1 and prenatal learning in Inducer3, are shown in
Fig. 10. The final network weights for one example split of
the dataset are shown for Inducer1 and Inducer2 in Figs. 11
and 12. The prenatally trained weights and final weights of
Inducer3 are shown for the same split in Fig. 14, and a few
example patterns produced by the pattern generator that was
evolved in this run are shown in Fig. 13. In all the weight
figures, if an output unit wins a large number of examples of
a particular digit from the test set (i.e., at least 75% of the
largest number of wins for that digit by any unit), then that
digit is shown on top of that unit. Thus, if the network is a good
classifier, such as the final network of Inducer3 (Fig. 14(b)),
a different single digit will be shown on top of every unit,
indicating that each digit is recognized as a separate class.
In contrast, in a poor classifier, such as the random initial
network (Fig. 10), some units do not represent any digits at
all, while other units represent multiple digits, and some digits
are represented by multiple units.

Several interesting observations can be made based on these
figures. First, note that during each input presentation, the
competitive learning algorithm makes the weight vector of the
winning unit more similar to that input (Equation 3). There-
fore, with both Inducer1 and Inducer3, the learned weights
end up visually resembling the digits the unit wins in the
competition. That is, they approach the mathematical average
of the bitmaps for all the examples of that digit in the training
set.

On the other hand, the weights of Inducer2 look very
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7  7,97,9          4,54,5          0,2,60,2,6      1,3,7,8,91,3,7,8,9  

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Fig. 10. Random weights to each output unit of the initial network used in Inducer1 and Inducer3.The weights are arranged in an8× 8 grid corresponding
to the pixels in the input image. Darker squares represent stronger weights. A digit on top indicates that this unit wins a large number of examples of that
digit. The assignment of digits to units is uneven, indicating that this network is a poor classifier.

7,8,9  00      33  44  22  55  66      11  

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Fig. 11. Final weights for each output unit of Inducer1 for an examplesplit. Most of the weights have converged to a configuration that imitates the input
digit patterns; however, two units still have unorganized weights, while unit 1 represents a combination of digits 7, 8 and 9. This result demonstrates how
competitive learning can get stuck in a local optimum when it does not start with an appropriate initial bias.

1  33  00  88  7,97,9  66  55  44  22      

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Fig. 12. Final weights for the output units of Inducer2 for the same split as in Fig. 11.All digits except 7 and 9 are properly represented; however,since
the weights are evolved directly, evolution has discoveredweight patterns that represent features crucial for classification, rather than the digits themselves.

Fig. 13. A few example patterns produced by the pattern generator in the same split as Figs. 11 and 12.Each pattern is formed by sampling the distribution
for each of the five parameters for oriented Gaussians. These patterns tend to be located around the middle and slightly horizontal. The weights resulting
from prenatal training with such patterns are shown in Fig. 14(a).

1,4,7,9  77      55      88      0,2,5,60,2,5,6      3,5,7,83,5,7,8  

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10
(a) Weights after prenatal training

1  99  66  77  55  88  22  00  44  33  

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10
(b) Final weights

Fig. 14. Weights for each output unit of Inducer3 for the same split asin Figs. 11 and 12, trained prenatally with patterns like those in Fig. 13.Comparing
these results to the random weights network in Fig. 10, it is clear that only two of the ten units learn a significant bias (a). Yet, these biases are sufficient for
postnatal training to perform better than in Inducer1 and all digits are represented well by the final weight patterns (b).
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different. They are adjusted by the evolutionary algorithm,
which searches the weight space globally, and finds a weight
combination that achieves high fitness. There is no pressureto
make the weights look like the inputs, as long as they result
in the right classifications on the training set. Indeed, on close
inspection it is possible to identify certain strategically set
weight values that cause the units to respond more strongly to
particular digits than others. For example, digit 0 is represented
by a loop of strong weights enclosing a small weaker region in
unit 3, and the bottom part of digit 6 is represented by strong
weights at the bottom of unit 6. However, digits 7 and 9 are
still being confused in this run because the strong region in
the upper half of unit 5 matches both digits. Evolution was not
able to find the few weight settings that help distinguish these
two rather similar digits, although it succeeded in separating
them in some other runs. Thus, the partial and approximate
matches that the weight patterns have with particular digits
give them sufficient advantage to win examples of those digits
in the competition with other units. In effect, evolution has
discovered a set of reliable features that allows performing the
classification task reliably, without forming internal models of
the digits themselves.

