IEEE Transactions on Evolutionary Computation, Vol. 11, 120 April 2007

Developing Complex Systems Using Evolved
Pattern Generators
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Abstract— Self-organization of connection patterns within included in the training set and the noise in those examples.
brain areas of animals begins prenatally, and has been shown to Choosing an appropriate point in the bias/variance trddeof
depend on internally generated patterns of neural activity. The is therefore critical for building large-scale systems.eTh
neural structures continue to develop postnatally through exte hoice d d h his K b h bl
nally driven patterns, when the sensory systems are exposed to,C oice depends on how much is known about the problem
stimuli from the environment. The internally generated patterns  in advance, and whether such knowledge can be formulated
have been proposed to give the neural system an appropriate as an appropriate bias for the learning algorithm. In famt, f
bias so that it can learn reliably from complex environmental many complex problems, establishing such a bias could be as
stimuli. This paper evaluates the hypothesis that complex ar- hard as solving the problem itself [28].

tificial learning systems can benefit from a similar approach, . L . .
consisting of initial training with patterns from an evolved pattern .Th's .paper is inspired by how nature handles this
generator, followed by training with the actual training set. To bias/variance tradeoff. Complex neural systems are atstt

test this hypothesis, competitive learning networks were trained in a developmental process that combines both genetic and
for recognizing handwritten digits. The results demonstrate how environmental information, as opposed to a pure hardwiring
the approach can improve learning performance by discovering of neural connections (strong bias, small variance) or a

the appropriate initial weight biases, thereby compensating for - t-ind dl . K bi I
weaknesses of the learning algorithm. Because of the smaller PUreé environment-induced learning process (weak biagelar

evolutionary search space, this approach was also found to Variance). Internally generated spontaneous activity anyn
require much fewer generations than direct evolution of network cortical and subcortical sensory areas before birth (s [6
weights. Since discovering the right biases efficiently is critical for [70], [93] for reviews) may be one of the developmental mech-
solving large-scale problems with leaming, these results suggestynisms by which nature deals with this bias/variance tréideo
that internal training pattern generation is an effective method These activity patterns may be specified genetically agipatt
for constructing complex systems. ; .
generators, allowing the system to use the same activity-
dependent learning mechanisms both prenatally to edtablis
bias, as well as postnatally to adapt to the environments&he
observations suggest that learning driven by both inteandl
external inputs can be used to build structures that would be
i ] . too complex to determine directly genetically and too fiegi
T HE tradeoff between bias and variance is a well-knowg jearn directly from highly variable external inputs [45).
issue in machine learning [28], [85]. Given a finite et The main hypothesis studied in this paper is that artificial
of example inputs and outputs (the training set), a learnifgyming systems may achieve the same benefits as biological
system needs to construct a mapping that produces coriigglning systems using a similar approach for establishias
outputs for ne.w.e.xamples (the test ;et). Ther_e is usuallyrfjg approach involves computationally evolving a pattern
large, or even infinite, number of possible mappings coesist generator and using the generated patterns in additiorate re
with the training set, providing different outputs for thense \yor|d data for training. Learning based on pattern genemati
test inputs. Which mapping will be selected is determined Iyas gready been successful in explaining computatiohally
the bias of the learner. The begt results are obtained if tﬁ%logical mechanisms for orientation processing and teee
bias matches the problem and is strong [34]. That way, th&stion may develop [5], [54]. The advantages of this apghoa
outputs for new examples are likely to be correct, and thy pyilding complex systems are studied systematicallpis
same mapping is selected with different training sets amah S\haper.
when the fraining examples are noisy. Such a learner has g, order to test this hypothesis and show how a learning
low variance in its behavior. _ ~_algorithm can benefit from this method, a winner-take-all
Unfortunately, it is usually not clear what the right bias isompetitive learning neural network architecture was istiid
making it necessary to make the bias weaker. Which mappifghe task of recognizing handwritten digits. Experiments
is selected then depends more on the training data. ASygre devised to evaluate the relative merits of three learn-
result, the variance is increased: The selection of the mgpping approaches: (1) competitive learning alone on a set of
becomes unpredictable, depending on which examples W§tning data, (2) evolving (i.e., hardcoding through siated
V. Valsalam and R. Miikkulainen are with the Department of Cotep evolution) the network connection weights directly based
Sciences, The University of Texas at Austin, Austin, TX 78TSA (e-mail: on the same training data, and (3) competitive learning on
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experiments; rather, the aim was to understand how these thFhus, visual experience can influence how the neural cigcuit
learning processes differ and how they might scale up in mda orientation processing develops.
complex tasks. However, relying on environmental input alone has two
The results show that competitive learning alone is weakigherent weaknesses: (1) Self-organization takes timz tla
than the other two methods. Both direct evolution and patteanimal would not be able to act on visual input until the
generation achieve good classification accuracy, but npatt@rocess is almost complete. (2) The self-organized streictu
generation reaches the same level of performance in malgpends critically on the specific input patterns availabtbe
fewer generations. These results suggest that patterrrageneisual environment is variable, the organism may not dgvelo
tion may indeed help in constructing complex artificial syspredictably, and what the learning algorithm discovers maty
tems. This paper presents a proof of concept of this approabk the information most relevant to the organism. Therefore
paving way for possible applications in future work. the neonatal visual system needs to have the proper bias to
The remainder of the paper is organized as follows. Seaddress these issues.
tion 1l reviews biological and computational backgrounaian There is significant evidence that such a bias exists as
related research on learning and evolution. The generaithyp genetically determined visual cortex structures [31],][44
esis studied in this paper, i.e., that prenatal trainingebam For example, orientation-selective cells are found in rawb
evolved pattern generators is an effective way to build demp kittens and ferrets even before they open their eyes; aredlte
artificial learning systems, is formulated in Section Ilhél environment has only limited effects [9], [16], [39]. Psptbg-
learning architecture and the algorithms used to evaluage ical studies further suggest that human newborns can glread
hypothesis are presented in Section 1V, and experimenti$criminate between patterns based on orientation [78]. [
results on the handwritten digit recognition task in Sechb Experiments also show that large-scale orientation peiegs
In order to understand the benefits of the pattern generafion structures exist prior to visual experience, and that these
proach better, a simpler task of line categorization isyareal cortical structures have many of the same features found in
in Section VI. Finally, discussions and possible directidor adults [17], [22], [29]. Prenatal or pre-visual ocular doarice
future work are presented in Section VII. structures (corresponding to binocular vision procegdiaye
also been observed in animal brains [23], [38], [65]. Thus,
although environmental input clearly influences visualteor
structure, many aspects of the visual system appear to be
In the following subsections, the biological motivatiorr foconstructed from a specific blueprint encoded in the genome.
pattern-generation-based prenatal learning is reviewéds What are the biological mechanisms responsible for estab-
review is not meant to be comprehensive, but intended t@sehighing such genetically hardcoded biases, while alsantig
as the inspiration for formulating the computational aggto the system to learn and adapt based on the environment?
presented in this paper. Studies verifying the advantage Tie large-scale structures of the brain, such as the divisio
combining learning with evolution in computation, and preinto different brain areas, are constructed primarily tigto
vious computational work involving pattern generators achemical gradients [56], [66], [89], [91] (see [31] for a
briefly reviewed as well. review). These gradients direct the growing connections to
a general location on the cortical sheet. The gradients are
largely unaffected by environmental stimuli, making thasi
very strong. Incorporating environmental informatioroiris
Many researchers have argued that much of the structurepabcess would be difficult, requiring a transduction meé$ran
the primary visual cortex in mammals develops through selfetween an environmental stimulus and the developmental
organization of input connections from the thalamus, dribg hardware.
visual experience (see e.g. [57], [73] for reviews). Anumdfe  On the other hand, at the level of individual neurons and
classic experiments by Hubel, Wiesel and others showed tlkahnections between small groups, sensory systems act as
altering the visual environment, especially during a caiti just such a transduction mechanism. In a sensory system,
period of early life, can dramatically change the orgamirat patterns in the environment are represented as patterns in
of the visual cortex [40], [41]. For instance, if kittens areeural activity, and these patterns in turn change how the
raised in environments containing a single orientatiorirdur orientation, ocular dominance, and similar map-level pizm
the critical period, a disproportionately large numberlafit tion in the cortex develop (as discussed above). At thislleve
primary visual cortex neurons become responsive to thhe question becomes hogeneticcues could be expressed
orientation compared to the orthogonal orientation [8]L][7 to give the system its bias. First, the system is structuoed t
Even in normal adult animals, the distribution of oriergati utilize information in input activity; second, the amourit o
preferences is slightly biased toward horizontal and eafti information necessary to specify individual connectiongsym
contours [14], [20]. Such a bias would be expected if thee too large to store genetically.
neurons learned orientation selectivity from typical eom The recent discovery of spontaneous activation provides an
ments, which have a similar orientation bias [83]. Convgrseimportant clue to how such genetic bias is expressed: Much
kittens who were raised without patterned visual expegeatc of the neural activity in developing sensory systems is not
all, e.g. by suturing their eyelids shut, have few orieotati caused by the external environment, but generated intgrnal
selective neurons in their visual cortex as an adult [9]].[22n many cortical and subcortical sensory areas, such as the

