
Evolving Symmetric and Modular Neural Networks
for Distributed Control

Vinod K. Valsalam
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712 USA
vkv@cs.utexas.edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712 USA
risto@cs.utexas.edu

ABSTRACT
Problems such as the design of distributed controllers are character-
ized by modularity and symmetry. However, the symmetries use-
ful for solving them are often difficult to determine analytically.
This paper presents a nature-inspired approach called Evolution of
Network Symmetry and mOdularity (ENSO) to solve such prob-
lems. It abstracts properties of generative and developmental sys-
tems, and utilizes group theory to represent symmetry and search
for it systematically, making it more evolvable than randomly mu-
tating symmetry. This approach is evaluated by evolving controllers
for a quadruped robot in physically realistic simulations. On flat
ground, the resulting controllers are as effective as those having
hand-designed symmetries. However, they are significantly faster
when evolved on inclined ground, where the appropriate symmetries
are difficult to determine manually. The group-theoretic symmetry
mutations of ENSO were also significantly more effective at evolv-
ing such controllers than random symmetry mutations. Thus, ENSO
is a promising approach for evolving modular and symmetric solu-
tions to distributed control problems, as well as multiagent systems
in general.

Categories and Subject Descriptors: I.2.6–Connectionism and Neu-
ral Nets; I.2.9–Propelling Mechanisms

General Terms: Design, experimentation, performance

Keywords: Indirect encoding, modularity, symmetry, group theory,
multilegged robots, controllers

1. INTRODUCTION
Generative and developmental systems (GDS) can represent com-

plex structures with regularities compactly [22]. They are useful for
evolving solutions to large-scale problems for two reasons. First,
their compact genotype representation makes the evolutionary search
space smaller, and therefore easier to search. Second, known regu-
larities in the phenotype can sometimes be encoded into the geno-
type representation, evolutionary operators, and genotype-phenotype
mapping, making it possible for evolution to find solutions efficiently.

A common type of regularity that appears in the solution to many
complex problems is the repetition of interconnected substructures
called modules. For example, the controller for a legged robot can
be decomposed into modules, each module controlling a leg [2, 24].
Regularity constrains some of the modules and interconnections to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

be identical, resulting in symmetries, i.e. permutations of the mod-
ules that leave the solution invariant. Symmetries express constraints
crucial for solving many problems; for instance they determine the
type of gaits that a legged robot controller can produce [4, 24]. Cur-
rent GDS approaches can sometimes result in symmetric solutions
[7, 10, 19–21]. In contrast, the approach developed in this paper
evolves symmetry systematically using mathematical abstractions,
making it potentially more effective at finding the appropriate sym-
metries.

This novel approach, called Evolution of Network Symmetry and
mOdularity (ENSO), utilizes group theory to represent symmetry
mathematically. It uses a compact genotype that stores the param-
eters of repeated modules only once, while allowing variations be-
tween them to evolve. Moreover, it encodes symmetry in a form
that evolution can manipulate easily, and maps genotype to pheno-
type explicitly, making it possible to evolve solutions systematically
by breaking symmetry incrementally. The resulting symmetry bias
avoids large changes in symmetry (that are otherwise likely with
unsystematic mutations), thus enhancing the evolvability of the rep-
resentation.

The ENSO representation utilizes domain knowledge by initializ-
ing evolution with user-identified modules, allowing ENSO to solve
complex problems such as the design of distributed controllers and
multiagent systems. In this paper, this capability is demonstrated by
using ENSO to evolve neural network controllers for a quadruped
robot in a physically realistic simulation. ENSO evolves controllers
that produce effective locomotive behaviors both on flat and inclined
ground. Moreover, on inclined ground these controllers are signifi-
cantly better than those evolved with hand-designed symmetries, and
with random symmetry mutations. Since inclines and other similar
complexities are common in the real world, these results suggest that
ENSO is a promising approach for designing distributed controllers
in the real world.

This paper is organized as follows. The next section presents
the biological and mathematical background on ENSO, and reviews
related work. Section 3 describes the ENSO approach, its geno-
type and phenotype representations, and its evolutionary operators.
Section 4 discusses the quadruped robot model and experiments de-
signed to evaluate ENSO. Section 5 presents the results of these ex-
periments, demonstrating the benefits of the ENSO approach. Sec-
tion 6 discusses the results and presents directions for future work.

Visualization videos of the walking behaviors discussed in this
paper can be seen at the website http://nn.cs.utexas.edu/

?enso-robots.

2. BACKGROUND AND RELATED WORK
This section begins by discussing the biological motivation for

ENSO, and then reviews prior work on other GDS approaches. Fi-
nally, it introduces the group-theoretical concepts utilized by ENSO.

To appear in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 2009.

http://nn.cs.utexas.edu/?enso-robots
http://nn.cs.utexas.edu/?enso-robots

2.1 Biological Motivation
In nature, mutations that break symmetries produce novel pheno-

typic variations [18]. For example, fiddler crabs, whose males are
asymmetric with an oversized claw, evolved from a bilaterally sym-
metric ancestor. Bilateral symmetry is the default in such organisms,
i.e. the same developmental program creates paired, symmetrical
sides. Breaking this symmetry requires the genome to specify addi-
tional information on how one side is different from the other. Thus
symmetry breaking increases the complexity of the genome.

This relation between complexity and symmetry breaking is fun-
damental, allowing complexity to be characterized as the lack of
symmetry [9]. In fact, complexification, i.e. the evolution of com-
plexity in organisms, is accompanied by symmetry breaking at dif-
ferent levels of organization [6]. Moreover, complexification makes
evolutionary search more effective [23]. It allows evolution to start
with low-dimensional genotypes, which are easy to optimize, and
gradually add more dimensions while optimizing them further. Build-
ing complex systems by incrementally elaborating solutions in this
manner is much more likely to succeed than evolving solutions in
the final high-dimensional space directly.