The final weight patterns of Inducer1 illustrate some of the
weaknesses of the competitive learning algorithm. Digits 7, 8
and 9 are particularly difficult for it to distinguish, because
many pixels are common between them in the handwriting
samples of many people (Fig. 8). For example, digits 7 and
9 are sometimes distinguished only by whether the top part
of the digit is open or closed. Lacking proper initial weight
biases that would allow the network to respond to such small
differences, Inducer1 is likely to get stuck in a local optimum
with one unit representing multiple digits. Since only the
unit that wins gets to adapt, another unit that may have had
the potential to represent one of the digits will not get the
chance to learn that digit. For the same reason, some units
may never learn; they remain unorganized, still retaining their
initial random weights, even at the end of training like units
3 and 9 in Fig. 11.

These problems are avoided to a large extent in Inducer2 and
Inducer3, resulting in better classification accuracy. Inducer2
is based on a very different approach: finding features that
allow separating these digits to different units, as discussed
in the previous subsection. However, the process in which
Inducer3 overcomes these problems is interesting, and upon
close examination gives us insights into how prenatal training
can establish just the right bias for successful competitive
learning, as will be discussed next.

VI. EFFECT OFPRENATAL TRAINING

The most obvious way to establish an appropriate bias
would be to separate each digit to a different unit as much as
possible already in prenatal training, so that postnatal training
would find it easier to complete the separation. However, this
effect is typically not seen in the prenatal training phase of
Inducer3. Only units 1 and 5 adapt their weights, and units 1,
8 and 10 end up representing several different digit classes.
How does such seemingly counterproductive initial bias make
postnatal learning easier?

Category 1 Category 2 Category 3 Category 4

Fig. 15. Training examples for categorization of vertical and horizontal lines.
There are four categories and three examples in each category: a solid line
and two complementary dotted lines. This design makes the effect of prenatal
training explicit, as shown in Figs. 16 – 20.

A. Illustrative Example

To illustrate more clearly the effect of prenatal learning
in the digit recognition task, which we will return to in
Section VI-D, let us first consider a simpler problem: that of
learning to categorize vertical and horizontal lines. There are
four categories to be learned: A vertical line in column 4 of
the input grid, a vertical line in column 5, a horizontal linein
row 4, and a horizontal line in row 5 (Fig. 15). The training
set consists of 12 examples in total, with three examples for
each of the four categories: A solid line and two dotted lines
that are pixel complements of each other.

Competitive learning is likely to categorize examples based
on how similar they are, i.e., how many pixels they have
in common. The examples of a given vertical or horizontal
category have several pixels in common, and it should be
possible to learn to categorize them correctly. However, a
common pixel also exists between a vertical and a horizontal
line. If an output unit exists with particularly high weights on
that pixel, the learning algorithm may learn to map them both
to that unit. The learning may also fail if an output unit has
initial weights that allow it to win examples of two categories,
even if these categories have nothing in common. If there
are no viable competitors for these categories, the unit will
gradually learn to respond strongly to both of them.