Il. BACKGROUND AND RELATED WORK

A. Biological Motivation
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Fig. 1. Retinal wave patternsEach of the frames shows a calcium concentration image of gippately 1 mn? of newborn ferret retina, measuring how
active the retinal cells are. Dark gray indicates areas ofemsed activity. This activity is spontaneous (intesngléenerated), because the photoreceptors
have not yet developed at this time. From left to right, thentea on the top row form a 4-second sequence showing the sthexg@ansion of a wave of
activity. The bottom row shows a similar wave 30 seconds.|l&ach activity could be responsible for biasing the visyatam before learning begins from
environmental experience. Reprinted with permission fro6],[2opyright 1996 by the American Association for the Advament of Science.

visual cortex, the retina, the auditory system, and theadpirso they cannot result from visual input. Instead, they arise
cord ( [26], [48], [53], [63], [92], [94]; see [62], [70], [93 from spontaneous recurrent activity in networks of devieigp
for reviews). Such activity may serve several developnmentamacrine cells that provide input to the ganglion cells [13]
functions, such as guiding cell migration, cortical inregfon, [26], [74]. Like visual images, these waves are locally aehé
cortical patterning, and others that are still unknown [95in space and time and thus they could act as visual-likeitrgin
However, one possible role for it is to express a genetic biagput for the developing visual cortex [72].
within a system that is designed to learn from the envirortmen Recent experiments have focused on whether spontaneous
[19], [49], [50], [67], [72], [74]. The genetic informatiois activity is merely permissive for development, perhaps by
represented in the same way as environmental informationkatping newly formed connections alive until visual input
the neural level: as patterns of activity in the input seerabyoccurs, or whether it is truly instructive, determining htive
brain area. In this way, “hardwiring” may actually be leaine structures develop [15], [21], [45], [55], [64], [81], [8284].
The genome thus needs to specify only a simple patteDhe such experiment showing an instructive role involved
generator, a mechanism capable of producing activity pette introducing artificially correlated activity into the ddeping
rather than specifying billions of individual connections visual pathway of ferrets. As a result, the number of orieoma
The bias constructed through such prenatal self-orgaaizatselective cells in the primary visual cortex was signifitant
can guarantee that each organism has a rudimentary levetadfuced [90]. This result shows that spontaneous activity
performance from the start and that initial developmentsdoeannot be only permissive; it has a specific instructionsd ro
not depend solely on the details of the external environmeat least in shaping receptive field tuning properties oficakt
while retaining the flexibility of the neural system to adapteurons.
to environmental input. Thus, internally generated pagter 2) ponto-Geniculo-Occipital Waves: Ponto-geniculo-
can preserve the benefits of a blueprint, within a learningcipital (PGO) waves have been shown to be the hallmark of
system capable of much higher complexity and performanggpid-eye-movement (REM) sleep in cats, ferrets, monkeys,
Evolution has therefore determined a point in the bias#tvee and humans (see [80] for a review). REM sleep has long been
tradeoff that allows constructing a reliable but flexiblst®m pelieved to be important for development, for two reasons:
by combining genetic and environmental information. Developing mammalian embryos spend a large percentage
Although spontaneous activity can arise at all levels of thgf their time in states that look much like adult REM sleep,
developing nervous system, retinal waves and ponto-giericuand the duration of REM sleep is strongly correlated with
occipital (PGO) waves are the best known, and can be udeslv plastic the neural system is, both over development and
to illustrate the general properties of internally genedat across different species [42], [67], [76].
patterns. During and just before REM sleep, PGO waves originate
1) Retinal Waves:In the developing retina of e.g. catsin the brainstem and travel to the LGN, many areas of the
and ferrets, internally generated activity occurs as miéent, visual cortex, and a variety of subcortical areas (see [11]
local waves across groups of ganglion cells [53], [77], [92for a review). In adults, PGO waves are strongly correlated
Fig. 1 shows such an activity in the retina of a newborn ferretith eye movements and with vivid visual imagery in dreams,
The waves begin before photoreceptors have developed [48]ggesting that they activate the visual system as if they we



visual inputs [50]. Experimental studies also suggest®@® In essence, the genetic algorithm transforms the reinfoece
waves are under genetic control: They elicit different\aigti learning problem into a supervised learning problem, foicivh
patterns in different species [24], and the eye movemesitong learning algorithms exist. Along the same lines, the
patterns that are associated with PGO waves are more simdatputs of existing well-performing networks in the popida

in identical twins than in unrelated age-matched subjel®$ [ can be used as targets for supervised training of newly edolv
Thus, PGO waves are another possible source for geneticalgtworks [51], [52]. Such training indirectly selects bditn
controlled training patterns for the visual system. good performance and the ability to train other networks.

In sum, the hypothesis that internally generated patternsin each of the above cases the genetic algorithm is used to
play a role in self-organization of the visual system is welelect specific connection weights, either those that dez la
established biologically. This idea has already inspirethc tuned by learning or those that generate the target outputs.
putational explanations of developmental phenomena, ks vBuch a direct genetic encoding limits the network size and

be reviewed next. complexity, because the search space of all possible ctanec
weights in a fully connected network grows exponentiallyhwi

The pattern-generation hypothesis was previousl testlé)(rfg time for the genetic algorithm to explore the search
P 9 yp P y space. A third approach aims at solving this problem by

using a computational map model of the visual cortex callg rawing motivation from nature, where the size of the genome
HLISSOM [5]-[7], [54]. Two developmental phenomena were 9 ' 9

studied: (1) How orientation-selective responses devieldipe Is several orders of magnitude smaller than the number of

visual cortex prenatally and postnatally, and (2) how humag nnections it is coding [10], [43], [47], [75], [87]: the el

; . : neural connections are established in a developmentaégsoc
newborns come to prefer face-like visual input prenatatig a " ;

. . driven by the genome. Theslevelopmentaéncoding schemes
how these preferences change in early life.

