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ABSTRACT

Self-organization of brain areas in animals begins prenatally, ev-
idently driven by spontaneously generated internal patterns. The
neural structures continue to develop postnatally when the sen-
sory systems are exposed to stimuli from the environment. In this
process, prenatal training may give the neural system the appro-
priate bias so that it can learn reliably under changing environ-
mental stimuli. This paper evaluates the hypothesis that an arti-
ficial learning system can benefit from a similar approach, consist-
ing of initial training with patterns from an evolved generator fol-
lowed by training with the actual training set. Competitive learning
networks were trained in recognizing handwritten digits in three
ways: through environmental learning only, through evolution only,
and through prenatal training with evolved pattern generators fol-
lowed by environmental learning. The results demonstrate that the

evolved pattern generator approach leads to better learning perfor-
mance, suggesting that complex systems can be constructed effec-

tively in this way.

Categories and Subject Descriptors

I.2.6—Connectionism and Neural Nets; |.2.0-Cognitive Simulation;
I.5.2—Classifier Design and Evaluation

General Terms
Algorithms, design, experimentation, performance

Keywords

Competitive learning, evolutionary computation, pattern genera-
tors, spontaneous cortical activity, self-organization, complex sys-
tems

1. INTRODUCTION

The tradeoff between bias and variance is a well-known issue
in machine learning [11, 32]. Given a set of example inputs and
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set). There is often a very large number of possible mappings con-
sistent with the training set, and they result in different outputs for
the same test inputs. Which mapping will be selected is determined
by the bias of the learner. The best results are obtained if the bias
matches the problem and is strong. That way, the outputs for new
examples are likely to be correct. Also, the same mapping is se-
lected with different training sets and even when the training ex-
amples are noisy, i.e. the learner will have a low variance.

Unfortunately, it is usually not clear what the right bias is, mak-
ing it necessary to make the bias weaker. Which mapping will be
selected then depends more on the training data. As a result, the
variance is increased: The selection of the mapping becomes un-
predictable, determined based on which examples were included in
the training set and the noise in those examples. Choosing an ap-
propriate point in the bias-variance tradeoff therefore depends on
how much is known about the problem in advance.

In this paper, a method for constructing artificial learning sys-
tems that have both good classification accuracy and good learning
ability is proposed based on inspiration from nature on how it han-
dles this bias-variance tradeoff. As a result of evolution, nature has
created neural learning systems in the brain that undergo a develop-
mental process utilizing both genetic and environmental informa-
tion, as opposed to a pure hardwiring of neural connections or pure
learning induced by the environment.

Experiments since the 1960s have shown that the environment
can have a large effect on the structure and function of the early
visual areas of the brain (see [23] for a review). For instance, if
kittens are raised in environments consisting of only vertical con-
tours during a critical period, most of their primary visual cortex
neurons become responsive to vertical orientations [5]. However,
there is also significant evidence on the contrary, suggesting that vi-
sual cortex structure is also genetically determined. For example, it
has been known for a long time that individual orientation-selective
cells exist in newborn kittens and ferrets even before they open their
eyes [6].

How can the same circuitry be both genetically hardwired, yet
also capable of significant learning and adaptation based on the en-

outputs (the training set), a learning system needs to construct avironment? The recent discovery of spontaneous activation pro-
mapping that produces correct outputs for new examples (the testvides an important clue: Much of the neural activity in develop-
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ing sensory systems is not caused by the external environment, but
generated internally in many cortical and subcortical sensory areas,
such as the visual cortex, the retina, the auditory system, and the
spinal cord (see [25, 27, 33] for reviews). This activity may expres

a genetic bias within a system that is designed to learn from the en-
vironment. The genetic information is represented in the same way
at the neural level: as patterns of activity in the input seen by a
brain area. The same activity-dependent learning mechanisms that
can explain postnatal learning may simply be functioning before
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birth, driven by activity from internal instead of external sources. not develop predictably, and what the learning algorithm discovers
The genome thus needs to specify only a pattern generator, a mechmay not be the information most relevant to the organism.

anism capable of producing visual-like patterns, rather than speci- In contrast, visual development in nature is highly stable, and
fying individual connections. the visual cortex of most animals is partially organized already at

