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Abstract— Self-organization of connection patterns within
brain areas of animals begins prenatally, and has been shown to
depend on internally generated patterns of neural activity. Such
activity is genetically controlled and has been proposed to give the
neural system an appropriate bias so that it can learn reliably
from complex environmental stimuli. This paper demonstrates
this idea computationally. A competitive learning network is
trained with hand-designed patterns during a “prenatal” de-
velopmental phase, and its classification performance in a line
categorization task is significantly affected as a result. Plotting
and analyzing the network weights during various stages of the
learning process reveals the complex dynamics through which the
bias is established, and suggests that evolution might be necessary
to discover the appropriate pattern generators automatically. This
approach is expected to be useful in building complex artificial
systems, such as the learning system of a robot with uninterpreted
sensors and effectors.

Index Terms— Competitive learning, bias and variance, pat-
tern generator, spontaneous activity, self-organization, prenatal
development, developmental robotics

I. INTRODUCTION

The tradeoff between bias and variance is a well-known
issue in machine learning [6, 20]. A strong bias that matches
the problem being solved and minimizes variance is desired,
but the right bias is hard to determine, and could even be
as hard as solving the problem itself [6]. The bias is also
difficult to express in a learning system. In the perceptual
systems of animals, internally generated spontaneous activity
acting as training patterns for the prenatal self-organization
of many cortical and subcortical sensory areas (see [13, 18]
for reviews) may be one of the developmental mechanisms by
which nature sets the right bias.

This paper demonstrates this idea computationally. A com-
petitive learning neural network is used for classifying verti-
cal and horizontal lines. Training the network with a hand-
designed pattern in a developmental phase prior to learning
the actual task gives the network a good initial bias, enabling
it to classify the lines better. When the different stages in
the learning process are visualized by plotting the network
weights, the learning process is found to be dynamic and
highly sensitive to initial bias. The results show that the
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prenatal biasing approach is effective, and suggest that a
mechanism like evolution is necessary to discover appropriate
pattern generators for more complex learners and application
domains.

The paper is organized as follows. Section II reviews the
biological and computational background on pattern based de-
velopment and learning. The competitive learning architecture
and the line categorization task used for the experiments are
presented in Section III, and the results analyzing the effect
of prenatal biasing on classification accuracy in Section IV.
Future work in utilizing this idea in building artificial complex
systems is presented in Section V.

II. BACKGROUND AND RELATED WORK

In the following subsections, the biological motivation for
establishing bias through prenatal self-organization from gen-
erated patterns is reviewed, and previous computational work
involving learning from generated patterns is discussed.

A. Biological Motivation

Neuroscience researchers have found significant evidence
for prenatal bias in the visual cortex of animals in the form
of genetically determined structures [8, 10]. For example,
experiments have shown that orientation processing structures
exist prior to visual experience in ferrets and kittens [4, 7].

The large-scale structures of the brain, such as the division
into different brain areas, are constructed primarily through
genetically determined chemical gradients (see [8] for a re-
view). The gradients are largely unaffected by environmental
stimuli, making the bias very strong. However, for fine-scale
structures such as those for orientation processing, another
possible source of genetic bias was discovered recently: the
spontaneously generated patterns of internal neural activity
observed in many cortical and subcortical sensory areas, such
as the visual cortex, the retina, the auditory system, and the
spinal cord (see [13, 18] for reviews). This activity may express
a genetic bias within a system that is designed to learn from
the environment [5, 19]. That is, the genetic information is
represented in the same way as environmental information
at the neural level: as patterns of activity in the input seen
by a brain area. In this way, “hardwiring” may actually be
learned. The genome thus needs to specify only a simple



pattern generator, i.e. a mechanism capable of producing
activity patterns, rather than specifying billions of individual
connections.

The bias constructed through such prenatal self-organization
can guarantee that each organism has a rudimentary level of
performance from the start and that initial development does
not depend solely on the details of the external environment,
while retaining the flexibility of the neural system to adapt
to environmental input. Thus, internally generated patterns
can preserve the benefits of a blueprint, within a learning
system capable of much higher complexity and performance.
Evolution has therefore determined a point in the bias/variance
tradeoff that allows constructing a reliable but flexible system
by combining genetic and environmental information.

