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Abstract

Using a delay adaptation learning rule, we model the activity-dependent develop-
ment of directionally selective cells in the primary visual cortex. Based on input
stimuli, a learning rule shifts delays to create synchronous arrival of spikes at cor-
tical cells. As a result, delays become tuned creating a smooth cortical map of
direction selectivity. This result demonstrates how delay adaption can serve as a
powerful abstraction for modeling temporal learning in the brain.
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1 Introduction

There has recently been much progress in understanding how the properties
of the primary visual cortex (V1) develop based on visual input. There are
models that explain the development of orientation columns, ocular dominance
columns and spatial frequency organization [3, 20]. There is also a variety of
models of directional selectivity in V1 [1, 6, 7, 13, 14, 16]. All of these models
are based on networks with fixed, hard-wired delays. As an alternative, models
with adapting delays have recently been proposed by several researchers [4, 8,
10, 11]. These networks learn temporal information directly, through learning
rules that adapt the delays in the network.
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There are two ways in which delay adaptation can be implemented computa-
tionally [5]. In delay selection an initial range of delay lines are pruned during
development into an appropriate set of delays. In delay shift the transmission
delays are altered based on the timing of pre- and post-synaptic spikes. [5]
showed that delay shift networks are stable and can approximate the behavior
of delay selection models with more traditional weight learning rules[9]. One
can think of a single delay shift connection to be equivalent to a collection
of connections with random fixed delays and a spike-timing dependent weight
learning rule.

In this paper, we demonstrate that a delay shift learning rule can serve as
a powerful abstraction of how temporal learning could occur in the brain.
Prior computational support for this idea includes a recent result of [15], who
show how a temporally asymmetric learning rule combined with unreliable
transmission times can induce drifts in the axonal and dendritic delays that
effectively create a delay adaptation learning rule. It is also possible that
something like delay shift is directly computed in the nervous system. Fiala et
al. [8] and Steuber and Willshaw [18, 19] gave a low-level explanation of how
such learning could occur in cerebellar Purkinje cells based on metabotropic
glutamate receptors.

The main goal of our research is to understand the development of direc-
tional selectivity in V1. Using a delay shift learning rule, we built a temporal
analog to the classic self-organizing map: the self-organizing delay adaptation
(SODA) map. The SODA map developed a smoothly changing map of direc-
tional selectivity, demonstrating how delay adaption can serve as a mechanism
for temporal learning in the brain.

2 The SODA Map

The SODA map is composed of integrate-and-fire neurons organized into two
fully connected layers: a two-dimensional input layer modeling the connec-
tions from the retina through LGN, and a two-dimensional computing layer
modeling the cortex. Afferent connections from retina to cortex each have the
same constant weight, but have a variable, learned delay. In order to create
the competition between the cortical neurons that is necessary for them to dif-
ferentiate and organize, the cortex has short-range excitatory and long-range
inhibitory lateral connections, each with the same small constant weight and
delay.

Afferent delays are adjusted according to a delay learning rule that depends
on the timing of pre- and post-synaptic spikes [4]. For a pre-synaptic spike
arriving at time ¢, and a post-synaptic neuron that fires at time ¢p,5, the



Fig. 1. Position Delay Tuning Each figure shows time delays on the connections
from each location in the retina to one particular cell in the cortex. (a) Initial tuning.
(b) A neuron tuned to motion in one direction (west). This neuron corresponds to
position (3,3) on the map in figure 2b. (c) A neuron tuned to two directions of
motion (east and south) in position (5,7) in figure 2b.

g2
change in delay, W, is computed as W,(s) = —s(@) — d, where c is

a positive constant, d is a small negative bias and s = ¢y — tpost- As one
might intuit, delays are increased for input spikes that arrive early relative
to the post-synaptic spike and are decreased for late arrivals. One can think
of this learning rule as a temporal analog to Hebb’s rule; instead of weights
being adjusted to create spatially coincident activation, delays are adjusted to
create temporally coincident activation.

3 Simulation and Results

Initially, all afferent delays are randomly assigned from a Gaussian distribu-
tion (figure la). As a result, the neurons exhibit little selectivity. The small
amount of organization that we see in the initial map (figures la and 2a) is due
entirely to the excitatory lateral connections. During training, the network is
repeatedly presented with one of four stimuli, each of which is a bar of activity
moving at a constant speed in one of the four cardinal directions.

In this process all of the neuron’s delays become tuned and coherent. They
form a profile tuned to a particular stimulus such that all of the input spikes
from that stimulus will arrive almost coincidently to the cortical neuron, thus
creating maximal firing. Plotting these delays on the retina we see a plane
whose slope corresponds to the speed of motion of the input stimulus. Different
areas of the map (figure 2b) respond optimally to one or two input stimuli. In
addition the map exhibits transitions between different areas.
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Fig. 2. Directional Selectivity Map The z and y axes indicate location in the
cortex. At each location, the response of a cortical neuron in the map is represented.
Each arrow represents the strength of that neuron’s response to the stimulus that
moves in the arrow’s direction. No arrow means that the neuron has no response to
that stimulus. (a) Initially, the map shows very little organization and tuning. (b)
After training, we can see that the map has become organized, with different areas
likely to respond to one or two of the input stimuli, and smooth transitions between
theses areas.

4 Discussion and Future Work

We have shown how a self-organizing map using a delay adaptation learning
rule develops an organization based on directional selectivity. In our maps,
because delays are the only parameters that adapt, direction is the only stim-
ulus property that can be represented and cortical cells tend to be adjacent
to other cortical cells with the same directional selectivity. In V1, the pat-
tern of directional selectivity changes in a slow continuous fashion, and then
has “fractures” where the directional selectivity shifts abruptly [17, 21]. These
fractures are due to the fact that maps of both orientation and directional se-
lectivity are overlayed in the same brain area. The next step in our modeling
is to add a weight learning rule to SODA; with both delay and weight learn-
ing rules, maps of directional selectivity and orientation will develop together,
and we expect the resulting map to exhibit the fractures and pinwheels that
develop in the cortex.

Temporal computation is not restricted to the visual system of the mammalian
brain. The lateral line system of weakly electric fish, and the auditory system
of barn owls and echo-locating bats all depend on precise neuronal time cod-
ings [2]. In particular, the auditory cortex forms a map of inter-aural delays
in mammals and birds [12]. SODA computation models are ideal tools for
understanding how maps of time varying input can be learned.
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