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Artificial neural networks can potentially control autonomous robots, vehicles, factories, or game
players more robustly than traditional approaches. Neuroevolution, i.e. the artificial evolution of
neural networks, is a method for finding the right topology and connection weights to specify the
desired control behavior. The challenge for neuroevolution is that difficult tasks may require com-
plex networks with many connections, all of which must be set to the right values. Even if a network
exists that can solve the task, evolution may not be able to find it in such a high-dimensional search
space. This dissertation presents the NeuroEvolution of Augmenting Topologies (NEAT) method,
which makes search for complex solutions feasible. In a process called complexification, NEAT
begins by searching in a space of simple networks, and gradually makes them more complex as the
search progresses. By starting minimally, NEAT is more likely to find efficient and robust solutions
than neuroevolution methods that begin with large fixed or randomized topologies; by elaborating
on existing solutions, it can gradually construct even highly complex solutions. In this disserta-
tion, NEAT is first shown faster than traditional approaches on a challenging reinforcement learning
benchmark task. Second, by building on existing structure, it is shown to maintain an ”arms race”
even in open-ended coevolution. Third, NEAT is used to successfully discover complex behavior in
three challenging domains: the game of Go, an automobile warning system, and a real-time interac-
tive video game. Experimental results in these domains demonstrate that NEAT makes entirely new
applications of machine learning possible.
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Chapter 1

Introduction

A fundamental motivation of machine learning (ML) is to discover solutions to significant real-
world problems. An important class of such problems requires discovering behavior policies for
autonomous agents such as vehicles, robots, and game characters automatically. Consider for ex-
ample the challenging goal of creating a video game in which characters learnon their ownto
adapt to the player’s behavior (figure 1.1). As soon as human players begin to exploit characters’
weakness, they could change their strategies and the game would become challenging again. Such
a technology would allow the game to remain interesting far longer than today’s games, and such
games could even be used effectively to train people in various interactive real world tasks.

ML is necessary for such a system: Without learning, developers would need to script all
possible contingencies into the systema priori, and have the system switch among them in reaction
to players’ behavior. In addition, many sophisticated strategies are difficult to program or even
envision, and would only be possible to achieve through learning. Learning adds flexibility not only
in games, but in many real-world scenarios, such as automated driving, military tactics, and robot
control.

Sophisticated behaviors are difficult to discover in part because they are likely to be ex-
tremely complex, perhaps requiring the optimization of thousands or even millions of parameters.
Searching through such high-dimensional space is intractable even for the most powerful methods.
This dissertation describes a method for discovering complex neural network-controlled behaviors
by gradually building up to a solution in an evolutionary process calledcomplexification. The high-
dimensional space of the final solution is only encountered at the very end of the search.

This chapters begins by motivating complexification, then briefly describes the approach,
and concludes with an overview of the results and contributions of the dissertation.
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(a) Robots approach flag (b) Player attacks on left (c) Robots learn new approach

Figure 1.1:Video game characters adapt to player’s actions (color figure). The robots in these screen-
shots are video game characters that spawn from the top of the screen and must approach the flag (circled) at
the bottom left. (a) The robots first learn to take the left hallway since it is the shortest path to the flag. (b)
A human player (identified by a square) attacks inside the left hallway and decimates the robots. (c) Even
though the left hallway is the shortest path to the flag, the robots learn that they can avoid the human enemy
by taking the right hallway, which is protected from the human’s fire by a wall. These screenshots are taken
from the NERO video game (Chapter 9), in which robots learn to adapt to the player’s tactics as the game is
played. Machine learning is necessary for such an application to work.

1.1 Motivation

Neuroevolution (NE), the artificial evolution of neural networks using genetic algorithms, has shown
great promise in complex reinforcement learning (RL) problems (Floriano and Mondada 1994;
Gomez and Miikkulainen 2003; Gruau et al. 1996; Harvey 1993; Moriarty et al. 1999; Nolfi et al.
1994; Potter et al. 1995; Aharonov-Barki et al. 2001; Whitley et al. 1993). Neuroevolution searches
through the space of behaviors for a network that performs well at a given task. This approach to
solving complex control problems is an alternative to statistical techniques that attempt to estimate
the utility of particular actions in particular states of the world (Kaelbling et al. 1996; Sutton and
Barto 1998). NE is a promising approach to learning behavioral policies and finds solutions faster
than leading RL methods on many benchmark tasks (Gomez 2003; Moriarty and Miikkulainen
1997).

In traditional NE approaches, a topology is chosen for the evolving networks before training
begins (Montana and Davis 1989; Saravanan and Fogel 1995; Wieland 1991). Usually, the network
topology is a single hidden layer of neurons, with each hidden neuron connected to every network
input and output. Evolution searches the space of connection weights of this fully-connected topol-
ogy by allowing high-performing networks to reproduce. The weight space is explored through the
crossover of network weight vectors and through the mutation of single networks’ weights. Thus,
the goal of fixed-topology NE is to optimize the connection weights that determine the functionality
of a network.

However, connection weights are not the only aspect of neural networks that contribute to
their behavior. Their topology, orstructure, also affects how they function. What the appropriate
topology is for any particular behavior is generally not known. However, topology is an important
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factor because it determines the size of the solution, and hence the size of the space in which the
solution can be found. Searching in too large a space may be intractable; In fact, if the solution
contains many dimensions, even searching in the space of the actual solution may be intractable.
On the other hand, searching in too small a space may fail because the solution may not exist in that
space.

Determining the right topology is important also because many common structures that the
neural networks may need to represent and process are defined by an indefinite number of parame-
ters. For example, the number of parts in electronic circuits and robot controllers can vary (Miller
et al. 2000a; Stanley and Miikkulainen 2004). Moreover, although theoretically two neural net-
works with different numbers of connections and nodes can represent the same function (Cybenko
1989), they may not be equally efficient to run nor equally easy to discover. Thus, it is not clear
what network topology is appropriate for solving a particular problem. Methods that search in fixed
spaces must rely on heuristics to determine the appropriate topologya priori.

In neuroevolution, the topology is defined by the network’s genetic encoding, and the size
of the encoding, i.e. the number of genes, is a crucial factor determining the network topology. In
highly complex domains the heuristics for determining the appropriate size are not very useful, and
it becomes increasingly difficult to solve such domains with fixed-length encodings. For example,
how many nodes and connections are necessary for a neural network that controls a robotic maid?
The answers to such questions can hardly be based on empirical experience or analytic methods,
since little is known about the solutions. One possible approach is to simply make the genetic
encoding extremely large, so that the space it encodes is extremely large and a solution is likely to
lie somewhere within. Yet the larger the encoding, the higher dimensional the space that evolution
needs to search. Even if a robotic maid lies somewhere in the 10,000 dimensional space of a 10,000
gene encoding, searching such a space may take prohibitively long.

Even more problematic are open-ended problems where behaviors and strategies are meant
to increase in sophistication indefinitely and there is no known final solution. For example, in
competitive games, it is not possible to estimate the complexity of the “best” possible player in
order to decide the size of a fixed-length genome; Similarly, many artificial life domains are aimed
at evolving increasingly complex artificial creatures for as long as possible (Maley 1999), which is
difficult with a fixed encoding for two reasons: (1) When a good strategy is found in a fixed-length
encoding, the entire representational space is used to encode it. Thus, the only way to improve it is
to alter the strategy, thereby sacrificing some of the functionality learned over previous generations.
(2) Fixing the size of the encoding in such domains arbitrarily limits how complex the evolved
controller can be, defeating the purpose of the experiment.

In order to discover solutions to difficult real-world problems and to open-ended problems,
a method is needed that can automatically estimate the right number of dimensions for the solution.
Even if that solution exists in high-dimensional space, search should spend the majority of time in
lower-dimensional space building up a foundation for the final solution. Such a method is developed
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and evaluated in this dissertation.

1.2 Approach

The NeuroEvolution of Augmenting Topologies (NEAT) method for evolving artificial neural net-
works is designed to take advantage of structure as a way of minimizing the dimensionality of the
search space. Evolution starts with a population of small, simple genomes and systematically elab-
orates on them over generations by adding new genes. Each new gene expands the search space,
adding a new dimension that previously did not exist. That way, evolution begins searching in a
small space that is easily optimized, and adds new dimensions as necessary. This approach is more
likely to discover highly complex phenotypes than an approach that begins searching directly in the
intractably large space of complete solutions. In fact, natural evolution utilizes this strategy, occa-
sionally adding new genes that make the phenotype more complex (Martin 1999; Section 2.4.4). In
biology, this process of incremental elaboration is calledcomplexification, which is why this term
is used to describe the computational approach in this dissertation as well.

Evolving structure incrementally presents several technical challenges: (1) Is there a genetic
representation that allows disparate topologies to cross over in a meaningful way? (2) How can
topological innovation that needs a few generations to be optimized be protected so that it does
not disappear from the population prematurely? (3) How can topologies be minimizedthroughout
evolutionwithout a contrived fitness function that measures complexity explicitly?

NEAT meets these challenges through three technical components: (1) Keeping track of
which genes match up with which among differently sized genomes throughout evolution; (2) spe-
ciating the population so that solutions of differing complexity can exist independently; and (3)
starting evolution with a uniform population of small networks. These components work together
in complexifying solutions as part of the evolutionary process. The resulting method can evolve a
diverse population of increasingly complex topologies separated into unique species. This approach
results in powerful evolution that can solve benchmark problems faster than previous methods, and
also makes entirely new applications possible.

1.3 Contributions and Impact

The main contribution of this dissertation is a principled method for evolving increasingly complex
neural network topologies. Several experiments demonstrate the benefits of NEAT and complexifi-
cation, and others suggest how the approach can be used to solve significant real-world problems.

First, NEAT is compared to both traditional reinforcement learning techniques and other
neuroevolution methods in the challenging task of balancing two poles on a moving cart. The
results establish that NEAT is able to take advantage of topology in order to speed up the search,
resulting in highly efficient problem solving.
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Second, the most significant benefit of complexification is that it allowscontinual coevo-
lution, i.e. continual innovation in a competition. Because NEAT can complexify, it continually
elaborates on its solutions, leading to increasingly sophisticated strategies. Thus, NEAT can evolve
strategies and behaviors that would be difficult or impossible to discover in any other way.

Third, two new techniques are introduced that expand neuroevolution to novel domains: (1)
The neural model is enhanced in two alternative ways to allow neural networks to adapt over their
lifetime: First, networks adapt through synaptic plasticity and second they adapt using activation
state changes. The two properties turn out to have different strengths and apply to different kinds
of tasks. (2) A real-time version of NEAT is developed that allows evolution to occur while a user
interacts with the system. This technique makes a new genre of video games possible and creates
new opportunities for training and educational software.

NEAT is tested in two real-world applications in addition to video games, demonstrating
that the technology can have a significant and versatile impact in practice. NEAT evolves Go-
playing neural networks that can defeat the leading public domain Go program on a 7×7 board, and
produces networks that can warn the driver before crashing a car on a simulated road, a technology
that may one day save lives.

The key to all these contributions is complexification. Interestingly, the process of complex-
ification is not limited to neural networks; complexity is ubiquitous in many important structures
from biological organisms to space stations. NEAT is a first step towards an automated method for
discovering complex structures across domains, and opens up exciting avenues for future research.

1.4 Overview of the Dissertation

The dissertation is divided into five main parts: Foundations (Chapter 2), the NEAT method (Chapter
3), Evaluation (Chapters 4, 5, and 6), Applications (Chapters 7, 8, and 9), and Discussion and
Conclusion (Chapters 10, and 11).

Chapter 2 reviews prior work in neuroevolution, focusing on three major challenges for
evolving a population of diverse network topologies: (1) How can networks in a population of
diverse topologies be crossed over and compared? (2) How can innovative solutions be protected?
(3) How can the size of the search space be minimized?

Chapter 3 presents the NEAT method as the solution to these challenges: Historical mark-
ings on genes ensure that topologies remain compatible, speciation is used to to protect innovation,
and the search space is minimized by starting with small networks and incrementally adding com-
plexity.

Chapter 4 focuses on performance evaluation. NEAT is first tested on the XOR problem
to determine whether it can evolve topology when necessary, and then compared to traditional re-
inforcement learning and other neuroevolution methods on the challenging task of balancing two
poles on a moving cart. These comparisons establish that NEAT is efficient at solving well-known
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problems. Finally, a series of system ablations and a new species visualization technique confirm
that all components of NEAT contribute to its performance, i.e. that NEAT is a principled and co-
hesive methodology.

In Chapter 5, a coevolutionary arms race is demonstrated by evolving robot controllers to
compete in a duel. Complexification allows strategies to be continually elaborated, leading to novel
solutions that would be difficult to discover or even foresee.

Chapter 6 compares two methods for evolving networks that adapt. First, the neural model
in NEAT is expanded to allow networks to adapt by changing connection weights over their lifetime.
Hebbian rules are evolved that determine how the weights should adapt in response to stimulus.
Second, recurrent networks with static weights are trained to alter their behavior based on their
internal state. The plastic and static networks are compared in a food foraging/avoidance task; both
are found to solve the problem but have different strategies. The ability to adapt is important because
ultimately the goal of neuroevolution is to evolve neural networks that work like brains in biological
organisms, which frequently must adapt to new situations.

In Chapters 7, 8, and 9, NEAT is tested in three major applications: the game of Go,
automobile driver warning, and a real-time video game. These applications illustrate that NEAT
can evolve effective behaviors in diverse domains, and that it makes new kinds of applications
possible. The neural networks evolved for Go control a roving eye that scans the board and makes
a move even though it cannot see the whole board at once. Automobile warning networks predict
when a car will crash based on the driver’s recent behavior. The real-time version of NEAT makes
an entirely new genre of video game possible.

Chapter 10 discusses and reviews the major contributions of NEAT and complexification,
including protecting innovation, and suggests three avenues for future expansion and research:
evolving non-neural structures, expanding the neural model, and evolving structures that develop
from a single cell like embryos in nature.Chapter 11 reviews the major contributions of the disser-
tation and their significance to artificial intelligence and machine learning.

In order to make it possible to replicate the experiments and to apply NEAT to other do-
mains,Appendix A gives NEAT system parameters used in experiments throughout the disserta-
tion andAppendix A.4.1gives equations of motion for pole balancing. Finally, NEAT source code,
demos, and a tutorial are available throughhttp://nn.cs.utexas.edu/keyword?neat .
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Chapter 2

Foundations

This chapter will review issues in evolutionary computation, neural networks, and biology necessary
for understanding NEAT. After briefly reviewing encoding issues in genetic algorithms and the
architecture of feedforward and recurrent neural networks, the focus will shift into neuroevolution,
specifically the simultaneous evolution of topology and weights. These systems will be referred to
as TWEANNs (Topology and Weight Evolutionary Artificial Neural Networks). After discussing
TWEANNs and some of the key issues in the field, the next section will examine problems with
these systems and pose principles of TWEANN design that address the problems. Finally, the
chapter concludes with a review of issues in competitive coevolution that NEAT attempts to address.

2.1 Genetic Algorithms and Genetic Encoding

Genetic algorithms (De Jong 1975; Goldberg 1989; Holland 1975; Mitchell 1996) are a class of
computational search algorithms inspired by evolution in nature. The object of GAs is to search
through a parameter space for a set of parameters that optimize some performance criterion. GAs
are based on natural selection, where the more fit individuals are selected to procreate. In a GA,
a population of solutions is maintained where each solution represents a point in the search space.
Usually the search space is conceived of as a finite-dimensional parameter space. These parameters
can be binary, discrete, real, or any other searchable encoding scheme. A string of parameters is
called agenotype. A genotype is transformed into aphenotypethrough a genesis procedure. The
phenotype is then evaluated on some fitness criteria on a task. The phenotypes with higher fitness
are allowed to mate their genomes to create offspring in the hopes that the combination of two good
sets of parameters will produce an even better parameterization. Mutations, which occur during
reproduction, cause random perturbations of parameters. Mutations ensure that the search covers
new areas of the search space.

It is important to note that the general theme of GAs can vary significantly. The way the
genotype is encoded can significantly impact the number of evaluations it takes to find a solution and
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can even make finding certain solutions impossible. One area where NEAT diverges from standard
GAs is that NEAT is able to change the space in which it is searching by adding or subtracting
dimensions from that space. In other words, NEAT is able to change the number of parameters it is
trying to optimize. Thus, principles of standard GAs that work in finite spaces are not necessarily
applicable to NEAT’s form of search, and NEAT can find both smaller and larger solutions than
algorithms that search a space of a fixed number of dimensions.

An algorithm calledMessy GA(Goldberg et al. 1989; Whitley et al. 1997) also allows vari-
able length chromosomes as NEAT does. However, Messy GAs do not grow structure. Rather, they
allow underspecification or overspecification of a phenotype. They are intended forsubset feature
selection problemswhere some subset of a global set of features represents a solution. Therefore
NEAT is not a Messy GA even though both methods use variable-length chromosomes.

GAs are particularly useful on problems with little domain knowledge because they require
no a priori analysis of the hypothesis space or of the problem domain. For example, they can
search for neural networks in problems with sparse reinforcement even when the contribution of
any output towards the goal is unknown. GAs are also useful for problems with local minima in the
error surface that are likely to trap gradient descent methods. Because GAs sample multiple points
on the error surface, they can search different parts of parameter space at the same time.

In NEAT, connection weights are coded in the genome as real numbers. Holland (1975)
showed with the Schema Theorem that genetic algorithms tend to converge to better and better
solutions. The Schema theorem was based on binary encoding, but Wright (1991) extended it to
cover real-number encoding as well. Wright showed that real number encodings are better for
some continuous optimization problems. Herrera and Lozano (1998) presented an extensive review
of genetic operators over real-coded chromosomes, including different types of crossover. Thus,
real numbers are an appropriate and well-understood form of representation for GAs in continuous
domains.

In summary, genetic algorithms are a useful method for the type of sparse reinforcement
problems for which NEAT is intended. The use of real number encoding of genes in a genome is
supported by past research and is natural in a GA that optimizes connection weights since they are
represented as real numbers.

2.2 Artificial Neural Networks

This section introduces some basic concepts in neural networks, the phenotype being optimized by
neuroevolution methods.

Artificial Neural Networks are computational processing structures motivated by the struc-
ture and function of biological nervous systems in natural living beings (Haykin 1994). Neural
networks are able to approximate any continuous function in theory (Cybenko 1989), making them
very powerful tools for control and prediction.
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Figure 2.1:Neural network architectures. (a) A fully-connected single hidden layer feedforward network.
(b) A partially connected feedforward network. Notice there is no clear layering scheme. (c) A recurrent
network. Each hidden unit feeds activation back into itself. (d) An unusual recurrent network. This network
is not fully-connected and has two recurrent connections, one going from the output unit back to a hidden
node. Red lines represent recurrent connections, black are feedforward. This figure shows that many different
types and topologies of networks are possible, each with its own functionality.

Neurons, also callednodesare the fundamental processing unit in neural networks. Many
neurons are connected together to form a full network. A network can be conceived of in terms of
layers. There is an input layer of “sensors” that receive input from the external world. These sensor
neurons pass their activation forward over weighted connections to other neurons. The last layer
in a neural network is the output layer, the output of which is used by the system containing the
neural network. In between the input and output layers are hidden neurons, which are in “hidden
layers.” However, the inner neurons do not necessarily have to be in strict layers. Figure 2.1a
shows a feedforward neural network. Although neural networks are traditionally thought of as
strictly layered and fully-connected, NEAT does not follow this tradition because it evolves its own
networks topologies. Evolved topologies likely are not fully connected and do not have clear layers,
such as the network in figure 2.1b.

Each neuron computes a weighted sum of its inputs. The sum passes through anactivation
function, σ, which squashes the activation into a range between 0 and 1. Thus for every neuron j, its
outputyj for a given input vectorx is given by:

yj = σ

(∑
i

wijxi

)
, (2.1)

wherewij is the connection weight from nodei to nodej. The functionσ is usually the nonlinear
sigmoid function 1

1+e−x , but can be modified to suit the needs of a system.

A network where activation starts at the inputs and flows forward to the outputs is called a
feedforwardnetwork. Networks can also have feedback connections that go backward instead of
forward. Networks with feedback connections are calledrecurrent(figure 2.1c). Lin et al. (1996)
and Ring (1994) describe how recurrent networks can be useful for learning temporal dependencies.
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NEAT can evolve unusual recurrent structures (figure 2.1d) because it constructs network topology
on its own. It is useful to be able to evolve specific recurrent topologies because it is not always
necessary to have a recurrent connection for every hidden unit. Many times, the temporal depen-
dencies in a problem can be captured with only one or two recurrent connections. Thus, it is a waste
of parameter space to employ unnecessary recurrent connections.

Neural networks can be trained using gradient descent methods such as backpropagation
(Rumelhart et al. 1986). However, such methods can be trapped at local minima. In addition,
they are not well suited to sparse reinforcement domains because (1) feedback is not available for
every output iteration, and (2) backpropagation requires output targets, which are not available in
reinforcement learning tasks. Training recurrent networks is slow and less reliable than training
feedforward networks (Bengio et al. 1994).

Artificial neural networks and the networks of neurons in living brains differ in many ways.
One of them is that the weights of the connections between neurons do not change during the
lifetime performance of a static network. This point is important because ultimately it is desirable to
evolve networks withsynaptic plasticity, where the rules and loci of changeable connection weights
are evolved (Floreano and Urzelai 2000). These kinds ofadaptiveneural networks are simply higher
dimensional parameterizations than evolution only involving topology and weights. An example of
a weight update rule is theHebb Rule:

∆w = η(1− w)xy , (2.2)

wherex is the activity of the incoming neuron,y is the activity of the outgoing neuron, andη is the
learning rate. This rule strengthens connections between neurons that tend to fire together. One can
imagine a complex topology of interconnected Hebbian synapses of varying learning rates, which
is as a whole able to adapt to a changing environment. Other rules can also be attached to specific
synapses, while other synapses can be simple static feedforward weights. Chapter 6 describes an
elaboration of NEAT that allows it to evolve Hebbian connections and networks that can adapt to
change.

The next section describes a different method for training neural networks calledneuroevo-
lution, which avoids local minima better than backpropagation and can be applied to sparse rein-
forcement domains.

2.3 Neuroevolution

Neuroevolution (NE) is a combination of neural networks and genetic algorithms where neural
networks are the phenotype being evaluated. The genotype is a compact representation that can be
translated into an artificial neural network. NE searches for neural networks that optimize some
performance measure. NE can search for virtually any kind of neural network whether it be simple
feedforward, recurrent, or even adaptive networks.
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The chromosomes in NE can represent any parameter of neural networks, from the connec-
tion weights to the topology to the activation functions. Since the choice of encoding affects the
search space of solutions, it is a pivotal aspect of the design of an NE system.

While some NE methods evolve only the connection weights of the network,Topology and
Weight Evolving Neural Networks (TWEANNs)evolve both weights and network topologies (Yao
1999). Fixed-topology methods require a human to decide the right topology for a problem. In
contrast, TWEANNs can discover the right topology on their own. In addition, topology evolution
can be used to increase efficiency by keeping networks as small as possible, which is a strategy
employed by NEAT. Therefore, TWEANNs are an important class of NE methods and they face
several specific challenges and difficulties that fixed-topology NE methods do not.

We begin by looking at three fixed-topology NE systems and then turn to a discussion of
TWEANNs.

2.3.1 Fixed-Topology NE Systems

NEAT will be evaluated on some problems that other NE systems have tackled (Chapter 4). Most of
these systems evolve fixed topologies, so they optimize connection weights only. The three highest-
performing NE systems to date are presented here because they are NEAT’s closest competition.
They have performed better than any other systems on benchmark tasks.

Symbiotic, Adaptive Neuroevolution (Moriarty 1997; Moriarty and Miikkulainen 1996) is
a neuroevolution system that evolves populations of neurons instead of populations of networks.
The neurons are combined to form the fully connected hidden layer of networks where they are
evaluated. The neurons receive the average fitness of the networks in which they were included.
SANE maintains diversity (in the neuron population) because a dominant neural phenotype is likely
to end up in the same network more than once. Because several different types of neurons are
usually necessary to solve a problem, networks with too many copies of the same neuron are likely
to fail. The dominant phenotype then loses fitness and becomes less dominant.

Enforced Subpopulations (Gomez and Miikkulainen 1997, 1998, 1999; Gomez 2003) im-
proves on SANE by forcing neurons to specialize on specific subtasks. Each unit in the network is
assigned a separate subpopulation. Recombination occurs between neurons in the same subpopula-
tion only. Unlike in SANE, the species in ESP do not need to organize themselves since they are
enforced from the start. Also, neurons only play one role in ESP, whereas in SANE they may be
evaluated in different roles depending on the context of other neurons they happen to be joined with.
As a result, ESP allows recurrent networks to be evolved. ESP may work well because it makes sure
neurons get the credit they deserve, unlike other neuroevolution techniques where bad neurons can
share in the fitness of a good network, or good neurons can be brought down by their poorly con-
figured neighbors. It also works by decomposing the task, breaking the search into smaller, more
manageable parts.

Recently, Igel (2003) successfully applied a special Evolutionary Strategy (ES) called CMA-
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ES to the evolution of fixed-topology neural networks. Igel’s method keeps track of correlations
between changes of different weights in the network and fitness. Based on this information, the
CMA-ES changes the covariance matrix of the weight mutation distribution so that it becomes
more biased towards what were so far the most promising directions of search. This method has
proven effective on benchmark tasks (see Chapter 4).

All three systems have shown promise in reinforcement learning problems, and will be
compared with NEAT in Chapter 4. While SANE and ESP are designed to quickly evolve neurons
that cooperate to form a network, NEAT concentrates on taking advantage of structure to gain
speed. Thus, NEAT represents a different philosophy. Tracking correlations as in the CMA-ES is
also different than NEAT, although it may be possible to combine the two methods in the future.

2.3.2 TWEANNs

The purpose of this section is to give some background on TWEANN encoding and then review
several prototypical methods that have been developed to evolve ANN topology and weights simul-
taneously.

Before introducing TWEANN methods, it is important to note how direct encoding and
indirect encoding in TWEANNs differ. Genomes in TWEANNs encode both the topology and con-
nection weight values of a network. TWEANN designers must decide whether arbitrary topologies
should be encoded directly or indirectly. Direct encoding schemes specify in the genome every
connection and node that will appear in the phenotype (Pujol and Poli 1997; Zhang and Muhlenbein
1993; Braun and Weisbrod 1993; Opitz and Shavlik 1997; Yao and Liu 1996; Angeline et al. 1993;
Krishnan and Ciesielski 1994; Maniezzo 1994; Lee and Kim 1996; Dasgupta and McGregor 1992).
In contrast, indirect encodings usually only specify rules for constructing a phenotype (Bongard
and Pfeifer 2001; Gruau et al. 1996; Hornby and Pollack 2002; Mandischer 1993). These rules can
be layer specifications or growth rules through cell division. The main idea of indirect encoding is
that every connection and node are not specified in the genome, although they can be derived from
it. TWEANNs that use indirect encoding includeartificial embryogeny(AE) methods that evolve
phenotypes that develop from a small embryonic starting structure. Setion 10.5 includes an in-depth
discussion of AE and its potential combination with NEAT.

The first three methods described below use direct encoding. The last method uses indirect
encoding. Each method is described based on an actual system that implements the method.

Binary Encoding

The simplest TWEANN representation is binary encoding. In one such implementation,
Dasgupta and McGregor (1992) use such an encoding in their method, called sGA (Structured Ge-
netic Algorithm). sGA is notably simple, allowing it to operate almost like a standard GA. A bit
string represents the connection matrix of a network. A “1” in a location in the matrix represents a
connection from the node with the same number as the row of the matrix to the node with the same
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number as the column. Feedforward connections are therefore all represented in the upper-right tri-
angle of the matrix. Recurrent connections are in the lower left. However, current implementations
of sGA do not use recurrent connections, so the lower left triangle is always all zeros. A “low-level”
bit string is evolved along with the “high-level” bits representing the connectivity matrix. The low-
level bits are used to represent the actual weights of connections. Because the genotype is just two
bit strings, those strings can be mated using the standard binary crossover operator from GAs.

Although binary encoding such as in sGA is simple, it has several limitations. First, the
size of the connectivity matrix grows as the square of the number of nodes. Thus, the representation
blows up for a large number of nodes. Since the solution networks probably are not fully-connected,
a good proportion of the genome is wasted. Because the bit string must have the same size for all
organisms, the maximum number of nodes (and hence connections as well) must be chosen by the
human running the system. If it turns out that more nodes are needed, the entire experiment must
be restarted with a larger matrix.

The genomes in the initial population of sGA are random bit strings. Each genome specifies
a random topology. Thus, a significant percentage of the initial population isinfeasible. Infeasibility
means that a network phenotype has no paths from all the inputs to the outputs. In some cases, there
are no paths to the outputs fromany inputs. Because of this problem, a significant amount of effort
is wasted in ridding the population of infeasible networks. It is such a serious problem that the
fitness function has to include a measure of infeasibility.

Using a linear string of bits to represent a graph structure makes it difficult to ensure that
crossover of bit strings will yield useful combinations. Thus, a significant chunk of offspring are
likely to be defective, or might even introduce new infeasible networks into the population. Part
of the problem is that crossing over bit strings does not consider what those strings represent. This
problem is the reason most TWEANNs use more sophisticated encoding schemes.

Graph Encoding

Most TWEANNs use encodings that represent the graph structure of networks more natu-
rally than bit strings. A graph structure as an encoding allows meaningful crossover and mutation
since graphs can be analyzed and subgraphs can be assembled into new genomes. Pujol and Poli
(1997) use a dual representation scheme to allow different kinds of crossover in their Parallel Dis-
tributed Genetic Programming (PDGP) system. The first representation is a graph structure. The
second is a linear genome of node definitions specifying incoming and outgoing connections. The
idea is that different representations are appropriate for different kinds of operators.

As in sGA, the number of nodes in the PDGP network is limited to the number of nodes
in the two-dimensional grid that represents the graph version of the genome. Subgraph-swapping
crossovers and topological mutations use the grid, while point crossovers and connection parameter
mutations use the linear representation. Just as sGA, PDGP starts with an initial population of
randomly-connected networks.
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PDGP uses graph encoding so that subgraphs can be swapped in crossover. Subgraph swap-
ping is representative of a prevailing philosophy in TWEANNs that subgraphs are functional units
and therefore swapping them makes sense because it preserves the structure of functional compo-
nents. Subtree swapping in PDGP reflects a similar operation in Genetic Programming in which
subtrees of program trees are swapped during crossover (Koza 1992). PDGP succeeds in keep-
ing together functional subunits by moving them around as subgraphs during crossover. Although
swapping subnetworks does help keep subgraphs together, many offspring do not represent good
combinations of their parents’ subgraphs because there is no way to know which subgraphs perform
which functions, and therefore it is not clear how they should be recombined.

Crossover is a significant problem for TWEANNs because there are many way to represent
the same solution, and crossing over these differing conventions can damage functionality. The
general problem of crossing over different structures will be covered in more detail in Section 2.4.2.

PDGP shows that graph encoding can be useful in preserving substructures in crossover.
The system is intuitively appealing because when we think about combining neural networks, we
think about combining graphs. However, we cannot be sure whether the subgraphs being combined
in PDGP are the right building blocks to create a functional offspring.

Non-mating

Because crossover of networks with different topologies frequently diminishes functional-
ity, some researchers give up on crossover altogether in what is called Evolutionary Programming.
Angeline et al. (1993) implemented a system called GNARL (GeNeralized Acquisition of Recurrent
Links), commenting that “the prospect of evolving connectionist networks with crossover appears
limited in general.” GNARL, like mating TWEANNs, initializes a population with randomly con-
nected networks and a finite maximum number of hidden nodes. The networks are represented as
graphs, so that structural mutations can be assured to be coherent. Structural mutations (on topol-
ogy) and parametric mutations (on weights) are the only genetic operators in the system. GNARL
adds nodes to genomes without any connections and it may only add up to the maximum allowed
number of nodes.

Experimental results with NEAT suggest that the prospects for evolving neural networks
with crossover are not limited after all (Section 4.3). However, results from prior TWEANN systems
have not justified using crossover. GNARL is a logical attempt to simplify the problem of evolving
topology and weights by simply removing crossover as a factor.

There are a number of ways to add nodes to a network in TWEANNs. A new node can be
added to the genetic encoding without any connections, or it can be immediately connected into the
genome. GNARL, like most TWEANNs, takes the former approach. The authors of GNARL de-
cided to add nodes in isolation because adding nodes with connections can alter a network’s fitness
by introducing a nonlinearity where there was not one before. By starting out with no connections
to new nodes, the nodes are able to survive inside the genome without disrupting functionality and
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causing fitness to decrease. In subsequent generations, it is hoped, new connections will integrate
new nodes into the network and make them useful. One problem that results is that genomes end
up representing many extraneous disconnected structures that do not have any contribution to the
solution.

The main contribution of GNARL is to show that TWEANNs do not require crossover to
work, and cast some doubt on whether crossover is necessary in TWEANNs. However, ablation
studies with NEAT in Section 4.3 show that crossover indeed enhances the performance of NEAT.

Indirect Encoding

Gruau’s Cellular Encoding (CE) method (Gruau 1993, 1994; Gruau et al. 1996) is an AE
system that uses indirect encoding. In CE, genomes are programs written in a specialized graph
transformation language called agrammar tree. The transformations are motivated by nature in that
they specifycell divisions. Different kinds of connectivities can result from a division, so there are
several kinds of cell divisions possible. CE has one major advantage: Its genetic representations are
compact. Genes in CE can be reused multiple times during the development of a network, each time
requesting a cell division at a different location. Reusing genes saves space in the genome because
every connection and node in a network does not need to be explicitly specified in the genome. CE
is a landmark system, showing that developmental rules can encode the development of networks
from a single cell, much as organisms in nature begin as a single cell that differentiates as it splits
into more cells, which in turn split into even more cells.

