Functional Generative Design: An Evolutionary Approach to 3D-Printing

Cem C. Tutum, Supawit Chockchowwat, Etienne Vouga, Risto Miikkulainen

Overview

- Motivation: Generating 3D Printed functional designs
- Methodology: 4 building blocks
 - Variational Autoencoder (VAE)
 - Noisy Kriging
 - Efficient Global Optimization (EGO)
 - Real parameter GA (rGA)
- Experiments:
 - Uniform vs. Random Sampling
- Results and Discussion:
 - Optimal design and a few others
 - Discovered 3D printing rule
- Future Work and Conclusions

How can we design functional parts for 3D printing?

How can we design <u>functional</u> parts for <u>3D printing</u>? (kinematic) (FDM)

How can we design functional parts for 3D printing?

Fused Deposition Modeling Process

How can we design functional parts for 3D printing?

Fused Deposition Modeling Process

- Takes time/effort to remove
- Produces waste material
- Leaves excess plastic behind
- Damage object during removal

requires post-processing

Examples for 3D printed non-functional parts

• One solution is Evolutionary Decomposition (E. Yu et.al., GECCO'17)

• One solution is Evolutionary Decomposition (E. Yu et.al., GECCO'17)

PROBLEM-1: What about functional parts?

• One solution is Evolutionary Decomposition (E. Yu et.al., GECCO'17)

Supports!. (Grey)

• One solution is Evolutionary Decomposition (E. Yu et.al., GECCO'17)

- **PROBLEM-1:** What about functional parts?
- We cannot decompose load-carrying parts!

Supports! (Grey)

3D Printing Functional Parts

• **PROBLEM-2:** Resolution in 3D Printing

3D Printing Functional Parts

PROBLEM-2: Resolution in 3D Printing

- Effects of 3D printing process?
 - 3D Scanning cannot capture the details,
 - Rendering GCODE model

Deformation simulation

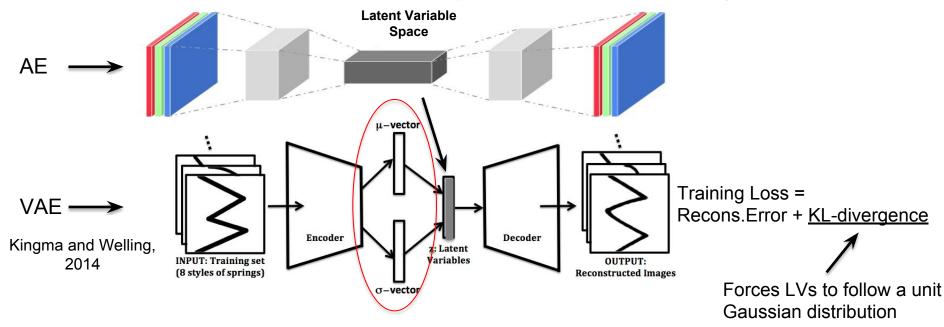
~2-3 weeks!

Car-Launcher Mechanism — as a proof-of-concept

Car-Launcher Mechanism — as a proof-of-concept

Car-Launcher Mechanism — as a proof-of-concept

Available Methods


- Several popular design methods:
 - Shape Optimization
 - requires parameterization of the model
 - Topology Optimization
 - compute heavy for nonlinear material & dynamic problems
- Generative (Deep Learning) Methods:
 - Variational Autoencoders (VAEs)
 - Generative Adversarial Networks (GANs)
 - Mostly applied to images or 3D shapes (visual aspects)
 - Why not use their flexibility and creativity for functional design purposes?

Methodology

- Building blocks:
 - Variational Autoencoders (VAE)
 - Noisy (Regressing) Kriging
 - Efficient Global Optimization (EGO)
 - Real-parameter Genetic Algorithm (rGA)
- Integration Flowchart

VAE

Autoencoder → efficient representation learning

8 styles of springs – intuitively chosen

Interpolation in LV-space

Noisy (Regressing) Kriging

- Kriging → surrogate (e.g., function approximator, response surface model)
- Interpolation vs. <u>Regression</u>

Correlation between two points:

$$cor\left[y(\mathbf{x}^{(i)}), y(\mathbf{x}^{(j)})\right] = \prod_{k=1}^{d} exp\left(-\theta_k \left|\mathbf{x}_k^{(i)} - \mathbf{x}_k^{(j)}\right|^2\right)$$