B. Computational Modeling of Pattern Generators

The pattern-generation hypothesis was previously tested
using a computational map model of the visual cortex called
HLISSOM [2, 12]. Two developmental phenomena were stud-
ied: (1) How orientation processing circuitry develops in the
visual cortex prenatally and postnatally, and (2) how human
newborns come to prefer face-like visual input prenatally and
how these preferences change in early life.

The HLISSOM orientation model resulted in detailed con-
nectivity patterns that match known biological orientation
processing circuitry in animals. Training the model prenatally
with three-dot input patterns in turn caused it to respond pref-
erentially to pictures of faces, and these preferences changed
as they do in infants in later training with visual images. The
experiments with HLISSOM therefore elucidate computation-
ally how self-organization based on internal pattern generation
can account for the observed biological structures, resulting in
species-specific biases such as face preferences.

Building on the prior work with HLISSOM, the pattern gen-
erator approach was studied as a machine learning technique
for improving the performance of artificial learning systems
[21]. Instead of designing the generator by hand, generators
were evolved computationally to provide a suitable bias for
learning to recognize handwritten digits in a competitive
learning neural network. The approach indeed improved the
performance of such networks in this task. However, because
the domain is rather complex, it turns out difficult to analyze
the learning process to explain why the particular pattern
generators discovered by evolution were effective.

Therefore, a simple vertical and horizontal line catego-
rization task is used in this paper along with hand-designed
prenatal training patterns to explore the mechanisms behind
how prenatal biasing of the network affects further learning.
The categorization task and the competitive learning network
used in this study are described in the next section.

III. METHOD

The main goal of this paper is to demonstrate how the bias
of an artificial learner can be manipulated by an approach
similar to the internally generated patterns in nature. In order
to facilitate detailed understanding of the underlying process,
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Fig. 1. The architecture of the competitive learning network. The binary
activations from the input pattern consisting of 64 pixels are fed to the input
units of the network, which also contains a bias unit. The four output units each
correspond to a classification of the input as one of the four line categories
in Fig. 2; the one with the highest activation is chosen as the answer of
the network. During training, the weights of this unit are adjusted towards
the input pattern, making that unit more likely to win similar patterns in the
future. Because of its simplicity, this network is a good candidate to study the
process of prenatal biasing.

the task and learning algorithm chosen are deliberately simple,
as is described below.

A. Competitive Learning

The learning algorithm used in this study is competitive
learning [17]. Even though other algorithms may be more
powerful in classification tasks in general, competitive learning
is a good choice for this study for four reasons: (1) it is
a well known abstraction of biological learning, based on
Hebbian adaptation of synaptic efficacies and winner-take-all
competition [9], and a good surrogate for a whole class of
learning algorithms; (2) it is sensitive to initial weight settings,
i.e., prenatal training is likely to have a significant effect; (3)
it is relatively simple, so that analyzing and understanding this
effect is possible; and (4) it is a self-organizing, unsupervised
algorithm, which makes pattern design simpler by not having
to produce targets for the inputs for prenatal learning.

The competitive learning network (Fig. 1) must learn to
categorize vertical and horizontal lines drawn on an 8×8 grid
of pixels. The lines fall into four categories as described in
Section III-B. The inputs to the network consist of the binary
activations at the 64 grid locations and a bias unit. The network
has 4 outputs, one for each of the 4 categories to be recognized.
Each output unit is connected directly to each of the inputs
(including the bias).

Learning starts by initializing the network connection
weights wij between an input unit i and an output unit j
randomly, and normalizing such that the squares of the weights
to each output unit sum to one:

wij =
wij√∑
u w

2
uj

. (1)

When the network is presented with an input pattern, each
output unit j computes the weighted sum sj of its input
activations xi:

sj =
∑

i

wijxi. (2)



Category 1 Category 2 Category 3 Category 4

Fig. 2. Training examples for categorization of vertical and horizontal lines.
There are four categories and three examples in each category: a solid line
and two complementary dotted lines. This design makes the effect of prenatal
training explicit, as shown in Figs. 3 – 7.