Figure 2.2 depicts how the grammar tree is translated into a developing network. The gram-
mar tree contains developmental instructions at each node that split one cell into two cells, change
the values of links between cells, and remove existing links between cells. Developing cells in CE
read from different parts of the grammar tree at the same time. Areading headfor each cell indi-
cates from which part of the grammar tree it is reading. When a cell encounters anendinstruction,
its state is finalized and it stops reading. CE uses a First In First Out (FIFO) queue of cells in order
to keep track of which cells are currently executing instructions, and in what order they should be
executed. A cell at the front of the queue executes the instruction to which its reading head points,
moves its head to the subsequent instruction in the grammar tree, and then goes to the end of the
queue. Sometimes cells encounter instructions to divide (there are a variety of cell division meth-
ods such as parallel and sequential splitting), in which case the original cell moves its reading head
down the left subtree, and the new cell moves its head down the right subtree. Thus, cell divisions
allow different cell lineages to follow different developmental pathways.

Compact representations in CE are desirable because they save space, but they do not solve
other problems. Crossover is still a problem for CE just as other systems, except that it is harder
to analyze how crossover disrupts subfunctions in CE encoding since they are not represented ex-
plicitly. In addition, it is not clear how a mutation resulting in an extra cell division enhances the
search.
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Figure 2.2:Cellular Encoding (CE) example . The grammar tree is shown at left and the network growth
is shown from top to bottom in five steps at right. The network begins at step 1 as a single cell. At each
step, each network cell is reading from its own part of the tree. Dotted lines identify the location in the tree
from which each cell is reading at each step. When a cell splits, its descendent cells take separate paths in
the tree. The “Increment Link Register” instruction is the way a cell knows to which link it should apply
any subsequent link-based instructions. In the example, such an instruction occurs immediately following the
link register instruction, causing a link’s value to increase, represented in the network by a thickening line.
Darker cells have a higher activation bias. This example is based on others given by Gruau (1993). While
Gruau uses abbreviated instructions, this figure spells them out entirely to make the example easy to follow.
Gruau (1993) proved that Cellular Encoding grammar trees can describe any network topology.

Experimental results confirm CE’s weakness in practice (Section 4.2.3). CE is interesting
because it represents an early attempt to actually implement development from genotype to phe-
notype. I believe that developmental TWEANNs will be an important field in the future when
extremely large networks are impractical to represent directly (Section 10.5). In order to implement
an indirect TWEANN system that is anything more than ad hoc, we need to understand the princi-
ples that underly how phenotypic substructures emerge. Without understanding these principles, it
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is difficult to implement growth rules that will lead tousefulstructures. In CE, representing structure
through cell divisions does not necessarily improve solution performance. In the future, analysis of
the kinds of structures that develop in systems like NEAT should lead a to new understanding that
can in turn lead to more sophisticated developmental systems in the tradition of CE.

The remaining background sections address three general problems with TWEANNS and
some possible solutions: (1) the problem of mating different topologies, (2) the problem of pro-
tecting innovation, and (3) the problem of searching in an unnecessarily large space. Finally, the
chapter concludes with an overview of competitive coevolution and complexification.

2.4 Encoding Structure

This section examines problems that arise when genomes encode structure in addition to weights. In
particular, because there are many ways to encode the same functionality, it is difficult to compare
or cross over different solutions.

2.4.1 Direct vs. Indirect Encoding

Some TWEANNs encode structure with bit strings. Others use graphs. Some encodings are indirect.
What is the best way to encode structure in a genome? The methods currently used have several
limitations that NEAT addresses.

The first question is whether to use direct or indirect encoding. NEAT currently uses direct
encoding because, as Braun and Weisbrod (1993) argue, indirect encoding requires “more detailed
knowledge of genetic and neural mechanisms.” In other words, because indirect encodings do not
directly map to their phenotypes, they implicitly restrict the search to the class of topologies to
which they can be expanded. We need to be sure that indirect encodings do not restrict phenotype
networks to some suboptimal class of topologies. However, it is difficult to ensure that indirect
encodings are sufficiently expressive to cover the class of useful topologies, because there is not yet
any theory specifying what kinds of topologies are useful. Therefore, indirect encodings currently
may arbitrarily bias the search towards kinds of topologies that may or may not be sufficiently
expressive. In the future, after more is known about the ways different developmental properties
affect how structures evolves, it will be possible to design more well-founded indirect genetic codes.
At that point, it may be possible to combine NEAT with an indirect encoding scheme. For now,
however, the most straightforward implementation of NEAT is with a direct encoding.

One limitation in most TWEANNs, whether direct or indirect, is that the genome can only
grow up to some bound. Thus, there is a cap on the number of possible hidden nodes in a network. It
may seem that this limitation is somehow natural or necessary. However, it is a shortfall for all these
methods, since they are supposed to relieve humans of the responsibility of figuring out how many
hidden units are necessary. To ask a user to decide a priori the maximum number of nodes needed
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Figure 2.3:Competing conventions problem (color figure). The two networks compute the same exact
function even though their hidden units appear in a different order and are represented by different chro-
mosomes. These are 2 of the 6 possible permutations of hidden units. The neurons with their respective
connections are color coded to make it easier to see how they correspond. Because the same neurons occupy
different positions in the two networks, it is difficult to combine them without losing functionality.

does not relieve the user from the problem of preconceiving the complexity of the task. NEAT puts
no bound on the number of nodes or connections a genome can represent.

The way structure is encoded also affects what kind of offspring can result from crossover.
TWEANNs usually do not address the fact that there is no way to know which substructures of two
different parents fit together in useful ways. The next section begins by highlighting this problem
and then suggest a solution motivated by biology.

2.4.2 Competing Conventions

One of the main problems with NE isCompeting Conventions, also known as thePermutations
Problem (Radcliffe 1993).1 This problem is magnified in TWEANNs because of their variable
structure. Thus, in TWEANNs, it is called theVariable Length Genome Problem. This section
describes competing conventions and the variable length genome problem in detail. They are used
as an introduction to the general analytic challenges that varied topologies present.

Competing conventions refers to having more than one way to express a solution to a weight
optimization problem with a neural network. In fact, there are potentially numerous symmetric
solutions. When genomes representing the same solution do not have the same encoding, crossover
is likely to produce damaged offspring because the encodings are not compatible.

Consider a simple single-layer feedforward network with three hidden neuronsA, B, andC

(figure 2.3). If the network is fully-connected, then each hidden unit has two incoming connections
and one outgoing connection. All of the connections in the network form a vector

wA,1wA,2wA,3wB,1wB,2wB,3wC,1wC,2wC,3,

1A good discussion of competing conventions can be found in Whitley (1995).
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wherewn,i is the weight connecting hidden noden to input or outputi, wherei = 1, 2 are inputs
and i = 3 is the output. The hidden nodes do not have to be ordered[A,B, C]. They could be
ordered in any permutation and the network would still compute the same function. For example, if
the nodes were ordered[C,B,A], we would have the vector

wC,1wC,2wC,3wB,1wB,2wB,3wA,1wA,2wA,3,

which represents the same exact solution as the previous vector. Thus, there are 3!=6 vectors repre-
senting equivalent solutions, or competing conventions. The number of competing conventions gets
higher with more hidden units, since there are in generaln! permutations ofn hidden units.

The reason this explosion of competing conventions is such a serious problem is that per-
muted representations of similar solutions are easy to damage with crossover. For example, crossing
[A,B, C] and[C,B,A] can result in[C,B,C], a representation that has lost one third of the infor-
mation that both of the parents had. The problem is that many times solutions are not genetically
compatible even if they are functionally equivalent.

Lest there be doubt that this problem is serious, consider the simple example of the genome
[A,B, C] representing a 3 hidden unit architecture. There are3! = 6 permutations of the three
hidden nodes, each representing the same solution. Let us enumerate every possible crossover
among these 6 permutations. Since each permutation can crossover with any other permutation
(including itself), there are6 × 6 = 36 possible mating pairs of permuted structures representing
competing conventions. For a 3 node representation, there are 4 possible crossing points using
customary singlepoint crossover:[1A2B3C4]. Since there are 36 possible mate pairings, and each
can cross over in 4 different points, there are36 × 4 = 144 total possible crossover products
(offspring). If we enumerate every one of these 144 potential products, 48 of them display severe
loss of genetic information and redundancy. In other words, 48 out of 144 possible offspring are
missing one of the hidden nodesA, B, or C. However, 72 of the 144 products are trivial (meaning
that the offspring is a duplicate of one of the two parents because the crosspoint was on one end of
the genome.) If we only look at nontrivial crossovers, where an offspring is not simply a duplicate
of a parent, then the odds of an offspring with severe genetic damage is48

72 = 66.6%! With the odds
of producing an undamaged offspring less than chance, the risk from competing conventions needs
to be minimized.

Hancock (1992) suggested that the problem might be alleviated because the permuted solu-
tions means that there are multiple optima in the search space. Nevertheless, researchers continue to
consider the problem of competing conventions serious. Radcliffe (1993) suggested using multiset
theory to find a non-redundant representation of similar solutions. Multiset theory allows different
conventions to be grouped together as long as they represent the same solution. Thierens (1996) in-
troduced a way to order neurons in order to avoid different permutations. However, these solutions
generally involve simplifying assumptions about the topology and layers of the networks, and are
also computationally expensive.
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Figure 2.4:Mating different topologies. When two parents have different topologies, it is not obvious
how their offspring should be formed. When determining which nodes and connections the offspring should
inherit, it would be helpful to know which subnetworks from the parents perform the same functions, and
which represent disjoint concepts. Unfortunately, this information is not readily apparent from the two dif-
ferent topologies. This problem is an example of the variable-length genome problem, which is a challenge
for TWEANNs that aim to gain an advantage from combining different solutions.

2.4.3 The Variable Length Genome Problem

The proposed solutions to the competing conventions problem are not applicable to TWEANNs
because TWEANNs do not assume anything about what topologies that can be expected. Radcliffe
(1993) goes as far as calling an integrated scheme combining connectivity and weights the “Holy
Grail in this area.” Unfortunately, the problem of competing conventions is exacerbated by the
variety of topologies of potential mates that such an open philosophy fosters.

At first glance, there appears to be a trade-off between representing structure freely and
maintaining compatibility. The more open the representation, the less likely different genotypes
will be compatible in useful ways (Figure 2.4). The more restrictive the representation, the fewer
phenotypes are possible.

Past attempts at evolving varying topologies confronted the apparent trade-off between flex-
ibility of representations and compatibility of genotypes in one of two ways. The first approach is
to implement complex crossover algorithms that use topologically motivated analysis and/or con-
straints to minimize the damage that occurs when crossing over genomes representing two disparate
structures (Braun and Weisbrod 1993; Dasgupta and McGregor 1992; Gruau et al. 1996; Krishnan
and Ciesielski 1994; Mandischer 1993; Maniezzo 1994; Opitz and Shavlik 1997; Pujol and Poli
1997; Zhang and Muhlenbein 1993). The problem with this idea is that sometimes there is simply
no combination of genetic parts that preserves functionality between different structures. Crossover
generally involves combining subgraphs of network topologies, with the idea that a subgraph rep-
resents a functional unit. However, the competing conventions problem shows that this assumption
is not likely to be true, since a functional unit in one part of a topology in one parent may not be
located in the same place in another parent, so thewrongsubstructures are likely to be exchanged.
In addition, totally different topologies are often not based on that same substructures at all, so that
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no meaningful combination of substructures exists. It is as if one were to suggest that a human could
mate with a sloth, if only the correct analysis of their structures were possible, and yield something
superior to both human and sloth! Clearly, the power of recombination has its limits.

Even if some kind of analysis could combine seemingly incompatible structures, the kind
of analysis required to extract meaningful functional units and combine them in useful ways is
computationally complex. Graph matching algorithms do exist (Gold and Rangarajan 1996) but
such algorithms do not help with TWEANN crossover because they do not indicate which subgraphs
match up with which subgraphs when graphs differ. Theoretically, it would be better if topological
analysis could be avoided altogether, due to the complexity of graph analysis. NEAT aims to achieve
this goal.

The second approach to the problem of variable-length genomes is to do away with crossover
entirely, leaving all progress to mutation (Angeline et al. 1993; Lee and Kim 1996; Yao and Liu
1996). While this idea may seem radical, it is reasonable if mating does more harm than good.
Nevertheless, theoretically, it would be better if mating did more good than harm, so that it could
enhance the performance of neuroevolution as predicted by the Schema Theorem.

The competing conventions problem and variable-length genome problem are mating-specific
problems, but they set the stage for a broader discussion of issues involving diverse topologies. The
relationship between different structures is not only important in crossover. It is also important in
measuring how compatible different genomes are and ensuring that certain topologies are not com-
bined. Thus, TWEANNs would benefit greatly from a simple and efficient approach to combining
and comparing different topologies.

It turns out that there does not have to be a trade-off between freely representing topologies
and keeping them compatible. NEAT tackles variable-length genomes in a novel way. The system
tracks genes through evolution in order to tell which genes match up. Thus, permutation of vectors is
not an issue, because each feature in a vector is labeled with its historical origin. For those structures
that are completely incompatible, NEAT has a compatibility operator that can be used to prevent
them from ever mating. The compatibility operator is also based on the gene tracking labels, which
allow NEAT to tell how much history two genomes have in common. With these tools, it is possible
to both prevent incompatible genotypes from mating and ensure that compatible genotypes mate in
a way which maintains their functional subunits without damage. Thus competing conventions may
still exist in the population, but they do not cause NEAT to explore useless recombinations. The
next section motivates NEAT’s approach by analyzing the mechanisms behind biological crossover.

2.4.4 Biologically Motivation: Artificial Synapsis

The main intuition behind NEAT comes from the fundamental problem with representing different
structures: Representations will not necessarily match up. Sometimes, a genome can be longer
than one with which it is crossing over. Sometimes, genes in the same exact position on different
chromosomes may be expressing completely different traits. Sometimes, genes expressing the same
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trait may appear at different positions on different chromosomes. How can these complications be
resolved?

The answer is that genes that express the same feature need to be matched up, oraligned
before crossover occurs. Of course one would not want to align a gene expressing a hair protein
with another gene expressing eye pigment. How can such misalignments be avoided? In NEAT, the
answer is that genes can retain a marker of their historical origin. No matter how far in the future
the progeny have diverged from the originating parents, perhaps even to the point of being different
species, NEAT can still tell without any ambiguity which genes come from the same historical origin
and therefore are likely to express the same trait. In other words, NEAT has a built in method for
testing genehomology:

Principle of Homology Marking genes with a number representing their order of appearance, i.e a
historical marking, makes it possible to identify homology between genes.

Nature faces an analogous problem with gene alignment and uses an analogous method in
crossover. Genomes in nature are not of fixed-length either. Consider a human and a single-celled
organism. Somewhere along the line, new genes were added to life’s original genomes (Darnell and
Doolittle 1986). This process is calledgene amplification(Watson et al. 1987) orgene duplication
(Amores et al. 1998; Carroll 1995; Force et al. 1999; Martin 1999). If new genes could just ran-
domly insert themselves in positions on the genome without any indication of which gene is which,
life would never have succeeded, because the variable-length genome problem would damage a
significant percentage of offspring. There needed to be some way to keep crossover orderly, so the
right genes crossed with the right genes. Watson et al. (1987) describe nature’s solution:

. . . it is obvious what mechanism most precisely aligns DNA molecules crossing over
because we can hardly imagine any other: Complementary base pairing between strands
unwound from two different chromosomes puts the chromosomes in exact register.
Crossing over thus generateshomologous recombination; that is, it occurs between 2
regions of DNA containing identical or nearly identical sequences

Nature uses homology to align genes, or, as Watson et al. say, to put them in exact register.
Just as in NEAT, nonequivalent strings of genes can be crossed over by pairing up genes that are
homologous, as Watson et al. say later on:

. . . crossing over also can be detected between homologous segments in nonequivalent
regions, as long as the recombinant survives. . . . In the laboratory, recombination be-
tween homologous segments on different DNAs is now used to construct new genetic
variants.

This mechanism has been observed inE. coli, and is now well understood (Sigal and Al-
berts 1972; Radding 1982). A special protein calledRecA proteintakes a single strand of DNA
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Figure 2.5:Matching homologous segments of DNA.(a) RecA protein binds to a single strand of DNA that
was cut from its original helix. (b) RecA protein, still attached to the single strand, melts regions of duplex
DNA, removing attachments. (c) RecA protein searches for homology. Once found, RecA protein begins
annealing. (d) RecA protein is displaced, leaving a ternary complex of 3 strands. The old complementary
strand is soon displaced. This process, calledsynapsis, ensures that only homologous genes are aligned
during crossover of variable-length genomes. Graphic is modified from Watson et al. (1987), p. 317, with
permission from Pearson Education, Inc.

and anneals it to another strand by sticking together parts that are homologous (figure 2.5). The
second strand is still attached to its original complementary strand, which is displaced by the newly
annealed strand. For a brief time there is a ternary complex of 3 strands before the old complemen-
tary strand is displaced. The new single strand is actually cut out of its original helix and transfered
to the other helix. The process by which RecA protein puts homologous molecules in register is
calledsynapsis. In experiments in vitro, researchers have found that RecA protein will not displace
annealed fragments when they are not homologous (Radding 1982).

One may wonder why NEAT uses historical markings on genes in lieu of genetic homology.
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Why not just use structural homology as nature does? In fact, some evolutionary algorithms do at-
tempt to match up homologous substructures, such as program trees (Koza 1992), during crossover
(?). However, unlike in program trees, in TWEANNS the network structure is a sparsely connected
graph, and it is difficult to determine which substructures align in arbitrary graphs (Gold and Ran-
garajan 1996). In addition, it is important not to confuse the “structure” in a genome with the
structure of a phenotype. In biological organisms, the DNA itself has a structure that can be used to
match up homologous regions. However, in TWEANNs, even if a genomerepresentsa graph, the
genomestill has no analogous structure if it is linear. Nature does not put genetic regions into exact
register by analyzing the phenotypic features they express and then going back and lining up areas
that express the same features. The homology is in the code itself. Where the connections match up
is exactly what wedo not knowin the first place, so trying to match up genomes by the connections
they describe is begging the question.

However, by keeping track of when every gene in the system first appeared, it is possible to
know exactly which genes match up without the need for any topological analysis of the phenotype.
Such historical marking is the RecA protein of NEAT, and the resultant matching up of correspond-
ing genes isartificial synapsis. This approach is shown effective for TWEANNs in this dissertation.
However, it may be an effective alternative to homologous crossover in genetic programming as
well (?).

Matching up genes on variable length genomes is only one problem faced by TWEANNs.
Another problem is how to protect new innovations long enough so they can reach their potential,
as will be discussed next.

2.5 Protecting Innovation

Whether at a university, a company, or in society at large, a reasonable way to encourage innovation
is to give new ideas a chance to reach their potential before counting them out. If every risky project
or unusual proposal were denied at the outset, many great ideas would never achieve fruition. It
turns out that the general philosophy that innovative ideas need protection applies to TWEANNs as
well, as this section will explain.

2.5.1 The Problem: New Structure Can Damage Fitness

In TWEANNs, innovation means adding new structure to networks through structural mutation.
Frequently, adding new structure initially causes the fitness of a network to decrease. For example,
adding a new node introduces a nonlinearity where there was none before. It is unlikely a new node
just happens to express a useful function as soon as it is introduced. Some generations are required
to optimize the new structure and make use of it. Unfortunately, because of the initial loss of fitness
caused by the new structure, it is unlikely that the innovation will survive in the population long
enough to be optimized. The altered network will probably not be allowed to reproduce because of
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its lowered fitness. Thus, it is necessary to somehowprotectnetworks with structural innovations
so they have a chance to make use of their new structure.

GNARL (Angeline et al. 1993) addresses this problem by adding nonfunctional structure.
A node is added to a genome without any connections, in the hopes that in the future some use-
ful connections will develop. However, creating nonfunctional structures wastes search effort and
space.

Nature offers a better approach to protecting innovation. In nature, different structures tend
to be in different species that compete in different niches. Thus, innovation is implicitly protected
within a niche such that there is not as much need to hold back on actually implementing new ideas.
If networks with innovative structures could be protected from competing with the population at
large by isolating them in their own species, they would have a chance to optimize their structures
without interference:

Principle of Protection of Innovation Speciating a population allows organisms to compete only
within their niche, protecting their innovations from losing out to organisms in older species.

Thus, NEAT uses speciation to protect innovation, so itneveradds extraneous structure that
may or may not become integrated into a phenotype in future generations.

2.5.2 Speciation

Speciation, also known asniching, has been studied in GAs, but has rarely been applied to NE.
Speciation is usually used for multimodal function optimization (Mahfoud 1995). In these problems,
a function has multiple optima, and a GA is used to find those optima. Other kinds of problems
naturally branch from multimodal function optimization, like classification problems: Different
classifiers can be found in different parts of fitness space. In such problems, the population as a
whole rather than individuals is used to make decisions so it is imperative to keep individuals from
converging into a single solution. Speciation is also useful for preventing premature convergence,
i.e. the entire population getting stuck on a suboptimal solution, by enforcing that the population
remain diverse in single solution problems.

Speciation has also been applied in the cooperative coevolution of modular systems of mul-
tiple solutions (Darwen and Yao 1996; Potter and De Jong 1995). Solutions for different situations
can be found in different parts of the search space, and a gating algorithm decides which species
should be used for which situation.

Curiously, the idea of speciation has not been brought into the field of TWEANNs, perhaps
because it is difficult to measure compatibility between networks of different topologies. Such
a measure is necessary to tell whether two genomes should be in the same species or not. The
variable-length genome problem makes measuring compatibility particularly problematic because
networks that compute the same function can appear very different.
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In TWEANNs, the goal is not necessarily to coevolve multiple solutions. However, spe-
ciation is useful for adifferent reasonin TWEANNs. It can maintain species with differing base
topologies, allowing very different structures to flourish simultaneously. In fact, empirical results
in this dissertation indicate that evolving without speciation can significantly limit NEAT’s ability
to add and maintain new topology (Section 4.3). Speciation allows solutions that might initially ap-
pear less fit to procreate and compete within their own niches, ensuring that they get the chance they
deserve. In addition, without speciation, interbreeding among incompatible structures will hinder
evolution.

A number of general methods have been developed to maintain species in GAs. Some
methods maintain different species temporally such that different solutions flourish at different times
(Beasley et al. 1993). Other methods maintain species simultaneously in the population, which
more accurately reflects speciation in biology. For example, De Jong (1975) introduced the idea of
crowding. In crowding, offspring are chosen to replacesimilar organisms in the current population.
That way, new solutions do not interfere with completely different solutions in the population. Thus,
only a fraction of the population is replaced at each generation. Such a GA is called asteady-state
GA. One problem with the original crowding method is that it does not encourage diversity beyond
the diversity of the original population, making it less useful for a system like NEAT that strives to
search through new topologies that did not exist in the initial population.

Mahfoud (1994) introduced a refinement calleddeterministic crowdingthat uses a tourna-
ment between parents and their offspring to determine who gets to continue in the next generation.
It is based on the idea that children tend to be similar to their parents. Even though this enhanced
crowding method makes the population more diverse than standard crowding, it was not chosen for
NEAT because NEAT is designed to work as a steady-stateor a generational GA. I did not want
the system to be restricted to a single reproductive scheme. In addition, although deterministic
crowding maintains diversity it does not prevent incompatible topologies from crossing over, as can
happen in TWEANNs. If incompatible topologies do mate, the tournament is likely a waste of time.

Holland (1975) introduced the method offitness sharing. Under this method, individuals
sharing a niche are forced tosharethe payoff of the niche. Fitness sharing can be implicit or ex-
plicit. In implicit fitness sharing, solutions that overlap in their performance are forced to share
the payoff of the regions where they overlap. This idea works well for classifier systems, where
solutions that classify the same examples correctly share the payoff for those examples, encourag-
ing them to diversify. Implicit sharing may be useful for classification, but it is not always clear
how performances might overlap in non-classification problems. More appropriate to TWEANNs
is explicit fitness sharing (Goldberg and Richardson 1987). The explicit version forces similarin-
dividualsto share their payoff. This method is well suited for TWEANNs, assuming that there is
some definition of “similarity.” Since NEAT provides such a definition (Section 3.3), explicit fitness
sharing was chosen as the speciation method in NEAT.

The general definition of explicit fitness sharing is as follows. An individuali shares fitness
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with the rest of the population according to a sharing functionsh that evaluates the degree to which
two individualsi andj must share depending on their distanced. If fi is i’s fitness before sharing,
then after sharing it becomesf ′

i:

f ′
i =

fi∑n
j=1 sh(δ(i, j))

. (2.3)

The sharing functionsh is set to0 when distanceδ is above some thresholdt. Otherwise,sh
returns a nonzero value that depends on how closei and j are. The functionsh can be chosen
by the experimenter to obtain the desired dynamics. Yin and Germay (1993) cluster organisms
into species before applying sharing. NEAT does this as well by using a compatibility measure to
determine whether two organisms are in the same species or not. There are many advantages to
preclustering species. When species are clustered, they can be identified and tracked, which helps
in visualizing progress and in keeping track of stagnating subpopulations. It also means that the
sharing function only has to operate over individuals in the same species (as opposed to the entire
population).

NEAT’s use of explicit fitness sharing is one of its main features. The important point is not
that fitness sharing is a new idea or better implemented in NEAT than before; it is that NEAT is the
first time that fitness sharing has ever been used in TWEANNs in support of protecting topological
innovation. Most importantly, what really sets NEAT apart is that it provides a distance metric
between different topologies that has never been available before, so that now, for the first time, it
will be possible to speciate and evolve topology and weights in an orderly, well-specified manner
according to the Principle of Protecting Innovation.

2.6 Initial Populations and Topological Innovation

Many TWEANN methods follow the philosophy that the initial population should start with ran-
dom topologies. A random initial population ensures that the topologies are diverse from the start.
However, random initial populations cause several problems for TWEANNs, and therefore may not
be the best way to start evolution.

Randomizing initial topologies can produce infeasible networks. However, there is a more
subtle problem with starting randomly that is more serious. As this dissertation will show, it is desir-
able to find minimal solutions since they reduce the number of parameters being searched. Starting
out with random topologies does not lead to minimal solutions, since the population already has
many unnecessary nodes and connections. None of these nodes or connections have had to with-
stand a single evaluation, meaning their configuration is not justified. Effort to minimize networks
would have to be spent getting rid of apparatus that should not have been there in the first place,
and recombining different topologies does not push towards minimization on its own. Since there
is no fitness cost in creating larger networks, they will dominate as long as they have high fitness.
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It is possible to incorporate network size into the fitness function, and some TWEANNs actually
do this (Zhang and Muhlenbein 1993). However, if the population began with no hidden nodes and
grew structure only as it benefited the solution, there would be no need for ad hoc fitness tampering
to minimize networks. In fact, if the population started with minimal structure instead of a random
population, it would be pointless to add penalties to the fitness function for extra structure. Starting
with a minimal population and growing structure is an important design principle in NEAT.

As if to confirm that starting with random topologies leads to unnecessarily large networks,
Pujol and Poli (1997) added a pruning algorithm to their PDGP system “in order to find solutions
with minimum complexity.” PDGP runs this completely separate pruning algorithmafter it finds a
solution. Evidently, PDGP alone is not evolving minimal networks.

Why is it so important to evolve minimal networks? TWEANN researchers generally fol-
low the argument of Zhang and Muhlenbein (1993), who claim, “Finding a minimal network for
particular applications is important because the speed and accuracy of learning are dependent on
the network complexity.” Although there may be some truth to this claim, it is slightly misleading.
After all, weight optimization is done by the time the solution is output from a TWEANN anyway,
so what learning is left to be done? Some local optimization in weight space may indeed be eas-
ier (using backpropagation perhaps) with a minimal architecture, but this benefit seems overstated,
considering that most TWEANNs are presented as analternativeto backpropagation.

What really matters about topology isnot the final topology, but rather theintermediate
topologiesthat the system must search through in order to get to the final solution. The number of
connections specified by a chromosome measures the dimensionality of the search space currently
being explored. Higher dimensional spaces take longer to search than lower dimensional spaces
(Empirical results supporting this assertion are presented in Sections 4.2.3 and 5.6). If the search
can be kept to a minimum dimensionality over an entire run, the method will be searching in the
simplest possible spaces. TWEANNs should be able to take advantage of this capability, though
prior systems did not. NEAT is designed to build from a minimal starting point such that topological
additions only survive if they end up enhancing fitness. Therefore, NEAT minimizes the search
space for an entire run.

Another reason why starting randomly is dangerous is that adding or subtracting connec-
tions from a network can radically change the fitness landscape being searched. The relationships
between different-dimensional spaces has rarely been analyzed in TWEANN research. However,
Zhang and Muhlenbein (1993) do provide an insightful anecdote on this topic:

For XOR with a minimal network architecture (d = 9) all global minima are isolated;
no neighbors are a global optimum. But for the enlarged search space (d = 13), there
is a chance of 19.2% that another global optimum can be reached by one bit mutation

whered is the number of connections. This interesting observation gives us a clue about how
TWEANNs should behave. In certain minimal spaces, the probability of finding a global optimum
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from a random point in the search space may be low enough to make the search difficult. However,
Zhang and Muhlenbein (1993) also mention that in a different experiment with the goal of evolving
an OR network, growing the network actually reduces the number of global optima in the search
space by 0.2%. Just by adding a connection, the probability of finding a global optimum can go
up significantly in some problems, but the search space can also be made worse in others. Thus, a
general principle emerges combining the idea of starting out minimally with growing incrementally:

Principle of Topological Innovation A population should start out with minimal structure and
grow incrementally to improve the likelihood of finding a global optimum.

The point is that combining structure minimization and smart growth is the right combina-
tion for TWEANNs. Therefore, initial populations should be minimal rather than consist of random
topologies with unjustified topological elaborations. Prior TWEANNs did not follow this principle;
instead, they simply permute through different combinations of random structures, shifting haphaz-
ardly through different non-minimal spaces.

2.6.1 Biological Complexification

In this dissertation, complexification refers to expanding the dimensionality of the search space
while preserving the values of the majority of dimensions. In other words, complexificationelabo-
rateson the existing strategy by adding new structure without changing the existing representation.
Thus the strategy does not only become different, but the number of possible responses to situations
it can generate increases (figure 2.6).

As mentioned in 2.4.4, biological genomes also experience a process of growth over genera-
tions through gene duplication. Gene duplication is a special kind of mutation in which one or more
parental genes are copied into an offspring’s genome more than once. The offspring then has redun-
dant genes expressing the same proteins. Gene duplication has been responsible for key innovations
in overall body morphology over the course of natural evolution (Amores et al. 1998; Carroll 1995;
Force et al. 1999; Martin 1999). Because this process of complexification has produced important
innovations in biological organisms, and NEAT tries to capitalize on the same mechanism, it is
useful to review some of its natural characteristics

A major gene duplication event occurred around the time that vertebrates separated from
invertebrates. The evidence for this duplication centers aroundHOX genes, which determine the
fate of cells along the anterior-posterior axis of embryos. HOX genes are crucial in determining the
order and timing of the overall pattern of development in growing embryos. In fact, differences in
HOX gene regulation account for a great deal of the diversity of body plans among arthropods and
tetrapods (Carroll 1995). Invertebrates have a single HOX cluster while vertebrates have four, sug-
gesting that cluster duplication significantly helped to elaborate vertebrate body-plans by providing
more space in the DNA for representing the organization of body parts (Amores et al. 1998; Holland
et al. 1994; Sidow 1996; Nadeau and Sankoff 1997; Postlethwait et al. 1998). The additional HOX
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Original Strategy Strategy Fails Altered Strategy Strategy Fails

Original Strategy Strategy Fails Elaborated Strategy Skill Remains!

Alteration

Elaboration

Figure 2.6:Alteration vs. elaboration example. The dark robot must evolve to avoid the lighter robot,
which attempts to cause a collision. In the alteration scenario (top), the dark robot first evolves a strategy to
go around the left side of the opponent. However, the strategy fails in a future generation when the opponent
begins moving to the left. Thus, the dark robot alters its strategy by evolving the tendency to move right
instead of left. However, when the light robot later moves right, the new, altered, strategy fails because the
dark robot did not retain its old ability to move left. In the elaboration scenario (bottom), the original strategy
of moving left also fails. However, instead of altering the strategy, it iselaboratedby adding a new ability to
move right as well. Thus, when the opponent later moves right, the dark robot still has the ability to avoid it
by using its original strategy. Elaboration can be achieved through complexification.

genes took on new roles in regulating how vertebrate anterior-posterior axis develops, considerably
increasing body-plan complexity. Although Martin (1999) argues that the additional clusters can
be explained by many single gene duplications accumulating over generations, as opposed to mas-
sive whole-genome duplications, researchers agree that some form of gene duplication did make
body-plan elaboration possible.

A detailed account of how duplicate genes can take on novel roles was given by Force et al.
(1999): Base pair mutations in the generations following duplicationpartition the initially redundant
regulatory roles of genes into separate classes. Thus, the embryo develops in the same way, but the
genes that determine the overall body-plan are confined to more specific roles, since there are more
of them. The partitioning phase completes when redundant clusters of genes are separated enough
so that they no longer produce identical proteins at the same time.

