
Adapting to Unseen Environments through
Explicit Representation of Context

Cem Tutum1 and Risto Miikkulainen1,2

1The University of Texas at Austin, Austin, TX 78712
2Cognizant Technology Solutions, San Francisco, CA 94111

tutum@cs.utexas.edu

Abstract

In order to deploy autonomous agents to domains such as
autonomous driving, infrastructure management, health care,
and finance, they must be able to adapt safely to unseen sit-
uations. The current approach in constructing such agents is
to try to include as much variation into training as possible,
and then generalize within the possible variations. This pa-
per proposes a principled approach where a context module
is coevolved with a skill module. The context module rec-
ognizes the variation and modulates the skill module so that
the entire system performs well in unseen situations. The ap-
proach is evaluated in a challenging version of the Flappy
Bird game where the effects of the actions vary over time.
The Context+Skill approach leads to significantly more ro-
bust behavior in environments with previously unseen effects.
Such a principled generalization ability is essential in deploy-
ing autonomous agents in real world tasks, and can serve as a
foundation for continual learning as well.

Introduction
Generalization to unseen situations is an important capabil-
ity for autonomous agents. Especially in real-world deci-
sion making and control applications such as autonomous
driving, robotics, process control, health care, and finance,
the agents routinely need to adapt safely to unseen situa-
tions. A common practice is to train these models, mostly
deep neural networks, with the data collected from a limited
number of hand-designed scenarios. However, the tasks are
often too complex to anticipate every possible scenario, and
this approach is not scalable. Moreover, these models can
be brittle when they are exposed to even small variations or
noise.

One popular approach to address this problem is few-
shot learning, in particular metalearning, either by utilizing
gradients (Schmidhuber, 1987; Thrun and Pratt, 1998; Finn
et al., 2017) or evolutionary procedures (Fernando et al.,
2018; Grbic and Risi, 2019). In metalearning, systems are
trained by exposing them to a large number of tasks, and
then tested for their ability to learn new relevant but un-
seen tasks. There are also a number of approaches mostly
for supervised learning setting where new labels need to be

predicted based on limited number of training data. How-
ever, applications in control and decision making, including
reinforcement learning problems, are very limited (Kansky
et al., 2017).

The approach in this paper is motivated by prior work on
opponent modeling in poker (Li and Miikkulainen, 2017,
2018). In that domain, an effective approach was to evolve
one neural network, the game module, to decide what move
to make, and another, the opponent module, to monitor the
opponent, and modulate those decisions by taking the oppo-
nents playing style into account. When trained with only a
small number of very simple but different opponents, the ap-
proach was able to generalize and play well against a wide
array of opponents, include some that were much better than
anything seen during training.

In a sense, the opponent forms a context for the decision
making in poker. Each decision needs to take into account
how the opponent is likely to respond, and select the right
action accordingly. The player can thus adapt to many dif-
ferent game playing situations immediately, even those that
have not been encountered before. In this paper, this ap-
proach is generalized and applied to control and decision
making more broadly. In more general terms, a skill net-
work reacts to the current situation, and a context network
integrates observations over a longer time period. A third,
controller, network combines the outputs of both networks,
thus modulating decision making through context. Such a
Context+Skill system can thus generalize to more situations
than any of its components alone.

The Context+Skill approach is evaluated in this paper on
an extended version of the popular Flappy Bird game. This
version includes more actions and physical effects (i.e. for-
ward flap and drag in addition to flap up and gravity). Such
an extension allows generating a range of unseen scenarios
both by extending the range of effects of those actions as
well as their combinations. The approach generalizes re-
markably well to new situations, and does so much better
than its components alone. Context+Skill approach is thus a
promising approach for building robust autonomous agents
in real-world domains.

581



The remaining sections of this paper are organized as fol-
lows: Methodology section presents the experimental set up
and the test domain, the architecture of the neural networks,
and the multiobjective evolution procedure for constructing
the system. Next, learning and generalization results are pre-
sented, demonstrating that the Context+Skill approach in-
deed performs better than its parts. The behaviors of these
networks are contrasted in the Behavior Analysis section,
finding that Context+Skill can anticipate results of its ac-
tions more accurately, making it possible to adapt to unseen
situations.