These results from nature suggest that learning driven by both birth (or eye-opening). For example, newborns can already dis-
internal and external inputs can be used to build complex, plastic, criminate between two orientations, and animals have neurons and
robust structures that would be too complex to determine directly brain regions selective for particular orientations even before their
genetically and too fragile to learn from external inputs. The main eyes open [8, 31]. These same areas then later adapt consistently to
hypothesis studied in this paper is that artificial learning systems visual experience to construct an adult visual system [6]. Such ro-
can achieve the same benefits as biological learning systems bybustness could be achieved with a specific, fixed genetic blueprint,
training using generated patterns in addition to actual training data. but there is not enough information available in the genome to rep-

In order to test this hypothesis, a competitive learning neural net- resent it.
work architecture is studied in the task of recognizing handwritten  Recent experimental findings in neuroscience suggest that nature
digits. Experiments were devised to evaluate the relative merits of may have found a clever way to utilize self-organization to achieve
three learning approaches: (1) competitive learning alone on a setthe same result. Developing sensory systems are now known to
of training data, (2) evolving (i.e. hardcoding through evolution) be spontaneously active even before birth, i.e. before they could be
the network connection weights directly based on the same train- learning from the environment (see [25, 27, 33] for reviews). This
ing data, and (3) competitive learning on patterns produced by an spontaneous, internal activity may guide the process of cortical de-
evolved pattern generator followed by competitive learning on the velopment, acting as genetically specified training patterns for a
training data. learning algorithm.

The results show that competitive learning alone is much weaker  Although spontaneous activity can arise at all levels of the devel-
than the other two methods. Although direct evolution eventually oping visual system [20, 25, 27], retinal waves are a well-known
achieves slightly higher classification accuracy than pattern gen- example and likely to play a role in prenatal self-organization. In
eration, pattern generation reaches a high level of performance inthe developing retina of e.g. cats and ferrets, internally generated
much fewer generations. In real-world applications as well as in activity occurs as intermittent, local waves across groups of gan-
nature, such slow learning might not be practical, making pattern glion cells [21]. The waves begin before photoreceptors have de-
generation a particularly useful way of constructing complex sys- veloped [19], so they cannot result from visual input. Instead, they
tems. arise from spontaneous recurrent activity in networks of developing

The remainder of the paper is organized as follows. Section 2 amacrine cells that provide input to the ganglion cells [7, 10, 30].
reviews biological and computational background on pattern gen- Like visual images, these waves are locally coherent in space and
eration and on interaction of learning and evolution. The general time and thus they could act as training input for the developing
hypothesis studied in this paper, i.e. that prenatal training basedvisual cortex [28].
on evolved pattern generators is an effective way to build complex  For a biological species, such training patterns can guarantee
systems, is formulated in Section 3. The learning architecture andthat each organism has a rudimentary level of performance from
the algorithms used to evaluate the hypothesis are presented in Secthe start. Such training would also ensure that initial development
tion 4, and experimental results on the handwritten digit recogni- does not depend solely on the details of the external environment.
tion task in Section 5. The mechanism by which prenatal train- Thus, internally generated patterns can preserve the benefits of a
ing helps avoid local minima in postnatal learning is analyzed in blueprint, within a learning system capable of much higher com-
Section 6, and possible directions for future work are presented in plexity and performance.

Section 7.
2.2 Computational Studies
2. BACKGROUND AND RELATED WORK The role of spontaneous activity in development has been tested

In the following subsections, the biological motivation for pat- computationally using a computational map model of the visual
tern generation is reviewed, followed by computational studies ver- cortex called HLISSOM [3, 4, 22]. Using prenatal training patterns
ifying the advantage of combining learning with evolution and the similar to retinal waves, two developmental phenomena were stud-

effects of generating internal patterns. ied: (1) How orientation maps develop in the visual cortex prena-
. . . . tally and postnatally, and (2) how human newborns come to prefer
2.1 Biological Motivation face-like visual input prenatally and how these preferences change

Many researchers have argued that the structure of the primaryin early life.
visual cortex in mammals develops through self-organization ofin-  The HLISSOM orientation model resulted in detailed connectiv-
put connections from the thalamus, driven by visual experience (seeity structure that matches known biological orientation processing
e.g. [29] for a review). A number of classic experiments by Hubel, circuitry in animals. When trained with three-dot input patterns,
Wiesel and other researchers showed that altering the visual envi-the model learned to respond preferentially to pictures of faces,
ronment, especially during a critical period of early life, can dras- and these preferences changed as they do in infants in later train-
tically change the organization of the visual cortex [16, 17]. Such ing with visual images. The experiments with HLISSOM therefore
experiments indicate that visual inputs are crucial for normal cor- elucidate computationally how self-organization based on internal
tical organization, and suggest that the cortex tunes itself to the pattern generation can account for the observed biological struc-
distribution of visual inputs. tures, resulting in species-specific biases such as face preferences