After partitioning, mutations within the duplicated cluster of genes affect different steps in
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development than mutations within the original cluster. In other words, duplication creates more
points at which mutations can occur. In this manner, developmental processes complexify.

Gene duplication is a possible explanation how natural evolution expanded the size of
genomes throughout evolution, and provides inspiration for adding new genes to artificial genomes
as well. Expanding the length of the size of the genome has motivated previous work in evolution-
ary computation (Cliff et al. 1993; Koza 1995; Harvey 1993; Lindgren and Johansson 2001). NEAT
advances this idea by making it possible to search a wide range of increasingly complex network
topologies that are protected in their own niches simultaneously. When evolving neural networks,
this process means adding new neurons and connections to the networks. In NEAT, while the pro-
cess of biological duplication is not strictly followed, it serves as inspiration for the structure-adding
mutations that expand the NEAT genome.

Complexification is especially powerful in open-ended domains where the goal is to contin-
ually generate more sophisticated strategies (Chapter 5 describes such open-ended evolution with
NEAT). Competitive coevolution is a particularly important such domain, as will be reviewed in the
next section.

2.7 Competitive Coevolution and Complexification

In coevolution, fitness is only measured relative to other members of the population, i.e. it is eval-
uated through an interaction between two or more individuals. Incooperative coevolutionseveral
individuals for example play on a team together in order to determine their fitnesses. In contrast, in
competitive coevolution, individuals playagainsteach other, and winning increases fitness. Com-
petitive coevolution is generally set up such that two or more populations of individuals evolve
simultaneously in an environment where an increased fitness in one population leads to a decreased
fitness for another. Ideally, competing solutions will continually outdo one another, leading to
an “arms race” of increasingly better solutions (Dawkins and Krebs 1979; Rosin 1997; Van Valin
1973).

Competitive coevolution has traditionally been used in two kinds of problems. First, in-
teractive behaviors have been evolved with competitive coevolution that are difficult to express in
terms of an absolute fitness function. For example, Sims (1994) evolved simulated 3D creatures
that attempted to capture a ball before an opponent did, resulting in a variety of effective interactive
strategies. Second, coevolution has been used to gain insight into the dynamics of game-theoretic
problems. For example, Lindgren and Johansson (2001) coevolved iterated Prisoner’s Dilemma
strategies in order to demonstrate how they correspond to stages in natural evolution.

In any competitive coevolution experiment, interesting strategies will only evolve if the arms
race continues for a significant number of generations. In practice, it is difficult to establish such
an arms race. Evolution tends to find the simplest solutions that can win, meaning that strategies
can switch back and forth between different idiosyncratic yet uninteresting variations (Floreano
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and Nolfi 1997; Darwen 1996; Rosin and Belew 1997). Several methods have been developed
to encourage the arms race (Rosin and Belew 1997; Angeline and Pollack 1993; Ficici and Pollack
2001; Noble and Watson 2001). For example, a “hall of fame” or a collection of past good strategies
can be used to ensure that current strategies remain competitive against earlier strategies. Recently,
Ficici and Pollack (2001) and Noble and Watson (2001) introduced a promising method called
Pareto coevolution, which finds the best learners and the best teachers in two populations by casting
coevolution as a multiobjective optimization problem. This information enables choosing the best
individuals to reproduce, as well as maintaining an informative and diverse set of opponents.

Although such techniques allow sustaining the arms race longer, they do not directly en-
couragecontinual coevolution, i.e. creating new solutions that maintain existing capabilities. For
example, no matter how well selection is performed, or how well competitors are chosen, if the
search space is fixed, a limit will eventually be reached. Also, it may be difficult to escape local
optima in a fixed space without the capacity to add new dimensions.

For these reasons, complexification is a natural technique for establishing a coevolutionary
arms race. Complexification elaborates strategies by adding new dimensions to the search space.
Thus, progress can be made indefinitely long: Even if a global optimum is reached in the search
space of solutions, new dimensions can be added, opening up a higher-dimensional space where
even better optima may exist. Coevolution with NEAT is tested in a competitive robot duel domain
in Chapter 5.

2.8 Conclusion

Neuroevolution is a promising technique that faces several significant challenges to evolving both
topology and weights. NEAT is a TWEANN designed to address these challenges and thereby allow
neuroevolution to tackle problem that were not possible to solve in the past.

In existing TWEANNs, structures do not match up in meaningful ways during crossover
or comparison. NEAT solves this problem by marking genes in chromosomes with their historical
origin, so that they can be matched up in the future. The idea of keeping track of which genes
match up using historical marking is motivated by the use ofhomologyin biology to identify areas
of genomes that should line up.

Many innovative structures are lost in TWEANNs because adding structure can cause an
initial loss of fitness. NEAT addresses the problem of protecting innovation by speciating the pop-
ulation usingexplicit fitness sharing.

Existing TWEANNS starting with a random initial population. However, starting randomly
forces NE to optimize many more parameters than are necessary to express a solution. Thus, NEAT
starts out with a population of minimal structures and adds structure as necessary in order to min-
imize the number of parameters being searched. The resulting process of gradually increasing
complexity is calledcomplexification.
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Complexification is a powerful mechanism that has proved useful in biological evolution.
Because it allows elaboration, complexification can help encourage an arms race in competitive
coevolution.

These principles, none of which have been addressed in past TWEANNs, are the basis of
NEAT’s approach. We now turn to the details of the implementation of NEAT.
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Chapter 3

NeuroEvolution of Augmenting
Topologies (NEAT)

An efficient system capable of evolving complex structures at the same time as weights should
be based upon the three principles discussed in the background: The system should implement a
method of detecting homology between genes, it should protect innovation, and it should minimize
structure in order to minimize the number of dimensions being searched. The NEAT approach
follows these principles. Historical markings are used as a way of identifying homology, speciation
accomplishes the protection of innovation, and minimizing structure is accomplished by starting out
with a population of networks with no hidden nodes.

This section begins with an overview of the genetic encoding used in NEAT. Using the ge-
netic encoding, structural mutations are introduced to make it clear how genomes grow in NEAT.
Historical markings, which are applied whenever a genome grows, are then explained in detail.
Crossover, which uses historical markings to allowing disparate topologies to be combined, is dis-
cussed next. NEAT’s approach to speciation using fitness sharing is introduced as a way to protect
innovation, and the last section explains growth from a minimal starting point.

3.1 Genetic Encoding

Evolving structure requires a flexible genetic encoding. In order to allow structures to complexify,
their representations must be dynamic and expandable. Each genome in NEAT includes a list of
connection genes, each of which refers to twonode genesbeing connected (Figure 3.1). Each
connection gene specifies the in-node, the out-node, the weight of the connection, whether or not
the connection gene is expressed (an enable bit), and aninnovation number, which allows finding
corresponding genes during crossover.

Mutation in NEAT can change both connection weights and network structures. Connection
weights mutate as in any NE system; each connection weight is perturbed with a fixed probability by
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Figure 3.1:A NEAT genotype to phenotype mapping example.A genotype is depicted that produces the
shown phenotype. There are 3 input nodes, one hidden, one output node, and seven connection definitions,
one of which is recurrent. The second gene is disabled, so the connection that it specifies (between nodes 2
and 4) is not expressed in the phenotype. In order to allow complexification, genome length is unbounded.

adding a floating point number chosen from a uniform distribution of positive and negative values.
Structural mutations, which form the basis of complexification, occur in two ways (Figure 3.2).
Each mutation expands the size of the genome by adding genes. In theadd connectionmutation,
a single new connection gene is added connecting two previously unconnected nodes. In theadd
nodemutation, an existing connection is split and the new node placed where the old connection
used to be. The old connection is disabled and two new connections are added to the genome.
The connection between the first node in the chain and the new node is given a weight of one,
and the connection between the new node and the last node in the chain is given the same weight
as the connection being split. Splitting the connection in this way introduces a nonlinearity (i.e.
sigmoid function) where there was none before. Because the new node is immediately integrated
into the network, its effect on fitness can be evaluated right away. Preexisting network structure is
not destroyed and performs the same function, while the new structure provides an opportunity to
elaborate on the original behaviors.

Through mutation, the genomes in NEAT will gradually get larger. Genomes of varying
sizes will result, sometimes with different connections at the same positions. Crossover must be
able to recombine networks with differing topologies, which can be difficult (Radcliffe 1993). The
next section explains how NEAT approaches this problem.
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Figure 3.2:The two types of structural mutation in NEAT. Both types, adding a connection and adding a
node, are illustrated with the genes above their phenotypes. The top number in each genome is theinnovation
numberof that gene. The bottom two numbers denote the two nodes connected by that gene. The weight of
the connection, also encoded in the gene, is not shown. The symbol DIS means that the gene is disabled, and
therefore not expressed in the network. The figure shows how connection genes are appended to the genome
when a new connection and a new node is added to the network. Assuming the depicted mutations occurred
one after the other, the genes would be assigned increasing innovation numbers as the figure illustrates,
thereby allowing NEAT to keep an implicit history of the origin of every gene in the population.

3.2 Tracking Genes through Historical Markings

It turns out that the historical origin of each gene can be used to tell us exactly which genes match
up betweenany individuals in the population. Two genes with the same historical origin represent
the same structure (although possibly with different weights), since they were both derived from the
same ancestral gene at some point in the past. Thus, all a system needs to do is to keep track of the
historical origin of every gene in the system.

Tracking the historical origins requires very little computation. Whenever a new gene ap-
pears (through structural mutation), aglobal innovation numberis incremented and assigned to that
gene. The innovation numbers thus represent a chronology of every gene in the system. As an
example, let us say the two mutations in Figure 3.2 occurred one after another in the system. The
new connection gene created in the first mutation is assigned the number7, and the two new con-
nection genes added during the new node mutation are assigned the numbers8 and9. In the future,
whenever these genomes cross over, the offspring will inherit the same innovation numbers on each
gene. Thus, the historical origin of every gene in the system is known throughout evolution.

A possible problem is that the same structural innovation will receive different innovation
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Figure 3.3:Matching up genomes for different network topologies using innovation numbers. Al-
though Parent 1 and Parent 2 look different, their innovation numbers (shown at the top of each gene) tell
us that several of their genes match up even without topological analysis. A new structure that combines
the overlapping parts of the two parents as well as their different parts can be created in crossover. In this
case, equal fitnesses are assumed, so each disjoint and excess gene is inherited from either parent randomly.
Otherwise the genes would be inherited from the more fit parent. The disabled genes may become enabled
again in future generations: There is a preset chance that an inherited gene is enabled if it is disabled in either
parent.

numbers in the same generation if it occurs by chance more than once. However, by keeping a
list of the innovations that occurred in the current generation, it is possible to ensure that when the
same structure arises more than once through independent mutations in the same generation, each
identical mutation is assigned the same innovation number. Extensive experimentation established
that resetting the list every generation as opposed to keeping a growing list of mutations throughout
evolution is sufficient to prevent innovation numbers from exploding.

Through innovation numbers, the system now knows exactly which genes match up with
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which (Figure 3.3). Genes that do not share the same historical marking as any gene in other other
parent genome aredisjoint. Genes that appeared in one parent later in evolution than any genes in
the other parent areexcess. When crossing over, the genes with the same innovation numbers are
lined up and crossed over in one of two ways. In the first method, matching genes are randomly
chosen for the offspring genome. Alternatively, the connection weights of matching genes can be
averaged (Wright (1991) reviews both types of crossover and their merits). NEAT uses both types
of crossover. Disjoint and excess genes are inherited from the more fit parent, or if they are equally
fit, each gene is inherited from either parent randomly. Disabled genes have a chance of being
reenabled during crossover, allowing networks to make use of older genes once again.

Historical markings allow NEAT to perform crossover without analyzing topologies. Genomes
of different organizations and sizes stay compatible throughout evolution. This methodology allows
NEAT to complexify structure while different networks still remain compatible. However, it turns
out that it is difficult for a population of varying topologies to support new innovations that add
structure to existing networks, Because smaller structures optimize faster than larger structures,
and adding nodes and connections usually initially decreases the fitness of the network, recently
augmented structures have little hope of surviving more than one generation even though the inno-
vations they represent might be crucial towards solving the task in the long run. The solution is to
protect innovation by speciating the population, as explained in the next section.

3.3 Protecting Innovation through Speciation

NEAT speciates the population so that individuals compete primarily within their own niches instead
of with the population at large. This way, topological innovations are protected and have time to
optimize their structure before they have to compete with other niches in the population. In addition,
speciation prevents bloating of genomes: Species with smaller genomes survive as long as their
fitness is competitive, ensuring that small networks are not replaced by larger ones unnecessarily.
Protecting innovation through speciation follows the philosophy that new ideas must be given time
to reach their potential before they are eliminated.

Using historical markings, the system can determine how much history is shared among
different genomes and use that information to divide the population into species. The distanceδ

between two network encodings can be measured as a linear combination of the number of excess
(E) and disjoint (D) genes, as well as the average weight differences of matching genes (W ):

δ =
c1E

N
+

c2D

N
+ c3 ·W. (3.1)

The coefficientsc1, c2, andc3 adjust the importance of the three factors, and the factorN , the
number of genes in the larger genome, normalizes for genome size (N can be set to 1 unless both
genomes are excessively large).

38



Throughout evolution, NEAT maintains a list of species numbered in the order they ap-
peared. In the first generation, since there are no preexisting species, NEAT begins by creating
species 1 and placing the first genome into that species. All other genomes are placed into species
as follows: A random member of each existing species is chosen as its permanentrepresentative.
Genomes are tested one at a time; if a genome’s distance to the representative of any existing species
is less thanδt, a compatibility threshold, it is placed into this species. Otherwise, if it is not com-
patible with any existing species, a new species is created and given a new number. After the first
generation, genomes are first compared with species from theprevious generationso that the same
species numbers can be used to identify species throughout the run. Keeping the same set of species
from one generation to the next allows NEAT to remove stagnant species, i.e. species that have not
improved for too many generations. In general, because structure is added slowly and only useful
innovations survive in the long run, throughout evolution topologies within the same species in the
same generation tend to be similar. The problem of choosing the best value forδt can be avoided
by makingδt dynamic; that is, given a target number of species, the system can slightly raiseδt if
there are too many species, and lowerδt if there are too few.

Let P be the entire population. The algorithm for clustering genomes into species follows:

• The Genome Loop:

– Take next genomeg from P

– The Species Loop:

∗ If all species in S have been checked, create new speciessnew and placeg in it

∗ Else

· get next speciess from S

· If g is compatible withs, addg to s

∗ If g has not been placed, Species Loop

– If not all genomes inG have been placed, Genome Loop

– Else STOP

As the reproduction mechanism, NEAT usesexplicit fitness sharing(Goldberg and Richard-
son 1987), where organisms in the same species must share the fitness of their niche. Thus, a species
cannot afford to become too big even if many of its organisms perform well. Therefore, any one
species is unlikely to take over the entire population, which is crucial for speciated evolution to
support a variety of topologies. The adjusted fitnessf ′

i for organismi is calculated according to its
distanceδ from every other organismj in the population:

f ′
i =

fi∑n
j=1 sh(δ(i, j))

. (3.2)
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The sharing functionsh is set to0 when distanceδ(i, j) is above the thresholdδt; otherwise,
sh(δ(i, j)) is set to 1 (Spears 1995). Thus,

∑n
j=1 sh(δ(i, j)) reduces to the number of organisms

in the same species as organismi. This reduction is natural since species are already clustered by
compatibility using the thresholdδt. Every species is assigned a potentially different number of
offspring in proportion to the sum of adjusted fitnessesf ′

i of its member organisms. The net effect
of fitness sharing in NEAT can be summarized as follows. LetFk be the average fitness of speciesk

and|P | be the size of the population. LetF tot =
∑

k Fk be the total of all species fitness averages.
The number of offspringnk allotted to speciesk is:

nk =
Fk

F tot
|P |. (3.3)

The lowest performing fraction of each species is eliminated. The parents to produce the next
generation are chosen randomly among the remaining individuals (uniform distribution with re-
placement). The highest performing individual in each species, i.e. thespecies champions, carries
over from each generation. Otherwise the next generation completely replaces the one before.

The net effect of speciating the population is that structural innovation is protected. The
final goal of the system, then, is to perform the search for a solution as efficiently as possible. This
goal is achieved through complexification from a simple starting structure, as detailed in the next
section.

3.4 Minimizing Dimensionality through Complexification

Unlike other systems that evolve network topologies and weights (Angeline et al. 1993; Gruau et al.
1996; Yao 1999; Zhang and Muhlenbein 1993), all the networks in the first generation in NEAT
have the same small topology: All the inputs are directly connected to every output, and there are no
hidden nodes. These first generation networks differ only in their initial random weights. Speciation
protects new innovations, allowing diverse topologies to gradually accumulate over evolution. Thus,
because NEAT protects innovation using speciation, it can start in this manner, minimally, and grow
new structure over generations.

New structure is introduced incrementally as structural mutations occur, and only those
structures survive that are found to be useful through fitness evaluations. This way, NEAT searches
through a minimal number of weight dimensions, significantly reducing the number of generations
necessary to find a solution, and ensuring that networks become no more complex than necessary.
This gradual increase in complexity over generations iscomplexification. In other words, NEAT
searches for the optimal topology by incrementally complexifying existing structure.

The process of complexification and its benefits can be summarized as follows. The system
is initially searching a very low-dimensional parameter space with very few connections. Solutions
are optimized in this low-dimensional space. The space may not be expressive enough to solve
the problem, but locally optimal solutions appear. The system then increases the dimensionality
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of the search space by adding new topology through structural mutations. This causes a shift into
a new space. However, it is likely that the position of the new genome in the new space is on a
promising hill, because most of its connections are already optimized to perform a useful function.
The new connections, representing extra dimensions of search, can be optimized to coordinate with
the older connections, which themselves may change somewhat in order to adapt to the new higher-
dimensional space. Many different innovations happen at the same time, in the same generation,
so NEAT is searching many different dimensional search spaces simultaneously. These different
spaces are each represented by a species. Each search space is a branch off of a smaller space that
was already somewhat optimized. Because solutions tend to start out in larger spaces already near
their goal, much of the work of searching has been accomplished in a lower dimensional space,
which means less parameters needed to be optimized simultaneously, which allows searching in
higher-dimensional space than would otherwise be possible.

3.5 Conclusion

NEAT is based on three principles that work together to efficiently evolve network topologies and
weights. The first principle is homology: NEAT encodes each node and connection in a network
with a gene. Whenever a structural mutation results in a new gene, that gene receives a historical
marking. Historical markings are used to match up homologous genes during crossover, and to
define a compatibility operator.

The second principle is protecting innovation. A compatibility operator is used to speci-
ate the population, which protects innovative solutions and prevents incompatible genomes from
crossing over.

Finally, NEAT follows the philosophy that search should begin in as small a space as pos-
sible and expand gradually. Evolution in NEAT always begins with a population of minimal struc-
tures. Structural mutations add new connections and nodes to networks in the population, leading to
incremental growth. Topological innovations have a chance to realize their potential because they
are protected from the rest of the population by speciation. Because only useful structural additions
tend to survive in the long term, the structures being optimized tend to be the minimum necessary
to solve the problem.

NEAT’s approach allows fast search because the number of dimensions being searched is
minimized. The next two chapters demonstrate the power of this process.
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Chapter 4

Performance Evaluation

Because NEAT is designed to produce increasingly complex networks, NEAT can potentially dis-
cover neural network behaviors that would be inaccessible through search using other methods. It
is primarily this potential for novel discovery that this dissertation aims to demonstrate. However, it
is important first to establish that the method isefficientin comparison with others. In other words,
if NEAT is to be applied to open-ended real-world problems, we want to know first whether it can
be expected to achieve this objective in a reasonable amount of time.

Three questions must be answered in order to establish that NEAT is efficient: (1) Can
NEAT evolve the necessary structures? (2) Can NEAT find solutions more efficiently than other
reinforcement learning systems? (3) Are all components of NEAT necessary? The first question
establishes that NEAT indeed builds topologies reliably, and it is answered through a simple XOR
evolution test. The second question amounts to a systematic comparison, and it is answered through
the standard benchmark of balancing two poles attached to a moving cart. The third question re-
quires testing whether all components of NEAT contribute to its performance, which is established
through a series of ablation experiments.

4.1 Evolving the Right Topology: XOR

It is important to establish that NEAT can indeed evolve appropriate topologies reliably. For this
reason, NEAT is applied to the problem of building an XOR network. Although this task is simple,
it requires growing hidden units, and therefore serves as a simple test for the method. The aim is to
show that NEAT will grow new structure to cope with problems that require it.

XOR is a binary logical operator that only returns true if one and only one of the two inputs
is true. The two inputs to XOR must be combined at a hidden unit, as opposed to only at the output
node, because there is no function over a linear combination of the inputs that can separate the inputs
into the proper classes. These structural requirements make XOR suitable for testing NEAT’s ability
to evolve structure. For example, NEAT’s method for adding new nodes might be too destructive to
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Out

Bias1               2

(a) Network from initial population

Out

Bias1              2

(b) Phenotype of smallest possible solution

Figure 4.1:Initial phenotype and optimal XOR. Figure (a) shows the phenotype given to the entire initial
population. Notice that there are no hidden nodes. In NEAT, a bias is a node that can connect to any node
other than inputs. Figure (b) shows an optimal solution with only 1 hidden node. (A network without hidden
nodes cannot compute XOR.) The bias connections are not always needed depending on the solution; All
other connections are necessary. The optimal (1 hidden node) solution was found in 22 of 100 runs. The
average solution had 2.35 hidden nodes with a standard deviation of 1.11 nodes. NEAT must add at least
one new hidden neuron in order to solve this task, making it a good test of NEAT’s ability to evolve the right
structure.

allow new nodes to get into the population. Or, it could find a local champion with a wrong kind
of connectivity that dominates the population so much that the systems fails to evolve the proper
connectivity. Third, maybe the changing structure renders past connection weight values obsolete.
If so, the algorithm would have trouble enlarging topologies that are already largely specialized.
This experiment is meant to show that NEAT is not impeded by such potential obstacles, but can
grow structure efficiently and consistently when needed.

To compute fitness, the distance of the output from the correct answer was summed for all
four input patterns. The result of this error was subtracted from 4 so that higher fitness would mean
better networks. The resulting number was squared to give proportionally more fitness the closer a
network was to a solution.

The initial generation consisted of networks with no hidden units (Figure 4.1a). The net-
works had 2 inputs, 1 bias unit, and 1 output. The bias unit is an input that is always set to1.0. The
network can use the bias to change the activation threshold of neurons. There were three connection
genes in each genome in the initial population. Two genes connected the inputs to the output, and
one connected the bias to the output. Each connection gene received a random connection weight.
NEAT system parameters used in XOR are described in appendix A.

On 100 runs, the first experiment showed that the NEAT system finds a structure for XOR in
an average of 32 generations (4,755 networks evaluated, std=2,553). On average a solution network
had 2.35 hidden nodes and 7.48 non-disabled connection genes. Since a successful network requires
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at least one hidden unit (figure 4.1b) , NEAT actually found very small networks. NEAT was also
very consistent in finding a solution: It did not fail once in 100 simulations. The worst performance
took 13,459 evaluations, or about 90 generations (compared to 32 generations on average). The
standard deviation for number of nodes used in a solution was 1.11, meaning NEAT consistently
used 1 or 2 hidden nodes to build an XOR network.

The XOR problem has been used to demonstrate performance of several prior TWEANN
algorithms. Unfortunately, quantitative performance comparisons are difficult in this domain be-
cause the methodologies vary widely across experiments. For example, several methods evolve
network topologies using a separate hill climbing algorithm for weight optimization (Yao and Shi
1995; Zhang and Muhlenbein 1993). Although the PDGP method (Section 2.3.2; Pujol and Poli
1998) evolves weights in addition to topologies, it includes a post-processing module that spends
additional generations pruning networks after a solution has already been found. The method sGA
(Section 2.3.2; Dasgupta and McGregor 1992), like NEAT, evolves both topologies and weights and
does not post-prune; however, the reported results do not include the average number of generations
necessary for a solution. Above all, to the best of my knowledge, all previous methods applied to
XOR evolution limit the size of a genome. In contrast, NEAT puts no limit on the size or complexity
of networks evolved for this problem.

It is clear that NEAT solves the XOR problem without trouble and in doing so keeps the
topology small. However, XOR is not a good benchmark for performance comparisons because it
is such a simple task. Therefore, having established NEAT’s ability to consistently evolve structure,
the next section examines how it compares with other methods at more challenging problems.

4.2 Comparing Performance: Pole Balancing

There are many control learning tasks where the techniques employed in NEAT can make a differ-
ence. Many of these potential applications, like robot navigation or game playing, present problems
without known solutions. The pole balancing domain is used for comparison because it is a known
benchmark in the literature, which makes it possible to demonstrate the effectiveness of NEAT com-
pared to others. It is also a good surrogate for real problems, in part because pole balancing in fact
is a real task, and also because the difficulty can be adjusted. Earlier comparisons were done with
a single pole (Moriarty and Miikkulainen 1996), but this version of the task has become too easy
for modern methods. Balancing two poles simultaneously is on the other hand challenging enough
for all current methods. In the most difficult version of this problem, two poles must be balanced
without velocity information. This problem is non-Markovian and provides strong evidence that
evolving augmenting topologies is not only interesting because it can find structures, but is also
efficient in difficult control tasks.
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4.2.1 Method

We set up the pole balancing experiments as described by Wieland (1991) and Gomez and Miikku-
lainen (1999) (Appendix A.4.1). Two poles are connected to a moving cart by a hinge and the neural
network must apply force to the cart to keep the poles balanced for as long as possible without the
cart going beyond the boundaries of the track. The system state is defined by the cart position (x)
and velocity (̇x), the first pole’s position (θ1) and angular velocity (̇θ1), and the second pole’s posi-
tion (θ2) and angular velocity (̇θ2). Control is possible because the poles have different lengths and
therefore respond differently to control inputs.

The Runge-Kutta fourth-order method was used to implement the dynamics of the system,
with a step size of 0.01s. All state variables were scaled to[−1.0, 1.0] before being fed to the
network. Networks output a force every 0.02 seconds between[−10, 10]N . The poles were 0.1m
and 1.0m long. The initial position of the long pole was1◦ and the short pole was upright; the track
was 4.8 meters long. The rest of the parameters are described in appendix A.

Two versions of the double pole balancing task were used: one with velocity inputs included
and another without velocity information. The first task is Markovian and allows comparing with
many different systems. Taking away velocity information makes the task more difficult because
the network must estimate an internal state in lieu of velocity, which requires recurrent connections.

NEAT was compared to three traditional value function-based reinforcement learning (RL)
methods, one policy search method, and five other NE methods. Although NE methods significantly
outperform traditional RL methods, competition among NE methods has encouraged experimenters
to begin to exploit idiosyncrasies of pole balancing that may not be representative of other prob-
lems. Therefore, this section presents several separate comparisons with NE methods that have
been customized for pole balancing. The conclusion is that NEAT performs significantly more ef-
ficiently than traditional RL methods and is at least as powerful as the customized NE techniques.
The following three sections describe the methods used in the comparisons.

Value Function Methods

Value function methods learn the value of taking specific actions in the current state of the system.
The action space is discretized and a function approximator learns a Q-function that assigns a value
to state-action pairs.

Q-Learning with a multilayer perceptron (Q-MLP; Watkins and Dayan 1992) uses a feed-
forward artificial neural network as its function approximator. The network receives state and action
variables as input and outputs a single Q-value.

Sarsa(λ) with a Case-Based function approximator (SARSA-CABA; Santamaria et al.
1998) records state-action pairs explicitly in memory as separate cases. New cases are assigned
values by combining the values of neighboring cases.

Sarsa(λ) with a Cerebellar Model Articulation Controller (CMAC; Albus 1975; Singh and
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Sutton 1996) replaces the case-based memory of SARSA-CABA with a Cerebellar Model Articu-
lation Controller, which divides the state-action space into a set of overlapping tilings. Q-values are
computed by summing values from different overlapping tilings that contain the same feature value.

Value function performance results are reported by Gomez (2003), who used SARSA imple-
mentations by Santamaria et al. (1998). Gomez (2003) implemented the Q-Learning system from
which Q-Learning results are reported.

Policy Search Methods

Like NE, Value and Policy Search (VAPS; Meuleau et al. 1999) searches the space of policies (as
opposed to states and actions) for a solution. However, while NE searches through a space of neural
networks, VAPS searches for finite state automaton graphs. In addition, NE evolves a solution
while VAPS searches using stochastic gradient descent. In principle, this technique can represent
policies that work in non-Markovian environments. VAPS’ performance results in pole balancing
were reported by Meuleau et al. (1999).

Neuroevolution Methods

NEAT was also compared to published results from five other NE systems. The first two represent
standard population-based approaches. Saravanan and Fogel (1995) used Evolutionary Program-
ming, which relies entirely on mutation of connection weights, while Wieland (1991) used both
mating and mutation.

The second two systems, SANE (Moriarty and Miikkulainen 1996) and ESP (Gomez and
Miikkulainen 1999), evolved populations of neurons and a population of network blueprints that
specifies how to build networks from the neurons that are assembled into fixed-topology networks
for evaluation. The topologies are fixed because the individual neurons are always placed into
predesignated slots in the neural networks they compose. SANE maintains a single population of
neurons. ESP improves over SANE by maintaining a separate population for each hidden neuron
position in the complete network (Section 2.3.1).

Like NEAT, Cellular Encoding (CE; Gruauet al., 1996) evolves both topologies and weights
(Section 2.3.2). The success of CE was first attributed to its ability to evolve structures. However,
ESP, a fixed-topology NE system, was able to complete the non-Markovian pole-balancing task five
times faster simply by restarting with a random number of hidden nodes whenever it got stuck. Our
experiments will show that NEAT’s evolution of structure can significantly outperform CE.

CMA-ES (Igel 2003) is an evolution strategy (ES) technique (Beyer and Paul Schwefel
2002) used to evolve fixed-topology networks. It keeps track of which mutations lead to the most
gains and uses this information to guide the direction of future mutations (Section 2.3.1). Accord-
ing to Igel (2003), CMA-ES has the advantage of allowing small population sizes; it successfully
evolves a very small population of of between 13 and 19 networks. However, subsequent experi-
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Method Evaluations CPU time (seconds)
Q-MLP 10,582 153
SARSA-CABA Timed Out –
SARSA-CMAC Timed Out –
VAPS Timed Out –

Ev. Programming 307,200 –
Conventional NE 22,100 73
SANE 12,600 37
ESP 3,800 22
NEAT 3,600 31

Table 4.1:Double pole balancing with velocity information. The number of evaluations and CPU time
required for a solution are shown for both NE methods (bottom five entries) and non-NE methods (top four).
Evolutionary programming results were obtained by Saravanan and Fogel (1995). All other results are from
Gomez (2003) and averaged over 50 runs; Because the SARSA and VAPS methods could not solve the
task within 12 hours, they were timed out (Gomez 2003). NEAT results were averaged over 120 runs with
standard deviation of 2,704 evaluations. Although standard deviations for other methods were not reported,
if we assume similar variances, all differences are statistically significant (p < 0.001), except that between
NEAT and ESP. NEAT solves the task in fewer evaluations than any other method, and is significantly faster
than traditional RL methods.

mentation with NEAT showed that NEAT also solves the pole balancing problem faster with very
small populations (Section 4.2.4). Thus, small populations may fit the pole balancing problem better
than previously thought, making comparisons with prior experiments, which all used populations of
100 networks or more, impossible. Therefore, NEAT is first compared with results using standard
population sizes, and then compared with CMA-ES by giving NEAT a very small population as
well.

4.2.2 Double Pole Balancing with Velocities

The criteria for success on this task was keeping both poles balanced for 100,000 time steps, or
30 minutes of simulated time. A pole was considered balanced between -36 and 36 degrees from
vertical. Fitness on this task was measured as the number of time steps that both poles remained
balanced.

The populations used by NE methods in this comparison included 100 or more networks:
Evolutionary Programming used 2048; conventional NE, 100; SANE and ESP, 200; and NEAT,
150.

Table 4.1 shows that NEAT takes the fewest evaluations to complete this task (the difference
between NEAT and ESP is not statistically significant). NEAT took three times fewer evaluations
than Q-Learning, while traditional RL techniques could not solve the task. The conclusion is that
NEAT is significantly more successful at solving this benchmark than traditional RL methods.
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The fixed-topology NE systems evolved networks with 10 hidden nodes because that num-
ber was thought to be appropriate for this task. However, NEAT’s solutions always used between
0 and 4 hidden nodes. Thus, it is clear that NEAT’s minimization of dimensionality is working on
this problem and finding the smallest known solutions. This result is important because it shows
that NEAT performs as well as ESP while finding more minimal solutions.

4.2.3 Double Pole Balancing Without Velocities

Gruauet al.(1996) introduced a special fitness function for this problem to prevent the system from
solving the task simply by moving the cart back and forth quickly to keep the poles wiggling in
the air. (Such a solution would not require computing the missing velocities.) The fitness penalizes
oscillations. It is the sum of two fitness component functions,f1 andf2, such thatF = 0.1f1 +
0.9f2. The two functions are defined over 1000 time steps:

f1 = t/1000, (4.1)

f2 =

 0 if t < 100,
0.75∑t

i=t−100
(|xi|+|ẋi|+|θi

1|+|θ̇i
1 |)

otherwise, (4.2)

where t is the number of time steps the poles remain balanced during the 1,000 total time steps.
The denominator represents the sum of offsets from center rest of the cart and the long pole. It
is computed by summing the absolute value of the state variables representing the cart and long
pole positions and velocities. Thus, by minimizing these offsets (damping oscillations), the system
can maximize fitness. Because of this fitness function, swinging the poles is penalized, forcing the
system to internally compute the hidden state variables.