The ENSO approach encapsulates these properties of natural evo-
lution and developmental systems using mathematical abstractions
as described in Section 3. Other researchers have devised similar
evolutionary algorithms based on computational abstractions of de-
velopment called indirect encodings, and they are discussed next.

2.2 Indirect Encodings
Most indirect encodings were developed for evolving artificial

neural networks, and Kitano was one of its earliest practitioners [11].
He evolved grammatical matrix rewrite rules that produced the ad-
jacency matrix of neural networks through a series of rewrite steps.
Sims used another generative encoding based on graphs to evolve
virtual creatures and their neural network controllers in simulated
physical environments [19]. Such grammar-based schemes tend to
produce repetitive fractal-like regularities, while ENSO is designed
to evolve regularities with clearly defined modules.

Gruau’s cellular encoding (CE) [7] utilizes another abstraction of
development inspired by how growth occurs through cell division. In
this method, the genotype encodes a program tree for constructing
a neural network from a single ancestral cell. Although CE can ex-
press any network theoretically, Luke and Specter identified biases
of the method that may be problematic for evolution in many do-
mains [12]. Utilizing similar ideas of development, Miller evolved
developmental programs that can construct the French flag (i.e. ad-
joining rectangular regions of blue, white, and red colors) and repair
damages in it [13].

In a domain similar to Sims’ virtual creatures, Hornby and Pollack
combined principles of developmental and grammatical systems to
evolve the body and brain of creatures simultaneously [10]. How-
ever, since their method is designed to evolve body morphologies
and controllers together, it is not well suited for developing con-
trollers for fixed morphology such as in the legged locomotion appli-
cation explored in this paper. Bongard and Pfeifer also evolved sim-
ilar virtual creatures, but they used an abstraction of genetic regula-
tory networks (GRNs) for encoding bodies and neural networks [3].

Abstracting the above approaches, Stanley proposed an indirect
encoding called Compositional Pattern Producing Networks (CPPNs)
that eliminates the traditional local interaction and temporal unfold-
ing mechanisms of developmental systems [20]. Instead, he argued
that the effects of such mechanisms can be obtained by composing
specific functions in the appropriate order. The patterns produced by
a CPPN are interpreted as the spatial connectivity patterns of a neu-
ral network using a method called HyperNEAT. Stanley et al. applied

this method to tasks having a large number of inputs and regularities,
such as robot food gathering and visual object discrimination [21].

All the above methods provide mechanisms for reuse of genes
and repetition of phenotypic substructures, thus encouraging modu-
larity. The developmental process also sometimes produces symme-
tries in the modular phenotypes, and they can emerge if symmetric
and periodic functions are used in the encoding. However, they do
not utilize a mathematical theory of symmetry to represent symme-
tries explicitly, and therefore do not provide effective mechanisms to
search for appropriate symmetries systematically. Since symmetry
and complexity are closely related (Section 2.1), such mechanisms
can be useful for solving complex problems with symmetries effi-
ciently. The ENSO approach presented in this paper addresses this
issue by utilizing group theory to represent and evolve the symme-
try of modular systems. The group theory concepts it utilizes are
introduced in the next subsection.

2.3 Graph Symmetries and Groups
ENSO represents modules as the vertices and the relationships

between them as the edges of a complete graph G = (V,E), where
V is the vertex set and E = {(u, v) | u, v ∈ V ; u 6= v} is the edge
set. Since G cannot have loops, it is possible to represent a vertex v
by the pair (v, v), and thus represent both vertices and edges by the
elements of the set V ×V . In order to represent the symmetries ofG,
ENSO assigns every element of V ×V a color, producing a complete
coloring [1] of the vertices and edges of G. In practice, each color
represents a particular combination of parameters associated with a
vertex or edge. A symmetry of G is defined as any permutation of
its vertices that preserves the color of edges between them.

Figure 1 illustrates how a group can represent the symmetries
of such a completely colored graph. Since all edges of graph GA

have the same color, any permutation of its vertices is a symmetry
of the graph. In contrast, graph GB has fewer symmetries because
its edges have different colors. The permutation g = (1 2)(3 4),
which swaps vertices 1 and 2 as well as vertices 3 and 4, is a sym-
metry of GB . Similarly, the permutation h = (1 3)(2 4) is another
symmetry, and their composition hg obtained by performing the two
permutations in sequence is yet another symmetry. The trivial per-
mutation e = (), which fixes each vertex of the graph, is also a
symmetry. The set of all such symmetries of a graph G is closed
under composition and inverses, i.e. it forms a group with composi-
tion as the group operation. This group is called the automorphism
group of G, denoted as Aut(G).

The automorphism group of graph GA, consisting of all 4! per-
mutations of its vertex set V = {1, 2, 3, 4}, is called the symmetric
group of degree four, denoted as S4. The automorphism group of
the less symmetric graphGB is a subgroup of S4 called the dihedral
groupD2 (and is isomorphic to the symmetries of a regular polygon
with two sides, i.e. a line segment). More generally, the automor-
phism group of any graph G with vertex set V = {1, 2, 3, 4} is a
subgroup of S4, and is fully determined by the complete coloring of
G. ENSO utilizes this observation to manipulate the symmetries of
graphs by changing their coloring.