B. Inducer1 Learning

Competitive learning in Inducer1 fails in exactly these two
ways in the line classification problem (Fig. 16). The learned
weight patterns for each output unit are gradually seen to
emerge from epoch 500 onward. With careful observation, it
is possible to see that initial biases for these patterns already
existed in the initial random weights (epoch 0), and as the
learning continues, these biases get stronger. When the weights
converge around epoch 5000, only unit 2 has learned a clean
category, recognizing exclusively all three examples of the
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4  3,43,4  44  1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(a) Epoch 0 (random initial weights), accuracy = 58.33%

4  33      1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(b) Epoch 500, accuracy = 66.67%

4  33      1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(c) Epoch 1000, accuracy = 66.67%

4  33      1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(d) Epoch 3000, accuracy = 66.67%

4  33      1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(e) Epoch 5000, accuracy = 66.67%

Fig. 16. Inducer1 weights at various stages of learning to categorize vertical
and horizontal lines.The network gets stuck in a local optimum, where unit
4 has strong representation for two categories, while unit 3has none.

horizontal line in row 4. Units 1 and 3 succumb to the first
pitfall of combining two categories because they have one
pixel in common. Unit 4 demonstrates the second pitfall by
learning two disjoint patterns for which there is no viable
competition from other units. There is only one categorization
change from initial to the final state: One of the examples of
category 4 is reclassified from unit 2 to unit 1 by epoch 500,
which improves classification accuracy from 58% to 67%.

C. Inducer3 Learning

Inducer3 was applied to the same classification task using
a manually constructed prenatal training pattern shown in
Fig. 17. This pattern was designed to produce clustering of
different categories on one unit, similar to the clusteringof
digits seen on some units of Fig. 14(a). Snapshots of the

Fig. 17. A good pattern for prenatal training of Inducer3, designed to
produce a beneficial clustering effect.

4  3,43,4  44  1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(a) Random initial weights, accuracy = 58.33%

1,2,4  33          

Unit 1 Unit 2 Unit 3 Unit 4
(b) Postnatal epoch 0, accuracy = 50.00%

1,2,4  33          

Unit 1 Unit 2 Unit 3 Unit 4
(c) Postnatal epoch 500, accuracy = 58.33%

2,4  33      11  

Unit 1 Unit 2 Unit 3 Unit 4
(d) Postnatal epoch 1000, accuracy = 66.67%

2  33  44  11  

Unit 1 Unit 2 Unit 3 Unit 4
(e) Postnatal epoch 3000, accuracy = 75.00%

2  33  44  11  

Unit 1 Unit 2 Unit 3 Unit 4
(f) Postnatal epoch 5000, accuracy = 83.33%

Fig. 18. Inducer3 weights at various stages of learning to categorize vertical
and horizontal lines.After prenatal training, unit 1 wins most of the patterns.
Based on the remaining patterns, the other units develop distinct categories,
and eventually the whole system converges to good categorization.
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network weights during the whole of postnatal training reveal
how biasing the network in this manner allows it to avoid
local optima and separate the categories better than Inducer1
(Fig. 18).

The prenatal training pattern has been learned by output
unit 1; the other units maintained their random weights until
the end of prenatal training (postnatal epoch 0). As with
Inducer1, the slight random biases of units 2, 3 and 4 gradually
strengthen during postnatal training with examples. However,
unlike with Inducer1, the effect of these biases is diminished
by unit 1, which wins most of the examples in the beginning,
leaving only a few examples for the other units. As a result,
units 2, 3 and 4 specialize to recognize only those examples
for which they initially had the highest bias, while the other
examples are captured by unit 1. As units 2, 3 and 4 specialize,
they gradually start winning other similar examples over unit
1 as well. Simultaneously, unit 1 becomes more specialized to
examples for which it does not have significant competition
from the other units. This process allows units 2, 3 and
4 to incrementally learn and specialize to examples that
are originally represented by unit 1. A good separation of
examples into different units results, in contrast to the confused
categories learned by Inducer1.

The clustering of categories on unit 1 reduced accuracy
from 58% with the random initial weights to 50% at the
end of prenatal training. Yet Inducer3 eventually achievesa
classification accuracy of 83%. This result demonstrates that
prenatal training indeed establishes a suitable starting point
for postnatal training, making it possible for the system asa
whole to achieve good final performance.

Postnatal training is highly sensitive to the choice of prenatal
training patterns. For example, although the pattern in Fig. 19,
which has two additional active pixels on both sides, produces
a clustering effect as well, it does not lead to successful
postnatal learning (Fig. 20). The unit that learns it (unit 2)
matches too many postnatal training patterns. While there are
enough leftover patterns for units 3 and 4 to develop unique
categories, unit 1 does not win any examples. Instead, unit 2
represents two categories, resulting in large error. The final
accuracy achieved by the network is only 67%.