Under Gruauet al.’s criterion for a solution, the champion of each generation is tested on
generalization to make sure it is robust. This test takes a lot more time than the fitness test, which is
why it is applied only to the champion. In addition to balancing both poles for 100,000 time steps,
the winning controller must balance both poles from 625 different initial states, each for 1,000 times
steps. The number of successes is called thegeneralization performance of the solution. In order to
count as a solution, a network needs to generalize to at least 200 of the 625 initial states. Each start
state is chosen by giving each state variable (i.e.x, ẋ, θ1, andθ̇1) each of the values 0.05, 0.25, 0.5,
0.75, 0.95 scaled to the range of the input variable (54 = 625).

Gomez (2003) reported results for ESP and conventional NE (CNE) with both the standard
fitness (i.e. number of time steps before falling) and Gruau’s damping fitness with the generalization
test. Table 4.2 shows that NEAT and ESP are the fastest systems on this task, with no significant
difference between the two with either fitness measure. None of the other NE methods nor any of
the value function methods could solve this task.

NEAT takes 34 times fewer evaluations than Gruau’s original benchmark, showing that the
way in which structure is evolved has significant impact on performance. While NEAT and ESP can
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Method Evaluations
Standard Fitness Damping fitness

CE – 840,000
Conventional NE 76,906 87,623
ESP 20,456 26,342
NEAT 20,918 24,543

Table 4.2:Double pole balancing without velocity information. CE is Cellular Encoding of Gruau et al.
(1996). CNE and ESP results were reported by Gomez (2003). All results are averages over 50 simulations
with a population of 150 except CE, which was run only once with a population of 16,384 networks. All
differences in number of evaluations are significant (p < 0.001) except those between NEAT and ESP. NEAT
and ESP solve this task in the fewest evaluations. NEAT is 34 times faster than CE, the only other TWEANN
to solve the task.

solve the task with approximately the same number of evaluations, ESP was started with a network
with an appropriate number of hidden nodes. Past comparisons showed that if ESP is forced to
start with a random number of hidden neurons, NEAT gains a significant advantage (Stanley and
Miikkulainen 2002b), suggesting that the capacity to find the right level of complexity for the task is
beneficial. There was no significant difference in the ability of any of the four methods to generalize.
Finally, both NEAT and ESP are several times faster than conventional neuroevolution with a fixed
topology.

4.2.4 Pole Balancing with Very Small Populations

Having a common benchmark such as double pole balancing is useful because it allows measuring
whether various improvements to learning algorithms are actually significant in practice. However,
such competition has the unfortunate side effect that it is becoming increasingly difficult to separate
the contribution of particular methods from the experimental methodologies used to compare them.

When Igel (2003) evaluated their CMA-ES with very small populations of 13 to 19 net-
works, they obtained solutions in significantly fewer evaluations than other NE methods. However,
when the population size in NEAT was similarly reduced, its performance also increased signifi-
cantly, suggesting that population size has a powerful effect on the number of evaluations required
for a solution in pole balancing. This result makes sense since both double pole balancing with and
without velocity inputs may be difficult to solve at the start, but once a species is near a solution,
the extra evaluations accumulated by other species in a large population are not necessary to solve
the problem. Smaller populations can therefore make evolution dramatically faster in this particular
task. However, it is important to note that in more difficult or open-ended domains, the situation is
likely different, because early in evolution it is not clear which species is close to a solution, and so
a number of species must be maintained over the long term. Small populations would actually be
harmful in such tasks.
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Second, Igel’s (2003) algorithm also continued exploring even after the damping fitness
criteria was satisfied. The reason for this modification is that passing Gruau’s generalization test
does not mean an optimal damping controller has been found, yet the generalization test used to
determine whether the task has been solved requires an optimal damping controller. Third, Igel
found that the bias unit in the Markovian version of the task actually makes it harder, so they
removed the bias. All of these modifications are useful in pole balancing, although they may not be
useful in general. They are also modifications that can be applied to the other learning algorithms,
probably improving their performance as well. Therefore Igel’s (2003) results are not comparable
with the earlier ones, but require a separate comparison.

In the double pole balancing task with velocity information provided, Igel reported that
the CMA-ES solves the task in between 884 and 25,853 evaluations, depending on the particular
fixed topology and CMA-ES parameter settings. When NEAT is evolved on this same task with
the bias removed and a population of 16, it can solve it in 642 evaluations (averaged over 50 runs).
This result is over five times faster than the 3,600 evaluations taken by NEAT when evolving with
a population of 150, suggesting that NEAT obtains a similar advantage from evolving small pop-
ulations as the CMA-ES. Moreover, NEAT solves the task in fewer evaluations than any of the
CMA-ES topologies, showing again that the ability to efficiently evolve network topologies along
with weights provides an advantage.

NEAT’s results also improve when the population size is reduced to 16 in the non-Markovian
version of the task. In that case, NEAT finds a solution to the generalization test in an average of
6,929 evaluations over 10 runs. CMA-ES solves this version of the task in between 6,061 and 25,254
evaluations depending on the fixed topology and system parameters. The result again demonstrates
that determining the appropriate topology automatically is a significant advantage.

Once the right topology is found, CMA-ES performance rivals that of NEAT. CMA-ES
works by keeping track of correlations between mutations on specific connection weights and
changes in fitness. Interestingly, tracking correlations among parameters is possible in NEAT just
as it is in the CMA-ES since NEAT keeps track of which connection is which among different net-
works using historical marking (Section 3.2). Thus, the strengths of CMA-ES and NEAT may prove
complementary and therefore may be possible to combine in the future.

4.2.5 Pole Balancing Conclusion

In sum, the pole balancing results demonstrate both that NEAT can evolve structure when neces-
sary, and that NEAT gains a significant performance advantage from doing so. NEAT significantly
outperforms traditional RL methods, and it is at least as powerful as the other NE methods without
the need for choosing an appropriate starting topology. The chapter now turns to understanding how
the system works, and whether it indeed solves the problems with evolving a population of diverse
topologies raised in Chapter 2.
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4.3 Experimental Analysis of NEAT

Chapter 3 argued that NEAT’s strong performance is due to historical markings, speciation, and
incremental growth from minimal structure. In order to verify the contribution of each component,
a series of ablation studies were performed. In addition, a species visualization technique was used
to depict the dynamics of the system.

4.3.1 Ablations Method

Ablations are meant to establish that each component of NEAT is necessary for its performance.
For example, it is possible that growth from minimal structure is not really important; maybe the
rest of the system, speciation and historical markings, is sufficient for NEAT’s optimal performance.
This hypothesis will be checked by ablating both growth and starting from minimal structure from
the system. On the other hand, perhaps the situation is the opposite, and speciation buys nothing:
protecting innovation might not be as important as I have argued. This hypothesis will be checked by
ablating speciation from the system. Finally, NEAT is designed to be able to make use of crossover
even though genomes in NEAT have different sizes. This point is more controversial than it might
seem. For example, Angelineet al. (1993) claimed that crossover in TWEANNs does more harm
than good. This hypothesis will be checked by ablating crossover from the system.

The reason why historical markings are not ablated directly is that without historical mark-
ings NEAT would reduce to a conventional NE system. Historical markings are the basis of every
function in NEAT: Speciation uses a compatibility operator that is based on historical markings,
and crossover would not be possible without them. All other system components can be ablated
systematically.

Ablations can have a significant detrimental effect on performance, potentially to the point
where the system cannot solve the task at all. Therefore, double pole balancingwith velocities was
used as the task for ablation studies with the normal population size of 150. The task is complex
enough to be interesting, yet still not too hard, so that ablated systems work as well. Thus, it is
possible to compare the ablated versions of the system to the unablated system.

All settings were the same as in the double pole balancing with velocities experiment. Re-
sults are averages over 20 runs, except nonmating and full NEAT, which are averages over 120 runs
(nonmating NEAT was fast enough to allow many runs).

4.3.2 Ablations Results

Table 4.3 shows the results of all the ablations, in terms of average evaluations required to find a
solution. If a solution could not be found in1, 000 generations, evolution was restarted. Averages
include trials that failed to find a solution. A failure rate denotes how often such failures occurred
for each ablation. The main result is that the system performs significantly worse (p ≤ 0.001) for
every ablation. The next sections explain how each ablation was performed.
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Method Evaluations Failure Rate
No-Growth NEAT (Fixed-Topologies) 630,239 80%
Non-speciated NEAT 75,600 25%
Initial Random NEAT 30,927 5%
Nonmating NEAT 5,557 0
Full NEAT 3,600 0

Table 4.3:NEAT ablations summary. The table compares the average number of evaluations (including
restarts) for a solution in the double pole balancing with velocities task. Each ablation leads to a weaker
algorithm, showing that each component is necessary.

No-Growth Ablation

Since populations in NEAT start out with no hidden nodes, simply removing growth from the system
would disable NEAT by barring hidden nodes from all networks. NE systems where structures are
fixed start with a fully-connected hidden layer of neurons (Wieland 1991). Therefore, to make the
experiment fair, the no-growth ablation was also allowed to start with a fully-connected hidden layer.
Every genome specified 10 hidden units like the fixed topology methods in this task (Saravanan and
Fogel 1995; Wieland 1991). Without growth, the system was only able to use weight differences to
speciate the population. Given 1,000 generations to find a solution, the ablated system could only
find a solution 20% of the time! Including restarts, it takes 175 times more evaluations than full
NEAT to find a solution! Clearly, speciation and historical markings alone do not account for full
NEAT’s performance.

Initial Random Ablation

TWEANNs other than NEAT typically start with a random population (Angeline et al. 1993; Gruau
et al. 1996; Yao 1999). The structures in these systems can still grow (in most cases, up to some
bound). It is still possible that although growth is necessary, starting minimally is not.

This question was examined by starting evolution with random topologies as in other TW-
EANNs. Each network in the initial population received between 1 and 10 hidden neurons with
random connectivity (as implemented by Pujol and Poli 1998). The result is that random-starting
NEAT was 8.5 times slower than full NEAT on average, including restarts. The random-starting sys-
tem also failed to find a solution within 1000 generations 5% of the time. This result suggests that
starting randomly forces NE to search higher-dimensional spaces than necessary, thereby wasting
time. If topologies are to grow, they should start out as small as possible.
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Non-Speciated Ablation

Speciation is intended to protect innovation and allows search to proceed in many different spaces
simultaneously. To test this function, speciation should be ablated from the system. However, if
nothing else is changed in the system, no structural innovations can survive, causing all networks to
be stuck in minimal form.

To make the speciation ablation more meaningful, the non-speciated NEAT must be started
with an initial random population. This way, a variety of structures exist in the population from
the beginning, bypassing the need for speciation to evolve a structurally diverse population. The
resulting non-speciated NEAT was able to find solutions, although it failed in 25% of the attempts.
It took 21 times longer on average than full NEAT.

The reason for the dramatic slowdown is that without speciation, the population quickly
converges to whatever topology happens to initially perform best. Thus, a lot of diversity is drained
immediately (within 10 generations). On average, this initially best-performing topology has about
5 hidden nodes. Thus, the population tends to converge to a relatively high-dimensional search
space, even though the smaller networks in the initial population would have optimized faster. The
smaller networks do not get a chance because being small offers no immediate advantage in the
initially random weight space. Of course, once in a while small networks are found that perform
well, allowing a solution to be found more quickly. Whether or not such networks are found early
on accounts for the large standard deviation of 41,704 evaluations.

The result shows that growth without speciation is not sufficient to account for NEAT’s per-
formance. For growth to succeed, it requires speciation, because speciation gives different structures
a chance to optimize in their own niches.

Nonmating NEAT

For the last ablation, mating was removed from NEAT. This ablation tests the claim that crossover
is a useful technique in TWEANNs. If NEAT’s method of crossover works, then NEAT should
perform significantly better with mating and mutation than with mutation alone.

A total of 120 simulations were run with crossover disabled but all other settings the same
as before. It took on average 5,557 evaluations to find a solution without mating, compared to 3,600
with mating enabled. The difference is statistically significant (p = 0.001). Thus, it is clear that
matingdoescontribute when it is done right. However, the nonmating version of NEAT is still
significantly faster than the other ablations.

4.3.3 Ablation Conclusions

An important conclusion is that all of the parts of NEAT work together (figure 4.2). None of the
system can work without historical markings because all of NEAT’s functions utilize historical
markings. If growth from minimal structure is removed, speciation can no longer help NEAT find
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Starting minimally

Growth Speciation

Historical Marking

Figure 4.2:Dependencies among NEAT components.Strong interdependencies can be identified among
the different components of NEAT. An arrow pointing from componentA to B indicates thatA is dependent
on B. No two components can maintain the performance of NEAT when one component is removed. All
components of NEAT require historical markings in order to work. The conclusion is that NEAT is a cohesive
system that is more than the sum of its parts.

spaces with minimal dimensionality. If speciation is removed, growth from minimal structures can-
not proceed because structural innovations do not survive. When the system starts with a population
of random topologies without speciation, the system quickly converges onto a non-minimal topol-
ogy that just happens to be one of the best networks in the initial population. Thus, each component
is necessary to make NEAT work.

4.3.4 Visualizing Speciation

The ablation studies demonstrate that speciation is a necessary part of the overall system. To under-
stand how innovation takes place in NEAT, it is important to understand the dynamics of speciation.
How many species form over the course of a run? How often do new species arise? How often do
species die? How large do the species get? These questions can be answered by depicting speciation
visually over time.

Figure 4.3 depicts a typical run of the double pole balancing with velocities task. In this
run, the task took 29 generations to complete, which is slightly above average. In the visualization,
successive generations are shown from top to bottom. Species are depicted horizontally for each
generation, with the width of each species proportional to its size during the corresponding genera-
tion. Species are divided from each other by white lines, and new species always arrive on the right
hand side. A species becomes red when the fitness of its most fit member is one standard deviation
above the mean fitness of the run, indicating that the species is a highly promising one. A species
becomes yellow when it is two standard deviations above the mean, suggesting that the species is
very close to a solution. Thus, it is possible to follow any species from its inception to the end of
the run.

Figure 4.3 shows that the initial minimal topology species was the only species in the pop-
ulation until the 5th generation. Recall that species are computed by the system according to a
compatibility distance metric, indicating that before generation 7, all organisms were sufficiently

54



Figure 4.3:Visualizing speciation during a run of the double pole balancing with velocity information
task. The visualization shows how species grow and shrink over generations. Each species is divided from
the others by white lines. A horizontal slice through the figure shows how big each species was during a
particular generation. A species is colored red when its maximum fitness is one standard deviation above
the mean fitness of the run, and yellow when it is two standard deviations above mean, i.e. when it is about
to find the solution. Two species begin to close in on a solution soon after the 20th generation. Around the
same time, some of the oldest species become extinct (represented by white triangles). The figure shows how
fitness sharing keeps the sizes of different species relatively stable and how no one species is able to take over
the population even after significant gains in fitness.

compatible to be grouped into a single species. The visualization shows how the initial species
shrinks dramatically in order to make room for the new species.

A few species can be observed becoming extinct during this run. When a species becomes
extinct, a white triangle appears between the generation it expired and the next generation. Thus,
in this run, the initial species finally became extinct at the 21st generation after shrinking for a long
time. It was unable to compete with newer, more innovative species. The second species to appear
in the population met a similar fate in the 19th generation.

In the 21st generation a structural mutation in the second-oldest surviving species connected
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the long pole angle sensor to a hidden node that had previously only been connected to the cart
position sensor. This gave networks in the species the new capability to combine these observations,
leading to a significant boost in fitness (and reddening of the species in figure 4.3). The innovative
species subsequently expanded, but did not take over the population. Nearly simultaneously, in
the 22nd generation, a younger species also made its own useful connection, this time between the
short pole velocity sensor and long pole angle sensor, leading to its own subsequent expansion. In
the 28th generation, this same species made a pivotal connection between the cart position and its
already established method for comparing short pole velocity to long pole angle. This innovation
was enough to solve the problem within one generation of additional weight mutations. In the final
generation, the winning species was 11 generations old and included 38 neural networks out of the
population of 150.

Most of the species that did not come close to a solution survived the run even though
they fell significantly behind around the 21st generation. This observation is important, because it
visually demonstrates that innovation is indeed being protected. The winning species does not take
over the entire population. Maintaining a variety of solutions is also useful in applications where
the desired optimal behavior changes over evolution. Chapter 9 describes a real-time game based
on NEAT where such changes frequently occur.

Ablation studies confirm that NEAT’s components depend strongly on each other, and the
speciation visualization is useful in understanding the dynamics of the system. Together, they show
that the system works together as a cohesive whole with speciation dynamics progressing as in-
tended.

4.4 Conclusion

This chapter began by asking two questions. First, can NEAT evolve the necessary structure? Re-
sults on XOR show that NEAT indeed does so consistently and reliably. The second question was
can NEAT find solutions more efficiently than other RL systems? It turns out that all the advanced
NE methods, NEAT, ESP, and CMA-ES, significantly outperform the traditional RL methods. How-
ever, of these only NEAT can efficiently find the appropriate topology for the task. This is a sig-
nificant advantage in applying NE to new tasks, and makes it a leading method for reinforcement
learning problems in the real world. Ablation studies further confirm that each component of NEAT
is necessary for the whole system to work.

The main promise of NEAT, aside from its efficiency, is that through complexification it can
find solutions that would otherwise be unreachable with other methods. Having established that
NEAT indeed performs well on a major benchmark task, the next chapter shows how NEAT utilizes
complexification to maintain continuing innovation in an evolutionary arms race.
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Chapter 5

Coevolutionary Complexification

While the previous chapter demonstrated that a complexifying system is efficient, this chapter fo-
cuses on open-ended problems that have no explicit fitness function; instead, fitness depends on
comparisons with other agents that are also evolving. The goal is to discover creative solutions
beyond a designer’s ability to define a fitness function. This goal is important because there is no
independent fitness measure or benchmark in many domains, such as the game of Go or competitive
military scenarios: Fitness is only defined in terms of other players. In suchcoevolutionarydomains
it is difficult to continually improve solutions because evolution tends to oscillate between idiosyn-
cratic yet uninteresting solutions (Floreano and Nolfi 1997). However, complexification encourages
continuing innovation by elaborating on existing solutions (Section 2.7). Thus, NEAT is specifically
designed to encourage continual innovation.

In order to demonstrate the power of complexification in coevolution, NEAT is applied to
the competitive robot control domain ofRobot Duel. This domain combines predator/prey interac-
tion and food foraging in a novel head-to-head competition. There is no known optimal strategy
in the domain but there is substantial room to come up with increasingly sophisticated strategies.
The main results were that (1) evolution did complexify when possible, (2) complexification led
to elaboration, and (3) significantly more sophisticated and successful strategies were evolved with
complexification than without it. These results imply that complexification allows establishing a co-
evolutionary arms race that achieves a significantly higher level of sophistication than is otherwise
possible.

5.1 The Robot Duel Domain

A domain is needed to test the hypothesis that the complexification process allows discovering more
sophisticated strategies, i.e. strategies that are more effective, flexible, and general, and include
more components and variations than do strategies obtained through search in a fixed space. To
demonstrate this effect, we need a domain where it is possible to develop a wide range increasingly
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Figure 5.1:The Robot Duel Domain. The robots begin on opposite sides of the board facing away from
each other as shown by the arrows pointing away from their centers. The concentric circles around each robot
represent the separate rings of opponent sensors and food sensors available to each robot. Each ring contains
five sensors. The robots lose energy when they move around, and gain energy by consuming food (shown
as small sandwiches). The objective is to attain a higher level of energy than the opponent, and then collide
with it. Because of the complex interaction between foraging, pursuit, and evasion behaviors, the domain
allows for a broad range of strategies of varying sophistication. Animated demos of such evolved strategies
are available atnn.cs.utexas.edu/pages/research/neatdemo.html.

sophisticated strategies, and where sophistication can be readily measured. A coevolution domain
is particularly appropriate because a sustained arms race should lead to increasing sophistication.

In choosing the domain, it is difficult to strike a balance between being able to evolve com-
plex strategies and being able to analyze and understand them. Pursuit and evasion tasks have been
utilized for this purpose in the past (Gomez and Miikkulainen 1997; Miller and Cliff 1994; Reggia
et al. 2001; Jim and Giles 2000; Sims 1994), and can serve as a benchmark domain for complexify-
ing coevolution as well. While past experiments evolved either a predator or a prey, an interesting
coevolution task can be established if the agents are instead equal and engaged in a duel. To win, an
agent must develop a strategy that outwits that of its opponent, utilizing structure in the environment.

This chapter introduces such a duel domain, in which two simulated robots try to overpower
each other (figure 5.1). The two robots begin on opposite sides of a rectangular room facing away
from each other. As the robots move, they lose energy in proportion to the amount of force they
apply to their wheels. Although the robots never run out of energy (they are given enough to survive
the entire competition), the robot with higher energy wins when it collides with its competitor. In
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Figure 5.2:Robot neural networks (color figure). Five food sensors and five robot sensors detect objects
around the robot. A single wall sensor indicates proximity to walls, and the energy difference sensor tells the
robot how its energy level differs from that of its opponent. This difference is important because the robot
with lower energy loses if the robots collide. The three motor outputs are mapped to forces that control the
left and the right wheel.

addition, each robot has a sensor indicating the difference in energy between itself and the other
robot. To keep their energies high, the robots can consume food items, which are always placed in
a horizontally symmetrical pattern around the middle of the board.

The robot duel task supports a broad range of sophisticated strategies that are easy to observe
and interpret. The competitors must become proficient at foraging, prey capture, and escaping
predators. In addition, they must be able to quickly switch from one behavior to another. The task
is well-suited to competitive coevolution because naive strategies such as forage-then-attack can
be complexified into more sophisticated strategies such as luring the opponent to waste its energy
before attacking.

The simulated robots are similar to Kheperas (Mondada et al. 1993; figure 5.2). Each has
two wheels controlled by separate motors. Five rangefinder sensors can sense food and another five
can sense the other robot. Finally, each robot has an energy-difference sensor, and a single wall
sensor.

The robots are controlled with neural networks evolved with NEAT. The networks receive all
of the robot sensors as inputs, as well as a constant bias that NEAT can use to change the activation
thresholds of neurons. They produce three motor outputs: two to encode rotation either right or left,
and a third to indicate forward motion power. These three values are then translated into forces to
be applied to the left and right wheels of the robot.

The statest of the world at timet is defined by the positions of the robots and food, the
energy levels of the robots, and the internal states (i.e. neural activation) of the robots’ neural net-
works, including sensors, outputs, and hidden nodes. The subsequent statest+1 is determined by
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the outputs of the robots’ neural network controllers, computed from the inputs (i.e. sensor values)
in st in one step of propagation through the network. The robots change their position inst+1

according to their neural network outputs as follows. The change in direction of motion is propor-
tional to the difference between the left and right motor outputs. The robot drives forward a distance
proportional to the forward output on a continuous board of size 600 by 600. Robots and food both
span a diameter of approximately 15. The robot first makes half its turn, then moves forward, then
completes the second half of its turn, so that the turning and forward motions are effectively com-
bined. If the robot encounters food within a distance of 20, it receives an energy boost, and the food
disappears from the world. The loss of energy due to movement is computed as the sum of the turn
angle and the forward motion, so that even turning in place takes energy. If the robots are within a
distance of 20, a collision occurs and the robot with a higher energy wins (see appendix A.4.2 for
the exact parameter values used).

Since the observed stateot taken by the sensors does not include the internal state of the
opponent robot, the robot duel is a partially-observable Markov decision process (POMDP). Since
the next observed stateot+1 depends on the decision of the opponent, it is necessary for robots to
learn to predict what the opponent is likely to do, based on their past behavior, and also based on
what reasonable behavior is in general. For example, it is reasonable to assume that if the opponent
robot is quickly approaching and has higher energy, it is probably trying to collide. Because an
important and complex portion ofs is not observable, memory, and hence recurrent connections,
are crucial for success.

This complex robot-control domain allows competitive coevolution to evolve increasingly
sophisticated and complex strategies, and can be used to demonstrate and understand complexifica-
tion, as will be described next.

5.2 Experiments

In order to demonstrate how complexification enhances performance, thirty-three 500-generation
runs of coevolution were run in the robot duel domain. Thirteen of these runs were based on the full
NEAT method. The remaining 20 runs evolved either fixed topology networks with several different
topologies or simplifying networks that start out complex and lose structure over time. In these
remaining 20 runs, complexification was turned off (although networks were still speciated based
on weight differences), in order to see how complexification contributes evolving sophisticated
strategies. The competitive coevolution setup is described first, followed by an overview of the
dominance tournament method for monitoring progress.

5.2.1 Competitive Coevolution Setup

The robot duel domain supports highly sophisticated strategies. Thus, the question in such a domain
is whethercontinual coevolutionwill take place, i.e. whether increasingly sophisticated strategies
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will appear over the course of evolution. The experiment has to be set up carefully for this process
to emerge, and to be able to identify it when it does.

In competitive coevolution, every network should play a sufficient number of games to es-
tablish a good measure of fitness. To encourage interesting and sophisticated strategies, networks
should play a diverse and high quality sample of possible opponents. One way to accomplish this
goal is to evolve two separate populations. In each generation, each population is evaluated against
an intelligently chosen sample of networks from the other population. The population currently
being evaluated is called thehostpopulation, and the population from which opponents are chosen
is called theparasitepopulation (Rosin and Belew 1997). The parasites are chosen for their quality
and diversity, making host/parasite evolution more efficient and more reliable than one based on
random or round robin tournament.

In the experiment, a single fitness evaluation included two competitions, one for the east
and one for the west starting position. That way, networks needed to implement general strategies
for winning, independent of their starting positions. Host networks received a single fitness point
for each win, and no points for losing. If a competition lasted 750 time steps with no winner, the
host received zero points.

In selecting the parasites for fitness evaluation, good use can be made of the speciation and
fitness sharing that already occur in NEAT. Each host was evaluated against the four highest species’
champions. They are good opponents because they are the best of the best species, and they are
guaranteed to be diverse because their distance must exceed the thresholdδt (Section 3.3). Another
eight opponents were chosen randomly from a Hall of Fame composed of all generation champions
(Rosin and Belew 1997). The Hall of Fame ensures that existing abilities need to be maintained
to obtain a high fitness. Each network was evaluated in 24 games (i.e. 12 opponents, 2 games
each), which was found to be effective experimentally. Together speciation, fitness sharing, and
Hall of Fame comprise an effective competitive coevolution methodology. Complete experimental
parameters are given in appendix A.

However, it should be noted that complexification does not depend on the particular co-
evolution methodology. For example Pareto coevolution (De Jong 2004; Ficici and Pollack 2001;
Noble and Watson 2001) could have been used as well, and the advantages of complexification
would be the same. However, Pareto coevolution requires every member of one population to play
every member of the other, and the running time in this domain would have been prohibitively long.
In order to interpret experimental results, a method is needed for analyzing progress in competitive
coevolution efficiently. The next section describes such a method.

5.2.2 Monitoring Progress in Competitive Coevolution

A competitive coevolution run returns a record of every generation champion from both populations.
The question is, how can a sequence of increasingly sophisticated strategies be identified in this data,
if one exists? This section describes thedominance tournamentmethod for monitoring progress in
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competitive coevolution (Stanley and Miikkulainen 2002a) that allows us to do that.

First a method is needed for performing individual comparisons, i.e. whether one strategy is
better than another. Because the board configurations can vary between games, champion networks
were compared on 144 different food configurations from each side of the board, giving 288 total
games for each comparison. The food configurations included the same 9 symmetrical food posi-
tions used during training, plus an additional 2 food items, which were placed in one of 12 different
positions on the east and west halves of the board. Some starting food positions give an initial ad-
vantage to one robot or another, depending on how close they are to the robots’ starting positions.
Thus, the one who wins the majority of the 288 total games has demonstrated its superiority in
many different scenarios, including those beginning with a disadvantage. We say that networka is
superiorto networkb if a wins more games thanb out of the 288 total games.

Given this definition of superiority, progress can be tracked. The obvious way to do it
is to compare each network to others throughout evolution, finding out whether later strategies
can beat more opponents than earlier strategies. For example, Floreano and Nolfi (1997) used
a measure calledmaster tournament, in which the champion of each generation is compared to
all other generation champions. Unfortunately, such methods are impractical in a time-intensive
domain such as the robot duel competition. Moreover, the master tournament only counts how
many strategies can be defeated by each generation champion, without identifying which ones.
Thus, it can fail to detect cases where strategies that defeat fewer previous champions are actually
superior in a direct comparison. For example, if strategyA defeats 499 out of 500 opponents, and
B defeats 498, the master tournament will designateA as superior toB even if B defeatsA in a
direct comparison. In order to decisively track strategic innovation, we need to identifydominant
strategies, i.e. those that defeatall previousdominant strategies. This way, we can make sure that
evolution proceeds by developing a progression of strictly more powerful strategies, instead of e.g.
switching between alternative ones.

Thedominance tournamentmethod of tracking progress in competitive coevolution meets
this goal (Stanley and Miikkulainen 2002a). Let ageneration championbe the winner of a 288
game comparison between the host and parasite champions of a single generation. Letdj be thejth
dominant strategy to appear over evolution. Dominance is defined recursively starting from the first
generation and progressing to the last:

• The first dominant strategyd1 is the generation champion of the first generation;

• dominant strategydj , wherej > 1, is a generation champion such that for alli < j, dj is
superior todi (i.e. wins the 288 game comparison with it).

This strict definition of dominance prohibits circularities. For example,d4 must be superior to
strategiesd1 throughd3, d3 superior to bothd1 andd2, andd2 superior tod1. We calldn thenth
dominant strategy of the run. If a networkc exists that, for example, defeatsd4 but loses tod3,
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making the superiority circular, it would not satisfy the second condition and would not be entered
into the dominance hierarchy.

The entire process of deriving a dominance hierarchy from a population is adominance tour-
nament, where competitors play all previous dominant strategies until they either lose a 288 game
comparison, or win every comparison to previous dominant strategies, thereby becoming a new
dominant strategy. Dominance tournament allows us to identify a sequence of increasingly more
sophisticated strategies. It also requires significantly fewer comparisons than the master tournament
(Stanley and Miikkulainen 2002a).

Armed with the appropriate coevolution methodology and a measure of success, we can
now ask the question: Does the complexification result in more successful competitive coevolution?

5.3 Results

Each of the 33 evolution runs took between 5 and 10 days on a 1GHz Pentium III processor, depend-
ing on the progress of evolution and sizes of the networks involved. The NEAT algorithm itself used
less than 1% of this computation: Most of the time was spent in evaluating networks in the robot
duel task. Evolution of fully-connected topologies took about 90% longer than structure-growing
NEAT because larger networks take longer to evaluate.

In order to analyze the results, we definecomplexityas the number of nodes and connections
in a network: The more nodes and connections there are, the more complex behavior it can poten-
tially implement. The results were analyzed to answer three questions: (1) As evolution progresses
does it also continually complexify? (2) Does such complexification lead to more sophisticated
strategies? (3) Does complexification allow better strategies to be discovered than does evolving
fixed-topology networks? Each question is answered in turn below.

5.4 Evolution of Complexity

NEAT was run thirteen times, each time from a different seed, to verify that the results were consis-
tent. The highest levels of dominance achieved were 17, 14, 17, 16, 16, 18, 19, 15, 17, 12, 12, 11,
and 13, averaging at 15.15 (sd = 2.54).

At each generation where the dominance level increased in at least one of the thirteen runs,
the number of connections and number of nodes was averaged in the current dominant strategy
across all runs (figure 5.3). Thus, the graphs represent a total of 197 dominance transitions spread
over 500 generations. The rise in complexity is dramatic, with the average number of connections
tripling and the average number of hidden nodes rising from 0 to almost six. In a smooth trend over
the first 200 generations, the number of connections in the dominant strategy grows by 50%. During
this early period, dominance transitions occur frequently (fewer prior strategies need to be beaten
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Figure 5.3:Complexification of connections and nodes over generations.The hashed lines depict the
average number of connections and the average number of hidden nodes in the highest dominant network in
each generation. Averages are taken over 13 complexifying runs. A hash mark appears every generation in
which a new dominant strategy emerged in at least one of the 13 runs. The graphs show that as dominance
increases, so does complexity. The differences between the average final and first dominant strategies are
statistically significant for both connections and nodes (p < 0.001). For comparison the dashed lines depict
the sizes of the average smallest and largest networks in the entire population over five runs where the fitness is
assigned randomly. These bounds show that the increase in complexity is not inevitable; both very simple and
very complex species exist in the population throughout the run. When the dominant networks complexify,
they do so because it is beneficial.

to achieve dominance). Over the next 300 generations, dominance transitions become more sparse,
although they continue to occur.

Between the 200th and 500th generations a stepped pattern emerges: The complexity first
rises dramatically, then settles, then abruptly increases again (This pattern is even more marked in
individual complexifying runs; the averaging done in Figure 5.3 smooths it out somewhat). The
cause for this pattern is speciation. While one species is adding a large amount of structure, other
species are optimizing the weights of less complex networks. Initially, added complexity leads to
better performance, but subsequent optimization takes longer in the new higher-dimensional space.
Meanwhile, species with smaller topologies have a chance to temporarily catch up through opti-
mizing their weights. Ultimately, however, more complex structures eventually win, since higher
complexity is necessary for continued innovation.