The output unit with the highest sum is the winner for that
pattern. The weights of this unit v are then updated as

wiv(t+ 1) = wiv(t) + η(xi − wiv(t)), (3)

where η is the learning rate. After the update, the weights
to this unit are again normalized such that their squares sum
to one. This process constitutes a basic competitive learning
method that is at the core of many unsupervised learning
algorithms [1, 11].

B. Line Categorization Task

The task the network is trained to perform consists of
categorizing vertical and horizontal lines drawn in the 8 × 8
pixel grid (Fig. 2). There are four categories to be learned:
A vertical line in column 4 of the input grid, a vertical line
in column 5, a horizontal line in row 4, and a horizontal line
in row 5. The training set consists of 12 examples total, with
three examples for each of the four categories: A solid line
and two dotted lines that are pixel complements of each other.

Competitive learning is likely to categorize examples based
on how similar they are, i.e., how many pixels they have in
common. The examples of a given vertical or horizontal cate-
gory have several pixels in common, and it should be possible
to learn to categorize them correctly. However, learning can fail
for two reasons. First, because a vertical and a horizontal line
share a common pixel, if an output unit exists with particularly
high weights on that pixel, the learning algorithm may learn
to map them both to that unit. Second, the learning may also
fail if an output unit has initial weights that allow it to win
examples of two different categories, even if these categories
have nothing in common. If there are no viable competitors
for these categories, the unit will gradually learn to respond
stronger to both of them.

Thus, the categorization task is designed to permit com-
petitive learning to achieve perfect classification, while at
the same time manifesting its weakness of getting stuck in

TABLE I
PARAMETERS FOR LEARNING

Prenatal learning rate 0.005
Prenatal max. epochs 400
Postnatal learning rate 0.0005
Postnatal max. epochs 5000

local optima. It also allows prenatal learning to affect the
final classification performance by manipulating the initial
weight biases. Experimental results showing these effects are
described in the following section.

IV. RESULTS

In this section, the results of competitive learning without
an intentional initial bias (i.e., random initial weights) are
described first. Second, how classification performance can be
improved by prenatal training with a hand-designed pattern
that gives the network a good initial bias is analyzed. The
effects of using a bad prenatal training pattern on performance
are shown in the end.

A. Experimental Setup

Suitable values for the competitive learning parameters were
determined experimentally prior to the experiment (Table I).
Competitive learning was continued until all weights changed
less than 10−5 in an epoch, or when a maximum number of
epochs was reached, and the network of the final epoch was
taken as the result. The training examples were presented in a
different random order in each epoch.

Because each output unit in the competitive learning net-
work is connected directly to each input unit, it is possible to
visualize its connection weights in the same way as the input
patterns, i.e., on a 8 × 8 grid. Such a visualization makes it
clear what kinds of input patterns that output unit is most likely
to win in the competition (Equation 2). Such weight plots are
used in the following subsections to visualize the convergence
path taken by competitive learning and to analyze the effects
of prenatal biasing on them.

In all the weight figures, if an output unit wins a large
number of examples of a particular category from the test
set (i.e., at least 75% of the largest number of wins for that
category by any unit), then that category is shown on top of
that unit. Thus, if the network is a good classifier, a different
single category will be shown on top of every unit, indicating
that each category is recognized as a separate class. In contrast,
in a poor classifier, some units do not represent any categories
at all, while other units represent multiple categories, and some
categories are represented by multiple units.

B. Learning without Prenatal Biasing

Competitive learning with random initial weights fails in the
line classification problem in exactly the two ways described
in Section III-B. (Fig. 3). The learned weight patterns for
each output unit are gradually seen to emerge from epoch 500
onward. With careful observation, it is possible to see that
initial biases for these patterns already existed in the initial
random weights (epoch 0), and as the learning continues, these
biases get stronger. When the weights converge around epoch



4  3,43,4  44  1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(a) Epoch 0 (random initial weights), accuracy = 58.33%

4  33      1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(b) Epoch 500, accuracy = 66.67%

4  33      1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(c) Epoch 1000, accuracy = 66.67%

4  33      1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(d) Epoch 3000, accuracy = 66.67%

4  33      1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(e) Epoch 5000, accuracy = 66.67%

Fig. 3. Weights at various stages of learning without prenatal biasing to
categorize vertical and horizontal lines. The network gets stuck in a local
optimum, where unit 4 has strong representation for two categories, while
unit 3 has none.