Prediction at new point x*:

$$\hat{y}(\mathbf{x}^*) = \hat{\mu} + \mathbf{r}^T (\mathbf{R} + \lambda \mathbf{I})^{-1} (\mathbf{y} - \mathbf{1}\hat{\mu})$$

$$\hat{\mathbf{s}}^2(\mathbf{x}^*) = \hat{\boldsymbol{\sigma}}^2 \left[1 + \lambda - \mathbf{r}^T (\mathbf{R} + \lambda \mathbf{I})^{-1} \mathbf{r} + \frac{1 - \mathbf{1}^T (\mathbf{R} + \lambda \mathbf{I})^{-1} \mathbf{r}}{\mathbf{1}^T (\mathbf{R} + \lambda \mathbf{I})^{-1} \mathbf{1}} \right]$$

Predicted (re-interpolation) error (for EGO):

$$\hat{s_{ri}}^{2}(\mathbf{x}^{*}) = \hat{\sigma_{ri}}^{2} \left[1 - \mathbf{r}^{T} \mathbf{R}^{-1} \mathbf{r} + \frac{1 - \mathbf{1}^{T} \mathbf{R}^{-1} \mathbf{r}}{\mathbf{1}^{T} \mathbf{R}^{-1} \mathbf{1}} \right]$$

EGO

- EGO → surrogate (or model)-based optimizer
- Iteratively updating the surrogate model with promising infill points which maximize **Expected Improvement** crit.

$$\begin{split} E[I(\mathbf{x}]) = & (y_{best} - \hat{y}(\mathbf{x})) \Phi\left(\frac{y_{best} - \hat{y}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right) + \\ & \hat{s}(\mathbf{x}) \phi\left(\frac{y_{best} - \hat{y}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right) \end{split}$$

EGO

- EGO → surrogate (or model)-based optimizer
- Iteratively updating the surrogate model with promising infill points which maximize <u>Expected Improvement</u> crit.

rGA

- rGA → real parameter Genetic Algorithm
- Operators:
 - Tournament Selection,
 - α -Blend Xover,
 - Gaussian Mutation
- Its roles:
 - Tuning Kriging hyperparameters
 - Maximizing El in EGO
- Fitness evaluation (Normalized):

$$f(x) = \sum_{i=1}^{n_{exp}} MSE_i = \frac{1}{10} \sum_{i=1}^{10} |d_i - 75|^2$$

Integrated Method

Experiments

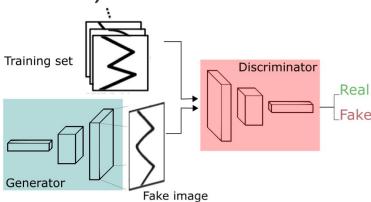
- Total of 72 fitness evaluations
- 36 initial samples = 16 + 20
- Two experiments for choosing those 16 designs
 - Exp-1: Random Sampling
 - Exp-2: Uniform Sampling
- 20 designs by Normal distribution
- Rest (36) are incrementally chosen by EGO

Exp-1 Results

Exp-2 Results

Discussion

- Exp-1 \rightarrow Exploitation
- Exp-2 \rightarrow Exploration
- Similar optimal designs
- Gaps cause fracture or act like a hinge!

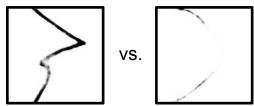

Discussion

• Gaps are not always bad: <u>Double-line</u> print!

Hyperparameter optimization for VAE, or GAN

Hyperparameter optimization for VAE, or GAN

Quantification of infeasibility



Hyperparameter optimization for VAE, or GAN

Quantification of infeasibility

Repair hallucinations

Hyperparameter optimization for VAE, or GAN

Quantification of infeasibility

Repair hallucinations

More design applications

Conclusions

- Methodology: Known ingredients, new recipe
- Design + Manufacturing → Functional Performance
- Successful Generative method for:
 - Complex design problem
 - <u>Limited #fitness evaluations</u>
 - Losses
 - Reconstruction (encoder-decoder)
 - Production (Slicing & 3D Printing process)
 - Many <u>missing values</u>
 - Noisy landscape
- Clever use of gaps

THANK YOU! Any Questions?