Changing the color of a graphG to produce another graphG′ such
that Aut(G′) is a subgroup of Aut(G) is said to break the symmetry
of G. The graphs produced by symmetry breaking can be ordered
based on the subgroup relation between their automorphism groups.
More precisely, with subgroup as the partial order relation, the set
of all subgroups of a group form a lattice. Figure 2 illustrates this
lattice for the subgroups of S4. A group Gi is placed above another
group Gj and connected by a line if and only if Gj is a maximal
subgroup of Gi. This lattice contains the automorphism groups of
all completely colored graphs with vertex set V = {1, 2, 3, 4}. The
most symmetric graphs with automorphism group S4 are at the top

GA GB

1 2

3 4

1 2

3 4

Figure 1: Representing graph symmetries using groups. Each vertex and
edge has a color (indicated by both color and line style) representing a par-
ticular combination of parameters. A graph symmetry is any permutation of
vertices under which the edge colors remain the same. Both graphs in this
figure have vertices of the same color. All edges of graph GA have the same
color, while edges of graph GB have different colors. Therefore, any per-
mutation of the vertices of graph GA is a symmetry. In contrast, only the
permutations g = (1 2)(3 4) and h = (1 3)(2 4), and their compositions
are symmetries of graph GB . The set of all symmetries of a graph form
a group, with composition as the group operation. Thus group theory is a
natural way to represent symmetries.

of the lattice, while the least symmetric graphs with the trivial auto-
morphism group {e} are at the bottom.

Therefore, traversing the subgroup lattice from top to bottom vis-
its progressively less symmetric graphs, making it possible for ENSO
to search the space of graph symmetries systematically by breaking
symmetry incrementally. However, the number of subgroups of S|V |
grows combinatorially as |V | increases [8], making exhaustive sym-
metry search intractable for graphs with a large number of vertices.
Moreover, ENSO must search the parameter space of the modular
neural network corresponding to each symmetry. Therefore, ENSO
uses evolution to focus the search on promising lattice regions and
parameter combinations, as described next.

3. APPROACH
ENSO evolves neural network solutions for problems where do-

main regularities make it possible to partition the inputs and outputs
of the network into modules. It represents the modules and the con-
nections between them as the vertices and edges of a completely
colored graph (Section 2.3). Evolving this representation consists of
two components: (1) evolving the symmetry of the module intercon-
nection graph and (2) evolving the functionality of the modules and
connections. These components are described below.

3.1 Symmetry Evolution
In order to evolve a network with n modules, ENSO initializes a

population of maximally symmetric, completely colored graphs with
vertex set V = {1, 2, . . . , n}, i.e. the automorphism group of these
graphs is Sn. These graphs have only two colors: All vertices are
of one color while all edges are of the other color. Vertices or edges
with the same color have the same set of neural network parame-
ters and are therefore considered identical. Therefore, each graph
in the initial population represents a modular neural network having
identical modules and identical connections between the modules.

ENSO computes the subgroup lattice of Sn and the complete col-
oring corresponding to each subgroup in the lattice at the beginning
of evolution using the GAP [5] software. During evolution, ENSO
utilizes this lattice to mutate the coloring of graphs, thus breaking
their symmetry. Each such color mutation randomly chooses a suc-
cessor in the subgroup lattice; that is, the automorphism group of the
mutated graph is a random maximal subgroup of the automorphism
group of the original graph.

ENSO organizes the colors created by successive color mutations
as a tree. Each tree is a genotype for evolution. The leaf colors
of the tree specify the complete coloring of a graph, which forms
the phenotype that is constructed from the genotype. Each genotype

D43 x

Z43 x D23 x

Z23 x Z26 x

{e}

Z34 x

D2

A4 S34 x

S4

Figure 2: Lattice of subgroups of S4. This lattice was computed using the
GAP [5] software for computational group theory and shows the subgroups
of the group S4, which is the symmetric group of degree four containing
all 4! permutations of the set V = {1, 2, 3, 4}. Each node of the lattice
represents an equivalence class of conjugate subgroups. For example, the
node labeled 4 × S3 represents the four symmetric groups of degree three
obtained by fixing each of the four elements of V and permuting only the
other three elements. The lattice also contains the alternating group A4 of
degree four, formed by the permutations of V that can be expressed as the
composition of an even number of transpositions; the dihedral groups Dn,
formed by the permutations of V that are isomorphic to the symmetries of
a regular polygon with n sides; and the cyclic groups Zn, formed by the
permutations of V that are isomorphic to the group of integers under addition
modulo n. The automorphism groups of all graphs with vertex set V appear
in this lattice, inducing a partial order of the corresponding graphs. Thus,
the most symmetric graphs with automorphism group S4 appear at the top
of the lattice, while the least symmetric graphs with the trivial automorphism
group {e} appear at the bottom of the lattice. This order makes it possible for
ENSO to search the space of graph symmetries systematically by traversing
the lattice from top to bottom.

tree of the initial population has two leaf nodes, one representing
the color of vertices and the other representing the color of edges
(Figure 3a). These two leaf nodes are the children of a root node
that represents a dummy color.

A node representing a particular color c also represents the set
Q of elements of V × V (i.e. the set of vertices or edges of the
phenotype graph) that have the color c. This representation is a bit
string of length n2, where the bit position (i− 1)n+ j is set to “1”
if and only if the pair (i, j) is in Q. Third, the node stores the neural
network parameters of these elements, i.e. the biases and connection
weights of the module network (for each vertex) or the connection
weights between modules (for each edge).

The effect of a color mutation on the genotype tree is to parti-
tion the set of vertex or edge elements associated with one or more
leaf nodes and create a new child color for each part of the parti-
tion (Figure 3b). As a result, the colors of these elements change
correspondingly in the phenotype graph, i.e. some of the elements
that were identical before the mutation are no longer identical: A
new (initially random) set of neural network parameters is associ-
ated with each new color.