5000, only unit 2 has learned a clean category, recognizing
exclusively all three examples of the horizontal line in row
4. Units 1 and 3 succumb to the first pitfall of combining
two categories because they have one pixel in common. Unit
4 demonstrates the second pitfall by learning two disjoint
patterns for which there is no viable competition from other
units. There is only one categorization change from initial
to the final state: One of the examples of category 4 is
reclassified from unit 2 to unit 1 by epoch 500, which improves
classification accuracy from 58% to 67%.

C. Learning with Prenatal Biasing

Competitive learning with an initial weight bias was applied
to the same classification task using a manually constructed

Fig. 4. A good pattern for prenatal training, designed to produce a beneficial
clustering effect.

4  3,43,4  44  1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(a) Random initial weights, accuracy = 58.33%

1,2,4  33          

Unit 1 Unit 2 Unit 3 Unit 4
(b) Postnatal epoch 0, accuracy = 50.00%

1,2,4  33          

Unit 1 Unit 2 Unit 3 Unit 4
(c) Postnatal epoch 500, accuracy = 58.33%

2,4  33      11  

Unit 1 Unit 2 Unit 3 Unit 4
(d) Postnatal epoch 1000, accuracy = 66.67%

2  33  44  11  

Unit 1 Unit 2 Unit 3 Unit 4
(e) Postnatal epoch 3000, accuracy = 75.00%

2  33  44  11  

Unit 1 Unit 2 Unit 3 Unit 4
(f) Postnatal epoch 5000, accuracy = 83.33%

Fig. 5. Weights at various stages of learning with prenatal biasing to
categorize vertical and horizontal lines. After prenatal training, unit 1 wins
most of the patterns. Based on the remaining patterns, the other units
develop distinct categories, and eventually the whole system converges to
good categorization.



prenatal training pattern shown in Fig. 4. This pattern was
designed to produce clustering of different categories on one
unit, similar to the clustering of digits seen on some units in
the handwritten digit recognition experiment of [21]. Snapshots
of the network weights during the whole of postnatal training
reveal how biasing the network in this manner allows it to
avoid local optima and separate the categories better than
learning without prenatal training (Fig. 5).

The prenatal training pattern was learned by output unit 1;
the other units maintained their random weights until the end
of prenatal training (postnatal epoch 0). As in the experiment
without prenatal training, the slight random biases of units 2,
3 and 4 gradually strengthen during postnatal training with
examples. However, unlike in the experiment without prenatal
training, the effect of these biases is diminished by unit 1,
which wins most of the examples in the beginning, leaving
only a few examples for the other units. As a result, units 2, 3
and 4 specialize to recognize only those examples for which
they initially had the highest bias, while the other examples
are captured by unit 1. As units 2, 3 and 4 specialize, they
gradually start winning other similar examples over unit 1
as well. Simultaneously, unit 1 becomes more specialized to
examples for which it does not have significant competition
from the other units. This process allows units 2, 3 and 4 to
incrementally learn and specialize to examples that are origi-
nally represented by unit 1. A good separation of examples into
different units results, in contrast to the confused categories
learned when no prenatal training was used.

The clustering of categories on unit 1 reduced accuracy
from 58% with the random initial weights to 50% at the
end of prenatal training. Yet the learner eventually achieves
a classification accuracy of 83%. This result demonstrates that
prenatal training indeed establishes a suitable starting point for
postnatal training, making it possible for the system as a whole
to achieve good final performance.

Postnatal training is highly sensitive to the choice of prenatal
training patterns. For example, although the pattern in Fig. 6,
which has two additional active pixels on both sides, produces
a clustering effect as well, it does not lead to successful
postnatal learning (Fig. 7). The unit that learns it (unit 2)
matches too many postnatal training patterns. While there are
enough leftover patterns for units 3 and 4 to develop unique
categories, unit 1 does not win any examples. Instead, unit 2
represents two categories, resulting in large error. The final
accuracy achieved by the network is only 67%.

V. DISCUSSION AND FUTURE WORK

Ahead of time it would have been difficult to guess that
the pattern in Fig. 4 is successful while that in Fig. 6 is not.
In other words, the learning is sensitive to the right bias, and
the patterns that establish them are not obvious. Therefore, a
learning method like evolution is useful for discovering the
appropriate patterns for prenatal training.