The HLISSOM orientation model resulted in detailed Conr_nap genotype to a phenotype [12], [32], [33], [61] through a

o . . . ._mechanism that imitates how biological organisms develop.
nectivity patterns that match known biological orientatio . o
. N : L The genome encodes a process for constructing an individual
processing circuitry in animals. Training the model prafiat ) . L : .
. ; . : through interaction with its environment, rather than dimp
with three-dot input patterns in turn caused it to respored-pr specifying the individual itself
erentially to pictures of faces, and these preferencesgdthn P 9 '

as they do in infants in later training with visual imageseTh The pattern-generation hypothesis tested in this paper is

experiments with HLISSOM therefore elucidate computatiorkljased on the developmental approach as well: the genome

ally how self-organization based on internal pattern g encodes a pattern generator which is then used together with

can account for the observed biological structures, regui the environment to construct the individual. This approech

. s .. described in more detail in the next section.
species-specific biases such as face preferences. Buibting

the prior work with HLISSOM, the goal of this paper is to

study the pattern generator approach as a machine learning
technique for constructing complex artificial learningteyss. ~ The simulations with HLISSOM demonstrated how genetic
Instead of designing the generator by hand, generators argl environmental influences may interact in the developing
evolved computationally to provide a suitable bias for finadisual system. A more general hypothesis is evaluated & thi

Ill. HYPOTHESIS

learning in the actual task. paper: Learning from generated patterns followed by legrni
from the actual training data is a general-purpose problem-
C. Computational Merging of Learning and Evolution solving approach that can be used to construct complex

. ) artificial systems effectively. Following the biologicailaogy,
A related idea that has been explored extensively by sevelrﬁl two phases are called prenatal and postnatal learning in

researchers is combining evolution with learning from thﬁﬂs paper. The following subsections develop this apgroac

environment, In many such approaches, initial connectigyy giscuss how it facilitates designing an appropriates bia
weights are evolved for a neural network that later adagsth

through learning. Evolution S(_alects individuals with whig E;dc?hrgprlsgui);staenrgil.z'g:einhyt/ﬁé)tlr;?::ssljcfos;gfj experintgntal
patterns that have the capacity to learn good performance,
rather than individuals with good performance at birth [37]
[58]. In other words, learning establishes explorationtie t A- Approach
local vicinity of the genetically specified solution. Evtibn In the most straightforward approach, the pattern generato
can search a large search space efficiently, leaving locain be designed specifically for the task, as was done with
optimization to the learning algorithm rather than haviog tHLISSOM. Such a generator allows the engineer to express a
find the correct weight patterns directly. This process Itesudesired bias without having to hard-code it into a particula
in the Baldwin effect [2]: learning influences evolution aveinflexible architecture. Biasing the learning system insthi
though acquired characteristics are not inherited. way may allow it to solve problems that would otherwise be
A second approach is to use genetic algorithms to selelifficult to solve. For example, simple patterns can be ledrn
weight values for “teaching units” in a network rather thabefore real data, which establishes the necessary bias by
the actual network weights [59], [60]. These units spedify t moving the starting point closer to the solution, thus avad
target outputs for training, which are not known in advancécal optima in the search space of solutions [25].



More significantly, the pattern generator can be constductprenatally gives the system the required bias for succiygssfu
automatically using evolutionary algorithms (EA). In thidearning more complex shapes in the postnatal phase. In
approach, detailed domain-specific knowledge necessaryctmtrast, it is not immediately clear how such knowledgddou
design the generator by hand is not needed. For instanibe,expressed as constraints on the parameters of the lgarnin
studying real faces may lead one to suggest that a three-gypstem.
configuration would be a good training pattern to bootstrap 2) Optimizing bias by evolutionary searcR.ostnatal train-

a face detector as was done with HLISSOM. However, ofténg with actual training examples, when combined with evo-
such knowledge can only be obtained through trial and errdution, further refines the bias that was initially encoded i
and it would be desirable to have an algorithm to do it autemadhe pattern generator. In the example above, evolution migh
ically. Indeed, the learning system, the pattern generatoit discover that prenatal training patterns containing seeting
the EA together can be considered a single general-purptise segments leads to better postnatal training perfocman
adaptive algorithm. in identifying polygons, and might consequently includetsu

This approach consists of three parts: (1) evolving tHeatures in the generated patterns. The features couldaappe
pattern generator, (2) prenatal learning from generatad p@ different locations, orientations, and scales, allavihe
terns, and (3) postnatal learning from actual training dat learning system to adapt to various geometric transfoonati
in nature, the combination of learning and evolution in thi§he result is a pattern generator that is able to express a mor
approach represents a balance between adaptation aediffespecific bias, making postnatal learning even more effectiv
time scales (i.e., determines a proper tradeoff betweendnid Extracting the features needed for expressing such a bias by
variance; Section |). Short-term learning (prenatal fobd manually examining the training set is generally very diffic
by postnatal learning) allows an individual learner to leeo  3) Compact encoding of bias in generator encodiri®at-
well suited for the particular tasks on which it is testednge tern generators can generally be specified in a highly cotnpac
term adaptation (i.e., selection by the EA), along with ptah manner. For instance, line segments can be specified in terms
learning ensures that postnatal learning is properly Hiasef their end points and Gaussian blobs in terms of location
avoiding getting stuck in local optima, and therefore mor@nd width. Such compact encodings facilitate evolutionary
likely to succeed. search, making it possible to arrive at different input s
by few simple manipulations. Efficient data representatioh
this type are an essential part of designing the right bias fo
complex systems [1], [28].

The bias/variance discussion in Section | suggests tha®) Transforming bias to parameter space through learning:
choosing the right bias for learning systems is both impartaThe bias must be specified in terms of the learning system
and difficult. As an illustrative instance of such a systenparameters before learning from actual training exampées ¢
consider the task of learning to recognize two-dimensioniaégin. This transformation is achieved through prenatainie
objects from training examples. This task is difficult foing. Depending on the sophistication and complexity of the
several reasons. First, the number of objects (targeteddss learning algorithm, it is possible to synthesize biasesrtav
classification) that the system needs to be able to disshgucomplex and emergent properties in the parameter space from
from each other can be very large. Second, the system needsiiteple input patterns. For example, using the “noisy disk”
be able to identify these objects in a transformation-ilavdr model of retinal waves as prenatal training patterns, HOBIS
manner, i.e., regardless of their location, orientation scale. experiments demonstrated how complex orientation praugss
Third, a host of other variables such as noise, occlusiam$, &ircuitry similar to that seen in the visual cortex of animal
background changes can further distort the input. Let u$ n@an develop [5], [54]. Thus, prenatal training makes it flaes
see how combining learning with evolved pattern generatars express the bias in complex parameter spaces, which may
facilitates designing the appropriate bias to make legrauch be difficult to achieve by other means. Moreover, the bias
a complex system possible. established by prenatal learning is likely to be robust ragjai

1) Expressing bias in the input spacdn the pattern- distortions in the input, because the learning system besom
generator approach, domain-specific knowledge is specifigetter tuned to the relevant features in the input.
through the pattern generator, i.e., in the input spacéerat The above four properties make it possible to establish
than in the parameter space of the learner. This approactihis proper bias efficiently. As a result, the pattern-geioera
effective because knowledge of the problem is usually avadpproach may allow constructing complex systems that would
able in the input space. For example, in the two-dimensionag infeasible to build by applying postnatal learning digec
object recognition domain, we may be told that all objecteehalnstead of pattern generation, complex systems may also be
straight edges, thus restricting the number of target efai®e  built using more traditional approaches, such as evolviegnt
system needs to identify. In this case, we may choose to encdiitectly. The obvious disadvantage of the direct EA appnoac
a pattern generator that generates straight line segmentdsothat it requires optimizing a large number of parameters,
combinations of them as prenatal training patterns. Sitgjla which could take prohibitively long. In contrast, patterang
in constructing a face-recognition system, three-dotepast erators are evolved in the smaller space of few generator
may be used to bias the system towards the essential fapatameters, and such a system is therefore expected to find
features (i.e. the eyes and the mouth) before training thegood solution in fewer generations. Thus, the approach
system with images of real faces. Learning such pattersisould be able to perform better than direct EA in constnggcti

B. Constructing Complex Systems
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activations from the input pattern consisting of 64 pixais fed to the input —
units of the network, which also contains a bias unit. The dfpat units each
correspond to a classification of the input as one of the lilsglitne one with
the highest activation is chosen as the answer of the netianing training,
the weights to this unit are adjusted towards the input pattemaking that
unit more likely to win similar patterns in the future.

Fitnesses

Produce the Next
Generation of
Networks
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complex systems.