Methodology
This section introduces the experimental setup, the neural
networks used as the control policies for the agent, and the
evolutionary training methodology.

The Flappy Ball Domain

Flappy Ball is an extension of the popular Flappy Bird com-
puter game (Wikipedia, 2020). Implemented in PyGame, it
has less detailed visual effects but more complex physical
dynamics, and is mainly developed to test the generalization
behavior of an agent in a more challenging and controlled
environment (Fig. 1). The agent, controlled by a neural net-
work, aims to navigate through the openings between pipes
without hitting them for a certain length of time. The agent
can control two actions, i.e., flapping forward and upward;
both actions can be applied simultaneously. If they are not
applied, gravity will pull the agent down and drag will slow
it down. The agent gets a reward of +1 every time it passes
a pipe successfully, and various penalties depending how
badly it crashes into the pipes, ceiling, or ground. Each time
step spent in a collision incurs a penalty of -1, and in hit-
ting the ceiling or the ground, of -5. This way, attempting to
fly through the pipes but failing is penalized less than flying
through a pipe or not trying.

At every time step, the agent receives sensory information
as a vector of six numerical values as indicated in Fig. 1: the
vertical position of the agent (y), its horizontal and vertical
velocities (vx and vy, respectively), the horizontal distance
of the agent to the right edge of the closest pipe (x), and the
height of the top and bottom pipes (htop and hbottom, respec-
tively). These values are normalized to the range [0,1]. In
an environment with known physical effects, this setup is a
Markov Decision Process (MDP) since all the state informa-
tion necessary to decide on the right action is provided to the
agent. However, the effect of the agent’s actions, i.e. flap up
or forward, as well as the physical forces acting upon the
agent, i.e. gravity and drag, can change between episodes
unbeknownst to the agent, establishing a new task for the
agent. Therefore, in order to perform well in new tasks,
the agent has to infer such variations from its interactions
with the environment over time, which makes the problem

Figure 1: A scene from the Flappy Ball game. The red circle
represents the agent and the white columns are pipes that
move from right to left as the game progresses. At each
time step, the agent can flap up or forward or both; if it does
not, gravity will pull it down and drag will slow it down.
The origin of the coordinate system (0,0) is at the upper left
corner; thus the action of flapping up results in values of
negative y-velocity or smaller y-position. The six variables
identified in the figure constitute the input information that
the agent receives at each time step.

partially observable. Since acceleration and velocity are lin-
early correlated, such learning is possible.

This domain is more complex than the common Flappy
Bird game, which does not have the forward flap action or
drag. In order to pass more pipes without a collision, the
agent needs to use the forward flapping action carefully be-
cause the only way to slow down is through drag. It also
needs to be cautious because it can only observe the clos-
est pipe. By changing the effects of actions and the forces
of gravity and drag, new and more challenging situations
can be created, testing the generalization performance of the
agent’s control policy.

The Flappy Ball domain can be seen as a proxy for control
and decision making problems where the changes in the en-
vironment require immediate adaptation, such as operating
a vehicle under different weather conditions, configuration
changes, wear and tear, or sensor malfunctions. The chal-
lenge is to adapt the existing policies to the new conditions
immediately without further training, i.e. to generalize the
known behavior to unseen situations.

Evolutionary Multi-objective Optimization (EMO)
The original Flappy Bird game is usually treated as a single-
objective optimization problem, where the number of pipes
passed until one is hit is maximized. To provide for more
varied behaviors, Flappy Ball is formulated as a multi-
objective optimization problem instead. The number of suc-
cessfully passed pipes (fp) is maximized, whereas the num-
ber of any type of collisions (fh, where h stands for hits) is
minimized.