Ahead of time it would have been difficult to guess that the
pattern in Fig. 17 is successful while that in Fig. 19 is not.
In other words, the learning is sensitive to the right bias, and
the patterns that establish them are not obvious. Therefore, a
learning method like evolution is useful for discovering the
appropriate patterns for prenatal training.

D. Effect in More Complex Tasks

In the line-categorization task it is easy to see how the
initial bias established by prenatal training allowed Inducer3
to succeed while Inducer1 failed. In a more complicated task
like digit recognition, where there are many categories andthe
examples are not as clearly defined as the horizontal and ver-
tical lines, it is harder to trace the exact learning path taken by
the algorithm. This path can be highly convoluted, with output
units changing their labels multiple times before converging
to a particular digit. However, the basic mechanisms through

Fig. 19. A bad pattern for prenatal training of Inducer3, designed toproduce
a detrimental clustering effect.

4  3,43,4  44  1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(a) Random initial weights, accuracy = 58.33%

   1,2,3,41,2,3,4          

Unit 1 Unit 2 Unit 3 Unit 4
(b) Postnatal epoch 0, accuracy = 41.67%

   1,2,3,41,2,3,4          

Unit 1 Unit 2 Unit 3 Unit 4
(c) Postnatal epoch 500, accuracy = 41.67%

   2,3,42,3,4      11  

Unit 1 Unit 2 Unit 3 Unit 4
(d) Postnatal epoch 1000, accuracy = 50.00%

   2,32,3  44  11  

Unit 1 Unit 2 Unit 3 Unit 4
(e) Postnatal epoch 3000, accuracy = 66.67%

   2,32,3  44  11  

Unit 1 Unit 2 Unit 3 Unit 4
(f) Postnatal epoch 5000, accuracy = 66.67%

Fig. 20. Inducer3 weights at various stages of learning using a bad prenatal
training pattern.The clustering effect is too strong, preventing unit 1 from
learning anything. This example shows that the system is sensitive to prenatal
training, and that the right patterns are difficult to discover, making evolution
of pattern generators a useful approach.
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which prenatal training allows postnatal training to succeed are
the same: they establish an appropriate bias as a good starting
point from which the solution can be reached easily.

Interestingly, even when the pattern generators can in prin-
ciple evolve to produce more complex patterns, such as those
resembling the actual digits, evolution does not make use
of this possibility. In preliminary experiments with patterns
consisting of multiple Gaussians, the best generators that
evolved were still relatively simple, only establishing biases
similar to those with single Gaussians. Only a few output
units learned during the prenatal phase, while the remaining
units maintained their initial random weights. Apparently, such
learning biases are a more efficient way to achieve good
performance on this task than constructing the recognition
network directly. This principle illustrates an importantand
surprising synergy of evolution and learning.

VII. D ISCUSSION ANDFUTURE WORK

As the classification accuracies in Table II show, Inducer1 is
the least accurate of the three methods. Since the weights are
initialized randomly, the network is not biased in favor of any
learning path. Without a proper bias, it frequently gets stuck
in local optima. On the other hand, the networks in Inducer3
are prenatally trained with the generated patterns. Evolution
converges on a pattern generator that establishes biases ona
few output units, making it easier for the network to separate
the categories during the postnatal learning phase. The result
is a significantly better classification accuracy for Inducer3. In
this section, the benefits of Inducer3 in constructing complex
systems over direct evolution of weights (Inducer2) and over
direct weight initialization methods are analyzed. The biolog-
ical insights from the computational studies are discussedand
directions for future research outlined.