Fig. 4. The direct evolution approaclnducer2 produces a classifier network
IV. TESTING THEHYPOTHESIS by evolving the weights of a network that has the same ardhite@as that
produced by Inducerl. This method corresponds to hardwitiegbehavior
The hypothesis is tested in this paper on the task gdnetically (there is no learning). The thick lines indécttte entire population

constructing a single-layer artificial neural network teritify ~©f neworks.
the handwritten digits 0 to 9. The network receives the digit

as its input and produces the classification of each digitsas i . o L - .
output. Classification accuracy and learning effort is cared effect' IS poss[ble, and (4) itis a self-organizing, unsuper

for postnatal learning, direct evolution, and pattern getoe algorithm, which makes the pattern generator design simple

approaches. These experiments are not designed to proJszQOt having to produce targets for the inputs it generates f

the best possible performance for classification of harttkwri prenatal. Igarning. . . . ) .
digits, but to verify the hypothesis that an appropriatesbia The digits are written in af x 8 grid of pixels (Fig. 2). The

for learning can be established using the pattern-gerreraftPuts to the network consist of the binary activations & th
approach. 64 grid locations and a bias unit. The network has 10 outputs,

one for each of the 10 digits to be recognized. Each output
- . unit is connected directly to each of the inputs (includihg t
A. Competitive Learning bias).

The hypothesis is tested using competitive learning [35], Learning starts by initializing the network connection
[69] as the learning algorithm. Even though other algorghnweights w;; between an input unit and an output unitj
may be more powerful in classification tasks in generaandomly, and normalizing such that the squares of the w&igh
competitive learning is a good choice for four reasons: (1) each output unit sum to one:
it is a well known abstraction of biological learning, based

Hebbian adaptation of synaptic efficacies and winner-take- wi; = Wi 1)
competition [36], and a good surrogate for a whole class of \/ 2w wij

learning algorithms; (2) it is sensitive to initial weighetngs,
i.e., prenatal training is likely to have a significant effg®) When the network is presented with an input pattern, each
it is relatively simple, so that analyzing and understagditis output unit j computes the weighted sumy of its input
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further with a training pattern set, like Inducerl. The ewi@n run produces two results: the champion pattern gemreeatd the classifier network trained
using it. The thick lines indicate the entire population aftprn generators or corresponding networks.

activationsz;: as in Inducerl. A population of networks is initialized with
sj = Zwijxi' (2) random weights at the beginning of evolution. In any given
i generation, the classification accuracy of each networkhen t
Jfaining set is measured to compute its fitness, after which
the next generation of networks is produced. The evoluson i
terminated once the fitness on a validation set begins td leve
Wiy (t 4 1) = wiy (t) + n(x; — wip(t)), (3) off, and the network at that point is output as the classifiee

) , . encoding and evolution of the network weights are discussed
where is the leamning rate. After the update, the Weighty, yetail in Section IV-C. This method demonstrates a direct

to this unit_ are again normz_;llized such Fhat their squares S?é%lutionary algorithm in constructing complex systens; i
to one. This process constitutes a basic competitive I'egm'biological terms, it represents an organism whose behdsior
method that is at the core of many unsupervised Ieami@ﬂtirely genetically determined

algorithms [3], [27], [30], [46], [88].

The output unit with the highest sum is the winner for th
pattern. The weights to this unitare then updated as

3) Inducer3: Constructing the third classifier network in-
volves evolving a pattern generator (Fig. 5). The network
architecture is the same as in Inducerl. The process begins b

To evaluate the benefits of training with generated patfermsitializing a population of pattern generators with rantpa-
three different ways of constructing the neural network arameter values. In any given generation of evolution, a agtw
compared. initialized with random weights is produced for each patter

1) Inducerl: First, a network is trained using competitivegenerator in the population. This network is then trainesin
learning alone (Fig. 3). This process involves initialgzithe competitive learning) with a set of patterns produced by the
network with random weights and training it using a set gdattern generator during the prenatal training phase.r Affie
examples until its weights converge. In other words, leayni prenatal training is complete, the resulting network isnid
is carried out without any intentional bias. Using a biologion a set of examples during the postnatal training phase.
cal analogy, this method corresponds to an organism whaoSkier postnatal training, the fitness of the pattern germerist
learning is entirely postnatal, without any specific gecadly calculated based on how well the final network performs on the
determined biases. training set. After all pattern generators in the populatiave

2) Inducer2: In the second method (Fig. 4), the connedeen evaluated in this manner, the next generation of patter
tion weights of the network are evolved directly; there igenerators is created. The evolution is terminated once the
no competitive learning phase at all. However, the netwofitness on a validation set begins to level off, and the nekwor
architecture is the same as in Inducerl, and classificaionamd the corresponding pattern generator at that point apeibu
examples is done by competition between the output unés the result of evolution. The encoding and evolution of the

B. Experiments



pattern generator are discussed in detail in Section IVilds T A
method implements the approach outlined in Section IlI-A
for constructing a complex system based on evolved pattern
generators; biologically, it corresponds to determinimg Ibias

of the learning system genetically.

The expected outcome of these comparisons is that the
environmentally driven learner (Inducerl) is likely to get
stuck in suboptimal local optima, because it will start far 7 [~
from the desired solution, without any bias toward it. The
direct EA (Inducer2), on the other hand, would require a
prohibitively large number of iterations to produce a sgst@
classifier network, because it has to search in an extremel))//
high-dimensional space of network weights (650 weights, as
explained below in Section IV-C). In contrast, the pattern-
generator-driven system (Inducer3) should be able to de&sco v
a solution quickly compared to the direct EA approach begaus | |
it only needs to evolve a small number of parameters of the d,
generator (10 parameters, as explained below in Sectid@)IV-

The competitive learning method used in Inducerl wadd. 6. Parameterization of prenatal training pattern@riented Gaussian
patterns are parameterized by, the standard deviation in the-direction;

already described completely in SeCtion. IV-A; the eYOIUHFy oy, the standard deviation in thg-direction; 6, the rotation angled,:, the

approach of Inducer2 and Inducer3 will be described in thisplacement in the-direction; andd,, the displacement in thg-direction.

next two subsections By varying these parameters, a variety of prenatal trainiatiepns can be
’ produced.

Y

C. Evolving Networks Directly

In order to evolve the Weight§ of the network directly, in thb_ Evolving Pattern Generators
Inducer2 approach each gene is coded as an array of 65 weight
values (corresponding to 64 inputs and 1 bias) associatedtS Prenatal training patterns in the Inducer3 approach,
with an output unit. The weights are floating point valuegingle oriented two-dimensional Gaussian patterns ofifigat
between 0 (inclusive) and a specified maximum bound ofPPINt values between 0 and 1 were used. By varying the pa-
(exclusive). The genes for all the output units are conedézh rameters of the Gaussian, a variety of shapes can be praduced
to form a chromosome, which constitutes an individual iihe parameters include the size, orientation, and centtreof
the population. Each chromosome therefore consists of @@ussian, and are defined as;, the standard deviation of
genes, one for each output unit of the network. This encodiffif Gaussian in the-direction; o, the standard deviation in
contributes a total of 650 weight values for evolution torska the y-direction; 6, the rotation angled., the displacement in
through. the z-direction; andd,, the displacement in thg-direction

The weights are mutated by applying Gaussian perturbatididg. 6)-
on the floating-point values. The standard deviation of the Each pattern generator encodes a distribution of such Gaus-
perturbation is calculated as the product of a “mutationoidc Sians. For each of the five parameters, a normal probabil-
and the maximum value allowed for weights. If the mutateldy distribution is encoded as a mean and variance pair. A
value lies outside the allowed legal range of values, ti@ttern is generated by obtaining values for the Gaussian
mutation is ignored and the weight is not changed. THrameters by sampling these distributions. Such an emgodi
probability of mutation is controlled by a “mutation rateallows evolution to control which Gaussians are generated b
evolution parameter. manipulating their probabilities.