Since the automorphism group of the mutated graph is a maximal
subgroup of the automorphism group of the original graph, color
mutations break symmetry in minimal increments. As a result, evo-
lution searches the space of symmetries systematically by exploring
more symmetric graphs before less symmetric ones. Creating new
colors and parameters in the genotype tree during this process in-

PhenotypeGenotype

V x V:
Params:

1111111111111111

p1,...,p k q1...,qm

Nil

Params: Params:

Color
Mutation

(a)

(b)

Edges: 0111101111101110Vertices:1000010000100001

V x V:
Params:

1111111111111111

p1,...,p k q1...,qm

Nil

Params: Params:
Edges: 0111101111101110Vertices:1000010000100001

r1,...,r m s1...,smParams: Params:
Edges: 0101101001101010Edges: 0010000110000100

x1 x2 x3 x4

y1

Module 1

Network module

x1 x2 x3 x4

y1

Module 1

1 2

3 4

1 2

3 4

Figure 3: Examples of genotype, phenotype, network module, and color mutation. ENSO uses a tree of colors as genotype (left). Each leaf of this tree
has a unique color, and represents a set of vertices or edges of the phenotype graph (middle) that have the same parameter values. The vertices and edges of
the phenotype graph represent the modules of a neural network and the connections between them (right). Their parameters (stored in the genotype) consist
of node biases and connection weights for each module network (vertex) and weights for each connection between modules (edge). Each module has a fixed
architecture with a layer of hidden nodes fully connected to its inputs and outputs. A connection from another module (not shown) is implemented by fully
connecting its input layer to the hidden layer of the target module. (a) At the beginning of evolution, each genotype in the population represents a maximally
symmetric phenotype graph with automorphism group S4. All vertices of this graph have the same color (solid black, represented by the leaf on the left) and
all its edges have the same color (orange with alternating dots and dashes, represented by the leaf on the right), implying that all modules are identical and all
connections between them are also identical. (b) A color mutation breaks the phenotype graph symmetry toD4, which is a maximal subgroup of S4 (Figure 2).
As a result, two child nodes are created for the node representing the set of edges, i.e. the set of edges is partitioned into two and each part is colored differently
(dotted blue and dashed green). Since each color is associated with a different combination of parameter values, the mutated phenotype graph represents two
types of connections between network modules. Such color mutations, when combined with parameter mutations, make it possible to evolve symmetric and
modular neural networks efficiently.

creases the complexity of the genotype, i.e. evolution searches in
a low-dimensional space before it complexifies to a higher dimen-
sional space. This approach allows evolution to optimize solutions
in a small search space, and elaborate on them by adding more di-
mensions. Such complexification has been demonstrated to be use-
ful in other methods for evolving neural networks [23].

For each phenotype graph that ENSO produces in the above man-
ner, it evolves the neural network parameters associated with its col-
ors to optimize the functionality of the network modules and their
interconnections. The structure of these modules and the evolution
of network parameters is described next.

3.2 Module Evolution
A fixed architecture is used for the neural network modules, each

module consisting of a layer of hidden nodes that are fully connected
to inputs and outputs (Figure 3). Evolution optimizes two kinds of
network parameters: (1) the scalar parameters of these modules, i.e.
the connection weights and node biases, which form the vertex pa-
rameters of the phenotype graph, and (2) the weights of connections
between modules, which form the edge parameters of the phenotype
graph. Module interconnections are implemented by fully connect-
ing the input layer of one module to the hidden layer of the other
module. If modules are not connected, the corresponding graph
edges are disabled using special binary edge parameters.

The vertex and edge parameters of the phenotype graph are stored
in the genotype leaf nodes. In the initial population, these parame-
ters are initialized with random values in parameter-specific ranges
specified by the experimenter. During evolution, ENSO mutates
each of these parameters probabilistically by perturbing them with
Gaussian noise. When a parameter in a particular genotype node is
mutated, it affects all vertices and edges with that color. Thus, rep-
resenting identical elements by a single node in the genotype tree
allows evolution to search the parameter space efficiently by making
coordinated changes to the phenotype.

Symmetry and modules must be evolved together to find solution
networks, making it necessary to mix parameter and color mutations.
However, color mutations produce severe changes in the phenotype,
resulting in sudden changes in fitness that may cause the pheno-
type to be removed from the population. It is possible to determine
how effective such structural changes are only after enough param-
eter mutations have accumulated over evolutionary time. Therefore,
color mutations are given the opportunity to optimize by creating
population niches, similar in spirit to speciation in the NEAT algo-
rithm [23]. Individuals occupying a niche have the same phenotype
symmetry and remain in the niche for a certain number of gener-
ations before they compete with the rest of the population. This
number is a linear function of the size of the genotype, allowing
individuals with more parameters to stay in their niches longer. Pro-
tecting symmetry mutations using this niching mechanism improves
evolutionary performance significantly.

Evolving the symmetry of module interconnections while opti-
mizing module functionality in the above manner allows ENSO to
find solutions to modular problems effectively, as demonstrated next
by evolving controllers for legged robots.

4. EVOLVING ROBOT CONTROLLERS
Legged robots are modular, making them a useful real-world ap-

plication for ENSO. The quadruped robot model, its modular neural
network controller, and the experimental methods for evaluating the
controllers are described in the following subsections.

4.1 Robot Model
The robot model resembles a table with a rectangular body sup-

ported by legs at the four corners (Figure 4). The legs are cylindrical
with capped ends, and attached to the body by a hinge joint having
full 360◦ freedom of rotation. The axis of rotation of the joint is
tilted to the side, causing the rotating leg to trace a cone. The leg
makes contact with the ground when it is at one edge of the cone.

Figure 4: The quadruped robot model. The legs are attached to the body
by hinge joints with axes of rotation tilted sideways, allowing the legs to
make full circular rotation. Locomotion is achieved by coordinating the cir-
cular movements of the legs. This model is a simple but physically realistic
platform that has symmetric and modular controllers suitable for evaluating
ENSO.

Forward and backward locomotion is achieved by coordinating the
circular movements of the leg. The robot controller activates the
simulated servo motor attached to each joint by specifying the de-
sired joint angular velocity.