However, there are two problems with this result. First, self-  Arelated idea that has been explored computationally by several
organization takes time, and the animal would not be able to act onresearchers is combining evolution with learning from the environ-
visual input until the process is almost complete. Second, the self- ment. In many such approaches, connection weights are evolved
organized structure depends critically on the specific input patternsfor a network that later learns. In such a system, evolution se-
available: if the visual environment is variable, the organism may lects individuals with weight patterns that have the capacity to learn



Output Units and laborious manual collection and/or tagging of training datasets,
as in tasks like handwriting recognition and face detection. For in-
stance, a three-dot training pattern could be used to detect most
faces, and only the patterns that were not detected would need to
be tagged manually.

More significantly, the pattern generator could be constructed au-
tomatically using evolutionary algorithms (EA). In this approach,
domain-specific knowledge necessary to design the generator by
hand would not be needed. For instance, studying real faces may
lead one to suggest that a three-dot configuration would be a good
training pattern to bootstrap a face detector; however, often such
knowledge can only be obtained through trial and error, and it
Input Units would be better to have an algorithm to do it automatically. In-
deed, the self-organizing system, the pattern generator, and the EA
together can be considered a single general-purpose adaptive algo-
rithm.

What benefits would such a system have over other adaptive
systems, such as EAs or learning networks alone? Essentially,
the combination of learning and evolution represents a balance be-
tween adaptation at different time scales (i.e. it determines a proper
tradeoff between bias and variance; Section 1). Short-term learning
allows an individual network to become well suited for the particu-
lar tasks on which it is tested. Long-term adaptation (i.e. selection
by the EA) can ensure that short-term learning does not reduce gen-
erality. For instance, the EA can select training patterns to ensure
that a system is able to handle events that occur rarely, yet are vi-

Example Digit tally important over the long term. For example, a computer vision
system for detecting faults in manufactured devices can be trained
Figure 1: The architecture of the competitive learning network. both on the typical cases of correct devices, plus specifically gener-
Binary activations from the input pattern consisting of 64 pix- ated examples of faults and defects. The EA can also select pattern
els are fed to the input units of the network, which also contains generators that get the system “in the ball-park,” to increase the
a bias unit. The 10 output units each correspond to a classi-  chance that learning will succeed. Thus, by combining EAs and
fication of the input as one of the 10 digits; the one with the  |earning using pattern generators, it should be possible to evolve

highest activation is chosen as the answer of the network. Dur-  gystems that perform better than using either approach alone.
ing training, the weights of this unit are adjusted towards the

input pattern, making it more likely to win similar patterns in
the future.
4. TESTING THE HYPOTHESIS
The hypothesis is tested in this paper with the task of construct-
good performance, rather than individuals with good performance ing a single-layer artificial neural network to identify the handwrit-
at birth [15, 24]. In other words, learning establishes exploration ten digits 0 to 9. The network receives the handwritten digits as
in the local vicinity of the genetically specified solution. Evolution jts input and produces the classification of each digit as its out-
can search a large search space efficiently, leaving local optimiza-pyt. Classification accuracy and learning effort is compared for
tion to the learning algorithm rather than having to find the correct environment-based learning, direct evolution, and evolved pattern
weight patterns directly. This process results in the Baldwin effect generator approaches.
[1]: learning influences evolution even though acquired character-
istics are not inherited. ‘e .
The above two ideas are brought together in this paper: The pat-4'1 Competltlve Leammg
tern generators are evolved to make postnatal learning as effective The learning algorithm used is competitive learning [13, 26].
as possible, as will be described in the next section. Even though other neural network learning algorithms may be more
powerful in general classification tasks, competitive learning is a
good model for learning in biological systems. It is based on Heb-
3. GENERAL HYPOTHESIS bian adaptation of synaptic efficacies [14] and itis a self-organizing,
How can the idea of internal pattern generation be utilized in unsupervised algorithm. It therefore captures the kind of learning
constructing complex artificial systems? In the most straightfor- that is likely to occur in early development, as is appropriate for
ward approach, the pattern generator can be designed specificallytesting the hypothesis.
for the task, as was done with HLISSOM. Such a generator allows  The digits are written in aB x 8 grid of pixels (Figure 1). The
the engineer to express a desired goal without having to hard-codeinputs to the network consist of the binary activations at the 64 grid
it into a particular, inflexible architecture. In essence, the engineer locations and a bias unit. The network has 10 outputs, one for each
will bias the learning system with generated patterns, allowing itto of the 10 digits to be recognized. Each output unit is connected
solve problems that would otherwise be difficult for learning sys- directly to each of the inputs (including the bias).
tems. For example, simple patterns can be learned before real data, Learning starts by initializing the network connection weights
thereby avoiding local minima in the search space of solutions [9]. w;; between an input unit and an output unif randomly, and
Such bootstrapping may also allow the designer to avoid expensivenormalizing so that the squares of the weights of each output unit
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The output unit with the highest sum is the winner for that pattern.