582



Non-dominated sorting genetic algorithm (NSGA-II)
(Deb et al., 2002) was implemented in DEAP (Fortin et al.,
2012) as the EMO method for Flappy Ball. Although find-
ing the safest solution (fh = 0) is the ultimate goal, as in the
single-objective case, the diversity resulting from the multi-
objective search speeds up training and helps discover well-
performing solutions (Knowles et al., 2001). EMO algo-
rithms use Pareto dominance to sort the solutions into sets
of equally preferable solutions (or Pareto fronts). The one
containing the non-dominated solutions are called Pareto-
optimal set Deb (2001); it is up to the user to select one of
them based on his or her needs. In the experiments in this
paper, one that is perfectly safe or close to it is usually se-
lected.

Neural Networks
The Context+Skill Network consists of three components:
the Skill and the Context modules and the Controller (Fig-
ure 2). The first two modules receive sensory information
from the environment as numerical values, as described in
Section . They send their output to the Controller, a fully
connected feedforward neural network that makes the deci-
sions on which actions to take.

The Skill module is also a fully connected feedforward
network. Together with the Controller they form the Skill-
only Network, S (Fig. 2(c)). The Skill module used in this
study has 10 hidden and five output nodes and the Controller
has 20 hidden hidden nodes and two outputs, i.e. one for
each action. Both C and S modules have hyperbolic tangent
activation function at their output layers. S is used as the
baseline model throughout the study. In principle it has all
the information for navigating through the pipes, but does
not have the benefit of explicit representation of context.

The other main component in the Context-Skill frame-
work is the Context module. It is composed of a vanilla
Long Short Term Memory (LSTM) cell (Hochreiter and
Schmidhuber (1997)). There are three gates in this recur-
rent memory cell: input, forget, and output. The gates are
responsible for learning what to store, what to throw away,
and what to read out from the long-term memory of the
cell. Thus, the cell can learn to retain information from the
past, update it, and output it at an appropriate time, thereby
making it possible to learn sequential behavior Greff et al.
(2017); Géron (2017).

The C-module used in this study consists of an LSTM
cell size of 10. The memory of the C-module (ht-1 and ct-1)
is reset at the beginning of each new task, and accumulated
(transferred) across episodes within each task. It can there-
fore form a representation of how actions affect the environ-
ment. The output of the LSTM (ht) is sent to Controller as
the context. Together the C-module and the Controller form
the Context-only network, C Fig. 2(b). It serves as a second
baseline, allowing integration of observations over time, but
without a specific Skill network to map them directly to ac-

tion recommendations.
The complete Context-Skill Network, CS (Fig. 2(a)) con-

sists of both the Context and Skill modules as well as the
Controller network of the same size as in C and S. The mo-
tivation behind the CS architecture, i.e. of integrating the
Context module into S, is to make it possible for the system
to learn to use an explicit context representation to modulate
its actions appropriately. The method for discovering these
behaviors is discussed next.

Neuroevolution
All three neural network models described in Section are
evolved using NSGA-II (Deb et al., 2002). The overall pro-
cedure is shown in Algorithm 3. The network architectures
remain fixed while their weights are evolved. The goal is to
maximize their average score across multiple tasks, where
each task is based on different physical parameters of the
Flappy Ball environment. The base values for the four ac-
tions are chosen as Flapbase=-12.0 (negative value is due
to the coordinate system), Gravitybase=1.0, Fwdbase=5.0 and
Dragbase=1.0. In each task during evolution, only one pa-
rameter is subject to change, while the rest are fixed at their
base values. There are four tasks used in evolution, defined
as:

• Task-1: The effect of the Flap action varies ∓20% of its
base value, i.e., [FlapL, FlapU] = [-14.4, -9.6];

• Task-2: The effect of the Gravity force varies ∓20% of
its base value, i.e., [GravityL, GravityU] = [0.8, 1.2];

• Task-3: The effect of the Forward action varies ∓20% of
its base value, i.e., [ForwardL, ForwardU] = [4.0, 6.0]; and

• Task-4: The effect of the Drag force varies ∓20% of its
base value, i.e., [DragL, DragU] = [0.8, 1.2].