4.2 Modular Controller
A neural network controller for this quadruped robot can be con-

structed using four modules, each controlling a different leg. All
modules have the same network architecture shown in Figure 5a.
Although a variety of architectures are possible, this simple two-
layered architecture with two hidden nodes was found to be suffi-
cient for evolving effective controllers. Each module’s input is the
joint angle of the leg it controls. It can be represented by the angle
itself, or by the sine and cosine of the angle; the sine and cosine
are actually more robust (because they are continuous), and will be
used in the experiments on inclined ground. The module’s output is
the desired angular velocity of that leg. The hidden and output units
have sigmoidal activation functions with a bias and slope as parame-
ters; The input units do not perform any computation. These param-
eters and the weights of the internal connections of the module are
the mutable vertex parameters of the phenotype graph (Section 3.2).

The phenotype graph represents the full controller network. It is
obtained by connecting the four modules to each other, such that
each module receives input from all the other modules (Figure 5b).
The weights of these connections are the edge parameters of the phe-
notype graph.

The modular nature of the controller allows it to be modeled as a
coupled cell system (i.e. a set of interconnected dynamical systems)
having the same graphical representation as the phenotype graph.
Collins and Stewart [4] showed such systems with appropriate sym-
metries can produce synchronous and phase-related oscillations suit-
able for modelling the gaits of legged animals and robots. Such
symmetries, determined through mathematical analysis (instead of
evolved), were utilized by Valsalam and Miikkulainen [24] to fix
the symmetries of modular controllers so that their module parame-
ters could then be evolved. The resulting controllers produced reg-
ular gaits similar to those of quadruped animals. In contrast, ENSO
makes it possible to evolve the symmetries together with the module
parameters, producing effective controllers even when the appropri-
ate symmetry is difficult to determine manually. The experimental
methods used in demonstrating this result are described next.

4.3 Experimental Methods
In order to demonstrate the benefit of ENSO, four experimental

methods for evolving the above modular controller were compared:

x1 x2 x3 x4

.x1

Module 1

1 2

3 4

(a) Network module and initial phenotype graph

x1 x2 x3 x4

.
x1

.
x2

.
x3

.
x4

(b) Full controller network consisting of four modules

Figure 5: Modular controller network for the quadruped robot model.
The input to each module is the leg angle (or its sine and cosine) that it con-
trols, and the output is the desired angular velocity of that leg. The full con-
troller network consists of four such modules, each module receiving input
from all the other modules. The phenotype graph represents these modules
and their connectivity. At the beginning of evolution, this graph has identical
vertices (modules) and edges (interconnections). Evolution discovers effec-
tive controllers by breaking symmetry to create new types of vertices and
edges, and by optimizing the initially random vertex and edge parameters.

(1) Evolving its symmetry systematically using ENSO, (2) evolving
its symmetry randomly without using the group-theory mechanisms
of ENSO, (3) using fixed S4 symmetry during evolution, and (4)
using fixedD2 symmetry during evolution (as was done by Valsalam
and Miikkulainen [24]). Although the four methods differ in how
they evolve symmetry, they all evolve parameters of the controller
in the same way as ENSO.

The first method (ENSO) initializes evolution with a population
of fully symmetric phenotype graphs (graph GA in Figure 1, having
S4 symmetry). Since they have identical vertices and edges, their
genotype trees have only two leaf colors, one representing vertex
parameters and the other representing edge parameters. During evo-
lution, color mutations break the initial graph symmetry minimally
to create new types of vertices and edges, and parameter mutations
optimize the initially random vertex and edge parameters.

The second method (random symmetry) initializes evolution in
the same way as above, but color mutations change the color of ver-
tices and edges of the graph randomly. Each such mutation chooses
a random number of genotype leaf colors with probability propor-
tional to the size of the set of vertex or edge elements associated
with them. Each of these colors is then split into a random number
of child colors corresponding to the subsets of elements produced
by recursively partitioning the original set of elements. Like ENSO,
these color mutations break graph symmetry, but unlike ENSO, they
do not use group theory and therefore do not explore the subgroup
lattice systematically (Figure 2). Consequently, the resulting sym-
metry break may not be minimal, producing large changes in sym-
metry than ENSO. Therefore, this method is likely to be less evolv-
able and is likely to perform worse than ENSO.

The third method initializes evolution in the same way as the
above two methods, i.e. with graphs of S4 symmetry. However, it
does not break this initial symmetry during evolution, and applies
only parameter mutations to the phenotype graphs. Therefore, it is
a good baseline to compare with the above methods, and thus to
identify performance improvements due to symmetry evolution.

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

F
it
n
e
s
s

Generations

ENSO
Random symmetry
Fixed D2 symmetry

Fixed S4 symmetry

(a) Quadruped robot on flat ground

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500

F
it
n
e
s
s

Generations

ENSO
Random symmetry
Fixed D2 symmetry

Fixed S4 symmetry

(b) Quadruped robot on inclined ground

Figure 6: Performance of controllers evolved using ENSO, random symmetry breaking, fixed S4 symmetry, and fixed D2 symmetry methods on flat
and inclined ground. The plots are averages over ten trials of evolution. (a) On flat ground, all four methods perform similarly and achieve the same high
level of fitness because many symmetries (including the hand-designed ones) can produce effective gaits in this case. (b) On inclined ground, however, both
symmetry evolution methods perform better than the hand-designed symmetries because the best symmetries are difficult for humans to conceive. Moreover,
the systematic group-theoretic search approach of ENSO finds significantly better symmetries than the random search approach.

The fourth method also evolves only parameters, keeping the sym-
metry of the phenotype graphs fixed, but these graphs haveD2 sym-
metry (graph GB in Figure 1) instead of S4. This symmetry is
the same manually-determined symmetry that Valsalam and Miikku-
lainen [24] utilized to evolve effective quadruped controllers. Thus,
this experiment forms a second comparison baseline for determining
whether symmetry evolution can find more appropriate symmetries
than those found through mathematical analysis.