Thus, there are two underlying forces of progress: The building of new structures, and the
continual optimization of prior structures in the background. The product of these two trends is a
gradual stepped progression towards increasing complexity.

An important question is: Because NEAT searches by adding structure only, not by remov-
ing it, does the complexity always increase whether it helps in finding good solutions or not? To
demonstrate that NEAT indeed prefers simple solutions and complexifies only when it is useful, we
ran five complexifying evolution runs with fitness assigned randomly (i.e. the winner of each game
was chosen at random). As expected, NEAT kept a wide range of networks in its population, from
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(a) Generation 100 (b) Generation 267 (c) Generation 315

Figure 5.4:Complexification of a winning species. The best networks in the same species are shown at
landmark generations. Nodes are depicted as squares beside their node numbers, and line thickness represents
the strength of connections. Over time, the networks became more complex and gained skills. (a) The
champion from generation 10 had no hidden nodes. (b) The addition ofh22 and its respective connections
gave new abilities. (c) The appearance ofh172 refined existing behaviors.

very simple to highly complex (figure 5.3). That is, the dominant networks did nothave tobecome
more complex; they only did so because it was beneficial. Not only is the minimum complexity in
the random-fitness population much lower than that of the dominant strategies, but the maximum
complexity is significantly greater. Thus, evolution complexifies sparingly, only when the complex
species holds its own in comparison with the simpler ones.

5.5 Sophistication through Complexification

To see how complexification contributes to evolution, let us observe how a sample dominant strategy
develops over time. While many complex networks evolved in the experiments, we will follow the
species that produced the winning networkd17 in the third run because its progress is rather typical
and easy to understand. Let us useSk for the best network in speciesS at generationk, andhl for
the lth hidden node to arise from a structural mutation over the course of evolution. We will track
both strategic and structural innovations in order to see how they correlate. Let us begin withS100

(figure 5.4a), whenS had a mature zero-hidden-node strategy:

• S100’s main strategy was to follow the opponent, putting it in a position where it might by
chance collide with its opponent when its energy is up. However,S100 followed the opponent
even when the opponent had more energy, leavingS100 vulnerable to attack.S100 did not
clearly switch roles between foraging and chasing the enemy, causing it to miss opportunities
to gather food.

• S200. During the next 100 generations,S evolved arestingstrategy, which it used when it had
significantly lower energy than its opponent. In such a situation, the robot stopped moving,
while the other robot wasted energy running around. By the time the opponent got close, its
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energy was often low enough to be attacked. The resting strategy is an example of improve-
ment that can take place without complexification: It involved increasing the inhibition from
the energy difference sensor, thereby slightly modifying intensity of an existing behavior.

• In S267 (figure 5.4b), a new hidden node,h22, appeared. This node arrived through an inter-
species mating, and had been optimized for several generations already. Nodeh22 gave the
robot the ability to change its behavior at once into an all-out attack. Because of this new
skill, S267 no longer needed to follow the enemy closely at all times, allowing it to collect
more food. By implementing this new strategy through a new node, it was possible not to in-
terfere with the already existing resting strategy, so thatS now switched roles between resting
when at a disadvantage to attacking when high on energy. Thus, the new structure resulted in
strategic elaboration.

• In S315 (figure 5.4c), another new hidden node,h172, split a link between an input sensor and
h22. Replacing a direct connection with a sigmoid function greatly improvedS315’s ability
to attack at appropriate times, leading to very accurate role switching between attacking and
foraging.S315 would try to follow the opponent from afar focusing on resting and foraging,
and only zoom in for attack when victory was certain. This final structural addition shows
how new structure can improve the accuracy and timing of existing behaviors.

The analysis above shows that in some cases, weight optimization alone can produce im-
proved strategies. However, when those strategies need to be extended, adding new structure allows
the new behaviors to coexist with old strategies. Also, in some cases it is necessary to add com-
plexity to make the timing or execution of the behavior more accurate. These results show how
complexification can be utilized to produce increasing sophistication.

In order to illustrate the level of sophistication achieved in this process, we conclude this
section by describing the competition between two sophisticated strategies,S210 andS313, from
another run of evolution. At the beginning of the competition,S210 andS313 collected most of
the available food until their energy levels were about equal. Two pieces of food remained on the
board in locations distant from bothS210 andS313 (figure 5.5). Because of the danger of colliding
with similar energy levels, the obvious strategy is to rush for the last two pieces of food. In fact,
S210 did exactly that, consuming the second-to-last piece, and then heading towards the last one.
In contrast,S313 forfeited the race for the second-to-last piece, opting to sit still, even though its
energy temporarily dropped belowS210’s. However,S313 was closer to the last piece and got there
first. It received a boost of energy whileS210 wasted its energy running the long distance from the
second-to-last piece. Thus,S313’s strategy ensured that it had more energy when they finally met.
RobotS313’s behavior was surprisingly deceptive, showing that high strategic sophistication had
evolved. Similar waiting behavior was observed against several other opponents, and also evolved
in several other runs, suggesting that it is a robust result.
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Figure 5.5: Sophisticated endgame. RobotS313 dashes for the last piece of food whileS210 is still
collecting the second-to-last piece. Although it appeared thatS313 would lose becauseS210 got the second-
to-last piece (gray arrow), it turns out thatS210 ends with a disadvantage. It has no chance to get to the
last piece of food beforeS313, andS313 has been saving energy whileS210 wasted energy traveling long
distances. This way, sophisticated strategies evolve through complexification, combining multiple objectives,
and utilizing weaknesses in the opponent’s strategy.

This analysis of individual evolved behaviors shows that complexification indeed elaborates
on existing strategies, and allows highly sophisticated behaviors to develop that balance multiple
goals and utilize weaknesses in the opponent. The last question is whether complexification indeed
is necessary to achieve these behaviors.

5.6 Complexification vs. Fixed-topology Evolution and Simplification

Complexifying coevolution was compared to two alternatives: standard coevolution in a fixed search
space, and to simplifying coevolution from a complex starting point. Note that it is not possible to
compare methods using the standard crossvalidation techniques because no external performance
measure exists in this domain. However, the evolved neural networks can be compareddirectly
by playing a duel. Thus, for example, a run of fixed-topology coevolution can be compared to a
run of complexifying coevolution by playing the highest dominant strategy from the fixed-topology
run against the entire dominance ranking of the complexifying run. The highest level strategy in
the ranking that the fixed-topology strategy can defeat, normalized by the number of dominance
levels, is a measure of its quality against the complexifying coevolution. For example, if a strategy
can defeat up to and including the 13th dominant strategy out of 15, then its performance against
that run is13

15 = 86.7%. By playing every fixed-topology champion, every simplifying coevolution
champion, and every complexifying coevolution champion against the dominance ranking from
every complexifying run and averaging, the relative performance of each of these methods can be
measured.

This section first establishes the baseline performance by playing complexifying coevolution
runs against themselves and demonstrating that a comparison with dominance levels is a meaningful
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Figure 5.6:The best complexifying network. The highest dominant network from the sixth complexifying
coevolution run was able to beat99.6% of the dominance hierarchy of the other 12 runs. The network has 11
hidden units and 202 connections (plotted as in figure 5.4), making significant use of structure. While it still
contains the basic direct connections, the strategy they represent has been elaborated by adding several new
nodes and connections. For example, lateral and recurrent connections allow taking past events into account,
resulting in more refined decisions. While such structures can be found reliably through complexification, it
turns out difficult to discover them directly in the high dimensional space through fixed-topology evolution
or through simplification.

measure of performance. Complexification is then compared with fixed-topology coevolution of
networks of different architectures, including fully-connected small networks, fully-connected large
networks, and networks with an optimal structure as determined by complexifying coevolution.
Third, the performance of complexification is compared with that of simplifying coevolution.

5.6.1 Complexifying Coevolution

The highest dominant strategy from each of the 13 complexifying runs played the entire domi-
nance ranking from every other run. Their average performance scores were87.9%, 83.8%, 91.9%,
79.4%, 91.9%, 99.6%, 99.4%, 99.5%, 81.8%, 96.2%, 90.6%, 96.9%, and89.3%, with an overall
average of91.4% (sd=12.8%). Above all, this result shows that complexifying runs produce con-
sistently good strategies: On average, the highest dominant strategies qualify for the top10% of the
other complexifying runs. The best runs were the sixth, seventh, and eighth, which were able to
defeat almost the entire dominance ranking of every other run. The highest dominant network from
the best run (99.6%) is shown in Figure 5.6.

In order to understand what it means for a network to be one or more dominance levels above
another, Figure 5.7 shows how many more games the more dominant network can be expected to
win on average over all its 288-game comparisons than the less dominant network. Even at the
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Figure 5.7:Interpreting differences in dominance levels. The graph shows how many games in a 288-
game comparison a more dominant network can be expected to win, averaged over all runs at all dominance
levels of complexifying coevolution. For example, a network one level higher wins 50 more games out of
288. A larger difference in dominance levels translates to a larger difference in performance approximately
linearly, suggesting that dominance levels can be used as a measure of performance when an absolute measure
is not available.

lowest difference (i.e. that of one dominance level), the more dominant network can be expected to
win about 50 more games on average, showing that each difference in dominance level is important.
The difference grows approximately linearly: A network five dominance levels higher will win 100
more games, while a network 10 levels higher will win 150 and 15 levels higher will win 200. These
results suggest that dominance level comparisons indeed constitute a meaningful way to measure
relative performance.

5.6.2 Fixed-Topology Coevolution of Large Networks

In fixed-topology coevolution, the network architecture must be chosen by the experimenter. One
sensible approach is to approximate the complexity of the best complexifying network (figure 5.6).
This network included 11 hidden units and 202 connections, with both recurrent connections and
direct connections from input to output. As an idealization of this structure, a 10-hidden-unit fully
recurrent network was used with direct connections from inputs to outputs, with a total of 263 con-
nections. A network of this type should be able to approximate the functionality of the most effective
complexifying strategy. Fixed-topology coevolution runs exactly as complexifying coevolution in
NEAT, except that no structural mutations occur. In particular, the population is still speciated based
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Figure 5.8:Comparing typical runs of complexifying coevolution and fixed-topology coevolution with
ten hidden units. Dominance levels are charted on they-axis and generations on thex-axis. A line appears at
every generation where a new dominant strategy arose in each run. The height of the line represents the level
of dominance. The arrow shows that the highest dominant strategy found in 10-hidden-unit fixed-topology
evolution only performs as well as the 8th dominant strategy in the complexifying run, which was found
in the 19th generation. (Average = 24, sd = 8.8) In other words, only a few generations of complexifying
coevolution are as effective as several hundred of fixed-topology evolution.

on weight differences (i.e.W from equation 3.1), using the usual speciation procedure.

Three runs of fixed-topology coevolution were performed with these networks, and their
highest dominant strategies were compared to the entire dominance ranking of every complexifying
run. Their average performances were29.1%, 34.4%, and57.8%, for an overall average of40.4%.
Compared to the91.4% performance of complexifying coevolution, it is clear that fixed-topology
coevolution produced consistently inferior solutions. As a matter of fact, no fixed-topology run
could defeat any of the highest dominant strategies from the 13 complexifying coevolution runs.

This difference in performance can be illustrated by computing theaverage generationof
complexifying coevolution with the same performance as fixed-topology coevolution. This genera-
tion turns out to be 24 (sd = 8.8). In other words, only 24 generations of complexifying coevolution
reach on average the same level of dominance as 500 generations of fixed-topology coevolution!
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In effect, the progress of the entire fixed-topology coevolution run is compressed into the first few
generations of complexifying coevolution (figure 5.8).

5.6.3 Fixed-Topology Coevolution of Small Networks

One of the arguments for using complexifying coevolution is that starting the search directly in the
space of the final solution may be intractable. This argument may explain why the attempt to evolve
fixed-topology solutions at a high level of complexity failed. Thus, the next experiment aimed at re-
ducing the search space by evolving fully-connected, fully-recurrent networks with a small number
of hidden nodes as well as direct connections from inputs to outputs. Considerable experimentation
suggested that five hidden nodes (144 connections) was appropriate, allowing fixed-topology evo-
lution to find the best solutions it could. Five hidden nodes is also about the same number of hidden
nodes as the highest dominant strategies had on average in the complexifying runs.

A total of seven runs were performed with the 5-hidden-node networks, with average per-
formances of70.7%, 85.5%, 66.1%, 87.3%, 80.8%, 88.8%, and83.1%. The overall average was
80.3% (sd=18.4%), which is better but still significantly below the91.4% performance of complex-
ifying coevolution (p < 0.001).

In particular, the two most effective complexifying runs were still never defeated by any of
the fixed-topology runs. Also, because each dominance level is more difficult to achieve than the
previous one, on average the fixed-topology evolution only reached the performance of the 159th
complexifying generation (sd=72.0). Thus, even in the best case, fixed-topology coevolution on
average only finds the level of sophistication that complexifying coevolution finds halfway through
a run (figure 5.9).

5.6.4 Fixed-Topology Coevolution of Best Complexifying Network

One problem with evolving fully-connected architectures is that they may not have an appropriate
topology for this domain. Of course, it is very difficult to guess an appropriate topologya priori.
However, it is still interesting to ask whether fixed-topology coevolution could succeed in the task
assuming that the right topology was known? To answer this question, networks were evolved as in
the other fixed-topology experiments, except this time using the topology of the best complexifying
network (figure 5.6). This topology may constrain the search space in such a way that finding a
sophisticated solution is more likely than with a fully-connected architecture. If so, it is possible that
seeding the population with a successful topology gives it an advantage even over complexifying
coevolution, which must build the topology from a minimal starting point.

Five runs were performed, obtaining average performance score86.2%, 83.3%, 88.1%,
74.2%, and80.3%, and an overall average of82.4% (sd=15.1%). The91.4% performance of com-
plexifying coevolution is significantly better than even this version of fixed-topology coevolution
(p < 0.001). However, interestingly, the40.4% average performance of 10-hidden-unit fixed topol-
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Figure 5.9:Comparing typical runs of complexifying coevolution and fixed-topology coevolution with
five hidden units. As in figure 5.8, dominance levels are charted on they-axis and generations on thex-axis,
a line appears at every generation where a new dominant strategy arose in each run, and the height of the line
represents the level of dominance. The arrow shows that the highest dominant strategy found in the 5-hidden-
unit fixed-topology evolution only performs as well as the 12th dominant strategy in the complexifying run,
which was found in the 140th generation (Average 159, sd = 72.0). Thus, even in the best configuration,
fixed-topology evolution takes about twice as long to achieve the same level of performance.

ogy coevolution is significantlybelowbest-topology evolution, even though both methods search
in spaces of similar sizes. In fact, best-topology evolution performs at about the same level as 5-
hidden-unit fixed-topology evolution (80.3%), even though 5-hidden-unit evolution optimizes half
the number of hidden nodes. Thus, the results confirm the hypothesis that using a successful evolved
topology does help constrain the search. However, in comparison to complexifying coevolution, the
advantage gained from starting this way is still not enough to make up for the penalty of start-
ing search directly in a high-dimensional space. As Figure 5.10 shows, best-topology evolution
on average only finds a strategy that performs as well as those found by the 193rd generation of
complexifying coevolution.

The results of the fixed-topology coevolution experiments can be summarized as follows: If
this method is used to search directly in the high-dimensional space of the most effective solutions,
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Figure 5.10:Comparing typical runs of complexifying oevolution and fixed-topology coevolution of
the best complexifying network. Dominance levels are charted as in figure 5.8. The arrow shows that
the highest dominant strategy found by evolving the fixed topology of the best complexifying network only
performs as well as the dominant strategy that would be found in the 193rd generation of complexifying
coevolution (Average 193, sd = 85). Thus, even with an appropriate topology given, fixed-topology evolution
takes almost twice as long to achieve the same level of performance.

it reaches only 40% of the performance of complexifying coevolution. It does better if it is allowed
to optimize less complex networks; however, the most sophisticated solutions may not exist in
that space. Even given a topology appropriate for the task, it does not reach the same level as
complexifying coevolution. Thus, fixed-topology coevolution is not competitive with complexifying
coevolution withanychoice of topology.

The conclusion is that complexification is superior not only because it allows discovering
the appropriate high-dimensional topology automatically, but also because it makes the optimization
of that topology more efficient. This point will be discussed further in Chapter 10.

5.6.5 Simplifying Coevolution

A possible remedy to having to search in high-dimensional spaces is to allow evolution to search for
smaller structures by removing structure incrementally. Thissimplifying coevolutionis the opposite
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of complexifying coevolution. The idea is that a mediocre complex solution can be refined by
removing unnecessary dimensions from the search space, thereby accelerating the search.

Although simplifying coevolution is an alternative method to complexifying coevolution for
finding topologies, it still requires a complex starting topology to be specified. This topology was
chosen with two goals in mind: (1) Simplifying coevolution should start with sufficient complexity
to at least potentially find solutions of equal or more complexity than the best solutions from com-
plexifying coevolution, and (2) with a rate of structural removal equivalent to the rate of structural
addition in complexifying NEAT, it should be possible to discover solutions significantly simpler
than the best complexifying solutions. Thus, a 12-hidden-unit, 339 connection fully-connected
fully-recurrent network was chosen to start the search. Since 162 connections were added to the
best complexifying network during evolution, a corresponding simplifying coevolution could dis-
cover solutions with 177 connections, or 25 less than the best complexifying network.

Simplifying coevolution was run just as complexifying coevolution, except that structural
mutations removed connections instead of adding nodes and connections. If all connections of
a node were removed, the node itself was removed. Historical markings and speciation worked
as in complexifying NEAT, except that all markings were assigned in the beginning of evolution
(because structure was only removed and never added). The population was speciated just as in
complexifying NEAT.

The five runs of simplifying coevolution performed at64.8%, 60.9%, 56.6%, 36.4%, and
67.9%, with an overall average of57.3% (sd=19.8%). Again, such performance is significantly be-
low the91.4% performance of complexifying coevolution (p < 0.001). Interestingly, even though
it started with 76 more connections than fixed-topology coevolution with ten hidden units, simplify-
ing coevolution still performed significantly better (p < 0.001), suggesting that evolving structure
through reducing complexity is better than evolving large fixed structures.

Like Figures 5.8–5.10, Figure 5.11 compares typical runs of complexifying and simplifying
coevolution. On average, 500 generations of simplification finds solutions equivalent to 56 gener-
ations of complexification. Simplifying coevolution also tends to find more dominance levels than
any other method tested. It generated an average of23.2 dominance levels per run, once even find-
ing 30 in one run, whereas e.g. complexifying coevolution on average finds15.2 levels. In other
words, the difference between dominance levels is much smaller in simplifying coevolution than in
complexifying coevolution. Unlike in other methods, dominant strategies tend to appear in spurts
of a few at a time, and usually after complexity has been decreasing for several generations, as also
shown in Figure 5.11. Over a number of generations, evolution removes several connections until
a smaller, more easily optimized space is discovered. Then, a quick succession of minute improve-
ments creates several new levels of dominance, after which the space is further refined, and so on.
While such a process makes sense, the inferior results of simplifying coevolution suggest that sim-
plifying search is an ineffective way of discovering useful structures compared to complexification.
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Figure 5.11:Comparing typical runs of complexifying coevolution and simplifying coevolution. Dom-
inance levels are charted as in figure 5.8. In addition, the line plot shows the complexity of each dominance
level in terms of number of connections in the networks with scale indicated in they-axis at right. In this
typical simplifying run, the number of connections reduced from 339 to 227 connections. The arrow shows
that the highest dominant strategy found in simplifying coevolution only performs as well as the 9th or 10th
dominant strategy of complexifying coevolution, which is normally found after 56 generations (sd = 31). In
other words, even though simplifying coevolution finds more dominance levels, the search for appropriate
structure is less effective than that of complexifying coevolution.

5.6.6 Comparison Summary

Table 1 shows how the coevolution methods differ on number of dominance levels, generation of
the highest dominance level, overall performance, and equivalent generation. The conclusion is that
complexifying coevolution innovates longer and finds a higher level of sophistication than the other
methods.

5.7 Conclusion

The experiments in this chapter show that complexification of genomes leads to continual coevo-
lution of increasingly sophisticated strategies. Three trends were found in the experiments: (1) As
evolution progresses, solutions become more complex, (2) evolution uses complexification to elab-
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Coevolution Type Ave. Highest Ave. Highest Average Equivalent
Dom. Level Generation Performance Generation

(out of 500)

Complexifying 15.2 353.6 91.4% 343
Fixed-Topology 12.0 172 40.4% 24
10 Hidden Node
Fixed-Topology 13.0 291.4 80.3% 159
5 Hidden Node
Fixed-Topology 14.0 301.8 82.4% 193
Best Network
Simplifying 23.2 444.2 57.3% 56

Table 5.1:Summary of the performance comparison. The second column shows how many levels of
dominance were achieved in each type of coevolution on average. The third specifies the average generation
of the highest dominant strategy, indicating how long innovation generally continues. The fourth column
gives the average level in the complexifying coevolution dominance hierarchy that the champion could defeat,
and the fifth column shows its average generation. The differences in performance (p < 0.001) and equivalent
generation (p < 0.001) between complexifying coevolution and every other method are significant. The main
result is that the level of sophistication reached by complexifying coevolution is significantly higher than that
reached by fixed-topology or simplifying coevolution.

orate on existing strategies, and (3) complexifying coevolution is significantly more successful in
finding highly sophisticated strategies than non-complexifying coevolution. These results suggest
that complexification is a crucial component of a successful search for complex solutions, which is
a major goal for AI.
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Chapter 6

Evolving Adaptive Neural Networks

Being able to adapt is important because the environment can change during a network’s lifetime.
For example, robot sensors can fail and objects in the world can appear differently in different light-
ing conditions. Yet the behavior of the network should remain consistent, i.e. the network should
adapt to the changes in the environment. This chapter introduces two ways evolved networks can
be made to adapt. First,adaptation rulesfor individual connections can be evolved, potentially
allowing networks to change their behavior based on experience. This idea is inspired by synap-
tic plasticity in biological neurons, which means connection weights change over the network’s
lifetime. Second, thestate of a recurrent networkwith static connection weights can be used to
represent the current state of the world, and the network can adapt by changing its state. In this
chapter these two methods for adaptation are compared by evolving both types of networks with
NEAT. Two important results are that different kinds of adaptation mechanisms are appropriate for
different tasks and evolving the topology of the network helps find the best adaptation mechanism.

6.1 Motivation

In many important control problems, the environment may change suddenly or gradually; to main-
tain sufficient performance, the controller needs to adapt to it online. For example, a robot may
lose a sensor or an airplane may lose an engine and there may not be any opportunity to re-evolve
controllers for such unexpected circumstances. Adaptation is necessary also to make the controllers
general. For example, a controller evolved for driving a car should work for any car, even if the
dimensions and mechanics are slightly different from its training models. Even though the same
basic control policies are valid, they may need to be adapted slightly for the specific instances.

Natural organisms are constantly faced with unforeseen circumstances and generally adapt
to them very well. They can do it because their nervous systems are plastic, i.e. not fixed at birth.
Thus, one way to achieve adaptive solutions is to evolve neural networks with plastic synapses,
i.e. plastic networks. Evolution can discover rules that determine how connection weights should
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change to allow the network to adapt. Another way is to evolve static networks that adapt by
changing their state, i.e. the activation levels of their neurons, through recurrent connections. These
two approaches are compared in this chapter.

Several researchers have evolved plastic systems in the past. Nolfi and Parisi (1995, 1993)
evolved “self-teaching” networks that used the outputs of a teaching subnetwork to train a motor
control network using backpropagation. In a slightly different approach they also trained the net-
works with backpropagation to predict what it would see after moving around in its environment
(Nolfi, Elman, and Parisi 1990, 1994). Such learning enhanced performance in a foraging task.
Chalmers (1990) evolved a global learning rule (a rule that applies to every connection) and dis-
covered that the evolved rule was similar to backpropagation. McQuesten and Miikkulainen (1997)
showed that NE can benefit from parent networks teaching their offspring using backpropagation.
These experiments showed thatgenerallearning mechanisms can improve performance of evolved
neural networks.

However, the goal of evolving adaptive neural networks is different from evolving networks
that simply utilize learning. The goal is to findspecificlearning mechanisms that are optimized to
adapt to new or changed problems that can arise in the domain. In an early example of such an
approach, Baxter (1992) evolved a network that could learn Boolean functions of one value. Each
connection had a rule for changing its weight to one of two possible values. Baxter’s contribution
was mainly to show that local learning rules are sufficient to evolve an adaptive network.

More recently, Floreano and Urzelai (2000) showed that evolving local (node-based) synap-
tic plasticity parameters produces networks that can solve complex problems better than recurrent
networks with static synapses. In Floreano and Urzelai’s experiment, a plastic network and a static
recurrent network were evolved to turn on a light by moving to a switch; the networks then had
to move onto a gray square. The neural controllers had a fixed, fully-connected structure. Each
connection in the plastic network included a learning rule and a learning rate, and the static network
only encoded static connection weights. The sequence of two actions proved difficult to learn for the
static network because it could not adapt to the sudden change in goals after the light was switched
on. These networks tended to circle around the environment, attracted by both the light switch and
the gray square. Plastic networks, on the other hand, completely changed their trajectories after
turning on the light, reconfiguring their internal weights to tackle the problem of finding the gray
square. This result shows that evolving plastic networks can be an advantage.

However, Blynel and Floreano (2002) showed that a special kind of static recurrent network
called aContinuous Time Recurrent Neural Network(CTRNNs) can perform Floreano and Urzelai’s
light-switching task as well as the plastic network. CTRNNs are generalizations of discrete-time
recurrent neural networks in which neurons integrate incoming activation at different rates (Section
10.4.2 discusses CTRNNs in detail). The network was able to solve the task by accurately con-
trolling the timing of its actions. This success may have been possible because the task requires
a sequence of actions that always take place in the same order with the same timing. That is, the
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sequence of behaviors is the same on every trial: First go to the light switch, and then go to the light.

Furthermore, Aharonov-Barki et al. (2001) demonstrated that adapting in a variable envi-
ronment is possible with static networks as well. They evolved networks to control food foraging
agents that had to switch from an exploration mode to a grazing mode depending on whether or not
they were in an area of the map called thefood zone. The best strategy for an agent outside the food
zone is to explore until it finds food, and then switch into a grazing pattern. Thus, the behavior of
the network has to vary depending on the situation. Aharonov-Barki et al. found that acommand-
neuronevolved that used a self-recurrent connection to switch between and maintain a high or low
activation level. The network explored or grazed depending on the state of the command neuron.
Thus, the command neuron allowed the network to switch its behavior.

In nature, one of the most significant challenges faced by organisms is environmental change.
Weather can change, lighting can change, vegetation can be either dangerous or nutritious depend-
ing on location, and animals can walk even when body parts are damaged or wounded. A signficant
goal for neural networks is to adapt in tasks where the environment varies. In such tasks the correct
policy depends on an aspect of the environment that varies randomly from one trial to the next and
is not immediately observable but must be discovered through exploration. In fact, the foraging
domain of Aharonov-Barki et al. exhibits such a changing environment depending on the location
of the robot. However, the question remains, what is the right approach for adapting in an uncertain
environment? As Blynel and Floreano showed, plastic networks also show promise, although their
light-switching environment does not vary from trial to trial. Thus, this chapter tests both plastic
networks and adaptive networks in a variable environment in order to determine how they can best
be applied.

Prior experiments with adaptive networks evolved fully-connected network topologies (Flo-
reano and Urzelai 2000; Aharonov-Barki et al. 2001; Blynel and Floreano 2002). However, network
topology is important in both plastic and static recurrent networks: The specific nodes that are con-
nected and the learning rules on those connections determine how the network behaves and adapts,
and the recurrent connections determine how memory can be utilized. Thus, NEAT is an appropriate
platform for comparing adaptive networks in challenging tasks since it can evolve the appropriate
topology for either kind of network.

To determine whether one type of adaptation has a significant advantage over the other,
plastic neural networks and static recurrent networks were evolved in a food foraging domain de-
signed to require a policy change during the network’s lifetime. For the plastic networks, NEAT
was augmented with a facility for evolving local Hebbian learning rules for specific connections in
the network. Thus, the connection weights could change over the network’s lifetime according to
different evolved rules at each connection.

Interestingly, experiments showed that while recurrent networks with static connection weights
could solve the task faster and more reliably, plastic solutions were more holistic, i.e. they involved
large groups of connections changing their weights together. These results suggest that different
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types of adaptive networks are appropriate for different tasks: Static recurrent networks work well
in simple domains requiring a single state change, but plastic networks may be better suited towards
problems where the entire environment changes (such as light level). The experiments also con-
firm that NEAT can be used to evolve adaptive networks of both types, which may lead to more
biologically-plausible evolution in the future.

The next section explains how NEAT was augmented to evolve learning parameters in ad-
dition to connection weights. The remainder of the chapter presents the food foraging domain used
in the experiments, and details the results.

6.2 Plastic NEAT

Just as in non-adapting neural networks, it is necessary in a network with plastic synapses to have
connections between theright nodes, so that the connections can be strengthened or weakened to
change the relationship between the computational concepts they represent. In addition, the param-
eter space being searched in the space of plastic networks is much larger than for static networks:
In addition to connection weights, several learning parameters must be evolved for each of several
learning rules at each connection. Thus, it is important to minimize the number of connections opti-
mized by evolution. For these reasons, NEAT is an appropriate approach to evolving such networks.

However, NEAT needs to be extended to evolve plastic structures. Specifically, genomes in
NEAT must encode the rules that govern changes in connection weights. Every synapse in a plastic
network must specify a modification rule that guides how it is adapted. Local learning rules were
implemented in NEAT based on those used by Floreano and Urzelai (2000). These rules were based
on synaptic mechanisms observed in mammals (Willshaw and Dayan 1990). The space of possible
rules in Floreano and Urzelai’s implementation included aplain Hebbian rule, which strengthens the
connection proportionally to correlated activation, apostsynaptic rule, which works like the plain
Hebbian rule in addition to weakening the connection when the postsynaptic neuron is active alone,
and apresynaptic rule, which is like the postsynaptic rule except it weakens the connection when
only the presynaptic neuron is active. The specific rule used at each connection and its respective
parameters were evolved.

In order to fit these rules into the fewest parameters possible, they were streamlined in
NEAT. Instead of dividing Hebbian learning into separate rules, a single general learning rule was
evolved for both excitatory and inhibitory connections that combines the properties of Floreano and
Urzelai’s rules. That way, only two parameters are needed to express a rule, keeping the search space
to a minimum. Letx andy be the activities of the incoming and outgoing neurons, respectively,
andW be the current highest weight magnitude in the network. If the connection is excitatory, the
change in weight magnitude∆w can be expressed as

∆w = η1(W − w)xy + η2Wx(y − 1.0) , (6.1)
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Figure 6.1:Encoding local adaptation rules.The connection genes are depicted as in figure 3.2, with gene
4 disabled. Each genome has its own list of four local learning rules, shown on the left. Each connection gene
points to one of the four local learning rules and it is possible for more than one gene to point to the same
rule (i.e. rules can be reused). The corresponding connection in the phenotype adapts according to the rule
pointed to by it respective gene. This way, fewer parameters need to be optimized since rules can be reused.
The connections between nodes 1 and 4 and between 3 and 5 both use the same rule.

whereη1 is the Hebbian learning rate andη2 is the decay rate that controls how fast the connection
weakens when the presynaptic node does not affect the postsynaptic node. Inhibitory connections
adapt analogously as

∆w = −η1(W − w)xy + η2(W − w)x(1.0 − y) . (6.2)

In the inhibitory case, the aim is toweakenthe connection strength when both the incoming and and
outgoing activations are high, since the connected neurons then do not have an inhibitory relation-
ship. Hence, the first term in equation 6.2 is negative. The second term strengthens the connection
when the incoming activation is high and the outgoing activation is low, increasing the strength of
the inhibitory connection.

To implement equations 6.1 and 6.2, every connection in a plastic NEAT neural network
has a local learning rule parameterized byη1 andη2, in addition to its evolved weight. Yet if every
connection gene expressed its own local learning parameters, the dimensionality of the parameter
space would multiply by a factor of 3, reducing the chance of finding a solution. Moreover, it is
likely that many connections will utilize the same rule. It should not be necessary to rediscover such
a rule for every connection that uses it.

Thus, the NEAT genetic encoding was augmented so that the rules can be reused by more
than one connection gene. Instead of having all of the adaptation parameters for each connection and
node expressed in every gene, each genome has a singlerule set. This set consists of a finite number
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Figure 6.2: The Dangerous Food Foraging Domain.The robot begins in the center of the field. The
concentric circles around the robot represent one ring of sensors for typeA items and one ring for typeB.
Eight items are dispersed randomly throughout the field. In this case, the items are typeB. However, they
may or may not be poisonous. The robot can only find out if the items are poisonous by consuming them,
after which is must stop foraging if it senses pain. Otherwise, if there is no pain, the robot must consume
all the remaining food. This domain requires adaptation because the correct behavior policy depends on the
robot’s experience.

of rules, in our implementation one “fixed weight” rule and three evolved rules, each containing
the adaptation parametersη1 andη2. Each gene points to one rule in the rule set. Thus, when a
genome is translated into a network, the connections and nodes receive the parameters of the rule
to which their genes point (figure 6.1). These pointers can change through mutation. This system
accomplishes 3 objectives: (1) The number of learning parameters in a genomedoes notincrease as
the genome grows; (2) the same rules can bereusedby many genes; and (3) the adaptation rules can
be optimized separately from the connection genes. Thus, using the rule set in NEAT can be seen as
an efficient alternative to evolving separate rules for every gene (see appendix A.4.3 for parameters
specific to plastic NEAT).