Each task, and therefore each parameter, is uniformly
sampled nepisodes=5 times within the limits specified above.
The fitness of every individual in the population is evaluated
in parallel on the same task distribution for a fair compari-
son. Each episode length is fixed to 500 time steps. The seed
number for the random number generator is included in the
task parameters so that the distribution of the pipes can be
repeated.

After the task parameters are prepared, fitness evalua-
tion follows (Algorithm 2). The parameters of a network
are stored as an array in the individual candidate and con-
verted to the corresponding neural network representation
(Line 3) before the fitness evaluation (Line 10). The mem-
ory of Context-module in CS and C is reset at the begin-
ing of each task (Lines 7–8), and transferred from episode
to episode otherwise. The average number of successfully
passed pipes and collisions in each episode are returned as
the two objective values to be maximized and minimized,

583



(a) Context-Skill Network, CS (b) Context-only Network, C (c) Skill-only Network, S

Figure 2: The architecture of the Context+Skill network and its ablations. (a) The network consists of three components: a
Skill module that processes the current situation, a Context module that integrates observations over the entire task, and a
Controller that combines the outputs of both modules, thereby using context to modulate actions. This architecture is compared
to (b) context-only ablation, and (c) skill only ablation in the experiments. Each component is found to play an important role,
allowing the CS network to generalize much better than its ablations.

Algorithm 1 Preparation of task parameters
1: procedure PREPARETASKPARAMS(nepisodes, ntasks)
2: p := [] #Parameter vector
3: S := randomInteger(232, nepisodes)
4: F := randomUniform(FlapL, FlapU, nepisodes)
5: G := randomUniform(GravityL, GravityU, nepisodes)
6: Fwd := randomUniform(FwdL, FwdU, nepisodes)
7: D := randomUniform(DragL, DragU, nepisodes)
8: for task from 1 to ntasks do
9: for e from 1 to nepisodes do

10: if task == 0 then
11: p ∪ [S[e], F [e], Gbase, Fwdbase, Dbase]
12: else if task == 1 then
13: p ∪ [S[e], F base, G[e], Fwdbase, Dbase]
14: else if task == 2 then
15: p ∪ [S[e], F base, Gbase, Fwd[e], Dbase]
16: else if task == 3 then
17: p ∪ [S[e], F base, Gbase, Fwdbase, D[e]]
18: return p
19:

Algorithm 2 Fitness evaluation
1: procedure EVALFITNESS(ind, taskParams, nepisodes)
2: pipes, hits = [], []
3: net = genotypeToPhenotype(ind)
4: ntasks = taskParams
5: for task from 1 to ntasks do
6: if net contains C then
7: net.hprev = [0, 0, ..., 0]1xCoutput

8: net.cprev = [0, 0, ..., 0]1xCoutput

9: for e from 1 to nepisodes do
10: f0, f1 = FlappyBall(net, taskParams)
11: pipes ∪ f0
12: hits ∪ f1

return pipesmean, hitsmean
=0

Algorithm 3 Evolutionary loop for training neural networks
on multiple tasks

1: procedure EVOLVE()
2: stop := False fitness := []
3: parents := initializePopulation(µ)
4: taskParams = prepareTaskParams(nepisodes,ntasks)
5: for ind from 1 to µ do
6: fitness ∪ evalFitness(parents, taskParams)
7: for gen from 1 to ngen do
8: offspring = tournamentSelection(parents, µ)
9: for i from 1 to λ do

10: if random() ≤ pcrossover then
11: SBX(offspring[i], offspring[i+1])
12: polynomialMutation(offspring[i])
13: polynomialMutation(offspring[i+1])
14: params = prepareTaskParams(nepisodes,ntasks)
15: for ind from 1 to λ do
16: fitness ∪ evalFitness(offspring, taskParams)
17: for j from 1 to λ do
18: if fitness[j][0] ≥ pipesmax then
19: if fitness[j][1] ≤ hitsmax then
20: stop := True
21: parents := tournamentSelection(parents + offspring, µ)
22: if stop == True then
23: return parents
24: break

584



respectively. There are a total of 20 episodes, since there are
four tasks with five episodes in each.