For each individual chosen for mating, a partner is selectedThe mean and variance parameters in the encoding are
randomly from the population and an offspring is creategbnstrained to restrict the search space, making evolutine
through uniform crossover at two levels: individual weighefficient. The means of the distributions from whi¢handd,
values and whole genes. That is, genes and weight fields in &ie drawn are constrained to lie inside the8 pixel grid, and
genes of the parent are randomly selected and replaced byttt variances are not allowed to be more than twice the size
corresponding piece of the genome from the partner to peoduaf the grid. These constraints ensure that the centers of mos
the offspring. This process is controlled by a “mating rateof the generated patterns lie within the grid. The means and
parameter for gene fields and another one for whole genes/ariances of ther, ando, distributions are constrained to lie

In every generation, all individuals are given a chance io the intervals[0,2) and [0, 4) respectively, so that most of
improve their fitness either through mutation or by matinthe generated patterns are smaller than the grid. Similddy
with a randomly chosen individual. If the fitness improves asean and variance of the distribgtion @fare constrained
a result of mutation or mating, then the offspring replades tto lie in the ranges0,7) and [0, %-) respectively, so that
parent in the population for the next generation; otherwige most samples lie if0, 7), which covers the entire range of
parent is retained in the population, keeping the populatierientations.
size constant. The pattern generator chromosome is a simple string of
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Fig. 7. Measuring classification accuracyhe output units of the network
are first labeled using a validation set. Using these laltbés classification
accuracy of this network on the test set can be determinedpbiyting how

often a unit with the right label wins.

Fig. 8. Example inputs in the handwritten digit recognition domaline
. . . . o original 39 x 39 gray-scale images from the NIST database were downsampled
numbers, instead of being divided into genes like in INdRCerang thresholded to form a simple but challenging set of exasriplean 11-

since it contains only one set of Gaussian specifications. Thld crossvalidation experiment.
encoding can in principle be generalized to multiple Gaussi

each encoded in a separate gene. Such an encoding can
produce more complicated patterns; however, single Gaossi

TABLE |
PARAMETERS FOR EVOLUTION AND LEARNING

were found to be sufficient to test the hypothesis. Selection [[ Inducerl Inducer2 _Inducer3
mutation, and crossover (at the level of mean and variance ~Prenatal learning raie 0.005
parameters) are performed as in the Inducer2 approach. Prenatal max. epochs 100
Postnatal learning rat¢] 0.0005 0.0005
Postnatal max. epochy§ 1000 1000
E. Estimating Classification Accuracy Mutation factor 0.2 0.2
. Mutation rate 0.9 0.5
Two methods are used to estimate how well the networks Mating rate (fields) 0.1 0.05
perform in their task. The first measures classification emyu Mating rate (genes) 0.05 0.025
directly, and the second measures fitness more continuously g;g“gf;g{tgﬁlnszt 10 130
Both methods req_uire computingla X 10 confusion rpatrix, Population size 55 55
whose(i, j) entry is the number of times output upitwon Max. generations 9000 9000

when examples of digit were presented to the network.

1) Percentage Correct:The first method calculates the
percentage of examples that are correctly recognized fihem t V. RESULTS
test set (Fig. 7). Since neither competitive learning n@& th |, order to compare the performance of the three ap-
evolved neural network have any inherent labels on the ‘DUtRHoaches, a crossvalidation experiment was run on the hand-
units to indicate which digits they each represent, theliae |, itten digit recognition domain. In this section, the data
must be done after learning, based on the performance of ity the parameterization of the experiment will be desdribe
network on the validation set. Each output upits assigned ipe accuracy of the resulting networks measured, and the

the label of the first row with the highest value in columnf  harformance of the networks analyzed in terms of evolved
the confusion matrix on the validation set. In some cases, Watierns and network weights.

same label is assigned to multiple output units, some digits
may not be represented by any output unit, and some units
may not get labeled at all (if they do not win any inputsy Method
After labeling, the classification accuracy on the test s&t ¢ The three classifier network inducers were evaluated using a
be determined. 2992 image subset of the National Institute for Standards an
2) Fitness EstimationThe second method measures classiechnology (NIST) handwritten digit database. The images
fication accuracy based on how close to orthogonal the rowsveére originally gray-scale values on3a x 39 grid, and were
the confusion matrix are. If the classifier is perfect thezré¢h downsampled t8 x 8 binary values to make the inputs simpler
can be only one non-zero entry in each column, corresponditogcode and represent in the network, and at the same time to
to the digit that the unit recognizes. The average angledxtw make the recognition task more challenging. A few examples
the rows can therefore be used as a measure of classificafrem the resulting dataset are shown in Fig. 8. The dataset
accuracy without having to label the output units. was shuffled and split into 11 equal-size parts so that a 11-
During evolution, the confusion matrix is calculated fronfold crossvalidation experiment could be run on it. In each
the training set, and the average angle is used as fithesobthe 11 splits, a different part was used for testing the
networks and pattern generators. Such a fithess provideslassifier accuracy, another different part for validat{oe.,
smoother fitness landscape for evolution than the percentagetermining when to stop evolution), and the remaining nine
correct method. It rewards changes in the confusion matgearts for training. The validation set was also used forliabe
that may not result in any immediate increase in the pergentahe output units, in order to obtain labels that generalief w
accuracy, but are likely to do so when accumulated over abveto unseen examples.
generations. In contrast, the performance of final networksSuitable values for the evolution and competitive learning
produced by all three approaches is measured using pegeenfzarameters were determined experimentally prior to therexp
correct. iment (Table ). Competitive learning in Inducerl and Inelt&
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Fig. 9. Improvement in fitness and accuracy during one represestagvolution run of Inducer2 and InducerBhe final performance of Inducerl is also
shown for comparison. The pattern-generator-based leghm@ucer3) reaches the same good level of performance mucieretnan the direct evolution
learner (Inducer2), suggesting that it may be an effectiketesyy for constructing complex systems.

TABLE I

C. Analysis of Patterns and Networks
AVERAGE CLASSIFICATION ACCURACIES

T TnducerT Tnducerz Tnducer3 Begause each oquut unit in thg compeFitiye_ Iearnir)g net-
Average Accuracy OB 6337 = =23 work is cqnnected d!rectly Fo eagh input unit, it is possnnig
Average Generations 781 337 visualize its connection weights in the same way as the input
patterns, i.e., on & x 8 grid. Such a visualization makes it
clear what kinds of input patterns that output unit is most
likely to win in the competition (Equation 2).

was continued until all weights changed less than? in an . : T .
. The connection weights of the network initialized with ran-
epoch, or when a maximum number of epochs was reachad

and the network of the final epoch was taken as the resu Em weights, used as the start!ng pomt for postnatal Iegrm'
- : . in"Inducerl and prenatal learning in Inducer3, are shown in
The training examples were presented in a different rand

order in each epoch. Evolution in Inducer2 and Inducer3 w. I 10. The final network weights for one exampl_e spht of
. ) . S e dataset are shown for Inducerl and Inducer2 in Figs. 11
continued until the fithess on the validation set leveled o

ie., did not improve by more thab0—5 over the next 700 and 12. The prenatally trained weigh.ts. anq final weights of
generations, and the champion of this generation was thlgﬁiucers are shown for the same split in Fig. 14, and a few
selected as the result of evolution. example_patt(_arns produced by fche pattern generator thgt was
evolved in this run are shown in Fig. 13. In all the weight
figures, if an output unit wins a large number of examples of
a particular digit from the test set (i.e., at least 75% of the
largest number of wins for that digit by any unit), then that

digit is shown on top of that unit. Thus, if the network is a doo

The average classification accuracy over the 11-fold crogdassifier, such as the final network of Inducer3 (Fig. 14(b))
validation experiment is shown in Table II. The first resslt & different single digit will be shown on top of every unit,
that Inducerl is significantly less accurate than eitheuded? indicating that each digit is recognized as a separate .class
or Inducer3 (the difference is statistically significantaling [N contrast, in a poor classifier, such as the random initial
to pairwise Studentsi-test, with p < 0.01,df = 10). network (Fig. 10), some units do not represent any digits at
Apparently, Inducer3 is able to discover suitable biases tHll, while other units represent multiple digits, and sortgtsl
allow competitive learning to avoid local optima. Secondfre represented by multiple units.