The most obvious way to establish an appropriate bias would
be to separate each category to a different unit as much as
possible already in prenatal training, so that postnatal training

Fig. 6. A bad pattern for prenatal training, designed to produce a detrimental
clustering effect.

4  3,43,4  44  1,21,2  

Unit 1 Unit 2 Unit 3 Unit 4
(a) Random initial weights, accuracy = 58.33%

   1,2,3,41,2,3,4          

Unit 1 Unit 2 Unit 3 Unit 4
(b) Postnatal epoch 0, accuracy = 41.67%

   1,2,3,41,2,3,4          

Unit 1 Unit 2 Unit 3 Unit 4
(c) Postnatal epoch 500, accuracy = 41.67%

   2,3,42,3,4      11  

Unit 1 Unit 2 Unit 3 Unit 4
(d) Postnatal epoch 1000, accuracy = 50.00%

   2,32,3  44  11  

Unit 1 Unit 2 Unit 3 Unit 4
(e) Postnatal epoch 3000, accuracy = 66.67%

   2,32,3  44  11  

Unit 1 Unit 2 Unit 3 Unit 4
(f) Postnatal epoch 5000, accuracy = 66.67%

Fig. 7. Weights at various stages of learning when biased with a bad prenatal
training pattern. The clustering effect is too strong, preventing unit 1 from
learning anything. This example shows that the system is sensitive to prenatal
training, and that the right patterns are difficult to discover, making evolution
of pattern generators a useful approach.



would find it easier to complete the separation. However, this
effect is typically not seen when trained with patterns from
evolved generators as in the handwritten digit recognition task
of [21]. Some units end up representing several different digit
classes. The above analysis of the learning process using the
simpler line categorization task shows how such seemingly
counterproductive initial bias make postnatal learning easier.

In the line-categorization task it is easy to see how the
initial bias established by prenatal training allowed competitive
learning to avoid certain local minima. In a more complicated
task like digit recognition, where there are many categories and
the examples are not as clearly defined as the horizontal and
vertical lines, it is harder to trace the exact learning path taken
by the algorithm. This path can be highly convoluted, with
output units changing their labels multiple times before con-
verging to a particular digit. However, the basic mechanisms
through which prenatal training allows postnatal training to
succeed are the same: they establish an appropriate bias as a
good starting point from which the solution can be reached
easily.

Self-organizing maps (SOM) [11] is a generalization of
competitive learning where a neighborhood function is used
to determine which units in the topological neighborhood of
the winner should learn and by how much. If the neighborhood
function is shrunk to include only the winner, a SOM defaults
to a competitive learning network. Thus, like competitive
learning, self-organizing maps are also susceptible to getting
stuck in local optima, although to a lesser extent (see [16]
for a discussion of the error function behavior of SOMs).
Future work will explore how the performance of SOMs can
be improved in a similar manner by learning the appropriate
bias from generated patterns.

An interesting application of this approach with SOMs is
in developmental robotics. The task involves a robot learning
to navigate in its environment with no initial knowledge of
what its sensors and effectors mean. The robot must first
learn the properties of its own sensorimotor system, which it
can do using domain-independent statistical learning methods
[14]. However, the same task can in principle be accomplished
without the a priori knowledge by using SOMs to learn
perceptual features from continuous sensor inputs [3, 15]. The
performance of these SOMs can potentially be improved by
the prenatal biasing technique. The resulting learning systems
are likely to be more flexible and easily adaptable to new en-
vironments and robots because the bias is established through
self-organization and not hardwired by design.

VI. CONCLUSIONS

Research on brain development in animals has led to in-
sights on how patterns of prenatal spontaneous activity in the
brain may be responsible for rudimentary cortical structures
necessary for the system to learn efficiently from environ-
mental inputs after birth. Such prenatal training may have
been discovered by evolution to establish a proper bias in
the learning system. This paper shows how a similar devel-
opmental approach based on learning from generated patterns

can give a competitive learning network the appropriate bias
for improving its performance in a line categorization task.
The results show that the right patterns may be hard to
determine manually for more complex learners and tasks, and
therefore suggests that a mechanism like evolution is necessary
to discover them automatically.
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