The overall procedure, i.e., NSGA-II applied to evolv-
ing agents in the Flappy Ball domain, is shown in Algo-
rithm 3. It receives ntasks=4, nepisodes=5, perturb=0.2 (i.e.,
±20%), Flapbase = -12.0, Gravitybase = 1.0, Forwardbase =
5.0, Dragbase = 1.0, µ = 96, pcrossover = 0.9, ngen = 2,500
as input. The population size (µ) is chosen as a multiple
of 24 since the fitness evaluations are distributed among 24
threads on a cluster (i.e., Dell PowerEdge M710, 2x Xeon
X5675, 6 core @ 3.06GHz). The details about the genetic
operators such as SBX (Simulated Binary Crossover), Poly-
nomial Mutation, and Tournament Selection Based on Dom-
inance can be found in the literature (Deb et al., 2002).
NSGA-II uses (µ + λ) elitist selection strategy with a bias on
individuals in lower fronts, where the Pareto-optimal front is
the first front. If the individuals are located in the same front,
the ones that are more distant from the others in objective
space are selected to maintain the diverse set of trade-off so-
lutions within the population.

Results
Evolution, as given in Algorithm 3, was run 6 times with
diferent random number generator seeds separately for CS,
C, and S until an individual was found that achieved a fitness
scores of at least f0=22.0 (pipesmax) and f1=0.01 (hitsmax),
where f0 is the average number of successfully passed pipes
and f1 is the number of collisions. Although the final Pareto-
optimal set in each run contained individuals with higher f0
values, the minimum f1 requirement meant that only rela-
tively safe solutions were accepted. Generalization ability
of these solutions were then evaluated.

Learning
The evolution of S takes the shortest amount of generations
since it has the least number of model parameters to opti-
mize, i.e., 287, compared with 982 for C and 1207 for CS.
To make sure the number of parameters was not a factor,
another S with a larger Skill module, with the same num-
ber of parameters as CS, was also evolved until the same
target level. However, it performed poorly compared to the
smaller S in the generalization studies, apparently because it
was easier to overfit. Thus, it was excluded from the com-
parisons that follow.

Generalization Behavior
To evaluate the generalization performance of the best per-
forming networks, the task parameters (i.e., flap, gravity,
forward, and drag) were changed in the following two ways
while keeping the networks fixed:

• The range of variation in the task parameters was in-
creased from 20% to 75%; and

• All four parameters were varied simultaneously as op-
posed to one at a time.

The task parameters were varied in a four-dimensional
structured grid ranging from each parameter’s 25% and
175% of the base value, respectively. Thus, with the updated
limits, the effect of

• the flap action varied between [-21.0, -3]test;

• the gravity force varied between [0.25, 1.75]test;

• the forward action varied between [1.25, 8.75]test; and

• the drag force varied between [0.25, 1.75]test.

Each parameter axis was divided into 10 equal steps and
each set of task parameters were sampled three times (with
varying pipe distribution) and averaged. Therefore, all three
networks were tested for 3 × 104 episodes. To compare the
generalization performance of the networks pairwise, the
difference in the number of successfully passed pipes and
the number of collisions are presented in the following den-
sity plots of Figure 3, where all (6) of the density curves
visibly overlap, given the stochasticity of evolutionary algo-
rithms. The horizontal axis shows the difference in either
f0 or f1, whereas the vertical axis shows the probability of
these results. Having a skewed distribution to the right side
of the 0-value is better for the left histogram (i.e., score of
pipes), whereas the opposite is better for the right histogram
(i.e., score of hits) for each network.

The density plots show that CS performs better than both
C and S by a large margin (Fig. 3(a) and (b)). Interestingly,
C and S have similar generalization even though they have
very different architectures (Fig. 3(c)). These results are also
evident in the summary boxplot of Fig. 4. The contour plots
in Fig. 6 makes the generalization capability of CS more
visible in two parameter space where all pairwise parameter
combinations are tested in a similar way. The white cross in
each contour plot indicates interpolation axes to show vari-
ation during training. Therefore, even though each of C and
S do not perform well alone, when combined into CS, they
work well together and allow generalization to a wide range
of new situations.