The question, then, is how networks with plastic synapses differ from static recurrent net-
works. The next section describes a domain designed to answer this question.

6.3 The Dangerous Foraging Domain

In order to analyze the evolution of adaptation, a domain is needed in which adaptation is necessary
and where success can be readily measured. Such a domain can be constructed by making the
optimal policy depend upon a hidden property of the world that can only be discovered through
exploration. That way, once the hidden property is uncovered, the policy must adapt accordingly. A
fixed policy, e.g. a neural network with only non-adapting feedforward connections, cannot change
its policy, and thus cannot succeed in such a domain. Networks must evolve to adapt to properties
native to the particular problem.
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Figure 6.3:The robot and its controller network (color figure). Five typeA sensors and five typeB
sensors detect the presence of objects around the robot. The pleasure or pain sensors activate for 20 time
steps (out of a total of 750 in each trial) if the robot consumes food or poison. These signals give the robot a
chance to change its behavior accordingly. The three motor outputs are mapped to forces that control the left
and right wheels. Evolution must discover a network that can change the control policy of the robot when it
encounters poison.

One such problem occurs in natural foraging. When an animal enters a new geographical
area, some food may first appear edible yet turn out poisonous. The animal must be able to change
its policy and stop gathering such food. A food foraging domain was implemented based on this
dangerous natural scenario. A simulated robot begins in the center of a field with one of two types of
items, typeA or typeB, spread randomly throughout (figure 6.2). The robot attempts several trials,
and in each trial the items are either all food or all poison. In each trial, the robot must consume at
least one item to find out whether it should continue foraging. After consuming an item, the neural
network receives a brief pain or pleasure signal. The correct policy thereafter depends upon this
signal.

Because the correct policy, whether to forage or not, cannot be fixed at the start, the network
must be able to adapt. The challenge of constructing such a network is significant because it must
evolve policies for foraging items of both typeA and typeB, but also be capable of abandoning
either policy if poison is encountered.

The simulated adaptive robots are controlled just as those in the robot duel (Section 5.1).
In both the dangerous foraging domain and the robot duel, the robots turn or move based on their
neural network outputs and collect items on the board. However, whereas in the robot duel all items
are food, robots in the dangerous foraging domain cannot know from their sensors what is food and
what is poison. Five rangefinder sensors can sense typeA items and five can sense typeB (figure
6.3). Finally, each robot has a pleasure sensor, which activates when it consumes food, and a pain
sensor, which activates when it consumes poison. The pleasure/pain sensors are used for adaptation.
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6.4 Experiments

The experiments are designed to compare plastic networks to static recurrent networks in two ways:
(1) Is one type of adaptive network easier to evolve than the other. (2) How do evolved solutions of
the two types differ?

Accordingly, NEAT was tested in five 500-generation runs with plastic synapses and five
350-generation runs with static connection weights (the latter runs took fewer generations to con-
verge). All runs were free to utilize recurrent connections but only the plastic runs could change
connection weights. Each run took approximately 2 days to complete on a 1.8 Ghz Pentium 4 pro-
cessor. The NEAT algorithm itself took less than 1% of this computation: The rest of the time was
spent evaluating networks in the foraging task.

6.4.1 Experimental Setup

In each run, the population consisted of 500 NEAT networks. Each network was evaluated in eight
separate trials: Two trials with edible typeA items, two trials with edible typeB items, two trials
with poisonous typeA items, and two trials with poisonous typeB items. Networks were reset
to their initial state before each trial, that is, internal activations were flushed to zero and synapses
were reset to the initial weights defined in the genome.

Fitness was evaluated by rewarding networks for consuming food and penalizing them for
consuming poison. Since there were 8 items in each trial, and 4 trials consisted of poison, the
maximum number of poison consumed is 32. Thus, in order to ensure positive fitness values, the
fitness functionf was defined as

f = 32 + e− p , (6.3)

wheree is the number of edible items consumed andp is the number of poisonous items. The
maximum possible fitness is 64. However, in general the highest fitness that can be consistently
attained is 60 because the only way to know when poison is present is by testing at least one item in
the field. Thus, since there are four poison trials, the best networks need to consume four poisons to
properly test for poison in each trial.

Because food is placed randomly in each trial, the fitness function is noisy. Thus, simply
reaching a fitness of 60 is not sufficient to indicate that a solution has been found. Rather, a run is
deemed successful when the population champion consistently reaches a fitness of 60 for several
generations in a row.

NEAT system parameters used in this chapter are described in appendix A.
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Figure 6.4:Average highest fitness and best run of plastic NEAT.Three of five runs found a consistent
solution. Thus, the task can be solved with plastic synapses, although not as reliably as with static synapses.

6.5 Results

While both plastic and static networks were able to solve the task, there were significant differences
in their performance. This section examines how consistent and efficient both approaches are, and
also what kinds of solutions they tend to produce.

6.5.1 Evolving Plastic Neural Networks

NEAT was able to evolve networks with local learning rules to solve the task. However, solutions
with plastic synapses were not always found. Figure 6.4 shows how fitness increased over gener-
ations in both the average and best runs of plastic evolution. Three of the five runs converged to
consistently scoring 60 or above, whereas the other two runs never found a consistent solution.1 The
best run was able to find a consistent solution by the 350th generation. Since several runs did find
solutions, these results show that local Hebbian learning can be utilized to encode dynamic policies.

6.5.2 Evolving Static Recurrent Neural Networks

Figure 6.5 shows that static recurrent networks were also able to solve the task. In fact, all five
runs could consistently score 60 or above before 350 generations. The best run found a consistent
solution by the 250th generation, 100 generations earlier than plastic evolution. Because static runs
always found a solution while plastic runs did not, the variance in fitness was higher for plastic net-
works than for static networks. In fact, if restarts are taken into account, the number of generations
needed to find a consistent static solution is significantly fewer than for plastic evolution (p < 0.05).
This result demonstrates that state changes inside the networks are sufficient to change its policy.

1The reason networks sometimes scored above 60 is that some species evolved a small probability of doing nothing
during a trial. Although this behavior sometimes led to a significant drop in fitness when a food trial was missed, in some
cases the networks got lucky and skipped a poison trial.
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Figure 6.5: Average highest fitness and best run of static recurrent NEAT. All five runs discovered
solutions within 350 generations, demonstrating that dynamic synapses are not necessary for adaptation in
this task. The best run found a solution in only 250 generations. In contrast, the best plastic run found a
solution in the same time as the average static recurrent run.

The conclusion is that for this task, evolution of static recurrent networks is more efficient
than evolving plastic networks. How does this result come about?

6.5.3 Typical Solution Networks

Let us analyze solution networks from the two types of evolution in order to understand how each
kind of network represents a policy that can change over time, and why static networks evolved
faster and more reliably.

Figure 6.6 depicts typical solutions from each type of evolution. It turns out that the plastic
solution uses a more complicated mechanism than the plastic solution. The plastic solution uses its
hidden nodes as part of its policy-changing method. If hidden nodes are ablated, the network can
no longer perform the task. In the plastic network, 22% (16) of the connections diverge in opposite
directions depending on whether or not the robot discovers it is in a food or poison trial. Of those, 8
connections diverge inbothtypeA and typeB trials. In other words, anabstractionof the food vs.
poison distinction evolved that is independent from what the objects look like. Thus, the solution
is holistic in that the entire network contributes to the task in every trial. When it finds poison, the
plastic network spins in place. Spinning causes the network to continually see food to which it does
not react, showing that its policy has changed significantly.

In contrast, most of the structure in the static network, including recurrent connections on
hidden nodes, is used to stabilize food gathering trajectories, rather than to modulate behavior de-
pending on pain or pleasure. In fact, the network can still reliably perform the task even if all its
hidden nodes are ablated, although it takes longer because its actions are less accurate. The key
components of the static solution are the self-recurrent connections on the output nodes. The strong
excitatory self-recurrent connection on theleft turn output (identified in figure 6.3) keeps the node
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(a) Plastic (b) Static Recurrent

Figure 6.6:Solution network examples (color figure). Typical solutions are depicted for plastic evolution
and static recurrent evolution. Nodes are shown as red squares beside their node numbers, and line thickness
represents the strength of connections. Black lines stand for excitatory connections, and blue lines are in-
hibitory connections. Loops at nodes represent self-recurrency. (a) The plastic solution is holistic, utilizing
plastic synapses throughout the network. (b) The static network solves the task using recurrent connections
on its outputs. While both solutions take different approaches, they are both possible through NEAT’s ability
to evolve network topologies.

active even when it has low input. The only mechanism that can stop the self-activation cycle is
a strong inhibitory signal directly from the pain sensor, in which case the left turn output node is
temporarily disabled. At the same time, theright turn output turns off unless food is directly in front
of the robot. Thus, when the left turn output is temporarily muted, the right turn output will cause
the robot to spin until it is facing away from food. At this point both turn outputs will be off, and the
robot will dash forward through the open space to a wall, thus avoiding any further food gathering.
Therefore, instead of spinning like the plastic network, the recurrent network drives into a wall after
consuming poison. Thus, recurrent connectionsareused to represent a dynamic policy. This clever
solution demonstrates the power of evolution in finding effective novel solutions.

Other plastic and static recurrent solutions followed similar patterns; plastic solutions tended
to make complex internal network changes while recurrent solutions tended to rely exclusively
on a “trick” using recurrent connections on output nodes. These results explain why recurrent
solutions were found more easily. These networks only need to find a particular combination of
recurrent connections on outputs, and then use hidden nodes to refine trajectory control. Plastic
networks, on the other hand, tend to discover complex holistic solutions that genuinely change
network functionality. Such holistic solutions are more difficult to evolve.

87



6.6 Discussion

Static recurrent networks were able to solve the dangerous food foraging task with fewer evalu-
ations. Recurrency alone was successful in this experiment because a relatively simple solution
existed in the space of static recurrent networks. This result suggests that if such a solution ex-
ists, finding it can be easier than finding a plastic solution. In addition, evolving network topology
makes it possible to find such clever solutions; searching for such a solution in the fully-connected
recurrent architectures used in prior research (Floreano and Urzelai 2000; Aharonov-Barki et al.
2001; Blynel and Floreano 2002) would require finding appropriate weights for many unnecessary
recurrent connections.

Plastic solutions were more holistic: Many connections changed their weights concurrently
in order to adjust the overall network behavior. The general conclusion is that static recurrent
networks and plastic networks may be appropriate for different kinds of tasks requiring adaptation.
Static recurrent networks work well in domains that require a single definitive state change from one
behavior pattern to another. This conclusion is also supported by the discovery of a command neuron
in a static recurrent network by Aharonov-Barki et al. (2001). On the other hand, when general
properties of the environment change such as brightness or sensory acuity, it may be important for
the whole network to be able to react by adjusting its weights accordingly. The fact that the same
connections changed their weights in both typeA and typeB trials suggests that plastic networks
do indeed adjust to global environmental changes. In fact, Blynel and Floreano (2002) showed that
plastic networks adapt well when the environment of a robot becomes darker, further supporting this
view. Thus, the comparison in this chapter solidifies an emerging picture of how static and plastic
networks can serve different roles.

Why did the plastic networks, which were also able to use recurrent connections, not evolve
the same style of solutions as the static networks? As connection weights became dynamic early
in evolution, simple solutions based on recurrent output nodes were no longer feasible because the
network weight configuration was not reliable. Thus, evolution was forced to utilize the dynamic
synapses in order to master the task, leading to more holistic solutions.

Interestingly, figures 6.5 and 6.4 show that solutions occasionally exceeded a fitness of 60.
Given that such a fitness requires the network not to collect a single food item in some trials, how
was this result possible? That is, how can the networks know which trial contains poison without
collecting at least one item? The answer is that solutions had a small probability of switching off
their food gathering policies without any pain or pleasure input. Of course, doing so could lead to a
major drop in fitness if it happened during a food trial. However, while such failures did occur for
some members of a species, other members wouldget luckyand just happen to choose the right trial
to stay put. In other words speciescolludedin order to obtain extremely high fitness. As long as a
species was large enough, it could afford the slight risk of a member occasionally missing a food
trial because another member would probably get lucky and make up for it. It may be necessary to
adjust fitness functions to prevent such collusion in the future.
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An important goal for future research is to compare adaptive networks in more complex
domains so that we can begin to understand the limits of different types of adaptation. In addition,
plastic networks traditionally change their connection weights based on Hebbian rules, but other
kinds of learning rules are also possible (Section 10.4.1), and should be tested in the future as well.

6.7 Conclusion

Both plastic networks and static recurrent networks were evolved in a dangerous food foraging
task. The only way to succeed in the task is to be able to switch off the foraging behavior in the
middle of a trial. Plastic evolution found more complex holistic solutions while static networks
exploited a clever strategy of switching their internal state, represented by recurrent connections.
The conclusion is that different kinds of adaptation are appropriate for different problems, and that
topology is an important feature of adaptive networks.
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Chapter 7

Application 1: A Roving Eye for Go

The performance of AI methods in Go lags behind other board board games, which makes it a
popular and challenging testbed for different techniques (Bouzy and Cazenave 2001). A unique
feature of Go is that it can be played on a range of different board sizes. Ideally, a neural network
evolved to play Go on a small board could continue evolving on larger boards, thereby building on
prior experience. In this chapter, NEAT evolves such a neural network. The network controls a
roving eyethat voluntarily moves its narrow field of view over the board and uses evolved recurrent
connections to remember what it saw. Because the roving eye’s input field is the same size for any
board, the same network can potentially scale to larger boards. This chapter puts the roving eye
to the test, showing how it scales with increasing board size, and how NEAT uses such scaling to
evolve effective players.

7.1 Motivation

In board games, human players analyze the position by scanning the board with their eyes. Even
though players do not see the entire board at once during such a scan, they are able to make intel-
ligent decisions because theyrememberwhat they saw. Recurrent connections, which send signals
backwards through an artificial neural network, allow the network to maintain state and hence mem-
ory from one timestep to the next. Thus, NEAT can evolve a roving eye that scans the input space
piece by piece, using its memory to keep track of the important parts of the input as they pass out of
the visual field.

Board games are a natural application of this idea since they generally involve an input space
of an entire board with more than one possible piece at each position. Among the most challenging
such games is Go. Since designing the strategy of a good player by hand is very difficult in Go,
machine learning is a popular approach (Enzenberger 2003). The idea is that a sufficiently powerful
ML algorithm can learn strategies and tactics through experience that are otherwise difficult to
formalize in a set of rules.
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The ultimate goal is to train a player on the full-sized 19×19 board. However, the game
is increasingly difficult on larger boards because the search space grows combinatorially and it be-
comes increasingly difficult to evaluate positions. Thus, current methods have been successful only
on smaller boards (Lubberts and Miikkulainen 2001; Richards et al. 1998). Such results demon-
strate the method has potential, with the hope that it may be possible to scale it up to larger boards
in the future.

Ideally the knowledge gained on small boards could bootstrap play on larger ones. A process
that could make use of such shared knowledge would be a significant step towards creating learners
that scale. Previous neuroevolution work in evolving Go focused on networks with the number of
inputs and outputs chosen for a particular board size, making it difficult or impossible to transfer to
a larger board (Lubberts and Miikkulainen 2001; Richards et al. 1998).

A different approach is taken in this chapter; instead of a network that sees the entire board
at once, a roving eye is evolved with a small visual field that can scan the board at will. The roving
eye uses the recurrent structure of the neural network to integrate input information it acquires as it
scans the board. While scanning, the roving eye decides when and where to place a piece. Because
it has the same field size onanyboard size, a roving eye evolved on a small board can be further
evolved on a larger board without losing experience. Thus, the roving eye architecture promises to
scale.

The roving eye’s scalability is tested by comparing an eye evolved on a 7×7 board with
one first pre-evolved on a 5×5 and then further evolved on a 7×7 board. The pre-evolved eye
became a significantly better player. In the next two sections prior work in machine learning and
neuroevolution for Go is reviewed, and also prior implementations of roving eyes in AI. Section 7.5
describes the experimental methods and results.

7.2 Machine Learning and Go

Go is a difficult two-player game with simple rules, making it an appealing domain for testing
machine learning techniques. The standard game is played on a 19×19 grid. The two players place
black and white pieces alternately at gird intersection points. The game ends when both players
pass, which usually happens when it becomes clear that no further gains can be made. The winner
is determined by the final score. In the experiments in this chapter, Japanese scoring is used, which
counts the amount of territory surrounded by each player excluding their own pieces.

Thus, the object of the game is to control more territory than the opponent. Any area com-
pletely surrounded by one player’s stones is counted as that player’s territory. If the opponent’s
stones are completely surrounded, those stones are lost and that area is counted towards the other
player. If there is an open intersection, called aneye, in the middle of the opponent’s stones, that
intersection must also be filled in order to surround the stones. A structure with two eyes cannot
be captured because it is not possible to fill both eyes at once. Theko rule, which forbids the same
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board state from occurring twice, ensures that the game progresses to a conclusion.

The rules of Go are deceptively simple. Yet unlike in many other board games, such as
Othello and chess, machines cannot come close to master-level performance in Go. Not only are
there generally more moves possible in Go than other two-player, complete information, zero-sum
games, but it is also difficult to formulate an accurate evaluation function for board positions (Bouzy
and Cazenave 2001). However, the game can be simplified by playing on a smaller board (Richards
et al. 1998). The smaller the board, the simpler the strategy of the game. At the smallest possible
board size, 5×5, the game becomes largely a contest to control one side of the board. However,
even at this very small scale, fundamental concepts must be applied, such as forming a line of
connected pieces and defending the center. Although these concepts alone are not sufficient to play
well on a larger board, they are nevertheless a foundation for more developed strategies, making
smaller boards a viable platform for testing machine learning methods. While 5×5 Go may be
much simpler than 19×19 Go, it is still related to 7×7 Go, which is related to 9×9 Go, and so on.

A number of general AI techniques that are not based on learning have been applied to
Go, such as goal generation, game tree search, and pattern-matching (Bouzy and Cazenave 2001;
Cazenave 2000). Gnugo 3.2 is a publicly available, open source Go playing program that includes
many of these techniques (available atwww.gnu.org/software/gnugo/gnugo.html ). Gnugo is
on par with current commercially available Go playing programs. However, Bayer et al. (2002) note
that no existing program is even competitive with an amateur shodan, which is the designation for a
technically proficient human player.

Writing a program to play Go directly is difficult because a large amount of strategic knowl-
edge must be coded into the system. Therefore, machine learning methods that generate their own
knowledge through experience are an appealing alternative. For example, Enzenberger (2003) cre-
ated a program called NeuroGo that links units in a neural network corresponding to relations be-
tween intersections on a Go board. In 2001, NeuroGo ranked in the top third of computer Go
playing programs (Bouzy and Cazenave 2001), showing that machine learning is competitive with
hand-coded knowledge.

NE has been applied to Go on smaller board sizes in the past (Lubberts and Miikkulainen
2001; Richards et al. 1998). However, these experiments evolved neural networks for a single board
size, wherein each intersection on the board was represented by a discrete set of inputs and outputs.
Such representations cannot easily scale to other board sizes because the number of inputs and
outputs in the network are only compatible with the single board size for which they were designed.
In contrast, a roving eye neural network uses the same number of inputs and outputs regardless of the
board size. The next section reviews prior research on roving eye systems outside the game-playing
domain.
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7.3 Roving Eyes

A roving eyeis a general concept in machine vision, referring to a visual field smaller than the total
relevant image area; such a field must move around the image in order to process its entire contents.
Roving eyes are often used in robots, where they allow successful navigation even with a limited
sensory radius (Hershberger et al. 2000). This type of purposeful control of a moving visual field is
also sometimes calledactive vision(Dickinson et al. 1997).

Instead of hardcoding the control laws that guide the movement of the roving eye, Pierce
and Kuipers (1997) showed that they can be learned through experience in the world. This research
sets a precedent for the automatic design of roving eyes when the proper control or processing rules
are unknown.

Most relevant to game playing are experiments where a roving eye must learn to recognize
objects that are too big to process all at once. Fullmer and Miikkulainen (1992), and Nolfi (1997),
trained neural networks using neuroevolution to control situated robots that had to move around an
object in order to determine its identity. Fullmer and Miikkulainen evolved simple “creatures” that
move around a shape on a grid and must learn to move onto only certain shapes. In Nolfi’s experi-
ment, a robot moves around an object in order to determine if it is a wall or a type of cylinder. In both
cases, both the movement control and the final classification action were evolved simultaneously as
neural network outputs.

Such neuroevolved shape-recognizing roving eyes provide inspiration for using a roving eye
in a board game as well. However, instead of performing a simple classification, the eye must scan
the board and then decide where and when to place a piece. For such a technique to work, the
controller for the eye must have memory: It must relate different parts of the board to each other
even though they cannot be within its field at the same time. Thus, NEAT is a natural method for
evolving a roving eye. The next section describes how NEAT evolved neural networks to control a
roving eye that scans a Go board.

7.4 Experimental Methods

The experiments are designed to answer two questions: (1) Is the roving eye a scalable architecture,
i.e. can it play on more than one board size? (2) If so, can learning to play on a small board
facilitate further evolution on a larger board? Specifically, does a proficient 5×5 player provide a
better starting point for evolving a 7×7 player than evolving from scratch?

7.4.1 Evolving Against Gnugo

Roving eye neural networks were evolved to play black against Gnugo 3.2 using Japanese scoring.
Gnugo is deterministic; it always responds the same way to the same moves. Thus, solutions were
not evolved to be general-purpose players (although they did evolve some general skills), but rather
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to defeat Gnugo. While it is possible to devise a more general-purpose competition, e.g. by using
coevolution, playing Gnugo makes it easy to interpret results and clearly illustrates how the roving
eye scales against a known benchmark.

Another advantage of Gnugo is that it estimates the score for every move of the game, as
opposed to only the last one. This estimate makes fitness calculation more effective than one that
uses only the final score of the game, because the quality of play throughout the game can be taken
into account, instead of only at the end. Fitness was calculated from the cumulative score estimate
as well as the final score as follows:

f = 100− (
2
∑n

i=1 ei

n
+ ef ), (7.1)

whereei is the score estimate on movei, n is the number of moves before the final move, andef is
the final score. This fitness equation weighs the average estimated score twice as much as the final
score, emphasizing the performance over the course of the entire game over the final position. Such
a fitness allows selecting promising networks even early in evolution when the network is likely to
lose all its pieces. Because Gnugo returns positive scores for white, they must be subtracted from
100 to correlate higher fitnesses with greater success for black.

Neural networks were evolved to control a roving eye in both 5×5 and 7×7 evolution. In
half the 7×7 evolution runs, the champion of the 5×5 run was used to seed the initial population, i.e.
the 5×5 champion’s connection weights were slightly mutated by adding a number from a uniform
distribution to randomly selected weights to form the initial population for 7×7 evolution.

A special modification had to be made in order make Gnugo a useful opponent: Because
Gnugo will pass as soon as it determines that it cannot win, Gnugo will pass in 5×5 Go as soon
as black plays in the middle since there is a winning strategy for black starting from this position.
Therefore, to force a continuing game, white was forced to play the intersection directly adjacent and
right of center for its first move. That way, Gnugo would play a full game. In order to be consistent,
white was forced to make the same initial move on the 7×7 board as well. This modification does
not make the results less general since the aim is to encourage the roving eye to improve by playing
full games against Gnugo, which was effectively accomplished. NEAT system parameters used in
this experiment are specified in appendix A.

7.4.2 Roving Eye

The roving eye is a neural network evolved with NEAT. The neural network’s sensors are loaded
with the visual field of the roving eye, and its outputs determine how the eye should move, or decide
that the eye should stop moving and the network should place a piece on the board.

The state of the roving eye consists of its position and heading. It can be positioned at any
intersection on the board, and be heading either north, south, east, or west. The ability to see the
board from different headings allows the roving eye to process symmetrical board configurations the
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Figure 7.1:The roving eye visual field. At each of the nine intersections visible to the roving eye, it has
one black sensor and one white sensor, depicted as filled circles. In addition, the dotted circles represent
long-range front, left, right, and back sensors, which only tell how many pieces of each type are in each of
those four zones outside the visual field. The arrow shows the eye’s current heading. The gray square on the
7×7 board shows the size of the visual field relative to the board. The neural network controlling the roving
eye also receives 2 inputs representing absolute position, an illegal move sensor that alerts the network to ko
(Section 7.2), and a bias input. This architecture allows the same roving eye to operate on any board size,
making scalable Go players possible.

same way. In other words, unlike full-board neural network players, the roving eye does not need
to evolve separate components for symmetric positions. Instead, the eye can simply turn around to
see the board from an identical perspective, which is easier to evolve.

The visual field includes nine intersections with the eye positioned at the center (figure 7.1).
For each intersection, the eye receives two inputs. If the intersection is empty, both are zero. For a
black or white stone, the first or second input is fully activated. For a border, both inputs are active.
In addition, to help the eye decide where to look, it is given a count of how many white and black
pieces are outside its visual field to its front, left, right, and back. The eye is also fed two inputs
representing its absolute position on the board, a single input that specifies whether playing in the
current position would be illegal due to ko, and a constant bias. Thus, in total, the eye receives 30
inputs regardless of board size (figure 7.2).

Five outputs determine the eye’s next action. It can place a piece at its current position, move
forward in its current heading, turn left, turn right, pause (which may give it more time to “think,”
i.e. process recurrent activations), or pass. If any of the movement outputs are above0.5, the eye
will move regardless of the other output values, and the movements are combined. For example, the
eye can move forward and turn left at the same time. However, if both turning outputs are above
0.5, the eye defaults to turning left. If no movement outputs are active, the greatest output over0.5
is chosen. If no output is sufficiently active, the eye pauses for one time step. If after 100 time steps
the eye still does not make a choice, it is forced to pass. Finally, if the roving eye attempts to place
a piece on top of another piece, the move is considered a pass.

In general, the roving eye scans the board by moving around until it finds an acceptable
location, and then places a piece. In this way, the roving eye analyzes the board similarly to hu-
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                     E v o lv e d  T o p o lo g y  

Black and White Sensors for 9 Intersections Long Range Black and 
White Sensors

Absolute 
Position

Illegal
Move

Bias

Forward Left Right PausePass

Figure 7.2:Roving eye neural networks. The first 18 inputs include a pair of black and white sensors
for each of nine intersections the eye can see at one time. Another eight inputs detect pieces outside the
immediate visual field (figure 7.1). Two more inputs specify the eye’s absolute board position. The illegal
move input activates if the eye is centered on a ko position. The five outputs let the eye move forward, left, or
right, pass, or pause without moving. This configuration was found effective through extensive preliminary
experimentation.

mans, who also focus attention on specific areas of the board while considering a move rather than
processing the entire board at once.

7.5 Experiments

In every run, the roving eye was playing black, the first player to move, and Gnugo white. Ten runs
of 5×5 evolution were performed. The champion of a typical run, with fitness 99, was chosen as
the seed genome for 15 runs of 7×7 evolution. Another 15 runs of 7×7 evolution were started from
scratch, without the seed.

7.5.1 5×5 Champion

NEAT improved significantly against Gnugo in 5×5 evolution. In early generations, NEAT rarely
placed a piece without losing it soon after. By the 400th generation, NEAT was able to control the
center of the board and thereby capture more area than Gnugo. NEAT learned the general principle
of connectedness, and also that it is important to maintain a forward front. The champion roving
eye’s game is shown in figure 7.3.

Figure 7.4 shows what happens when the 5×5 champion plays directly against Gnugo on
a 7×7 board. Interestingly, the champion shows some of its 5×5 capabilities, forming a semi-
contiguous line. However, when its line fails to connect, and is not sufficient to cover the larger
7×7 board, the roving eye is quickly surrounded by Gnugo without making any attempt to respond.
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Figure 7.3:A game by the 5×5 champion. The roving eye (black) is able to control more of the board
by pushing its border as far to the right as possible against Gnugo. Gnugo is unable to mount an attack, and
instead reinforces its position by creating two eyes. If Gnugo tried to capture area to the left of the border, it
would be open to capture since black surrounds the area. This roving eye was used as the starting point for
evolution on the larger 7×7 board.
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(b) Black is surrounded

Figure 7.4:The 5×5 champion plays Gnugo on a 7×7 board. (a) The roving eye (black) attempts to
form a border as it did in 5×5 Go (figure 7.3). However, because the board is larger, it only partially succeeds.
(b) Having never experienced such a conclusion, black does nothing but pass while Gnugo easily eliminates
its opponent. The game shows that the 5×5 roving eye is able to apply some of its knowledge to 7×7 Go,
although its former strategy is no longer entirely successful.

This behavior makes sense because in the 5×5 game, as soon as the roving eye finished building
its border, Gnugo would not attack and the game would end (see figure 7.3). However, in 7×7 Go,
this strategy is no longer sufficient. The question is whether the knowledge contained in the 5×5
champion will benefit further NEAT evolution on the 7×7 board.

7.5.2 Evolving 7×7 Players

Evolution on the 7×7 board is indeed significantly more effective starting from the pretrained 5×5
champion than starting from scratch (figure 7.5). Not only does initial fitness rise significantly faster
over the first few generations, but it remains higher throughout the run, suggesting that starting raw
may never reach the performance level of a roving eye that has already learned about Go on a smaller
board. This result establishes both that (1) the roving eye can be used on more than one board size,
and (2) evolving on a smaller board captures information that is useful on a larger board.

During 7×7 evolution, NEAT was able to reorganize and expand the original 5×5 strategy
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Figure 7.5:Average fitness on a 7×7 board over generations. The average fitness (equation 7.1) of the
best roving eye in each generation is shown over 15 runs of raw 7×7 evolution, and 15 runs of 7×7 evolution
pretrained in 5×5 Go. Pretrained evolution has significantly (p < 0.05) higher fitness in generations2−237,
383− 451, and495− 500, showing that pre-evolving on a smaller board leads to both a higher start and end
to evolution.
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(a) Black controls more area
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(b) White does not respond

Figure 7.6:Typical 7×7 champion pretrained in 5×5. The figure shows two halves of a game played
by a 7×7 champion. that descended from the 5×5 champion (figure 7.3). (a) The roving eye has learned
to form a clean border with more territory enclosed than Gnugo. (b) The roving eye plays one piece in the
corner, because it has evolved to exploit Gnugo’s tendency to occasionally place unnecessary pieces (which
lowers its score under Japanese rules). Gnugo finishes by creating two eyes, but cannot mount an attack on
the roving eye. Thus, the eye finishes with more territory. Starting evolution from a pretrained 5×5 champion
helped the roving eye achieve this level of play on the 7×7 board.
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in order to form an effective border (figure 7.6). While evolving from scratch required NEAT
to discover how to connect contiguous intersections, networks evolved from the pretrained 5×5
champion could make such connections from the start. In fact, on a larger board, discovering the
same early principles takes longer because the game is significantly more complex. Therefore,
the raw-starting roving eye was at a disadvantage throughout evolution. In contrast, the pretrained
roving eye quickly rises within 25 generations to a level of play that takes raw-starting evolution ten
times longer to achieve!

7.6 Discussion

The roving eye allows scaling the skills learned on smaller boards to larger boards. This is an
important result because current techniques do not succeed in learning to play on larger boards.
Therefore, roving eye neuroevolution could turn out to be an important component of a competent
learning system for Go.

The play demonstrated in this chapter is not at championship level. Since black has the first
move, it is not surprising that it ultimately controls more area. In addition, it has only learned to play
against Gnugo, and would be likely to fail against a more skilled or significantly different opponent.
An important question for the future is how one might evolve a world-class Go player using such a
scaling technique. That is, can we apply the roving eye methodology in a way that more general,
robust strategies would emerge?

First, the roving eye needs to be evolved on significantly larger boards. There are substantial
differences between 7×7 and 19×19 Go. The larger space allows larger patterns to be formed, and
evolution will take longer to make use of them. However, rudimentary skills such as the ability to
surround enemy pieces or place a contiguous line should still constitute a useful starting point for
future learning.

Second, to encourage better generalization, roving eyes could be coevolved instead of evolv-
ing them only against Gnugo (Bayer et al. 2002). Gnugo was used as an opponent first because it
is a well-known benchmark, but in the future roving eyes should play against each other to force
them to handle a variety of opponent strategies. Well-founded coevolution methodologies such as
Host-Parasite (Chapter 5), Hall of Fame, or Pareto coevolution should be used to develop the most
well-rounded players possible (Rosin and Belew 1997; De Jong 2004; Ficici and Pollack 2001).
Chapter 5 showed that combining complexification in NEAT and competitive coevolution leads lev-
els of sophistication unreachable through evolving neural networks of fixed-topology. This process
should work well in the Go domain as well.

Third, the roving eye can be combined with game tree search techniques such asα-β. While
the state space of Go is too large to be searched directly, a roving eye may help prune the search
by acting as a filter that approves or disapproves of searching different positions (as was done
by Moriarty and Miikkulainen 1994). In this manner, the search can be made significantly more
efficient, and the network does not have to attempt to look ahead to the end of the game. Such
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hybrid techniques constitute a most promising direction of future research in the long run.