A. Benefits Over Direct Evolution

The direct-evolution approach of Inducer2 discovers good
solutions eventually, and can be seen as a possible alternative
to the pattern-generator approach of Inducer3. As a matter
of fact, Inducer2 takes less computation time than Inducer3
because fitness evaluation of networks in Inducer2 does not in-
volve learning. However, when constructing complex systems
such as those in evolutionary robotics, fitness evaluation of an
individual requires it to live a “lifetime” and interact with its
environment. The individual can either be fixed as in Inducer2,
or it can learn from the environment and improve its fitness,
as in Inducer3. In both cases the duration of a lifetime (i.e., a
generation) is the same. In this respect, the cost of evaluating
an individual is the same for both Inducer2 and Inducer3, and
only the number of generations needs to be compared, as was
done in this paper.

According to this measure, Inducer2 reaches a good level
of accuracy eventually, if evolution is allowed to proceed long
enough. However, Inducer3 reaches this same level in much
fewer generations than Inducer2, as shown by the fitness and
accuracy plots in Fig. 9. In other words, constructing the digit
recognition network is much more efficient through prenatal
pattern generation.

Without a proper bias, Inducer2 requires evolution to search
a large space of possible solutions. The digit recognition
experiment with such small networks is still within the limits
of direct evolution, and a solution will eventually be found.
However, larger problems with larger search spaces may no
longer be tractable for Inducer2. For instance, if the network
were expanded to use the full resolution (39 × 39) of digits
available in the NIST dataset, the size of the evolutionary
search space for Inducer2 would increase from 650 to 15220,
whereas that for Inducer3 would remain constant at 10. Thus,
the results in this paper suggest that the pattern-generator
approach may turn out to be crucial in solving such large-
scale problems.

B. Benefits Over Direct Initialization

Since prenatal learning in Inducer3 establishes the right bias
by initializing the weights for postnatal learning, couldn’t the
same benefits be achieved by setting the weights directly?
Indeed, it is possible to envision such algorithms, e.g., based
on direct evolution. However, they would have to represent the
large parameter space by a compact encoding so that searching
for a good set of parameters becomes manageable.

To analyze this approach, an experiment similar to Inducer3
was designed with such a compact encoding. The weights to
the output units were initialized to oriented Gaussian patterns,
and evolution was used to search through such weight initial-
izations. A set of 10 Gaussians were evolved, each represented
by the same five parameters as those in Inducer3 (Fig. 6). The
final performance was similar to that of Inducer3 (average
classification accuracy of 73.33% in 547 generations over the
11 splits). Thus, direct weight initialization accomplishes es-
sentially the same biasing as prenatal learning from generated
patterns.

However, it is often difficult to construct such parameter-
space encodings, especially when the architecture of the
learner is complex and irregular. It was only possible in
the above experiment because the network architecture is so
simple, associating connection weights one-to-one with input
pixels. In contrast, the pattern generator is a compact encoding
in the input space, which is likely to be smaller and more
regular than the parameter space. For example, in a vision
processing task, the input is the visual field, which is easier
to approximate by a compact encoding than the large and
irregular parameter space of a complex learning algorithm that
processes the input. Thus, the pattern-generator approachmay
be successful in establishing the proper bias even on complex
learning systems that are difficult to initialize directly.

C. Biological Insights

The pattern-generator approach is inspired by observations
from nature (Section II-A), and may in turn be used to gain
a deeper understanding of biological learning systems. The
results obtained using this approach support the biological
hypothesis that genetically determined, internally generated
activity patterns are indeed an efficient mechanism for estab-
lishing the appropriate bias, which is crucial for constructing
complex systems such as those seen in biology (Section I).
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The computational implementation can be further refined to
make more detailed biological predictions, e.g., by using
more biologically realistic learning algorithms and pattern
generators. Such extensions constitute an important direction
of future work.