Behavior Analysis
To understand how the CS architecture outperforms its indi-
vidual components C and S, a set of task parameters [Flap=-
7.0, Gravity=0.58, Fwd=8.75, Drag=0.58], which was in-
cluded in the generatization tests presented in the Results
section was evaluated further. This setting has previously
unseen exaggarated effects for flap and forward, and previ-
ously unseen diminished effects for gravity and drag. Thus,
actions tend to push up and speed up the agents more than
expected, and it is difficult for it to slow down and come
down. Generalization requires both extrapolation of the task

585



f0 (pipes) f1 (hits)
(a) CS - S

f0 (pipes) f1 (hits)
(b) CS - C

f0 (pipes) f1 (hits)
(c) C - S

Figure 3: Generalization differences between Context+Skill network and its ablations. The x-axis shows the differences in
generalization performance across the 3 × 104 test episodes for the three pairs of architectures. A distribution that is skewed
to the right of the 0 line (blue dashed line) is better on the left density curve (showing f0, or number of pipes), and one that is
skewed to the left is better on the right curve (showing f1, or number of hits). CS generalizes much better than C (a) or S (b),
which are about equal (c).

(a) f0 (pipes) (b) f1 (hits)

Figure 4: Summary of the generalization distributions. The
data from Fig. 3 is organized into boxplot so that the distri-
butions for the different architectures can be compared more
clearly. CS generalizes better than both C and S, which are
rather similar. CS thus combines the abilities of both C and
S for superior generalization.

parameter limits as well as understanding previously unseen
interaction between them. All three networks were tested in
the same environment and their behavior tracked in detail.

The C network was able to pass 15 pipes successfully,
and collided with six pipes, whereas S performed slightly
better by passing 16 pipes with five collisions. On the other
hand, CS remarkably managed to pass all 21 pipes without
hitting any of them. In this particular test case, both C and
S use all four actions (flap, forward, simultaneously flap and
forward, or do nothing, i.e. glide), but CS interestingly never
uses flap. That action simply lifts the agent up, which is
rarely optimal action in this environment where it takes such
a long time to come down. If it is necessary to go up that
is because the opening is high, and in that case it is more
efficient to move forward as well.

As an illustration, Fig. 5 shows a situation at the 4th and
5th pipe. Both C and S make a similar mistake by flap-
ping up and forward. They end up too high too fast, do not
have enough time to come back down, and crash into the 5th
pipe. In contrast, as soon as the 5th pipe becomes visible,

CS refrains from both actions while there is enough time for
weaker gravity and drag to slow and pull down the agent,
and it reaches the opening in the 5th pipe just fine.

Discussion and Future Work
The proposed Context+Skill approach adapts to unseen sit-
uations by representing context explicitly. Compared to its
components, it has a remarkable ability to generalize to un-
seen situations. In this proof-of-concept study, the architec-
ture of the neural network model has a fixed-topology which
constrains the model’s functionality. Evolution of the net-
work topology together with its weights (Stanley and Mi-
ikkulainen, 2002; Schrum and Miikkulainen, 2014) will be
a natural extension to this work.

Besides the architecture, the choice of the tasks used for
training plays an important role in the generalization capa-
bility of the model. Therefore, one direction for future work
is to investigate methodologies that can automatically design
a curriculum, i.e., a set of new training tasks and a better or-
der to learn them (Narvekar and Stone, 2019; Wang et al.,
2019; Schmidhuber, 2011; Justesen and Risi, 2018; Risi and
Togelius, 2019).

In addition to Flappy Ball experiments, the Context+Skill
model will be tested in more environments similar to Flappy
Ball domain (e.g., LunarLander-v2) and the autonomous
driving simulation, CARLA (Dosovitskiy et al., 2017). In-
stead of using handcrafted features, convolutional layers to
be added in front of the Context and Skill modules can be
used to discover features on its own while training. This
would enrich the variety of tasks that the model can be tested
on (Cobbe et al., 2019; Beyret et al., 2019).