The weights of this unit are then updated as ulation have been evaluated in this manner, the next generation of

pattern generators is formed. The evolution is terminated once the
Wiy (t + 1) = wip + 02 — win(t)), (3) fitness on a validation set begins to level off, and the network and
the corresponding pattern generator at that point are output as the
result of evolution.

The expected outcome of these comparisons is that the direct
EA (Inducer2) would require a prohibitively large number of iter-
ations, because it has to search in an extremely high-dimensional
4.2 Experimental Hypothesis space of network weights. The environmentally driven learner (In-
ducerl), on the other hand, is likely to get stuck in suboptimal local
minima, because it will start far from the desired solution, without
any bias toward it. In contrast, the pattern-generator-driven system
4.2.1 Inducerl (Inducer3) should be able to discover a solution quickly because it
only needs to evolve a small number of parameters of the generator.

wheren is the learning rate. After the update, the weights of this
unit are again normalized so that their squares sum to one. This
process constitutes a basic competitive learning method that is at
the core of many unsupervised learning algorithms [2, 12, 18].

To evaluate the benefits of training with generated patterns, three
different ways of constructing the neural network are compared.

First, a network is trained using competitive learning alone (Fig-
ure 2). This process involves initializing the network with random . .
weights and training it using a set of examples until its weights con- 4-3 Evolving Networks Directly
verge. This method corresponds to an organism whose learning is In order to evolve the weights of the network directly in the In-

entirely postnatal, without any genetically determined biases. ducer2 approach, each gene is coded as an array of 65 weigtg value
(corresponding to 64 inputs + 1 bias) associated with an output unit.
4.2.2 Inducer2 The weights are floating point values between 0 (inclusive) and a

In the second method (Figure 3), the connection weights of the specified maximum bound (exclusive). The genes for all the output
network are evolved directly; there is no competitive learning phase units are concatenated to form a chromosome, which constitutes an
at all. The architecture of the networks is the same as that in In- individual in the population. Each chromosome therefore consists
ducerl. The classification accuracy of each network on the training of 10 genes, one for each output unit of the network.
set is estimated to compute its fitness. The evolution is terminated The weights are mutated by applying Gaussian perturbations on
once the fitness on a validation set begins to level off, and the net- the floating-point weight values. The standard deviation of the per-

work at that point is output as the classifier. turbation is calculated as the product of a “mutation factor” and the
maximum value allowed for weights. If the mutated value lies out-
4.2.3 Inducer3 side the allowed legal range of values, the mutation is ignored and

Constructing the third classifier network involves evolving a pat- the weight is not changed. The probability of mutation is controlled
tern generator (Figure 4). Each generator produces a set of gattern by a “mutation rate” evolution parameter.
on which a network is trained (using competitive learning) duringa  Mating is done by selecting a partner from the population ran-
prenatal training phase. After the prenatal learning is complete, the domly and performing uniform crossover to produce an offspring.
resulting network is trained on the training set during a postnatal Crossover takes place at two levels: individual weight values and
training phase. After postnatal training, the fitness of the pattern whole genes. That is, genes and weight fields in the genes of the
generator is calculated based on how well the final network per- parent are randomly selected and replaced by the corresponding
forms on the training set. After all pattern generators in the pop- piece of the genome from the partner to produce the offspring. This
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In every generation, all individuals are given a chance to improve

their fithess either through mutation or by mating. If the offspring

has a higher fitness than a parent, the offspring replaces the parent

Calculate Network
4  Accuracy
in the population for the next generation; otherwise the parent is

retained in the population, keeping the population size constant.  Figure 5: The procedure for calculating the percentage of ex-

i amples correctly recognized from a test set involves first label-
4.4 Evolvmg P_attem G_enerators ) . ing the output units of the network with the digits they have
Each prenatal training pattern in the Inducer3 approach is a sin- |aarned to recognize using a validation set. Once the output

gle two-dimensional Gaussian of floating point values between 0 nits have been labeled, the classification accuracy of the net-
and 1. Each pattern generator is coded as a collection of such Gausy,ork on a test set can be determined.