5. RESULTS
Results of experiments comparing the ENSO method with the

other methods for evolving modular controllers are now described.
The experiments are run in a realistic physical simulation of robot
locomotion on flat ground and on inclined ground.

5.1 Experimental Setup
The experiments were implemented utilizing a number of open

source tools. The ENSO code was implemented as a library layer on
top of the Open BEAGLE evolutionary computing framework [17],
taking advantage of its generic programming interface. The experi-
ments also utilized the customizable methods for logging and statis-
tics collection in Open BEAGLE, as well as its XML-based config-
uration mechanism for managing parameters and specifying opera-
tors. The physics simulation was programmed using OPAL [16], an
abstraction library on top of the Open Dynamics Engine (ODE) [14].
The Object-Oriented Graphics Rendering Engine (OGRE) [15] li-
brary was used for 3D visualization of the simulation.

In each experiment, the initial population of controllers has con-
nection weights chosen randomly from the range [−2, 2), neuron
biases set to 0, and neuron sigmoid slopes set to 1. Parameter muta-
tions are implemented as Gaussian perturbations (with σ = 0.2) act-
ing with a specified probability (0.5) on each of the parameters. All
edges are enabled in the phenotype graphs of the initial controllers,
and mutations toggle them with a specified probability (0.1). In each
generation, an offspring is created by first selecting a parent in a two-
way tournament, and then applying either a parameter mutation, an
edge-toggle mutation, or a color mutation. Parameter mutations are
100 times more likely, and edge-toggle mutations are ten times more
likely, than color mutations. Each color mutation creates five off-
spring, all having the same symmetry, and the parameters in their
newly created child colors are initialized randomly. In addition to
the offspring created by mutations, the network with the best fitness

is copied without change to the next generation. A population size
of 200 is used in all experiments.

Each controller network is evaluated in a physically realistic sim-
ulation in which the network controls the locomotion of a robot.
When the robot is initially placed in the simulation environment, its
longitudinal and lateral axes are aligned with the coordinate direc-
tions of the ground plane. The simulation is then carried out for one
minute of simulated time with step size 0.01s. At the end of the
simulation, the fitness of the controller network is calculated as a
function of how far the robot travels. This function is different on
flat ground and on inclined ground (as explained later). Although
appropriate as a quantitative measure of performance, this fitness
measure does not capture how good the controllers are qualitatively.
Therefore, the resulting gaits are also visualized and evaluated man-
ually at the end of evolution to confirm that the champion controller
networks have good locomotive properties.

For all experiments, evolution was run for 500 generations and
repeated ten times, each time with a different random number seed.
The average fitness of champion networks for all experiments is
shown in Figure 6. The following subsections discuss the results
of each experiment in detail.

5.2 Flat Ground
In the first set of experiments, the four methods reviewed in Sec-

tion 4.3 were used to evolve modular controller networks for the
quadruped robot on flat ground. These experiments are based on
the Euclidean distance that the robot travels as the fitness measure.
All four methods produce similar fitness through all generations,
as illustrated in Figure 6a (their differences at the end of evolution
are not statistically significant according to the Student’s t-test, with
p > 0.23, df = 18). This result implies that S4 symmetry is suf-
ficient for controllers to produce fast gaits on flat ground, that is,
breaking that symmetry manually or through evolution does not im-
prove performance.

However, differences between ENSO and random symmetry evo-
lution are evident in the symmetries of champion phenotype graphs
they evolve. Although both methods mutate symmetry at the same
rate, champions in many runs of random symmetry evolution have
the same S4 symmetry with which they were initialized, while ENSO
evolved a variety of effective symmetries. This result implies that
the unsystematic and large breaks in symmetry resulting from ran-
dom symmetry mutations often produce graphs with low fitness that
do not survive, and those that do survive have low symmetry (Fig-
ure 7b). In contrast, ENSO produces graphs with higher symmetry

1 2

3 4

1 2

3 4

1 2

3 4
= {(), (12)(34),
 (13)(24),
 (14)(23)}

D2Z4 = {(), (12)(34),
 (1324),
 (1423)}

= {(), (14), (23), (1243),
 (1342), (14)(23),
 (13)(24), (12)(34)}

D4

(a) ENSO (minimal symmetry breaking)

1 2

3 4

1 2

3 4

1 2

3 4
S4 {e}{e}

(b) Random symmetry breaking evolution

Figure 7: Phenotype graphs of typical champion networks evolved by
ENSO and random symmetry evolution on flat ground. (a) The group
theory mechanisms used in ENSO for minimal symmetry breaking biases
evolution to produce phenotype graphs with high symmetry. Consequently,
the robots they control have well-coordinated legs and smooth gaits. (b) In
contrast, breaking symmetry randomly often produces large changes in sym-
metry that are deleterious and therefore do not survive. As a result, the cham-
pions of many evolutionary runs retain their initial S4 symmetry (left graph).
Other champions such as the middle and right graphs have low symmetry
that produce less coordinated, stumbling gaits.

consistently because it breaks symmetry minimally using group the-
ory (Figure 7a).

The evolved symmetries also impact the quality of gaits the con-
trollers produce, as observed in visualizations of the locomotion of
champion networks. The more symmetric champions evolved by
ENSO produce smooth gaits with well-coordinated legs, while the
less symmetric champions from random symmetry evolution pro-
duce stumbling gaits because legs are less coordinated. Both fixed
symmetry methods also produce smooth and well-coordinated gaits,
resembling quadruped gaits such as pronk, bound, and trot seen in
animals. Visualization videos of such behaviors can be seen at the
website http://nn.cs.utexas.edu/?enso-robots.