Another direction for future work is to look into the hid-
den layer patterns to see if any evidence can be found for the
observed generalization capabilities (Zhang et al., 2016) or
representational capacity (Arpit et al., 2017). There is plenty
of work about learned hierarchical representations in appli-
cations such as computer vision (Yosinski et al., 2015) and
natural language understanding, however it is still limited in
reinforcement learning tasks (Karpathy, 2015).

586



(a) Skill-only Network, S (b) Context-only Network, C (c) Context-Skill Network, CS

Figure 5: Contrasting the generalization ability of (a) S, (b) C, and (c) CS. At the 4th pipe, S and C flap up and then forward,
end up too high too fast without enough time to come back down, and crashing into the 5th pipe. In contrast, the Context-Skill
Network avoids the collision by correctly estimating the effects of its actions, giving itself enough time to come down. For an
animation of these episodes, see https://drive.google.com/drive/folders/1GBdJzD9tDHJkd59YbQUOIQua6nCiLjXa.

Figure 6: Generalization ability of CS (i.e. fpipes) in 2D-
parameter space, where all pairwise combinations are tested.
The white cross in each contour plot indicates interpolation
axes and they show variation during training. It is visible
that the parameter range used in testing is much wider. It is
remarkable to see that CS can achieve a maximum score of
27 pipes and an average score of 21 pipes.

Lifelong machine learning tries to mimic how humans and
animals learn by accumulating the knowledge gained from
past experience and using it to incrementally adapt to new
situations (Parisi et al., 2019). The generalization ability
presented in this work can serve as a foundation for contin-
ual learning. It can provide an initial rapid adaptation to new
situations upon which further learning can be based. How to
convert generalization into a permanent ability in this man-
ner is an interesting direction of future research.

Conclusion
Perhaps the main challenge in deploying artificial agents in
the real world is that they are brittle—they can only per-
form well in situations for which they were trained. How-
ever, this paper demonstrates an alternative approach based
on separating contexts from the actual skills. Context can
then be used to modulate the actions in a systematic man-
ner, significantly extending the unseen situations that can be
handled. This principle was evaluated in a challenging ver-
sion of the Flappy Bird game, and shows to perform better
than traditional training and general memory-based training.
This Context+Skill approach should be useful in many con-
trol and decision making tasks in the real world.

Acknowledgments
This research was supported in part by DARPA L2M Award
DBI-0939454.

References
Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kan-

wal, M. S., Maharaj, T., Fischer, A., Courville, A., Bengio,
Y., and Lacoste-Julien, S. (2017). A closer look at memoriza-
tion in deep networks.

Beyret, B., Hernández-Orallo, J., Cheke, L., Halina, M., Shana-
han, M., and Crosby, M. (2019). The animal-ai environment:

587



Training and testing animal-like artificial cognition. CoRR,
abs/1909.07483.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J.
(2019). Quantifying generalization in reinforcement learn-
ing. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pages 1282–1289.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley & Sons, Inc., USA.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
Transactions on Evolutionary Computation, 6(2):182–197.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V.
(2017). CARLA: An open urban driving simulator. In Pro-
ceedings of the 1st Annual Conference on Robot Learning,
pages 1–16.

Fernando, C., Sygnowski, J., Osindero, S., Wang, J., Schaul, T.,
Teplyashin, D., Sprechmann, P., Pritzel, A., and Rusu, A.
(2018). Meta-learning by the baldwin effect. Proceedings of
the Genetic and Evolutionary Computation Conference Com-
panion.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings
of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 1126–1135. JMLR.org.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M.,
and Gagné, C. (2012). DEAP: Evolutionary algorithms made
easy. Journal of Machine Learning Research, 13:2171–2175.

Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn
and TensorFlow: Concepts, Tools, and Techniques to Build
Intelligent Systems. O’Reilly Media, Inc., 1st edition.