sians. Each gene in the chromosome specifies one Gaussian based
on six floating-point valuess, the standard deviation of the Gaus-
sian in thex-direction;o, the standard deviation in thedirection; 45.1 percentage Correct
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A specified number of genes are packed in a chromosome, whichlabe| is assigned to multiple c_)utput units, some digits may not be
represented by any output unit, and some units may not get labeled

then represents an indivi | pattern generator in th lation. ) ) . . e
en represents an individual pattern generato © poputatio £t all (if they do not win any inputs). After labeling, the classifi-

cation accuracy on the test set can be determined. This measure is
) _ - ) used to compare the accuracy of the final networks produced by all
4.5 Estimating Classification Accuracy three approaches.

Two methods are used to estimate how well the networks per- . . .
form in their task. The first measures classification accuracy di- 4-9-2 Fitness Estimation
rectly, and the second measures fitness more continuously. Both The second method measures classification accuracy based on
methods require computing B) x 10 confusion matrix, whose how close to orthogonal the rows of the confusion matrix are. If
(4, 4) entry is the number of times output ugitwvon when exam- the classifier is perfect then there can be only one non-zero entry
ples of digiti were presented to the network. in each column, corresponding to the digit that the unit recognizes.

Validation Test

Set

Calibrate Network
by Labeling
Output Units

Network Network with Classification

Labeled output: Accuracy

their parameters) are performed as in the Inducer2 approach.



Table 1: Parameters for evolution and learning Table 2: Average classification accuracies

[ Inducerl] Inducer2] Inducer3 [ Inducerl Inducer2 Inducer3
Prenatal learning rate 0.005 Average Accuracy(%)| 63.37 74.47 71.12
Prenatal max. epochs 100 Average Generationg 2152 202
Postnatal learning rate| 0.0005 0.0005
Postnatal max. epochg| 1000 1000
Mutation factor 0.2 0.4 In real-world applications as well as in nature, where the search
Mutation rate 0.9 0.5 spaces are much larger, it may not be practical to run Inducer2 long
Mating rate (fields) 0.1 0.2 enough to achieve its best accuracy. In such domains, Inducer3 is a
Mating rate (genes) 0.05 0.1 preferable alternative for constructing complex systems.
Max. network weight 1.0
Max. displacement 8.0 6. EFFECT OF PRENATAL TRAINING
Max. standard deviation 3.0 o .
How does prenatal learning in Inducer3 allow postnatal learning
Number of genes 10 7 . PR t that onl ¢
Size of patiem set 100 to perform better than in Indu_cerl. urns ou : at only a few
. . output units learn anything during prenatal training; the other units
Population size 25 25 maintain their initial random weights. Such focused learning estab-
Max. generations 9000 9000 lishes just the right bias for postnatal learning so that the system as

a whole does not get stuck in local minima like Inducerl does.
The most obvious way to establish an appropriate bias would
The average angle between the rows can therefore be used as Be to separate each digit to a different unit as much as possible al-
measu_re of classification accuracy without having to label the out- ready in prenata| training. To some extent, this indeed happens_ For
put units. example, during one sample run, one of the output units became
During evolution, the confusion matrix is calculated from the biased toward |earning d|g|t 7 because of h|gh Weights on connec-
training set, and the average angle is used as fitness of networksjons to the top right corner of the input grid, whereas another unit
and pattern generators. Such a fithess provides a smoother ﬁtﬂesgecame biased toward 9 because of high weights on connections
landscape for evolution than the percentage-correct method. It re-to the top left corner. These biases were subtle but allowed the
wards changes in the confusion matrix that may not result in any network to disambiguate between the digits 7 and 9, which were
immediate increase in the percentage accuracy, but are likely to doparticularly problematic for Inducer1.

so when accumulated over several generations. However, such separation is not clear in other cases, and overall
the prenatally trained network is quite different from the final net-
5 EXPERIMENTS work, both in terms of weights and classification behavior. In fact,