7.7 Conclusion

The roving eye architecture is an appealing approach to Go because it is the same for any board size.
It is also powerful because it can turn to face different directions, allowing it to process symmetrical
configurations with the same connections. Thus, the roving eye is a potentially important component
of learning systems that aim to perform well on larger boards even when learning directly on such
large boards is prohibitively complex. An important conclusion is that NEAT was able to evolve
networks that can scan only part of the board and use their memory to make up for the missing
inputs. This approach to problems with many inputs can be applied to other domains as well, such
as processing large visual fields. It is possible in NEAT because of its ability to build recurrent
networks.
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Chapter 8

Application 2: Automobile Warning
System

While evolving strategies and behaviors is a natural application of neuroevolution, it can also be
used to augmenthuman behaviorin potentially dangerous situations. This chapter focuses on the
commonplace yet frequently dangerous activity of driving an automobile.Warning networksare
evolved to let drivers know when they are at risk; in this role, neural networks have the potential
to save lives. This chapter describes results from the first year of an ongoing project on warning
networks, and demonstrates that NEAT makes this new kind of application possible.

8.1 Motivation

If cars could warn their drivers that a crash is imminent, it is possible many accidents could be
avoided. One approach for building such a warning system is to ask an expert to describe as many
dangerous situations as possible and formalize that information in an automated reasoner that reacts
to sensors on the car. However, the circumstances leading to a crash are frequently subtle and may
vary for different drivers. Moreover, it may not be possible to predict a crash from a static snapshot
of the road: the recent history of the car and other objects on the road may have to be taken into
account as well. It is difficult to know how long such a history should be or what it should be
tracking.

Yet if the car could learnon its ownwhat to track and how long to keep salient events
in memory, these challenges could be overcome. In addition, cars could be trained with different
drivers under different circumstances, creating more flexible warning systems.

Teaching a car to predict crashes is the goal of the automobile warning system project at the
University of Texas at Austin, started in November 2003 and funded by Toyota. NEAT is a natural
choice for the learning method because NEAT can develop arbitrary recurrent neural networks that
keep a variable length of prior history in memory. In other words, an expert does not need to decide

101



(a) 3-D Overhead View (b) 2-D Overhead Display

Figure 8.1:RARS screenshots. The screenshots show two views of a race in RARS. (a) In the 3-D view,
lines projecting in front of the cars show their current trajectories. (b) The 2-D view shows more of the track
at the same time, and also a full map and current rankings. Both views can represent the same race, which can
include any number of cars operated by independent controllers. Because RARS is a popular platform that
accurately simulates vehicle physics and supports multiple simultaneous drivers, it makes a good simulation
testbed for evolving warning systems.

how long the warning window should be or what it should take into account, because the recurrent
topology can evolve to make this determination on its own.

Yet if NEAT is to evolve crash predicting networks, it must be trained by observing driving
behavior. What kind of driver would be willing to provide the hundreds or thousands of examples
necessary to train a warning network? Conveniently, NEAT can evolve the drivers in simulation be-
fore it evolves warning networks. In fact, NEAT’s past successes with evolving controllers suggests
that it should be able to evolve robust and varied driving behavior. Furthermore, evolved driving
networks can be impaired in order to simulate dangerous driving conditions.

This chapter describes the first experiments in evolving drivers and predictors with NEAT,
beginning with a discussion of the RARS simulator used to train both the drivers and predictors.

8.2 The Robot Auto Racing Simulator (RARS)

Since learning requires experience, it is necessary for NEAT to gain experience through driving
and predicting crashes. Even though the learned system should eventually be deployed in real cars,
crashing cars in the real world while the system is learning is not possible; therefore, a reasonable
alternative is to evaluate NEAT in simulation. RARS (http://rars.sourceforge.net/ ; figure
8.1), a public domain racing simulator designed for AI testing and real-time control, was chosen for
this purpose.

RARS has several features well-suited to this project. RARS is supported by an active
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Figure 8.2:Rangefinder sensors detect the border.Simulated rangefinders project lines to the edges of
the road and measure the distance to the intersections, giving the car a sense of its position and the road’s
curvature. RARS’ native data structures were converted into rangefinder data so that NEAT could train neural
networks with a realistic egocentric input.

community that provides documentation and support. The software was written with AI in mind, so
it is easy to modify and plug in new drivers. Vehicle dynamics are accurately simulated, including
skidding and traction. Multiple automobiles controlled by different automated drivers can race at
the same time. Finally, the software automatically provides information like the distance between
the driver and other vehicles and the direction of the road that can be used as the basis for simulated
sensors.

Using raw data provided by RARS, two kinds of sensor systems were developed for this
project and provided as input to NEAT neural networks. First, rangefinder sensors project rays at
several angles relative to the car’s heading to the edge of the road (figure 8.2). The rangefinders
give the car an indication of its position and heading relative to the sides of the road, and also of the
curvature of the road.

Second, several simulated radar sensors detect other cars or obstacles (figure 8.3). The radar
sensors are convenient for detecting discrete objects by locating them inside of one of several slices
that represent relative angles and positions. The radars return a value equivalent to the distance of
the nearest car in each slice, or a maximum value if there is no car.

It is sensible to ask whether this sensor configuration is a reasonable approximation of the
real world, i.e. can we expect results to transfer? If similar information can be extracted from
real-world sensors, then the simulation is likely a good starting point. In fact, significant research
has gone into detecting other cars (Thomanek et al. 1994) and lanes (Dickmanns and Mysliwetz
1992) in the real world, and data from such systems could be processed and fed into NEAT neural
networks in a similar form to the sensors used in these experiments. Of course, in the future it will
also be desirable to simulate more sophisticated processed sensors such as vehicle trackers (Haag
and Nagel 1999).

RARS provides a virtual gas pedal, break, and steering wheel that can receive their values
from the outputs of a neural network. The gas pedal and break are interpreted as a requested tire
speed relative to the bottom of the car. There is no limit to how high the request can be, and RARS
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Obstacle car B

Obstacle car A

Figure 8.3:Radar sensors detect other cars. Radar sensors return the distance to the nearest car in the
sensor slice. For example the second slice clockwise from the top detects obstacleA and the fourth detects
obstacleB. All others return a maximum distance indicating there is nothing in range.

tries to match the request within the physical constraints of the car. In addition, if the request is lower
than the current speed, RARS attempts to slow the car down by breaking. The steering request is
treated similarly; the lateral force generated by the same turn angle request increases the higher the
current speed. Thus, the driving controls in RARS work like a real automobile.

Races can be set up in RARS with one or more drivers. A natural way to begin training
drivers is on an open road without other cars, as described in the next section.

8.3 Training Drivers on an Open Road

Drivers were evolved on an open road with NEAT, and these driving networks were later used to
train crash predictors. Starting with an open road makes sense because it is the simplest proof of
concept that crash prediction can work, and serves as a basis for further evolution in more complex
scenarios. Evolution naturally produces drivers with a range of skills from wobbly, crash-prone
drivers in early generations to fast, reliable drivers later in evolution. For training crash prediction,
it makes sense to use drivers that are not perfect so NEAT can get experience with real crashes. Thus,
the range of drivers makes it possible to pick good training cases without the need for handcoding.

Extensive testing revealed that skilled open-road drivers can be best evolved with seven
rangefinder sensors. During evolution, each neural network in the population was evaluated over
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(a) Early Evolution (b) Late Evolution

Figure 8.4:NEAT discovers intelligent turning. NEAT was able to improve steering significantly. (a)
Early in evolution, the car hugs the inside of the turn, a naive strategy that minimizes driving distance but
results in overall slow speed. (b) After approximately 400 generations, the driver learns to anticipate the turn
by steering to the outside so it can attain maximum acceleration coming out of the turn. Notice the car takes
an almost straight line through the most curvy section of the road. NEAT discovers this counter-intuitive
behavior, which is hard to learn even for humans.

three trials. Each trial lasted 1,000 simulated timesteps. which is long enough to go around the track
once. The network’s fitness was the average score over the three trials. The score for a single trial
was

S = 2d − b, (8.1)

whereb is the damage incurred over time spent out of bounds, i.e. off the track, andd is the dis-
tance traveled. Damage is computed by RARS internally, and is proportional to time off the track.
This fitness function penalizes crashing and rewards speed. Additional evolution parameters are
described in appendix A.

NEAT was able to evolve perfect drivers that never crash. Although the purpose of this
project is to evolve warning networks and not the fastest drivers possible, driving times for evolved
drivers were still comparable to the best hand-coded drivers provided with RARS (Table 8.1). Fig-
ure 8.4 shows the trajectory of a champion vehicle on the track. The driving network learned to
take turns in an intelligent manner instead of the naive wall-following method of hugging the inside
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Driver Lap Time
Apex8 1:39
SmoothB2 1:33
NEAT 1:31
Felix16 1:22
Bulle2 1:18

Table 8.1:Driving times for NEAT and handcoded drivers. Handcoded drivers and a driver evolved
by NEAT were timed on the “clkwis” track provided with RARS. The code for driver Apex8 was written
by Maido Remm, Bulle2 by Marc Gueury, Felix16 by Doug Eleveld, and SmoothB2 by Dennis Lew., Each
driver was timed on a single lap around the empty track. NEAT’s time is on par with the best handcoded
drivers.

of the turn. This surprising result shows that NEAT optimizes nontrivial behavior and discovers
sophisticated techniques on its own: Such clever driving is hard even for human to learn. It al-
lows quickly completing the course even though avoiding the inside of the turn extends the total
trajectory.

The next section explains how crash predictors were evolved for an unstable driver chosen
from early in evolution.

8.4 Evolving Open Road Crash Predictors

Instead of outputting driving control requests, the crash predictor outputs apredictionabout whether
and when a crash is going to happen. This prediction must be based on what the driver has been
doing over some time leading up to the present. If the predictor has a good model of the driver’s be-
havior, it can make realistic predictions about what the driver is likely to do in potentially dangerous
situations.

Importantly, the networks evolve to determine on their own how many timesteps in the past
to observe in order to make a prediction. Thus, they are not only learning based on the car’s situation
in the present. NEAT makes this task possible by automatically making this determination through
evolving recurrent networks (other possible approaches will be discussed in Section 8.7).

The simplest kind of prediction is a binary output that decides whether or not a crash will
happen in some fixed number of timesteps. While such a system is useful, a more sophisticated
prediction can be made if the network also determineswhenit expects the crash. By predicting a
time, the network is in effect constantly outputting a danger level, i.e. the sooner the predicted crash,
the more dangerous the situation. Such a graded warning system would be more useful to human
drivers, so NEAT was trained to make temporal predictions of this type.

The temporal prediction network was evolved as follows. The crash predictor network is
given the same inputs as drivers. The network has three outputs that are combined to produce a
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relatively low danger Increasing warning level Imminent danger!

Figure 8.5:The prediction queue foresees a crash.The most recent warning appears on the right of the
queue and the higher bars represent increasing urgency. As the car moves closer to crashing into the side of
the road, the warning bars increase in size. NEAT was able to train networks that predict crashes in this way.

time, which is interpreted as predicted time to crash. The three outputso1, o2, ando3, are combined
to produce a single time-to-crashT according to:

T = 3
o1

omin
+ 10

o2

omin
+ 17

o3

omin
, (8.2)

whereomin is the minimum output value. This method allows the network to interpolate predictions
between 3 and 17 RARS timesteps in the future. Only outputs above 0.5 are included in the sum; any
output below 0.5 is interpreted as 0 and discarded. The network can indicate that no crash is pending
by outputting all three values below 0.5. At every timestep, the network output is pushed onto a
prediction queue, which becomes a moving list of past predictions. Ideally, if a crash happens, the
prediction queue has low-level warnings farther back in time and high-level warnings more recently
(figure 8.5).

Fitness is computed by accumulating a total rewardRtot during evaluation.Rtot is the
fitness of the entire evaluation including all crashes and predictions. During an evaluation,Rtot is
modified at each time step in one of two cases: (1) If the car crashes,Rtot increases according to
how close the actual prediction queue is to the ideal prediction queue. (2) If the car does not crash,
a small bonus is added toRtot if the oldest prediction in the queue was that no crash would occur.

Specifically, when a crash occurs, the prediction queue is compared with the the ideal queue
to produce a reward. The queue holds 25 predictionsq1 to q25. Upon crashing, each of the 25
predictions is compared to the ideal predictionIl, where1 ≤ l ≤ 25, to produce a reward (figure
8.6):
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example prediction queue A

Ideal Prediction Queue

example prediction queue B

very close to ideal, high score not similar to ideal, low score

Figure 8.6:Example prediction queues. Since queueA is closer to the ideal thanB, A would receive
a higher reward. Comparing prediction queues in this way makes it possible to reward temporal predictions
about when a crash is expected to occur.

R =
∑25

l=1 25 − |ql − Il|
25

. (8.3)

R is then added to the accumulated rewardRtot. In addition, if the queue is over 25 timesteps long,
the oldest prediction is dequeued. If the oldest prediction was that the car would not crash, a reward
of 0.05 is added toRtot. Otherwise, if it wrongly predicted a crash, the network does not receive a
reward. At the end of the evaluation,Rtot is assigned as the network’s fitness.

By using a prediction queue, NEAT was able to evolve networks that could vary their warn-
ing level, and evolution could determine on its own how far back in the past relevant information
should be saved in recurrent connections. Figure 8.7 shows a successful warning network.

The main result is that NEAT evolved accurate predictors. In some cases, the warning
network predicted crashes that could not be predicted only from the current state of the car. For
example, when the car skids into the side of the road its heading is in a direction that could be
interpreted as safe. Yet the evolved network still predicts a crash, showing that it is using memory
to integrate a sequence of states into its prediction. The warning system can also be evaluated
subjectively by having a human drive the car with the warning system on. Human drivers generally
find the warnings accurate and helpful. Figure 8.8 shows actual prediction queues generated in
real-time during human-controlled driving tests.
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Figure 8.7:Evolved open-road warning network. This small network was able to make accurate pre-
dictions about crashing with minimal topology. The recurrent loop on node 15 and the connections between
outputs give the network a rudimentary memory for events in the past. This memory allows it to predict
crashes after events like skidding that can only be detected by considering the recent past positions of the car.

(a) Direct Crash
(b) Skidding

Figure 8.8:Warning examples. These screenshots were taken while a human was controlling the car. The
real-time prediction queues are in the upper left corner of each box, with the most recent prediction on the
right. White bars signify no warning, and the height of dark bars represents the seriousness of the warning.
(a) As the car drives directly into the side of a turn, the warning switches from mild to severe. (b) Judging by
the car’s heading alone, there would be no reason to predict a crash in this scenario. However, as can be seen
by the white trajectory line preceding the car, it has been skidding sideways for some time. The predictor
network was only able to make the right warning by observing the trajectory of the car over time.
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Figure 8.9:Learning to avoid other cars. The trajectory of the evolved driver is depicted as a white line
on the road. The driver weaves skillfully around parked cars that are blocking the road. This driver can avoid
randomly-placed fixed obstacles 100% of the time.

8.5 Driving with Other Cars

Adding other cars makes the task more realistic and complex. Before warning networks can be
evolved, cars must be evolved that react to other vehicles on the road using vehicle radar sensors
(figure 8.3). This task is more difficult than evolution on the open road because with other cars on
the road it is difficult to ensure the driver will encounter other cars on every evaluation. If some
networks encounter cars and some do not, evaluation would be noisy, which might interfere with
evolution. One solution is to place stationary cars at several different positions so that the only way
to avoid them is to drive around them. That way, evolution is forced to evolve controllers that can
react to other vehicles. Avoiding stationary vehicles, or obstacles, is a special case of the general
problem of avoiding other drivers.

NEAT was able to evolve drivers that avoid other cars in this manner (8.9). The driving net-
work weaves around several obstacles like real cars avoiding cones in an obstacle course. Champion
networks could avoid crashing 100% of the time over 100 test trials with cars placed at different ran-
dom positions. The next section discusses how warning networks were evolved with stationary cars
on the road.

8.6 Warning with Other Cars

Warning networks were evolved using the same prediction queue method as in Section 8.4, except
now hitting another car was considered a crash causing a damage penalty.

A realistic prediction scenario can be set up by impairing the sensors of evolved driving
networks (figure 8.10). That way, otherwise intelligent drivers occasionally crash because they
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Obstacle car B

Obstacle car A

(a) Normal Radar Sensors (b) Shortsighted Radar Sensors

Figure 8.10:Impairing radar sensors. Impaired drivers were created by taking networks that drive well
using normal radar sensors (a) and impairing them by cutting the range of the sensors by 70% (b). In (b),
the car cannot see another car that it could easily see in (a) without the impairment. Shortsighted drivers are
more likely to crash, making them useful for training crash predictors.

cannot see the obstacle in time to react. These impaired drivers are good test cases for prediction
networks not only because they crash but also because they are similar to impaired human drivers.
Such drivers may display patterns of behavior that can be learned by warning networks, allowing
the warning system to partially compensate for the impairment.

The champion warning network evolved with such an impaired driver was able to predict
100% of crashes and was able to warn early in dangerous situations. Figure 8.11 shows how the
warning network behaves when an impaired driver approaches a stationary car blocking the road.
In some cases the warning network warns the driver before it begins to swerve. If the warning had
been taken into account by the driver, it could have prevented the accident. If a similar situation
occurred in the real world where a human driver became visually impaired, such advance warning
could potentially save lives.

8.7 Discussion

The success of this experiment suggests that evolving warning networks for real cars may eventually
be feasible. However, several challenges must be overcome to achieve this goal: (1) More realistic
sensors, such as cameras or processed visual input, will be necessary to simulate real-world driving,
(2) more complex scenarios such as traffic lights and cross traffic must be simulated, and (3) data
from real-world cars must be used as a basis for how simulated sensors should work.
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Figure 8.11: Predicting a collision. An impaired driver approaches a car obstructing its path. The
prediction is displayed as in figure 8.8. As the driver moves dangerously closer to the obstacle, the warning
network increases the urgency of its prediction. The driver begins to swerve at the last second, but the warning
network is correct to warn at this point because it is dangerous to rely on swerving at the last possible moment,
which does not always work. The extra time to react provided by the warning could potentially allow a driver
to avoid crashing.

One of the difficulties in evaluating the performance of a warning network is that its success
is somewhat subjective. Unlike in many classification tasks, a driverdoeswant to be warned in
situations that do not actually lead to crashes, because the point is to err on the side of caution. The
question is how much erring is too much, i.e. when does warning become annoying. Answering this
question may require psychological data, or perhaps drivers can answer the question for themselves
and tune the strictness of the predictor to their liking. It was my subjective experience that the
prediction networks evolved in these first experiments produced useful and sensible predictions,
suggesting that striking the right balance is a feasible goal for the future.

Interestingly, NEAT can potentially strike such a balance by adjusting the relative cost of
different kinds of errors in the fitness function. For example, the penalty for failing to warn before a
crash can be made higher than for warning when there is no crash (since losing a life is more costly
than a false alarm). This ability to weigh errors differently is a primary reason NEAT was chosen
for this task. While recurrent supervised training techniques such as backpropagation on simple
recurrent networks (SRNs; Elman 1991), recurrent backpropagation (Almeida 1987), or real-time
recurrent learning (Williams and Zipser 1989) can potentially also learn temporal dependencies over
variable periods of time, they cannot easily incorporate the relative cost of different kinds of errors
into training. Supervised training methods also can be trapped local optima, and training recurrent
networks is slow and unreliable compared to training feedforward networks (Bengio et al. 1994).
Future work will compare NEAT to such methods in more detail.

112



8.8 Conclusion

Experiments with RARS show that NEAT can indeed evolve recurrent networks that predict crashes
accurately. NEAT was also able to evolve highly effective drivers that could take the optimal trajec-
tory through a turn. Evolved warning networks were able to predict crashes based on the previous
history of the car, such as in skidding. Furthermore, they could compensate for sensory impairments.

This approach is a promising first step towards the ultimate goal of real-world warning
systems. Warning about accidents before they happen has the potential to save lives, and is therefore
a significant goal for neuroevolution.

113



Chapter 9

Application 3: The NERO Real-time
Video Game

NERO is a pioneering neuroevolution-based video game. The game is built around a special real-
time version of NEAT that allows players to interact with characters in the gamewhile they are
evolving in real-time. Real-time NEAT makes it possible for the player to take the role of atrainer,
creating a new game genre. By demonstrating that such an application is possible, NERO opens
up new opportunities for interactive machine learning in entertainment, education, and simulation.
This chapter describes real-time NEAT and NERO, and reviews results from the first year of this
ongoing project.

9.1 Motivation

Laird and van Lent (2000) suggested that interactive video games are an appropriate killer applica-
tion for human-level AI. Video games carry perhaps the least risk to human life of any real-world
application. The world video game market was between $15 billion and $20 billion in 2002, larger
than even that of Hollywood (Thurrott 2002). Video games have become a facet of many people’s
lives and the market continues to expand. Yet machine learning is rarely attempted in commercial
games. Thus, there is an unexplored opportunity to make video games more interesting and realis-
tic, and to build entirely new genres. Such enhancements may have applications in education and
training as well, changing the way people interact with their computers.

This chapter describes a novel video game concept built around a real-time version of NEAT
that continually evolves improved behavior as the game is being played. The aim is to show that
machine learning is indispensable for some kinds of video games to work, and how NEAT makes
such an application possible.

In the video game industry, the termNon-player-characters(NPCs) refers to autonomous
computer-controlled agents in the game. This chapter focuses on training NPCs as intelligent agents,
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and the standard AI termagentsis therefore used to refer to them. The behavior of such agents in
current games is often repetitive and predictable. In most video games, simple scripts cannot learn or
adapt to control the agents: Opponents will always make the same moves and the game quickly be-
comes boring. Machine learning could potentially keep video games interesting by allowing agents
to change and adapt. However, a major problem with learning in video games is that if behavior
is allowed to change, the game content becomes unpredictable. Agents might learn idiosyncratic
behaviors or even not learn at all, making the gaming experience unsatisfying. One way to avoid
this problem is to train agents offline, and then freeze the results into the final game. However, if
behaviors are frozen before the game is released, agents cannot adapt and change in response to the
tactics of particular players, which is the real goal of machine learning techniques.

If agents are to adapt and change in real-time, a powerful and reliable machine learning
method is needed. It turns out that NEAT can be enhanced to work in real-time while a game is
being played. In order to test real-time NEAT (rtNEAT) in a video game, the Digital Media Col-
laboratory (DMC) at the University of Texas at Austin initiated the NeuroEvolving Robotic Opera-
tives (NERO) project in October of 2003 (http://dev.eltlabs.org/nero public ). This
project is based on a proposal for a game based on rtNEAT developed at the2nd Annual Game De-
velopment Workshop on Artificial Intelligence, Interactivity, and Immersive Environmentsin Austin,
TX (presentation by Kenneth Stanley, 2003). The idea was to create a game in which learning is
indispensable, in other words, without learning NERO could not exist as a game. Thus, NERO is
a powerful demonstration of how machine learning can open up new possibilities in gaming and
allow agents to adapt.

The chapter begins with an explanation of rtNEAT, followed by a description of NERO and
an overview of the current status and performance of the game.

9.2 Real-time NEAT (rtNEAT)

Real-time neuroevolution is based on the observation that in a video game, the entire population of
agents playsat the same time. Therefore, unlike in offline genetic algorithms, agent fitness statistics
are constantly collected as the game is played, and the agents are evolved continuously. The question
is when the agents can be replaced with new ones so offspring can be evaluated.

Replacing the entire population together on each generation would look incongruous since
everyone’s behavior would change at once. In addition, behaviors would remain static during the
large gaps of time between generations. Instead, in rtNEAT, a single individual is replaced every
few game ticks (as in e.g. (m,1)-ES; Beyer and Paul Schwefel 2002). One of the worst individuals
is removed and replaced with a child of parents chosen from among the best. This cycle of removal
and replacement happens continually throughout the game (figure 9.1).

Real-time evolution was first implemented using conventional neuroevolution (Agogino
et al. 2000) before NEAT was developed. However, conventional neuroevolution is not sufficiently
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2 high−fitness agents

1 low−fitness agent
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Figure 9.1:The main replacement cycle in rtNEAT. Robot game agents (represented as small circles) are
depicted playing a game in the large box. Every few ticks, two high-fitness robots are selected to produce an
offspring that replace another of lower fitness. This cycle of replacement operates continually throughout the
game, creating a constant turnover of new behaviors.

powerful to meet the demands of modern video games. In contrast, a real-time version of NEAT
offers the advantages of NEAT: Agent neural networks can become increasingly sophisticated and
complex during gameplay. The challenge is to preserve the usual dynamics of NEAT, namely pro-
tection of innovation through speciation and complexification, even as evolution runs in real-time.
While generational NEAT normally assigns offspring to speciesen massefor each new generation,
rtNEAT cannot allocate space for an entire species at once since it only produces one new offspring
at a time. Therefore, a new reproduction cycle must be introduced to allow rtNEAT to speciate in
real-time with the same results.

The main loop in rtNEAT works as follows. Letfi be the fitness of organismi. Recall that
fitness sharing adjusts it tofi

|S| , where|S| is the number of individuals in the species (Section 3.3). In
other words, fitness is reduced proportionally to the size of the species. This adjustment is important
because selection in rtNEAT must be based on adjusted fitness rather than original fitness in order
to maintain the same dynamics as NEAT. In addition, because the number of offspring assigned to
a species in NEAT is based on its average fitnessF , this average must always be kept up-to-date.
Thus, after everyn ticks of the game clock, rtNEAT performs the following operations:

1. Remove the agent with the worstadjustedfitness from the population assuming one has been
alive sufficiently long so that it has been properly evaluated.
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2. Re-estimateF for all species

3. Choose a parent species to create the new offspring

4. AdjustCt dynamically andreassignall agents to species

5. Place the new agent in the world

Each of these steps is discussed in more detail below.

9.2.1 Step 1: Removing the worst agent

The goal of this step is to remove a poorly performing agent from the game, hopefully to be re-
placed by something better. The agent must be chosen carefully to preserve speciation dynamics.
If the agent with the worstunadjustedfitness were chosen, fitness sharing could no longer protect
innovation because new topologies would be removed as soon as they appear. Thus, the agent with
the worstadjustedfitness should be removed, since adjusted fitness takes into account species size,
so that new smaller species are not removed as soon as they appear.

It is also important not to remove agents that are too young. In generational NEAT,ageis
not considered since networks are generally all evaluated for the same amount of time. However,
in rtNEAT, new agents are constantly being born, meaning different agents have been around for
different lengths of time. It would be dangerous to remove agents that are too young because they
have not played for long enough to accurately assess their fitness. Therefore, rtNEAT only removes
agents who have played for more than the minimum amount of timem.

9.2.2 Step 2: Re-estimatingF

Assuming there was an agent old enough to be removed, its species now has one less member and
therefore its average fitnessF has likely changed. It is important to keepF up-to-date becauseF is
used in choosing the parent species in the next step. Therefore, rtNEAT needs to re-estimateF .

9.2.3 Step 3: Choosing the parent species

In generational NEAT the number of offspringnk assigned to speciesk is Fk

F tot
|P |, whereFk is

the average fitness of speciesk, F tot is the sum of all the average species’ fitnesses, and|P | is the
population size (equation 3.3).

This behavior needs to be approximated in rtNEAT even thoughnk cannot be assigned
explicitly (since only one offspring is created at a time). Given thatnk is proportional toF , the
parent species can be chosen probabilistically using the same relationship:

Pr(Sk) =
Fk

F tot
. (9.1)
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The probability of choosing a given parent species is proportional to its average fitness com-
pared to the total of all species’ average fitnesses. Thus, over the long run, the expected number of
offspring for each species is proportional tonk, preserving the speciation dynamics of generational
NEAT.

9.2.4 Step 4: Dynamic Compatibility Thresholding in Real time

Recall from section 3.3 that networks are placed into a species in generational NEAT if their compat-
ibility distance from the species’ representative is less than the thresholdCt. Section 3.3 suggested
that one way to avoid the burden of choosing the appropriateCt is to instead choose a target number
of species and let NEAT adjustCt dynamically to reach the target. If there are too many species,Ct

can be raised to be more inclusive; if there are too few,Ct can be lowered to be stricter.
An advantage of this kind ofdynamic compatibility thresholdingis that it keeps the num-

ber of species relatively stable. Such stability is particularly important in a real-time video game
since the population may need to be small to accommodate CPU resources dedicated to graphical
processing, and therefore a sudden explosion in the number of species would be undesirable.

In generational NEAT,Ct can be adjusted before the next generation is created, but in rt-
NEAT changingCt alone is not sufficient because most of the population simply remains where
they are. Just changing a variable does not cause anything to move to a different species. Therefore,
after changingCt in rtNEAT, the entire population must be reassigned to the existing species based
on the newCt. As in generational NEAT, if a network does not belong in any species a new species
is created with that network as its representative.1

9.2.5 Step 5: Replacing the old agent with the new one

Since an individual was removed in step 1, the new offspring needs to replace it. How agents are
replaced depends on the game. In some games, the neural network can be removed from a body
and replaced without doing anything to the body. In others, the body may have died and need to be
replaced as well. rtNEAT can work with any of these schemes as long as an old neural network gets
replaced with a new one.

Step 5 concludes the steps necessary to approximate generational NEAT in real-time. How-
ever, there is one remaining issue: The entire loop should be performed at regular intervals, everyn

ticks, but how shouldn be chosen?

9.2.6 Determining the Number of Ticks Between Replacements

If agents are replaced too frequently, they do not live long enough to reach the minimum timem

to be evaluated. For example, imagine that it takes 100 ticks to obtain an accurate performance

1Depending on the specific game,Ct does not necessarily need to be adjusted and species reorganized as often as
every replacement. The number of ticks between adjustments is chosen by the game designer.
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evaluation, but that an individual is replaced in a population of 50 on every tick. No one ever lives
long enough to be evaluated and the population always consists of only new agents. On the other
hand, if agents are replaced too infrequently, evolution slows down to a pace that the player no
longer enjoys.

Interestingly, the appropriate frequency can be determined through a principled approach.
Let I be the fraction of the population that is too young and therefore cannot be replaced. As before,
n is the ticks between replacements,m is the minimum time alive, and|P | is the population size. A
law of eligibility can be formulated that specifies what fraction of the population can be expected to
be ineligible once evolution reaches a steady state (i.e. after the first few time steps when no one is
eligible):

I =
m

|P |n
. (9.2)

According to equation 9.2, the larger the population and the more time between replacements, the
lower the fraction of ineligible agents. This principle makes sense since in a larger population it
takes more time to replace the entire population. Also, the more time passes between replacements,
the more time the population has to age, and hence fewer are ineligible. On the other hand, the
larger the minimum age, the more agents are ineligible because more time is necessary to become
eligible.

It is also helpful to think ofmn as thenumberof individuals that must be ineligible at any
time; over the course ofm ticks, an agent is replaced everyn ticks, and all the new agents that
appear overm ticks will remain ineligible for that duration since they cannot have been around for
overm ticks. For example, if|P | is 50, M is 500, andn is 20, 50% of the population would be
ineligible.

Based on the law of eligibility, rtNEAT can decide on its own how many ticksn should lapse
between replacements for a preferred level of ineligibility, specific population size, and minimum
time between replacements:

n =
m

|P |I
. (9.3)

It is best to let the user chooseI because in general it is most critical to performance; if too much
of the population is ineligible at one time, the mating pool is not sufficiently large. Equation 9.3
allows rtNEAT to determine the correct number of ticks between replacementsn to maintain a
desired eligibility level. In NERO, 50% of the population remains eligible using this technique.

By performing the right operations everyn ticks, choosing the right individual to replace
and replacing it with an offspring of a carefully chosen species, rtNEAT is able to replicate the
dynamics of NEAT in real-time. Thus, it is now possible to deploy NEAT in a real video game and
interact with complexifying agents as they evolve. The next section describes such a game.
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Scenario 1: Enemy Turret Scenario 2: 2 Enemy Turrets Scenario 3: Mobile Turrets & Walls Battle

Figure 9.2: A turret training sequence (color figure). The figure depicts a sequence of increasingly
difficult and complicated training exercises in which the agents attempt to attack turrets without getting hit.
In the first exercise there is only a single turret but more turrets are added by the player as the team improves.
Eventually walls are added and the turrets are given wheels so they can move. Finally, after the team has
mastered the hardest exercise, it is deployed in a real battle against another team.

9.3 NeuroEvolving Robotic Operatives (NERO)

NERO is representative of a new video game genre that is only possible through machine learning.
The idea is to put the player in the role of atrainer or adrill instructor who teaches a team of agents
by designing a curriculum. Of course, for the player to be able to teach agents, the agents must be
able tolearn; rtNEAT is the learning algorithm that makes NERO possible.

In NERO, the learning agents are simulated robots, and the goal is to train a team of robots
for military combat. The robots begin the game with no skills and only the ability to learn. In order
to prepare for combat, the player must design a sequence of training exercises and goals. Ideally,
the exercises are increasingly difficult so that the team can begin by learning a foundation of basic
skills and then gradually building on them (figure 9.2). When the player is satisfied that the team is
prepared, the team is deployed in a battle against another team trained by another player (possibly
on the internet), making for a captivating and exciting culmination of training. The challenge is to
anticipate the kinds of skills that might be necessary for battle and build training exercises to hone
those skills. The next two sections explain how the agents are trained in NERO and how they fight
an opposing team in battle.