5.3 Inclined Ground
In the second set of experiments, the ground was rotated about

the longitudinal coordinate direction of the robot by 20◦ to make
the task of the controller more difficult. The fitness measure is the
distance the robot travels along the longitudinal coordinate minus
the distance it travels along the lateral coordinate. This measure en-
courages evolution to find controllers that move the robot forward
in a straight line. Thus, the robot must walk across the incline with-
out climbing up or down, while avoiding the risk of tipping over or
slipping down the incline.

Since the robot is the same as before, with no morphological
changes, the same manually designed symmetries should apply. How-
ever, when the robot is on inclined ground, the direction of gravity is
not aligned with its plane of symmetry, thus breaking the symmetry
of its dynamics in a way that is difficult for a human designer to take
into account. As a result, the appropriate controller symmetries for
this task are expected to be different from those utilized for walking
on flat ground. Therefore, this task is a good test case to determine
whether the fixed symmetry methods can evolve effective controllers
when appropriate symmetries are difficult to design by hand. More-
over, the task will evaluate whether ENSO is more effective than
random symmetry evolution at finding those symmetries.

1 2

3 4

1 2

3 4

1 2

3 4
S3 = {(), (124), (142),

 (12), (14), (24)}
Z3 = {(), (234), (243)}Z2 = {(), (14)(23)}

(a) ENSO (minimal symmetry breaking)

1 2

3 4

1 2

3 4

1 2

3 4
S4 Z2 = {(), (14)} {e}

(b) Random symmetry breaking evolution

Figure 8: Phenotype graphs of typical champion networks evolved by
ENSO and random symmetry evolution on inclined ground. (a) The
graphs that produce effective gaits on inclined ground are often less symmet-
ric than those on flat ground (Figure 7a). They typically have two vertex col-
ors, representing two types of controller modules that produce the different
leg behaviors of such gaits. (b) As on flat ground (Figure 7b), random sym-
metry evolution produces many graphs with the initial S4 symmetry, which
however results in less effective gaits on inclined ground. Other graphs it
produces can generate faster gaits, but they are often slower than the gaits
produced by ENSO. Thus, the systematic symmetry search of ENSO is more
effective when finding the right symmetry is more important.

The results of these experiments are shown in Figure 6b. ENSO
produces significantly better fitness than random symmetry evolu-
tion (according to the Student’s t-test, with p < 0.002, df = 18),
which in turn produces significantly better fitness than evolution of
fixed D2 symmetry (p < 0.04, df = 18). The differences be-
tween the two fixed-symmetry methods are not statistically signif-
icant (p > 0.13, df = 18). Since the only algorithmic difference
between ENSO and random symmetry evolution is the way symme-
tries are broken, these results demonstrate that the group-theoretic
symmetry mutations of ENSO are significantly better at evolving
the appropriate symmetries than random symmetry mutations. In
addition, they demonstrate that finding these symmetries is crucial
for evolving effective controllers, since fixed symmetry evolution
utilizing hand-designed symmetries performs significantly worse.

In this more challenging task, the phenotype graphs that ENSO
evolves on inclined ground (Figure 8a) are often less symmetric than
those it evolves on flat ground (Figure 7a). In particular, it evolves
graphs that have two vertex colors, and therefore the correspond-
ing controllers have two types of modules, making it possible for
evolution to implement a different control function in each module.
Different modules can implement different leg behaviors useful for
walking effectively on inclined ground. Typically, two (or three)
legs of the same module type remain nearly stationary to provide the
support necessary for maintaining the robot’s forward orientation,
while the other legs make a full circle, propelling the robot forward
without slipping.

The unsystematic symmetry mutations of random symmetry evo-
lution are typically detrimental on inclined ground as well, and as a
result many of the champion phenotype graphs retain their original
S4 symmetry (Figure 8b). However, occasionally it manages to dis-
cover symmetries that generate faster gaits than the fixed symmetry
methods. The gaits the fixed symmetry methods produce on inclined
ground are similar to those they produce on flat ground because the
possible gaits are constrained by symmetry. However, these gaits
are not as effective on inclined ground, and the gaits discovered by

http://nn.cs.utexas.edu/?enso-robots

ENSO are faster. These results demonstrate that evolving modular
controllers by utilizing the systematic symmetry search of ENSO
finds significantly faster gaits than by utilizing random symmetry
search or by designing the symmetry by hand.

6. DISCUSSION AND FUTURE WORK
In the experiments, the regularities of the robot morphology and

the environment were expressed in the form of controller symme-
tries, i.e. the type of control module for each leg, and the type of
connection between each pair of modules. A human designer can
determine these symmetries analytically in simple cases such as a
quadruped robot on flat ground, but cannot (at least not as easily) for
real-world environments with inclines and other such complexities.
Given the number of modules, the group-theory based systematic
symmetry search of ENSO makes it possible to find such symme-
tries automatically for all environments. Demonstrating this capa-
bility, ENSO evolved gaits similar to those based on hand-designed
symmetries on flat ground, and significantly faster gaits on inclined
ground. In contrast, random symmetry search results in significantly
inferior gaits compared to ENSO. These results suggest that ENSO
is an effective abstraction of generative and developmental systems
for evolving symmetric modular controllers.

In the future, the approach will be tested with more complex
robots with more legs, more complex legs, and sensors that receive
more varied stimuli from the environment. Using such sophisticated
robot models will allow ENSO to evolve controllers that produce
high-level behaviors such as path-following and foraging, in addi-
tion to generating regular gaits. If ENSO can successfully evolve
controllers for a sufficiently detailed model of a physical robot, then
they can eventually be evaluated on physical robots. Thus, ENSO is
a promising approach for developing efficient, robust, and flexible
controllers for multilegged robots in the real world.