- ) ) the confusion matrix after prenatal training often shows a signifi-

_ Thethree classifier network inducers were evaluated using a 299Z:ant clustering of examples to one output unit, instead of separation
image subset of the National Institute for Standards and Technol- of each digit to a different unit. The digits are eventually separated
ogy (NIST) handwritten digit database. The dataset was shuffled quring postnatal training, and it turns out that the prenatal cluster-
and split into 11 equal-size parts so that a 11-fold crossvalidation ing plays a crucial role in this process.
experiment could be run on it. In each of the 11 splits, a different  \wjthout such clustering, all units have random initial biases. One
part was used for testing the classifier accuracy, another differentzng the same unit is likely to win most of the examples of simi-
part for validation (i.e. determining when to stop evolution and la- |5 digits, because the competing units have very different biases
beling the output units), and the remaining nine parts for training.  and win other kinds of digits. Consequently, the units do not learn

Suitable values for the evolution and competitive learning pa- to identify the specific features that differentiate the similar dig-
rameters were determined experimentally prior to the experiment jts. This phenomenon is seen frequently with Inducer1, particularly
(Table 1). Competitive learning in Inducerl and Inducer3 was con- yith digits 7, 8 and 9, and it never recovers from it.
tinued until all weights changed less thin* in an epoch, or up In contrast, in Inducer3 one of the output units forms a cluster
to a maximum number of epochs. The network with the final con- and a few competing units have just the right biases. These com-
verged weights was taken as the result. The training examples werépeting units initially represent only the subtle differences between
presented in a different random order in each epoch. similar digits in the cluster, and win only a few extreme exam-

Similarly, evolution in Inducer2 and Inducer3 was continued un- ples. As these units adapt to examples during postnatal learning,
til the fitness on the validation set leveled off, i.g. did not improvg they maintain these differences while they gradually become less
by more than 0.009 over the next 1000 generations. The championextreme. In this process, they eventually learn an effective repre-
of this generation was then selected as the result of evolution. sentation for the entire digit category that is distinct from the other

The average classification accuracy over the 11-fold crossvali- similar categories. In this way, evolution of pattern generators dis-
dation experiment is shown in Table 2. The differences seen in the coyers a starting point from which it is easy to learn good classi-

table are statistically significant as measured by pair-wise Student'sfication, rather than a starting point that performs well already but
t-test on the crossvalidation runs. As expected, Inducerl is signif- from which further progress is difficult.

icantly less accurate than either Inducer2 or Inducer3. Inducer2

achieves a slightly better accuracy than Inducer3, but does so in a

much larger number of generations than Inducer3. This conclusion 7. DISCUSSION AND FUTURE WORK

is illustrated in Figure 6, where fitness and accuracy for Inducer2  As the classification accuracies in Table 2 show, Inducerl is the
and Inducer3 are plotted over time for one example evolution run. least accurate of the three methods. Since its weights are initialized
Inducer3 achieves a good level of performance much earlier thanrandomly, the network is not biased in favor of any learning path.
Inducer2. Without a proper bias, it regularly gets stuck in local minima. On
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of performance much earlier than direct evolution learner (Induce2), confirming that it is an effective strategy for constructing
complex systems.

the other hand, the networks in Inducer3 are prenatally trained with 8. CONCLUSIONS
the generated patterns. Evolution converges on a pattern generator Research on brain development in animals has led to insights on
that establishes biases on a few output units, making it easier forhow complex brain structures are constructed prenatally and post-
the network to separate the categories during the postnatal leamnatally. Spontaneous activity in the brain before birth may be re-
ing. The result is a significantly better classification accuracy for sponsible for rudimentarily structures that are found in most ani-
Inducer3. . o mals at birth. Such prenatal training may have been discovered by
When constructing complex systems such as those in biology eyolution to establish a proper bias so that the system can learn effi-
and robotics, fitness evaluation of an individual requires it to live a ¢jently from environmental inputs after birth. This paper proposes
lifetime and interact with its environment. The individual can ei- the same approach for building complex systems more generally.
ther be fixed as with Inducer2, or it can learn from the environment The hypothesis is that pretraining a system with patterns from an
and improve its fitness, as with Inducer3. In both cases the durationeyolved generator will make the learning from the actual data eas-
of a lifetime (i.e. a generation) is the same. In this respect, the costjer, Experiments in the handwritten character recognition domain

of evaluating an individual is the same for both Inducer2 and In- sypported this hypothesis, suggesting that complex systems can be
ducer3, and only the number of generations needs to be comparedeffectively constructed in this way.

as was done in this paper.
According to this measure, Inducer2 also reaches a good level of
accuracy eventually, if evolution is allowed to proceed long enough. 9. ACKNOWLEDGMENTS
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