Devising such biologically realistic computational models
also involves modeling the hierarchical organization of the
visual cortex [86]. The lower levels of this hierarchy have
small retinal receptive fields and perform simple functions
such as orientation processing, while the higher levels have
larger receptive fields and perform more complex functions
such as face detection [43], [68]. Evidence for pattern genera-
tion occurring at the low levels was reported in Section II-A.
Evidently, these biases enable the system to efficiently detect
features in the visual input such as orientation, which are then
used by the higher cortical levels to perform more sophis-
ticated processing. Such features condense the information
to only what is relevant, making high-level learning easier.
A similar hierarchical approach should be useful in building
artificial learners as well. For example, a hierarchical extension
of the digit recognition network in Fig.2 could be constructed
as a two-layer network. In this architecture, the lower layer
would learn the bias necessary to detect features in the prenatal
phase, and these features would then form the inputs to the
upper layer during postnatal learning. As a result, the system
should be able to learn more complex behaviors than what is
possible in a single-layer network.

Alternative ways to establish a proper bias exist in biology
as well. For example, axon growth guided by molecular
gradients has been found to play a crucial role in the early
development of structures in animal nervous systems (see
[31] for review), and could result in a genetically determined
bias. While pattern generation and axonal growth can both in
principle achieve a similar effect, little is known about how
they compare and possibly interact. Computational models can
be built in the future to gain insights into such questions as
well.

In the quest to discover the mechanisms behind development
of the brain, studying the patterns in cortical organization
might prove useful. The network plots in Section V-C show
how the particular weight adaptation mechanisms affect the
organization of the network. The weight plots produced by
competitive learning are smooth and resemble the digits they
represent, while those produced by direct evolution look grainy
and represent only critical features of digits. This observation
suggests that it may be possible to identify which mechanisms
are responsible for particular structures by studying the struc-
ture and organization of the cortex. For example, the smooth,
regular pattern of orientation processing cells observed in the
visual cortex may suggest that such organization is primarily
a result of activity-dependent self-organization, and less of
genetic hardwiring.

D. Extensions to Large Systems and Changing Environments

The competitive learning network for handwritten digit
recognition is used in this paper to demonstrate how the com-
bination of evolved pattern generators and prenatal training

can compensate for the shortcomings of learning algorithms
by discovering an appropriate bias. In this sense, the study
is a proof of concept for the pattern-generator approach.
In future work, this approach needs to be applied to more
complex learners and domains, verifying that it scales up and
is useful more generally. In the specific case of competitive
learning, evolution discovers biases that allow learning to
avoid local optima, such as unorganized output units and
units with clustered digits, by providing a good starting
point through prenatal learning. For other learning algorithms,
prenatal learning can establish biases and avoid local optima
in other ways. These biases depend on the weaknesses of that
particular learner, and specifically those weaknesses thatare
exposed by the experimental conditions and problem domain.
If successful, this effort could ultimately pave the way forthe
engineering of complex systems that are otherwise difficultor
impossible to construct.

In addition to establishing the right biases for postnatal
learning, internal pattern generation could serve a significant
role in adult adaptation to changing environments. If the
system learns only from experience after birth, the prenatally
established biases are soon overridden, and the system would
have difficulty adapting to new environments. However, if
internally generated activity was interleaved with experience-
based learning (as may happen during REM sleep in mammals
[11]), some of the prenatal organization would be retained,
making further adaptation more effective. Such postnatal pat-
terns may explain why animals can learn altered environments
only partially [71], and why the animal spends so much time in
REM sleep during the time when its neural structures are most
plastic [67]: Postnatal internally generated patterns mayhelp
ensure that the learning system does not become too closely
adapted to a particular environment. Applying this idea to
constructing artificial systems for changing environmentsis
a most interesting direction of future work.

VIII. C ONCLUSIONS

Research on brain development in animals has led to
insights on how complex brain structures are constructed
prenatally and postnatally. Spontaneous activity in the brain
before birth may be responsible for rudimentary structuresthat
are found in most animals at birth. Such prenatal training may
have been discovered by evolution to establish a proper bias, so
that the system can learn efficiently from environmental inputs
after birth. This paper demonstrates how the same approach
could work more generally for building complex systems.
The hypothesis is that pretraining a system with patterns
from an evolved generator will establish the required bias to
make learning from the actual data easier. Experiments in the
handwritten digit recognition domain support this hypothesis,
suggesting that complex systems can be effectively constructed
in this way.
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