Inducer3 achieves the same high level of accuracy in a muchSeveral interesting observations can be made based on these
smaller number of generations than Inducer2 (their diffeee figures. First, note that during each input presentatios, th

is statistically not significant according to pairwise Stantist- competitive learning algorithm makes the weight vectorhef t
test, withp > 0.18, df = 10). Evolution only needs to discoverwinning unit more similar to that input (Equation 3). There-

a suitable bias for learning instead of the final networlore, with both Inducerl and Inducer3, the learned weights
which can be done much quicker. These results are furti#id up visually resembling the digits the unit wins in the
illustrated in Fig. 9, where fitness and accuracy are plotté@mpetition. That is, they approach the mathematical aeera
over generations for one example evolution run. Inducefd the bitmaps for all the examples of that digit in the trami
achieves the same good level of performance much earli&t.

than Inducer2, and both are significantly better than Induce On the other hand, the weights of Inducer2 look very

B. Performance
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7 79 4,5 0,2,6 13,789
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Fig. 10. Random weights to each output unit of the initial networkduselnducerl and Inducer3The weights are arranged in &nx 8 grid corresponding
to the pixels in the input image. Darker squares represeongér weights. A digit on top indicates that this unit winsaege number of examples of that

digit. The assignment of digits to units is uneven, indiaatihat this network is a poor classifier.
6

78,9 0 3
@ ﬁ ﬁ m \
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Fig. 11. Final weights for each output unit of Inducerl for an examgpdit. Most of the weights have converged to a configuration thatatest the input
digit patterns; however, two units still have unorganizeeights, while unit 1 represents a combination of digits 7, 8 &nThis result demonstrates how
competitive learning can get stuck in a local optimum when &doot start with an appropriate initial bias.

AROET L EURE

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Fig. 12. Final weights for the output units of Inducer2 for the samét ss in Fig. 11. All digits except 7 and 9 are properly represented; howesiace
the weights are evolved directly, evolution has discovevetht patterns that represent features crucial for diaation, rather than the digits themselves.

= . it o P B #F

Fig. 13. A few example patterns produced by the pattern generatdrérsame split as Figs. 11 and 1Rach pattern is formed by sampling the distribution
for each of the five parameters for oriented Gaussians. Thatserms tend to be located around the middle and slightlyzbotal. The weights resulting
from prenatal training with such patterns are shown in FifalL

1,4,7,9 7 5 8 0,2,5,6 3,57,8
11 RN
T
Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10
(a) Weights after prenatal training
1 9 6 7 5 8 2 0

111

&7 43

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10
(b) Final weights

Fig. 14. Weights for each output unit of Inducer3 for the same spliinaBigs. 11 and 12, trained prenatally with patterns like slean Fig. 13.Comparing
these results to the random weights network in Fig. 10, itéarcthat only two of the ten units learn a significant bias {&}, these biases are sufficient for
postnatal training to perform better than in Inducerl andligits are represented well by the final weight patterns (b)
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different. They are adjusted by the evolutionary algorith
which searches the weight space globally, and finds a wei [
combination that achieves high fitness. There is no presgsure I
make the weights look like the inputs, as long as they res
in the right classifications on the training set. Indeed, lose
inspection it is possible to identify certain strategigatiet
weight values that cause the units to respond more stroogly
particular digits than others. For example, digit O is repraed "H H E N
by a loop of strong weights enclosing a small weaker region i
unit 3, and the bottom part of digit 6 is represented by stro
weights at the bottom of unit 6. However, digits 7 and 9 ar
still being confused in this run because the strong region
the upper half of unit 5 matches both digits. Evolution was n . T
able to find the few weight settings that help distinguistséhe
two rather similar digits, although it succeeded in sepagat
them in some other runs. Thus, the partial and approximate Category 1 Category 2 Category 3 Category 4
matches that the weight patterns have with particular gligit o o . o
give them sufcient acvantage (o win examples of thoseaiiglf, 15, e e o ctesorzeton ol verca and oni e
in the competition with other units. In effect, evolutionshaand two complementary dotted lines. This design makes thet effgrenatal
discovered a set of reliable features that allows perfogrtiie  training explicit, as shown in Figs. 16 — 20.
classification task reliably, without forming internal nedsl of
the digits themselves.

The final weight patterns of Inducerl illustrate some of th@. lllustrative Example
weaknesses of the competitive learning algorithm. Digit8 7 To illustrate more clearly the effect of prenatal learning
and 9 are particularly difficult for it to distinguish, bes®u in the digit recognition task, which we will return to in
many pixels are common between them in the handwritirgection VI-D, let us first consider a simpler problem: that of
samples of many people (Fig. 8). For example, digits 7 amghrning to categorize vertical and horizontal lines. Ehare
9 are sometimes distinguished only by whether the top pasur categories to be learned: A vertical line in column 4 of
of the digit is open or closed. Lacking proper initial weighthe input grid, a vertical line in column 5, a horizontal lime
biases that would allow the network to respond to such smedly 4, and a horizontal line in row 5 (Fig. 15). The training
differences, Inducerl is likely to get stuck in a local optim set consists of 12 examples in total, with three examples for
with one unit representing multiple digits. Since only theach of the four categories: A solid line and two dotted lines
unit that wins gets to adapt, another unit that may have haght are pixel complements of each other.
the potential to represent one of the digits will not get the Competitive learning is likely to categorize examples base
chance to learn that digit. For the same reason, some uRjis how similar they are, i.e., how many pixels they have
may never learn; they remain unorganized, still retainfigrt in common. The examples of a given vertical or horizontal
initial random weights, even at the end of training like &nitcategory have several pixels in common, and it should be
3 and 9 in Fig. 11. possible to learn to categorize them correctly. However, a

These problems are avoided to a large extent in Inducer2 ajifinmon pixel also exists between a vertical and a horizontal
Inducer3, resulting in better classification accuracyut®t2 |ine. If an output unit exists with particularly high weighon
is based on a very different approach: finding features thft pixel, the learning algorithm may learn to map them both
allow separating these digits to different units, as diseds to that unit. The learning may also fail if an output unit has
in the previous subsection. However, the process in whigfitial weights that allow it to win examples of two categesi
Inducer3 overcomes these problems is interesting, and upSn if these categories have nothing in common. If there
close examination gives us insights into how prenatal imgin are no viable competitors for these categories, the unit wil

can establish just the right bias for successful competitigradually learn to respond strongly to both of them.
learning, as will be discussed next.

VI. EFFECT OFPRENATAL TRAINING B. Inducerl Learning

The most obvious way to establish an appropriate biasCompetitive learning in Inducerl fails in exactly these two
would be to separate each digit to a different unit as much &ays in the line classification problem (Fig. 16). The ledrne
possible already in prenatal training, so that postnagéhitng weight patterns for each output unit are gradually seen to
would find it easier to complete the separation. Howeves, thkmerge from epoch 500 onward. With careful observation, it
effect is typically not seen in the prenatal training phage @ possible to see that initial biases for these patterreadir
Inducer3. Only units 1 and 5 adapt their weights, and units éxisted in the initial random weights (epoch 0), and as the
8 and 10 end up representing several different digit classésarning continues, these biases get stronger. When thétseig
How does such seemingly counterproductive initial bias enakonverge around epoch 5000, only unit 2 has learned a clean
postnatal learning easier? category, recognizing exclusively all three examples @& th
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Unit 1 Unit 2 Unit 3 Unit 4 ) o _
(a) Epoch 0 (random initial weights), accuracy = 58.33% Fig. 17. A good pattern for prenatal training of Inducer3, designed t
4 3 12 produce a beneficial clustering effect.
4 34 4 1,2
(b) Epoch 500, accuracy = 66.67%
4 3 Unit 1 Unit 2 Unit 3 Unit 4

(a) Random initial weights, accuracy = 58.33%

B 30

12,4

B B.% RN

Unit 1 Unit 2 Unit 3 Unit 4
(c) Epoch 1000, accuracy = 66.67%
4 3 1.2 Unit 1 Unit 2 Unit 3 Unit 4
’ (b) Postnatal epoch 0, accuracy = 50.00%
1,2,4 3
T
(N WS ||
Unit 1 Unit 2 Unit 3 Unit 4 h
(d) Epoch 3000, accuracy = 66.67% L]
4 3 1.2 Unit 1 Unit 2 Unit 3 Unit 4
’ (c) Postnatal epoch 500, accuracy = 58.33%
2,4 3 1
[ e
(NN S ||
Unit 1 Unit 2 Unit 3 Unit 4
(e) Epoch 5000, accuracy = 66.67%

Unit 1 Unit 2 Unit 3 Unit 4

(d) Postnatal epoch 1000, accuracy = 66.67%
Fig. 16. Inducerl weights at various stages of learning to categoviertical

and horizontal linesThe network gets stuck in a local optimum, where unit 2 3 4 1
4 has strong representation for two categories, while umias none.