Grbic, D. and Risi, S. (2019). Towards continual reinforcement
learning through evolutionary meta-learning. In Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence Companion, GECCO ’19, pages 119–120. Association
for Computing Machinery.

Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., and
Schmidhuber, J. (2017). Lstm: A search space odyssey.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 28(10):2222–2232.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term mem-
ory. Neural Comput., 9(8):1735–1780.

Justesen, N. and Risi, S. (2018). Automated curriculum learning by
rewarding temporally rare events. In 2018 IEEE Conference
on Computational Intelligence and Games (CIG), pages 1–8.

Kansky, K., Silver, T., Mély, D. A., Eldawy, M., Lázaro-Gredilla,
M., Lou, X., Dorfman, N., Sidor, S., Phoenix, S., and George,
D. (2017). Schema networks: Zero-shot transfer with a gener-
ative causal model of intuitive physics. In Proceedings of the
34th International Conference on Machine Learning-Volume
70, pages 1809–1818. JMLR. org.

Karpathy, A. (2015). The unreasonable effectiveness of recurrent
neural networks. http://karpathy.github.io/2015/05/21/rnn-
effectiveness/.

Knowles, J. D., Watson, R. A., and Corne, D. W. (2001). Re-
ducing local optima in single-objective problems by multi-
objectivization. In Zitzler, E., Thiele, L., Deb, K.,
Coello Coello, C. A., and Corne, D., editors, Evolution-
ary Multi-Criterion Optimization, pages 269–283. Springer
Berlin Heidelberg.

Li, X. and Miikkulainen, R. (2017). Evolving adaptive poker play-
ers for effective opponent exploitation. In AAAI-17 Workshop
on Computer Poker and Imperfect Information Games.

Li, X. and Miikkulainen, R. (2018). Opponent modeling and ex-
ploitation in poker using evolved recurrent neural networks.
In Proceedings of The Genetic and Evolutionary Computa-
tion Conference (GECCO 2018), Kyoto, Japan. ACM.

Narvekar, S. and Stone, P. (2019). Learning curriculum policies
for reinforcement learning. In Proceedings of the 18th In-
ternational Conference on Autonomous Agents and MultiA-
gent Systems, AAMAS ’19, page 25–33, Richland, SC. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S.
(2019). Continual lifelong learning with neural networks: A
review. Neural Networks, 113:54 – 71.

Risi, S. and Togelius, J. (2019). Procedural content generation:
From automatically generating game levels to increasing gen-
erality in machine learning.

Schmidhuber, J. (1987). Evolutionary principles in self-referential
learning, or on learning how to learn: The meta-meta-...
hook. PhD thesis, Institut für Informatik, Technische Uni-
versität München.

Schmidhuber, J. (2011). Powerplay: Training an increasingly gen-
eral problem solver by continually searching for the simplest
still unsolvable problem.

Schrum, J. and Miikkulainen, R. (2014). Evolving multimodal be-
havior with modular neural networks in Ms. Pac-Man. In
Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’14, pages 325–332. Asso-
ciation for Computing Machinery.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural
networks through augmenting topologies. Evol. Comput.,
10(2):99–127.

Thrun, S. and Pratt, L. (1998). Learning to Learn: Introduction and
Overview, pages 3–17. Kluwer Academic Publishers, USA.

Wang, R., Lehman, J., Clune, J., and Stanley, K. O. (2019).
Paired open-ended trailblazer (POET): Endlessly generating
increasingly complex and diverse learning environments and
their solutions.

Wikipedia ((Online; accessed 3-February-2020)). Flappy Bird.
https://en.wikipedia.org/wiki/Flappy Bird.

Yosinski, J., Clune, J., Nguyen, A. M., Fuchs, T. J., and Lipson, H.
(2015). Understanding neural networks through deep visual-
ization. CoRR, abs/1506.06579.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
(2016). Understanding deep learning requires rethinking gen-
eralization. cite arxiv:1611.03530Comment: Published in
ICLR 2017.

588