ENSO can also be used to evolve solutions for other control prob-
lems that are characterized by symmetry and modularity. For exam-
ple, it can be used to design multiagent systems consisting of agents
that interact with each other and with an environment, like those in
online auctions and robotic soccer. The behavior of these agents will
be represented as neural network modules and their interactions as
(symmetric) connections between the modules. Another application
is in designing distributed control systems for automating manufac-
turing processes. Such systems consist of controller modules inter-
connected by communication networks, which can be implemented
as modular neural networks. In both cases, identical modules and
connections between them produce symmetries that ENSO can ex-
ploit to design effective control systems.

In addition to using ENSO in various applications, the ENSO ap-
proach itself can be extended in four ways to improve its capabili-
ties. First, the computationally hard group theory computations can
be approximated with fast graph computations to improve the scala-
bility of the approach. Second, the current manual decomposition of
a given problem into modules can be automated using hierarchical
clustering algorithms. Third, instead of using a fixed architecture for
the modules, the architectures can be evolved using techniques such
as NEAT [23]. Fourth, crossover of genotype trees can be imple-
mented by swapping subtrees of parent trees if those subtrees have
the same structure and node colors. These extensions would en-
hance evolutionary search so that ENSO can potentially solve more
difficult problems and a wider variety of problems.

7. CONCLUSION
This paper proposes a novel abstraction of generative and devel-

opmental systems called Evolution of Network Symmetry and mOd-
ularity (ENSO) that is useful for solving distributed control prob-

lems. ENSO utilizes group theory to search for symmetry system-
atically, making it possible to evolve the modules and the relation-
ships between them effectively. This approach was evaluated by
evolving neural network controllers for a quadruped robot simulated
with physical realism. On flat ground, it evolved effective controllers
similar in performance to those with hand-designed symmetries and
randomly evolved symmetries. On inclined ground, ENSO discov-
ered symmetries that produce significantly faster gaits than the other
two methods, suggesting that it is useful for complex control prob-
lems in the real world.

8. REFERENCES
[1] O. Bastert. Stabilization Procedures and Applications. PhD thesis,

Technische Universität Müchen, 2001.
[2] R. D. Beer, H. J. Chiel, and L. S. Sterling. Heterogeneous neural

networks for adaptive behavior in dynamic environments. In Advances
in Neural Information Processing Systems 1, pages 577–585, 1989.

[3] J. C. Bongard and R. Pfeifer. Repeated structure and dissociation of
genotypic and phenotypic complexity in artificial ontogeny. In
Proceedings of GECCO, pages 829–836, 2001.

[4] J. J. Collins and I. N. Stewart. Coupled nonlinear oscillators and the
symmetries of animal gaits. Journal of Nonlinear Science,
3(1):349–392, 1993.

[5] GAP – groups, algorithms, and programming, 2007.
http://www.gap-system.org.

[6] A. Garcia-Bellido. Symmetries throughout organic evolution. PNAS,
93(25):14229–14232, December 1996.

[7] F. Gruau. Neural Network Synthesis Using Cellular Encoding and the
Genetic Algorithm. PhD thesis, Ecole Normale Superieure de Lyon,
France, 1994.

[8] M. Herzog and O. Manz. On the number of subgroups in finite
solvable groups. Journal of the Australian Mathematical Society
(Series A), 58:134–141, 1995.

[9] F. Heylighen. The growth of structural and functional complexity
during evolution. In The Evolution of Complexity: The Violet Book of
’Einstein Meets Magritte’, chapter 2, pages 17–44. Springer, 1999.

[10] G. S. Hornby and J. B. Pollack. Creating high-level components with a
generative representation for body-brain evolution. Artificial Life,
8(3), 2002.

[11] H. Kitano. Designing neural networks using genetic algorithms with
graph generation system. Complex Systems, 4:461–476, 1990.

[12] S. Luke and L. Spector. Evolving graphs and networks with edge
encoding: Preliminary report. In Late-Breaking Papers of Genetic
Programming, 1996.

[13] J. F. Miller. Evolving a self-repairing, self-regulating, French flag
organism. In Proceedings of GECCO, 2004.

[14] ODE: Open dynamics engine, 2007. http://www.ode.org/.
[15] OGRE: Object-oriented graphics rendering engine, 2007.

http://www.ogre3d.org/.
[16] OPAL: Open physics abstraction layer, 2007.

http://opal.sourceforge.net/.
[17] Open BEAGLE, 2007. http://beagle.gel.ulaval.ca/.
[18] A. R. Palmer. Symmetry breaking and the evolution of development.

Science, 306:828–833, 2004.
[19] K. Sims. Evolving 3D morphology and behavior by competition. In

Proceedings of Artificial Life IV, pages 28–39, 1994.
[20] K. Stanley. Compositional pattern producing networks: A novel

abstraction of development. Genetic Programming and Evolvable
Machines, 8(2):131–162, June 2007.

[21] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A Hypercube-Based
encoding for evolving Large-Scale neural networks. Artificial Life,
15(2):185–212, Apr. 2009.

[22] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial
embryogeny. Artificial Life, 9(2):93–130, 2003.

[23] K. O. Stanley and R. Miikkulainen. Competitive coevolution through
evolutionary complexification. Journal of Artificial Intelligence
Research, 21:63–100, 2004.

[24] V. K. Valsalam and R. Miikkulainen. Modular neuroevolution for
multilegged locomotion. In Proceedings of GECCO, pages 265–272,
2008.

http://www.gap-system.org
http://www.ode.org/
http://www.ogre3d.org/
http://opal.sourceforge.net/
http://beagle.gel.ulaval.ca/

	Introduction
	Background and Related Work
	Biological Motivation
	Indirect Encodings
	Graph Symmetries and Groups

	Approach
	Symmetry Evolution
	Module Evolution

	Evolving Robot Controllers
	Robot Model
	Modular Controller
	Experimental Methods

	Results
	Experimental Setup
	Flat Ground
	Inclined Ground

	Discussion and Future Work
	Conclusion
	References