.

o N NN

horizontal line in row 4. Units 1 and 3 succumb to the first
pitfall of combining two categories because they have one
pixel in common. Unit 4 demonstrates the second pitfall by ~ Unit1 © Postna‘ﬁ'glite%och 3000 ;’é‘cibfacy s oogoni“l
learning two disjoint patterns for which there is no viable ' '

competition from other units. There is only one categoiizat 2 3 4 !
change from initial to the final state: One of the examples of

category 4 is reclassified from unit 2 to unit 1 by epoch 500, AR NN

which improves classification accuracy from 58% to 67%. R R R

C. Inducer3 Learning Unit 1 Unit 2 Unit 3 Unit 4

(f) Postnatal epoch 5000, accuracy = 83.33%
Inducer3 was applied to the same classification task using

a manually constructed prenatal training pattern shown fy. 18. Inducer3 weights at various stages of learning to categoviertical
Fig. 17. This pattern was designed to produce clustering &fd horizontal linesAfter prenatal training, unit 1 wins most of the patterns.

. . . A . Based on the remaining patterns, the other units develomdistategories,
different categories on one unit, similar to the clusterofg _ eventually the whole system converges to good categimiz

digits seen on some units of Fig. 14(a). Snapshots of the
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network weights during the whole of postnatal training edve
how biasing the network in this manner allows it to avoid
local optima and separate the categories better than Intluce
(Fig. 18).

The prenatal training pattern has been learned by output
unit 1; the other units m_al_ntamed their random Welghts'“ngig. 19. A bad pattern for prenatal training of Inducer3, designegtoduce
the end of prenatal training (postnatal epoch 0). As Withigetrimental clustering effect.

Inducerl, the slight random biases of units 2, 3 and 4 gradual
strengthen during postnatal training with examples. Harev

4 3,4 4 1,2
unlike with Inducerl, the effect of these biases is dimiaish
by unit 1, which wins most of the examples in the beginning,
leaving only a few examples for the other units. As a result,
units 2, 3 and 4 specialize to recognize only those example
for which they initially had the highest bias, while the athe

examples are captured by unit 1. As units 2, 3 and 4 specialize ~ Unit1 @ Rando L2 weights gcncihfacy gzt
they gradually start winning other similar examples oveit un 1234 ’
1 as well. Simultaneously, unit 1 becomes more specialiaed t T

examples for which it does not have significant competition ﬁ ﬁ %

from the other units. This process allows units 2, 3 and
4 to incrementally learn and specialize to examples that
are originally represented by unit 1. A good separation of

examples into different units results, in contrast to thefesed Unit 1 Unit 2 Unit 3 Unit 4
Categories learned by Inducerl. (b) Postnatal epoch 0, accuracy = 41.67%
The clustering of categories on unit 1 reduced accuracy 1,234

from 58% with the random initial weights to 50% at the
end of prenatal training. Yet Inducer3 eventually achiezes
classification accuracy of 83%. This result demonstratas th

prenatal training indeed establishes a suitable startwigtp h
for postnatal training, making it possible for the systemaas L] : 111 _
. - Unit 1 Unit 2 Unit 3 Unit 4
whole to achieve good final performance. () Postnatal epoch 500, accuracy = 41.67%
Postnatal training is highly sensitive to the choice of ptah 234 1

training patterns. For example, although the pattern in Fy
which has two additional active pixels on both sides, preguc
a clustering effect as well, it does not lead to successful
postnatal learning (Fig. 20). The unit that learns it (unit 2
matches too many postnatal training patterns. While thexe ar [ 1]

enough leftover patterns for units 3 and 4 to develop unique  Unit 1 Unit 2 Unit 3 Unit 4
categories, unit 1 does not win any examples. Instead, unit 2 (d) Postnatal epoch 1000, accuracy = 50.00%
represents two categories, resulting in large error. Thal fin 2,3 4 1
accuracy achieved by the network is only 67%.

Ahead of time it would have been difficult to guess that the
pattern in Fig. 17 is successful while that in Fig. 19 is not. I ..
In other words, the learning is sensitive to the right bias] a B
the p_atterns that gstabhsh t_hem_ are not obV|0_us. Thgr,eéore Unit 1 Unit 2 Unit 3 Unit 4
learning method like evolution is useful for discoveringe th (e) Postnatal epoch 3000, accuracy = 66.67%
appropriate patterns for prenatal training. 2.3 4 1
D. Effect in More Complex Tasks I

In the line-categorization task it is easy to see how the EnEmEmEn
initial bias established by prenatal training allowed loeit8 n

to succeed while Inducerl failed. In a more complicated task  Unit 1 Unit 2 Unit 3 Unit 4
like digit recognition, where there are many categoriestaed (f) Postnatal epoch 5000, accuracy = 66.67%
examples are not as clearly defined as the horizontal and ver-

; i it i Italk}' Fig. 20. Inducer3 weights at various stages of learning using a bahatal
tical lines, it is harder to trace the exact learning patfe training pattern.The clustering effect is too strong, preventing unit 1 from

the algorithm. This path can be highly convoluted, with @iitp jeaming anything. This example shows that the system istaen® prenatal
units changing their labels multiple times before conveggi training, and that the right patterns are difficult to diseowmaking evolution

to a particular digit. However, the basic mechanisms thinoug’ Pattern generators a useful approach.
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which prenatal training allows postnatal training to swttare Without a proper bias, Inducer2 requires evolution to dearc
the same: they establish an appropriate bias as a goodhgtaréi large space of possible solutions. The digit recognition
point from which the solution can be reached easily. experiment with such small networks is still within the lisi
Interestingly, even when the pattern generators can in priof direct evolution, and a solution will eventually be found
ciple evolve to produce more complex patterns, such as thd$awever, larger problems with larger search spaces may no
resembling the actual digits, evolution does not make ukmnger be tractable for Inducer2. For instance, if the nekwo
of this possibility. In preliminary experiments with patte were expanded to use the full resolutidd9 (x 39) of digits
consisting of multiple Gaussians, the best generators tla&ailable in the NIST dataset, the size of the evolutionary
evolved were still relatively simple, only establishingagés search space for Inducer2 would increase from 650 to 15220,
similar to those with single Gaussians. Only a few outputhereas that for Inducer3 would remain constant at 10. Thus,
units learned during the prenatal phase, while the remginithe results in this paper suggest that the pattern-gemerato
units maintained their initial random weights. Apparenslych approach may turn out to be crucial in solving such large-
learning biases are a more efficient way to achieve gosdale problems.
performance on this task than constructing the recognition
network directly. This principle illustrates an importaatd g Benefits Over Direct Initialization

surprising synergy of evolution and learning. Since prenatal learning in Inducer3 establishes the rigist b

by initializing the weights for postnatal learning, coduildiine
VIl. DisSCussION ANDFUTURE WORK same benefits be achieved by setting the weights directly?

As the classification accuracies in Table Il show, Inducerlindeed, it is possible to envision such algorithms, e.gsebda
the least accurate of the three methods. Since the weights @i direct evolution. However, they would have to represeat t
initialized randomly, the network is not biased in favor offa |large parameter space by a compact encoding so that segarchin
learning path. Without a proper bias, it frequently getstlstu for a good set of parameters becomes manageable.
in local optima. On the other hand, the networks in Inducer3 To analyze this approach, an experiment similar to Inducer3
are prenatally trained with the generated patterns. Eemiut was designed with such a compact encoding. The weights to
converges on a pattern generator that establishes biasas @fe output units were initialized to oriented Gaussiangat,
few output units, making it easier for the network to separaind evolution was used to search through such weight initial
the categories during the postnatal learning phase. That reszations. A set of 10 Gaussians were evolved, each repessent
is a significantly better classification accuracy for Ind@cén by the same five parameters as those in Inducer3 (Fig. 6). The
this section, the benefits of Inducer3 in constructing cexplfinal performance was similar to that of Inducer3 (average
systems over direct evolution of weights (Inducer2) andr ovelassification accuracy of 73.33% in 547 generations over th
direct weight initialization methods are analyzed. Theldde 11 splits). Thus, direct weight initialization accompkshes-
ical insights from the computational studies are discussell sentially the same biasing as prenatal learning from géegra

directions for future research outlined. patterns.
However, it is often difficult to construct such parameter-
A. Benefits Over Direct Evolution space encodings, especially when the architecture of the

Iﬁarner is complex and irregular. It was only possible in

The direct-evolution approach of Inducer2 discovers go . } .
) . e above experiment because the network architecture is so
solutions eventually, and can be seen as a possible alternaj L . : L
imple, associating connection weights one-to-one wigtutin

to the pattern-generator approach of Inducer3. As a matter

of fact, Inducer2 takes less computation time than Induc %) els. In contrast, the pattern generator is a compactdingo

: . . in the input space, which is likely to be smaller and more
because fithess evaluation of networks in Inducer2 doesnot | : .

. . regular than the parameter space. For example, in a vision
volve learning. However, when constructing complex system

. . : . processing task, the input is the visual field, which is egasie
such as those in evolutionary robotics, fitness evaluatiamo to approximate by a compact encoding than the larae and
individual requires it to live a “lifetime” and interact vhtits PP y P 9 g

environment. The individual can either be fixed as in IndiaperIrregular parameter space of a complex learning algorithen t

. ) . oo rocesses the input. Thus, the pattern-generator appragh
or it can learn from the environment and improve its fithes b successful in establishing the broper bias even on c le
as in Inducer3. In both cases the duration of a lifetime, (ae. 9 prop P

generation) is the same. In this respect, the cost of e\.yEnga,[Iearning systems that are difficult to initialize directly.

an individual is the same for both Inducer2 and Inducer3, and ) )

only the number of generations needs to be compared, as WasBiological Insights

done in this paper. The pattern-generator approach is inspired by obsenstion
According to this measure, Inducer2 reaches a good leveim nature (Section II-A), and may in turn be used to gain

of accuracy eventually, if evolution is allowed to proceedd a deeper understanding of biological learning systems. The

enough. However, Inducer3 reaches this same level in mudsults obtained using this approach support the biolbgica

fewer generations than Inducer2, as shown by the fithess dmyghothesis that genetically determined, internally getest

accuracy plots in Fig. 9. In other words, constructing thgtdi activity patterns are indeed an efficient mechanism forbesta

recognition network is much more efficient through prenatéshing the appropriate bias, which is crucial for consting

pattern generation. complex systems such as those seen in biology (Section ).
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The computational implementation can be further refined tan compensate for the shortcomings of learning algorithms
make more detailed biological predictions, e.g., by usifmy discovering an appropriate bias. In this sense, the study
more biologically realistic learning algorithms and paite is a proof of concept for the pattern-generator approach.
generators. Such extensions constitute an importanttiinec In future work, this approach needs to be applied to more
of future work. complex learners and domains, verifying that it scales wp an

Devising such biologically realistic computational madelis useful more generally. In the specific case of competitive
also involves modeling the hierarchical organization of thlearning, evolution discovers biases that allow learniog t
visual cortex [86]. The lower levels of this hierarchy havavoid local optima, such as unorganized output units and
small retinal receptive fields and perform simple functionsnits with clustered digits, by providing a good starting
such as orientation processing, while the higher levels hagoint through prenatal learning. For other learning akions,
larger receptive fields and perform more complex functiongenatal learning can establish biases and avoid locamapti
such as face detection [43], [68]. Evidence for pattern geenein other ways. These biases depend on the weaknesses of that
tion occurring at the low levels was reported in Section ll-Aparticular learner, and specifically those weaknessesatteat
Evidently, these biases enable the system to efficientlgatietexposed by the experimental conditions and problem domain.
features in the visual input such as orientation, which hemt If successful, this effort could ultimately pave the way foe
used by the higher cortical levels to perform more sophisngineering of complex systems that are otherwise diffioult
ticated processing. Such features condense the informatimpossible to construct.
to only what is relevant, making high-level learning easier In addition to establishing the right biases for postnatal
A similar hierarchical approach should be useful in buiddinlearning, internal pattern generation could serve a siganifi
artificial learners as well. For example, a hierarchicagéegion role in adult adaptation to changing environments. If the
of the digit recognition network in Fig.2 could be constedt system learns only from experience after birth, the préiyata
as a two-layer network. In this architecture, the lower fayestablished biases are soon overridden, and the systend woul
would learn the bias necessary to detect features in thagenhave difficulty adapting to new environments. However, if
phase, and these features would then form the inputs to thternally generated activity was interleaved with expece-
upper layer during postnatal learning. As a result, theesgyst based learning (as may happen during REM sleep in mammals
should be able to learn more complex behaviors than what{id]), some of the prenatal organization would be retained,
possible in a single-layer network. making further adaptation more effective. Such postnaad p

Alternative ways to establish a proper bias exist in biologigrns may explain why animals can learn altered environsnent
as well. For example, axon growth guided by moleculamly partially [71], and why the animal spends so much time in
gradients has been found to play a crucial role in the eafREM sleep during the time when its neural structures are most
development of structures in animal nervous systems (gglastic [67]: Postnatal internally generated patterns meip
[31] for review), and could result in a genetically deteratin ensure that the learning system does not become too closely
bias. While pattern generation and axonal growth can bothadapted to a particular environment. Applying this idea to
principle achieve a similar effect, little is known aboutwho constructing artificial systems for changing environmeists
they compare and possibly interact. Computational modeis @ most interesting direction of future work.
be built in the future to gain insights into such questions as
well. VIIl. CONCLUSIONS

In the quest to discover the mechanisms behind developmenkeasearch on brain development in animals has led to

of the brain, studying the patterns in cortical organizationsights on how complex brain structures are constructed
might prove useful. The network plots in Section V-C shoWanatally and postnatally. Spontaneous activity in thairbr
how the particular weight adaptation mechanisms affect thgfore pirth may be responsible for rudimentary structtias
organization of the network. The weight plots produced byre found in most animals at birth. Such prenatal training ma
competitive learning are smooth and resemble the digit thgaye been discovered by evolution to establish a properdsas
represent, while those produced by direct evolution l0@KIYr 4t the system can learn efficiently from environmentalitsp
and represent only critical features of digits. This obaBon  tier pirth. This paper demonstrates how the same approach
suggests that it may be possible to identify which mecha®isg,,1g work more generally for building complex systems.
are responsible for particular structures by studying thecs e hypothesis is that pretraining a system with patterns
ture and organization of the cortex. For example, the Smooffym an evolved generator will establish the required bias t
regular pattern of orientation processing cells observethe ake learning from the actual data easier. Experimentsen th
visual cortex may suggest that such organization is prignari,angwritten digit recognition domain support this hypsibe

a result of activity-dependent self-organization, ands le$ suggesting that complex systems can be effectively cartstlu
genetic hardwiring. in this way.
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