9.3.1 Training Mode

The player sets up training exercises by placing objects on the field and specifying goals through
several sliders (figure 9.3). The objects include static enemies, enemy turrets, rovers (i.e. turrets
that move), and walls. To the player, the sliders serve as an interface for describing ideal behavior.
To rtNEAT, they represent coefficients for fitness components. For example, the sliders specify
how much to reward or punish approaching enemies, hitting targets, getting hit, following friends,
dispersing, etc. Fitness is computed as the sum of all these components multiplied by their slider
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Figure 9.3:Setting up training scenarios. This screenshot shows items the player can place on the field
and sliders used to control behavior. The red robot is a stationary enemy turret that turns back and forth as
it shoots repetitively. Behind the turret is a wall. The player can place turrets, other kinds of enemies, and
walls anywhere on the training field. On the right is the box containing slider controls. These sliders specify
the player’s preference for the behavior the team should try to optimize. For example the “E” icon means
“approach enemy,” and the red bar specifies that the player wants to punish robots that approach the enemy.
The crosshair icon represents “hit target,” which is being rewarded. The sliders represent fitness components
that are used by rtNEAT. The value of the slider is used by rtNEAT as the coefficient of the corresponding
fitness component. Through placing items on the field and setting sliders, the player creates training scenarios
where learning takes place.

levels, which can be positive or negative. Thus, the player has a natural interface for setting up a
training exercise and specifying desired behavior.

Robots have several types of sensors. Although NERO programmers frequently experiment
with new sensor configurations, the standard sensors include enemy radars, an “on target” sensor,
object rangefinders, and line-of-fire sensors. Figure 9.4 shows a neural network with the standard
set of sensors and outputs, and figure 9.5 describes how the sensors function.

Training mode is designed to allow the player to set up a training scenario on the field where
the robots can continually be evaluated while the worst robot’s neural network is replaced every few
ticks. Thus, training must provide a standard way for robots to appear on the field in such a way
that every robot has an equal chance to prove its worth. To meet this goal, the robots spawn from
a designated area of the field called thefactory. Each robot is allowed a limited time on the field
during which its fitness is assessed. When their time on the field expires, robots are transported back
to the factory, where they begin another evaluation. Neural networks are only replaced in robots that
have been put back in the factory. The factory ensures that a new neural network cannot get lucky by
appearing in a robot that happens to be standing in an advantageous position: All evaluations begin
consistently in the factory. In addition, the fitness of robots that survive more than one deployment
on the field is updated through a diminishing average that gradually forgets deployments from the
distant past. Thus, older robots have more reliable fitness measures since they are averaged over
more deployments than younger robots, but their fitness does not become out of date.

The diminishing average fitness is obtained by first computing an average over the first few
trials and then maintaining a continuous leaky average. The fitness update rule is,
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Figure 9.4: NERO input sensors and action outputs. Each NERO robot can see enemies, determine
whether an enemy is currently in its line of fire, detect objects and walls, and see the direction the enemy is
firing. Its outputs specify the direction of movement and whether or not to fire. This configuration has been
used to evolve varied and complex behaviors; other variations work as well and the standard set of sensors
can easily be changed.

ft+1 = ft +
st − ft

r
(9.4)

whereft is the current fitness,st is the score from the current evaluation, andr controls the rate of
forgetting. The lowerr is set, the sooner recent evaluations are forgotten. This method ensures that
fitness statistics do not become out of date even for older networks.

Training begins by deploying 50 robots on the field. Each robot is controlled by a neural
network with random connection weights and no hidden nodes, as is the usual starting configuration
for NEAT (see appendix A for a complete description of the rtNEAT parameters used in NERO). As
the neural networks are replaced in real-time, behavior improves dramatically, and robots eventually
learn to perform the task the player sets up. When the player decides that performance has reached
a satisfactory level, he or she can save the team in a file. Saved teams can be reloaded for further
training in different scenarios, or they can be loaded into battle mode. In battle, they face off against
teams trained by an opponent player, as will be described next.

9.3.2 Battle Mode

In battle mode, the player discovers how training paid off. A battle team of 20 robots is assembled
from as many different training teams as desired. For example, perhaps some robots were trained
for close combat while others were trained to stay far away and avoid fire. A player may choose to
compose a heterogeneous team from both training sessions.
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(a) Enemy Radars (b) Rangefinders

(c) On-Target Sensor (d) Line-of-fire sensors

Figure 9.5:NERO sensor design. All NERO sensors are egocentric, i.e. they tell where the objects are
from the robot’s perspective. (a) Several enemy radar sensors divide the 360 degrees around the robot into
slices. Each slice activates a sensor in proportion to how close an enemy is within that slice. If there is more
than one enemy in a single slice, their activations are summed. (b) Rangefinders project rays at several angles
from the robot. The distance the ray travels before it hits an object is returned as the value of the sensor.
Rangefinders are useful for detecting long contiguous objects whereas radars are appropriate for relatively
small, discrete objects. (c) The on-target sensor returns full activation only if a ray projected along the front
heading of the robot hits an enemy. This sensor tells the robot whether it should attempt to shoot. (d) The
line of fire sensors detect where a bullet stream from the closest enemy is heading. Thus, these sensors can be
used to avoid fire. They work by computing where the line of fire intersects rays projecting from the robot,
giving a sense of the bullet’s path. These sensors provide sufficient information for robots to learn successful
behaviors for battle.

Battle mode is designed to run over a server so that two players can watch the battle from
separate terminals on the internet. The battle begins with the two teams arrayed on opposite sides of
the field. When one player presses a “go” button, the neural networks obtain control of their robots
and perform according to their training. Unlike in training, where being shot does not lead to a robot
body being damaged, the robots are actually destroyed after being shot several times in battle. The
battle ends when one team is completely eliminated. In some cases, the only surviving robots may
insist on avoiding each other, in which case action ceases before one side is completely destroyed.
In that case, the winner is the team with the most robots left standing.

The basic battlefield configuration is an empty pen surrounded by four bounding walls,
although it is possible to compete on a more complex field, with walls or other obstacles (figure
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Figure 9.6:Battlefield configurations (color figure). The figure shows a range of possible configurations
from an open pen to a maze-like environment. Players can construct their own battlefield configurations and
train for them. The basic configuration, which is used in section 9.4, is the empty pen surrounded by four
bounding walls.

9.6). Players train their robots and assemble teams for the particular battlefield configuration on
which they intend to play. In the experiments described in this chapter, the battlefield was the basic
pen.

The next section gives examples of actual NERO training and battle sessions.

9.4 Playing NERO

Behavior can be evolved very quickly in NERO, fast enough so that the player can be watching and
interacting with the system in real time. The game engine Torque, licensed from GarageGames,
drives NERO’s simulated physics and graphics. An important property of the Torque engine is that
its physics simulation is slightly nondeterministic, so that the same game is never played twice. In
addition, Torque makes it possible for the player to take control of enemy robots using a joystick,
an option that can be useful in training.

The first playable version of NERO was completed in May of 2004. At that time, several
NERO programmers trained their own teams and held a tournament. As examples of what is pos-
sible in NERO, this section outlines the behaviors evolved for the tournament, the resulting battles,
and the real-time performance of NERO and rtNEAT.

NERO is capable of evolving behaviors very quickly in real-time. The most basic battle
tactic is to aggressively seek the enemy and fire. To train for this tactic, a single static enemy was
placed on the training field, and robots were rewarded for approaching the enemy. This training
required robots to learn to run towards a target, which is difficult since robots start out in the factory
facing in random directions. Starting from random neural networks, it takes on average 99.7 seconds
for 90% of the robots on the field learn to approach the enemy successfully (10 runs,sd = 44.5s)
It is important to note that the success criterion, i.e. that the team sufficiently learns to approach the
enemy, is in part subjective since the player decides when training is complete by visually assessing
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(a) Five seconds: Mass confusion (b) 100 seconds: Success

Figure 9.7:Learning to approach the enemy (color figure). These screenshots show the training field
before and after the robots evolved seeking behavior. The factory is at the bottom of each panel and the enemy
being sought is at the top. The numbers above the robots’ heads are used to identify individual robots. (a) Five
seconds after the training begins, the robots scatter haphazardly around the factory, unable to effectively seek
the enemy. (b) After ninety seconds, the robots consistently seek the enemy. Some robots prefer swinging
left, while others swing right. These pictures demonstrate that behavior improves dramatically in real-time
over only 100 seconds.

the team’s performance. Nevertheless, success in seeking is generally unambiguous as shown in
figure 9.7.

NERO differs from most applications of GAs in that the quality of evolution is judged from
the player’s perspective based on the performance of theentire population. On the other hand
GA practitioners generally only look at the champions of a run. However, even though the entire
population must solve the task, it does not converge to the same solution. In seek training, some
robots evolve a tendency to run slightly to the left of the target, while others run to the right. The
population diverges because the 50 agents interact as they move simultaneously on the field at the
same time. If all the robots chose exactly the same path, they would often crash into each other and
slow each other down, so naturally some robots take slightly different paths to the goal. In other
words, NERO is actually a massively parallel coevolving ecology in which the entire population is
evaluated together.
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Figure 9.8:Running away backwards. This training screenshot shows several robots backed up against
the wall after running backwards and shooting at the enemy, which is being controlled from a first-person
perspective by a human trainer using a joystick. Robots learned to run away from the enemy backwards
during avoidance training because that way they can shoot as they flee. Running away backwards is an
example of evolution’s ability to find novel and effective behaviors.

After the robots learned to seek the enemy, they were further trained to fire at the enemy. It
is possible to train robots to aim by rewarding them for hitting a target, but it is also aesthetically
unpleasing to players to have to wait while robots fire haphazardly in all directions and slowly
figure out how to aim. Therefore, the fire output of neural networks was connected to an aiming
script that points the gun properly at the enemy closest to the robot’s current heading within some
fixed distance. Thus, robots quickly learn to seek and attack the enemy.

Robots were also trained to avoid the enemy. In fact, rtNEAT was flexible enough todevolve
a population that had converged on seeking behavior into a completely opposite, avoidance, behav-
ior. For avoidance training, players controlled an enemy robot with a joystick and ran it towards
robots on the field. The robots learned to back away in order to avoid being penalized for being too
near the enemy. Interestingly, robots preferred to run away from the enemy backwards because that
way they could still shoot the enemy. Also, most of their enemy radars are on their front half, giving
them better resolution if they remain facing their target (figure 9.8).

By placing a turret on the field and asking robots to approach the turret without getting hit,
robots were able to learn to avoid enemy fire (figure 9.9). The turret is programmed to periodically
rotate back and forth spraying bullets. Robots evolved to run to the opposite side of the turret from
the spray and approach it from behind, a tactic that is promising for battle.

Other interesting behaviors were evolved to test the limits of rtNEAT rather than specifically
prepare the troops for battle. For example, robots were trained to run around walls in order to
approach the enemy. As performance improved, players incrementally added more walls until the
robots could navigate an entire maze without any path-planning (figure 9.10)! Interestingly, different
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Figure 9.9:Avoiding turret fire ( color figure). The black arrow points in the current direction of the turret
fire (the arrow is not part of the NERO display and is only added for illustration). The turret is depicted as
a red robot. The blue robots in training learn to run safely around the enemy’s line of fire in order to attack.
Notice how they loop around the back of the turret and attack from behind. When the turret moves, the robots
change their attack trajectory accordingly. Learning to avoid fire is an important battle skill. The conclusion
is that rtNEAT was able to evolve sophisticated, nontrivial behavior in real time.

species evolved to take different paths through the maze, showing that topology and function are
correlated in rtNEAT, and confirming the success of real-time speciation.

In battle, some teams that were trained differently were nevertheless evenly matched, while
some training types consistently prevailed against others For example, an aggressive seeking team
from the tournament had only a slight advantage over an avoidant team, winning six out of ten
battles, losing three, and tying one (Table 9.1). The avoidant team runs in a pack to a corner of
the field’s enclosing wall (figure 9.11). Sometimes, if they make it to the corner and assemble fast
enough, the aggressive team runs into an ambush and is obliterated. However, slightly more often
the aggressive team gets a few shots in before the avoidant team can gather in the corner. In that case,
the aggressive team traps the avoidant team with greater surviving numbers. The conclusion is that
seeking and running away are fairly well-balanced tactics, neither providing a significant advantage
over the other. The interesting challenge of NERO is to conceive strategies that are clearly dominant
over others.

One of the best teams was trained by observing a phenomenon that happened consistently in
battle. Chases among robots from opposing teams frequently caused robots to eventually reach the
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Figure 9.10:Navigating a maze (color figure). Incremental training on increasingly complex wall config-
urations produced robots that could navigate this maze to find the enemy. The robots spawn from the factory
at the top of the maze and proceed down to the enemy at the bottom. In this picture, the green numbers above
the robots specify their species. Notice that species “4” evolved to take the path through the right side of
the maze while other species take the the left path. This result suggests that protecting innovation in rtNEAT
indeed supports a range of diverse behaviors, each with its own network topology.

Battle Number Seekers Avoiders
1 6 0
2 4 7
3 8 0
4 7 7
5 8 3
6 6 10
7 5 4
8 5 2
9 3 7
10 8 0

Table 9.1:Seekers vs. Avoiders.Scores from 10 battles are shown between a team trained to aggressively
seek and attack the enemy and another team taught to run away backwards and shoot at the same time. The
seeking team wins six out of the 10 games, but its advantage is not significant, showing that when strategies
contrast they can still be evenly matched. Results like this one can be unexpected, teaching players about the
relative strengths and weakness of different tactics.
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Figure 9.11:Seekers chasing avoiders in battle (color figure). In this battle screenshot, red robots trained
to seek and attack the enemy pursue blue robots that have backed up against the wall. Teams trained for
different tactics are clearly discernable in battle, demonstrating the ability of the training to evolve diverse
tactics.

Battle Number Wall-fighters Seekers
1 7 2
2 9 0
3 4 3
4 7 2
5 10 0
6 8 2
7 12 2
8 7 2
9 4 2
10 9 1

Table 9.2:Wall-fighters vs. Seekers. The table shows final scores from 10 battles between a team trained
to fight near walls and another trained to aggressively seek and attack the enemy. The wall-fighters win every
battle because they know how to avoid fire near a wall, while the aggressive team runs directly into fire when
fighting near a wall. The total superiority of the wall-fighters shows that the right tactical training indeed
matters in battle, and that rtNEAT was able to evolve sophisticated fighting tactics.
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field’s bounding walls. Particularly for robots trained to avoid turret fire by attacking from behind
(figure 9.9), enemies standing against the wall present a serious problem since it is not possible to
go around them. Thus, training a team against a turret with its back against the wall, it was possible
to familiarize robots with attacking enemies against a wall. This team learned to hover near the
turret and fire when it turned away, but back off quickly when it turned towards them. This tactic
works effectively when several friendly robots from the same team are nearby since an enemy can
only be facing one direction at a time. In fact, the wall-based team won the first NERO tournament
by using this strategy. Table 9.2 shows that the wall-trained team wins 100% of the time against
the aggressive seeking team. Thus, it is possible to learn sophisticated tactics that dominate over
simpler ones like seek or avoid.

9.5 Discussion

Participants in the first NERO tournament agreed that the game was engrossing and entertaining.
Battles were exciting events for all the participants, evoking plentiful clapping and cheering. Players
spent many hours honing behaviors and assembling teams with just the right combination of tactics.

An important point of this project is that NERO would not be possible without rtNEAT.
rtNEAT was able to evolve interesting tactics quickly in real-time while players interacted with
NERO, showing that neuroevolution can be deployed in a real game and work fast enough to provide
entertaining results.

The success of the first NERO prototype suggests that the rtNEAT technology has immediate
potential commercial applications in modern games. Any game in which agent behavior is repetitive
and boring can be improved by allowing rtNEAT to at least partially modify tactics in real-time.
Especially in persistent video games such as Massive Multiplayer Online Games (MMOGs) that
last for months or years, the potential for rtNEAT to continually adapt and optimize agent behavior
may permanently alter the gaming experience for millions of players around the world.

Since the first tournament took place, new features have been added to NERO, increasing
its appeal and complexity. For example, robots can now duck behind walls and learn to run to a flag
placed by the player to designate important areas of the field. The game continues to be developed
and new features and sensors are constantly being added. The goal is to have a full network-playable
version with an easy and intuitive user interface in the near future.

An important issue for the future is how to assess results in a game in which behavior is
largely subjective. One possible approach is to train benchmark teams and measure the success of
future training against those benchmarks. This idea and others will be employed in testing as the
project matures and standard strategies are identified. At present, the project’s main contribution is
to show that an entirely new genre of game is possible because of rtNEAT.

NERO is also being used as a common platform for quickly implementing complicated
real-time neuroevolution experiments. While video games are intended mainly for entertainment,
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they are an excellent catalyst for improving machine learning technology. Because of the gaming
industry’s financial success and low physical risk, it makes sense to explore this area as a stepping
stone to other more critical applications. With this new technology, it may finally be possible to
use games for training as has long been envisioned. As humans improve in such training games, so
could surrounding agents, keeping the simulation realistic for longer than has been possible in the
past.

9.6 Conclusion

A real-time version of NEAT (rtNEAT) was developed to allow users to interact with evolving
agents. In rtNEAT, an entire population is simultaneously and asynchronously evaluated as it
evolves. Using this method, it was possible to build an entirely new kind of video game, NERO,
where the characters adapt in real time in response to the player’s actions. In NERO, the player
takes the role of a trainer and constructs training scenarios for a team of simulated robots. The rt-
NEAT technique can form the basis for other similar interactive learning applications in the future,
and eventually even make it possible to use gaming as a method for training people in sophisticated
tasks.
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Chapter 10

Discussion and Future Work

NEAT is a principled approach to evolving neural network topologies and weights. This chapter
begins with a general discussion of NEAT’s approach to evolving topologies and then examines how
network behavior becomes more sophisticated through complexification. The remaining sections
overview three primary areas of future work: (1) Using NEAT to evolve solutions other than neural
networks, (2) expanding NEAT’s neural model, and (3) using NEAT with indirect encoding.

10.1 Evolving Neural Network Topologies

NEAT presents several advances in the evolution of neural networks. Through historical markings,
NEAT is able to combine different topologies without topological analysis. NEAT also demon-
strates that a meaningful metric for comparing and clustering similar networks can be derived from
historical information in the population.

A parallel can be drawn between structure evolution in NEAT and incremental evolution
(Gomez and Miikkulainen 1997; Wieland 1991). Incremental evolution is a method used to train a
system to solve harder tasks than it normally could by training it on incrementally more challenging
tasks. NE is likely to get stuck on a local optimum when attempting to solve the harder task directly.
However, after solving the easier version of the task first, the population is likely to be in a part of
fitness space closer to the solution to the harder task, allowing it to avoid local optima. Adding
structure to a solution is analogous to taking a solution to an easy task as the starting point for
evolving the solution to a harder task. The network structure before the addition is optimized in a
lower-dimensional space. When structure is added, the network increments into a more complex
space where it is already close to the solution. The difference between the incrementality of adding
structure and general incremental evolution is that adding structure isautomaticin NEAT whereas
a sequence of progressively harder tasks requires human design.

A key insight behind NEAT is that it isnot only the ultimate structure of the solution that
really matters, but rather the structure of all the intermediate solutions along the way to finding the
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solution. The connectivity of every intermediate solution represents a parameter space that evolu-
tion must optimize, and the more connections there are, the more parameters need to be optimized.
Therefore, if the amount of structure can be minimized throughout evolution, so can the dimension-
ality of the spaces being explored, leading to significant performance gains.

In order to minimize structure throughout evolution, NEAT incrementally elaborates struc-
ture in a stochastic manner from a minimal starting point. Because of speciation, useful elaborations
survive even if they are initially detrimental. Thus, NEAT strengthens the analogy between genetic
algorithms and natural evolution by not only performing the optimizing function of evolution, but
also this complexifying function, allowing solutions to become incrementally more complex at the
same time as they become more optimal. The next section discusses the implications of complexi-
fication.

10.2 Benefits of Complexification

What makes complexification such a powerful search method? Whereas in fixed-topology evolution
the good structures must be optimized in the high-dimensional space of the solutions themselves,
complexifying evolution only searches high-dimensional structures that are elaborations of known
good lower-dimensional structures. Before adding a new dimension, the values of the existing
genes have already been optimized over preceding generations. Thus, after a new gene is added,
the genome isalready in a promising part of the new, higher-dimensional space. Thus, the search
in the higher-dimensional space is not starting blindly as it would if evolution began searching in
that space. It is for this reason that complexification can find high-dimensional solutions that fixed-
topology or simplifying evolution cannot.

Complexification is particularly well suited for coevolution problems. When a fixed genome
is used to represent a strategy, that strategy can be optimized, but it is not possible to add functional-
ity without sacrificing some of the knowledge that is already encoded in the genome. In contrast, if
new genetic material can be added, sophisticated elaborations can be layered above existing struc-
ture, establishing an evolutionary arms race. This process was evident in the robot duel domain
(Chapter 5), where successive dominant strategies often built new functionality on top of existing
behavior by adding new nodes and connections.

The advantages of complexification do not imply that fixed-sized genomes cannot some-
times evolve increasingly complexphenotypic behavior. Depending on the mapping between the
genotype and the phenotype, it may be possible for a fixed, finite set of genes to represent solu-
tions (phenotypes) with behaviors that vary in complexity. For example, such behaviors have been
observed in Cellular Automata (CA), a computational structure consisting of a lattice of cells that
change their state as a function of their own current state and the state of other cells in their neigh-
borhood. This neighborhood function can be represented in a genome of size2n+1 (assumingn
neighboring cells with binary state) and evolved to obtain desired target behavior. For example,
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Mitchell et al. (1996) were able to evolve neighborhood functions to determine whether black or
white cells were in the majority in the CA lattice. The evolved CAs displayed complex global be-
havior patterns that converged on a single classification, depending on which cell type was in the
majority. Over the course of evolution, CAs evolved from simple naive rules to significantly more
complex rules that produce nonlocal interactions, even as the genome remained the same size.

In the CA example, the correct neighborhood size was chosen a priori. This choice is diffi-
cult to make, and crucial for success. If the desired behavior had not existed within the chosen size,
even if the behavior would become gradually more complex, the system would never had solved
the task. Interestingly, such a dead-end could be avoided if the neighborhood (i.e. the genome)
could be expanded during evolution. It is possible that CAs could be more effectively evolved by
complexifying (i.e. expanding) the genomes, and speciating to protect innovation, as in NEAT.

Moreover, not only can the chosen neighborhood be too small to represent the solution,
it can also be unnecessarily large. Searching in a space of more dimensions than necessary can
impede progress, as discussed above. If the desired function existed in a smaller neighborhood
it could have been found with significantly fewer evaluations. Indeed, it is even possible that the
most efficient neighborhood is not symmetric, or contains cells that are not directly adjacent to the
cell being processed. Moreover, even the most efficient neighborhood may be too large a space in
which to begin searching. Starting search in a small space and incrementing into a promising part of
higher-dimensional space is more likely to find a solution. For these reasons, complexification can
be an advantage,even ifbehavioral complexity can increase to some extent within a fixed space.

The search for an optimal policy in reinforcement learning is another useful example of
where complexification can benefit search. Search proceeds by optimizing the value function, and
much research has gone into how optimization can work to improve control policies (Sutton and
Barto 1998) within the space of the value function. However, humans have always chosen therep-
resentationof the policy, whether it be a neural network, a state table, or something else. Yet it is
this representation that defines whether the problem is tractable in the first place! On one hand, if
the policy is encoded in a million-neuron neural network, a solution may never be found. On the
other, if the neural network instead contains only a single neuron, a sufficiently sophisticated policy
may not even exist in the space of possible solutions. In other words, RL is just as much about find-
ing the right representation as it is about finding the solution within the space of that representation.
Complexification is unlike almost any other approach in that it findsboththe right level of represen-
tationand the solution simultaneously. Just as climbing a hill leads to a more optimal solution, so
does increasing complexity lead to a more expressive representation. It is the combination of both
of these principles that allows the wholly autonomous synthesis of solutions. NEAT is a principled
approach to complexification, embodying the intuitive idea that novel representations need to be
protected from premature elimination in order to give them a chance to realize their full potential.

The CA example raises the intriguing possibility thatany structured phenotype can be
evolved through complexification from a minimal starting point, historical markings, and the pro-
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tection of innovation through speciation. The next section discusses the possibility that such a
methodology could be applied to the evolution of arbitrary types of structures.

10.3 Non-neural NEAT

In addition to neural networks and CA, electrical circuits (Miller et al. 2000a,b), genetic programs
(Koza 1992), robot body morphologies (Lipson and Pollack 2000), Bayesian networks (Mengshoel
1999), finite automata (Brave 1996), and building and vehicle architectures (O’Reilly 2000) are
all structures of varying complexity that can benefit from complexification. By starting search
in a minimal space and adding new dimensions incrementally, highly complex phenotypes can be
discovered that would be difficult to find if search began in the intractable space of the final solution,
or if it was prematurely restricted to too small a space.

The search for optimal structures is a common problem across AI. For example, Bayesian
methods have been applied to learning model structure (Attias 2000; Ueda and Ghahramani 2002).
In these approaches, the posterior probabilities of different structures are computed, allowing overly
complex or simplistic models to be eliminated. Note that these approaches are not aimed at generat-
ing increasingly complex functional structures, but rather at providing a model that explains existing
data. In other cases, solutions involve growing gradually larger structures, but the goal of the growth
is to form gradually betterapproximations. For example, methods like Incremental Grid Growing
(Blackmore and Miikkulainen 1995), and Growing Neural Gas (Fritzke 1995) add neurons to a
network until it approximates the topology of the input space reasonably well. On the other hand,
complexifying systems do not have to be non-deterministic (like NEAT), nor do they need to be
based on evolutionary algorithms. For example, Harvey (1993) introduced a deterministic algo-
rithm where the chromosome lengths of the entire population increase all at the same time in order
to expand the search space; Fahlman and Lebiere (1990) developed a supervised (non-evolutionary)
neural network training method called cascade correlation, where new hidden neurons are added
to the network in a predetermined manner in order to complexify the function it computes. The
conclusion is that complexification is an important general principle in AI.

In addition, methods have been developed in other areas of evolutionary computation to
evolve phenotypes of variable structure and size. For example, in genetic programming, homolo-
gous crossover techniques based on program structure analysis allow arbitrary program trees to be
effectively recombined (?). An interesting direction for future research is to compare these related
methods with complexification as it is implemented in NEAT. It is possible that historical markings
can be used to improve homologous crossover techniques in other areas of evolutionary computa-
tion.

In the future, complexification may help with the general problem of finding the appropriate
level of abstraction for difficult problems. Complexification can start out with a simple, high-level
description of the solution, composed of general-purpose elements. If such an abstraction is insuf-
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ficient, it can be elaborated by breaking down each high-level element into lower level and more
specific components. Such a process can continue indefinitely, leading to increasingly complex
substructures, and increasingly low-level solutions to subproblems. Although in NEAT the solu-
tions are composed of only connections and nodes, it does provide an early example of how such a
process could be implemented.

One of the primary and most elusive goals of AI is to create systems thatscale up. In a sense,
complexificationis the process of scaling up. It is the general principle of taking a simple idea and
elaborating it for broader application. Much of AI is concerned with search, whether over complex
multi-dimensional landscapes, or through highly-branching trees of possibilities. However, intelli-
gence is as much about decidingwhat spaceto search as it is about searching once the proper space
has already been identified. Currently, only humans are able to decide the proper level of abstraction
for solving many problems, whether it be a simple high-level combination of general-purpose parts,
or an extremely complex assembly of low-level components. A program that can decide what level
of abstraction is most appropriate for a given domain would be a highly compelling demonstration
of Artificial Intelligence. This is, I believe, where generic complexification methods can have their
largest impact in the future.

10.4 Expanding the Neural Model

Most experiments in this dissertation evolved neural networks with a variant of the standard Mc-
Cullough-Pitts neuron; incoming activations were multiplied by their connection weights, summed,
and run through a sigmoid function (Section 2.2). The weights of connections did not change during
activation. Chapter 6 described an elaboration of this neural model in which Hebbian equations
with evolved parameters could adapt the weights of connections during activation. In the future, the
neural model should be further enhanced to make it both more biologically plausible and to increase
its functionality.

There are two primary ways to expand the neural model: (1) More learning parameters can
be added to increase the flexibility of the neural network’s ability to adapt during evaluation, and
(2) the neural activation function can be enhanced to work more like real neurons. The remainder
of this section described these two enhancements.

10.4.1 Additional Learning Parameters

While Hebbian learning is commonly cited as a major force for adaptation in the brain, other pro-
cesses also change synaptic strength. For example, inhabituation, connections weaken after pro-
longed low-level activation, regardless of how active the outgoing node is (Kandel et al. 1991).
Habituation is useful when one or more inputs are irrelevant to the optimal behavior. In addition,
hidden nodes that become irrelevant under certain conditions could be gradually filtered out dur-
ing evaluation. For example, a network could learn to ignore an air conditioner humming in the
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background.

Another important type of learning issensitization. Incoming connections to a neuron are
strengthened due to high activation over adifferent incoming connection. Sensitization allows an
organism to increase general attention due to a specific stimulus. For example, if a robot keeps
getting hit it may increase its sensitivity to all its inputs on the assumption that it is in a dangerous
situation.

Finally, while the adaptive parameters in Chapter 6 are stored in connections, in some cases
it makes more sense to store them in the neurons themselves. For example, since sensitization in-
volves multiple connections, the parameters for sensitization would need to be centralized at the
node where the connections converge. It is possible to store parameters in both nodes and con-
nections in NEAT, although this dissertation does not describe any experiments with node-based
parameters.

10.4.2 More Realistic Neural Activation

The simplified neural model employed so far in NEAT assumes that incoming activation is inte-
grated into the receiving neuron all at one time in a discrete time step. While this common assump-
tion is sufficient to support a broad range of sophisticated behavioral and strategic policies, it does
not allow different neurons to display different temporal behavior. For example, while it may be ad-
vantageous for some neurons to react immediately to incoming signals, the network might be able to
time its reactions more precisely if other neurons integrated incoming signals at a relatively slower
rate. Such a network could then potentially evolve intricate temporal properties, such as complex
oscillating patterns, without even the need for external input or clocks.

A network model with this capability is the Continuous-Time Recurrent Neural Network
(CTRNNs; Yamauchi and Beer 1994). This type of network is commonly used in the evolution of
walking gaits and locomotion behavior for various animal morphologies (Reil and Massey 2001;
Reil and Husbands 2002; Terzopoulos et al. 1994). The CTRNN model allows regular oscillating
patterns to evolve with precise time-dependent activation functions on each neuron.

The neurons used in CTRNNs are calledleaky integrator neurons. The term “integrator” de-
scribes the neurons’ ability to integrate incoming activation over time instead of all at once. “Leaky”
means that some amount of internal activation leaks out of the neuron on each time step, so that its
activity level would gradually sink to zero without input. The rate at which both incoming activa-
tion is integrated and existing internal activation is leaked is controlled by atime constantτ . The
time constant allows different neurons to display different temporal properties. That way, combina-
tions of neurons can create complex, precisely timed oscillations. In addition, neural activation can
change smoothly over several time steps instead of jumping suddenly, allowing for smooth, natural
motions.

Blynel and Floreano (2002) give a good overview of the equations underlying CTRNNs
and leaky integrator neuron behavior. The general CTRNN equation describes how the internal
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activation level orstateγ of the neuron changes over time:

dγ

dt
=

1
τi

 N∑
j=1

wijAj +
S∑

k=1

wikIk

 , (10.1)

wherei is the neuron index,N is the total number of neurons,S is the number of inputs,wij is the
weight of the connection between neuronsi andj, andIk is sensory activation. The variableAj is
the incoming activation from neuronj, which is computed asAj = σ(γj − θj), whereθj is the bias
of neuronj. While this equation describes how activation state changes over time, it cannot be used
in practice in a discrete time system because it does not directly specify what should be added or
subtracted fromγ on each time step. To determine the discrete time update rule forγ equation 10.1
must be integrated to getγi(n+1) in terms ofγi(n), wheren is the time step number. TheForward
Euler integration method (Hughes-Hallett et al. 1994, pp. 490-495). produces the discrete-time
update rule (Blynel and Floreano 2002):

γi(n + 1) = γi(n) +
∆t

τi

−γi(n) +
N∑

j=1

wijAj(n) +
S∑

k=1

wikIk

 . (10.2)

In the future, each NEAT neuron can contain its ownτ and these time constants can evolve
just as connections weights. Then, using equation 10.2 as the activation function, the neural network
can evolve sophisticated oscillation patterns and control e.g. robot gaits or swimming patterns.

10.5 Complexifying Artificial Embryogeny

The ultimate goal of neuroevolution, and evolutionary computation in general, is to evolve solutions
to extremely difficult real-world problems. Such solutions are likely to require thousands or even
millions of neurons or distinct parts. Even with the benefits of NEAT, if every gene were to map
directly to a single unit of phenotypic structure, evolution would be searching for a solution in an
intractable million-dimensional genotypic space.

In order to be tractable, the number of genes required to specify a phenotype must be orders
of magnitude less than the number of structural units composing that phenotype. Nature has shown
such representational systems to be possible on an enormous scale. Even with 100 trillion neural
connections in the human brain, there are only about 30,000 active genes in the human genome
(2800 million amino acids) (Deloukas et al. 1998; Zigmond et al. 1999).

Such representational efficiency is made possible through gene reuse. In an indirect genetic
encoding (Section 2.3.2), a single gene may be used multiple times at different stages of develop-
ment. There are two primary forms of reuse. First, phenotypic structures can occur in repeating
patterns, where the same structural theme, perhaps with some variation, appears over and over
again. Each time a pattern repeats, the same gene group can provide the specification. Examples of
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repeating patterns in biological organisms include the numerous left/right symmetries of vertebrates
(Raff 1996, pp. 302-303), and the numerous receptive fields in the visual cortex (Gilbert and Wiesel
1992; Hubel and Wiesel 1965). Repetition frequently involves variation on a general theme. For
example, each vertebrae in the spine is formed similarly to the others, albeit with different incoming
and outgoing connections (Zigmond et al. 1999, pp. 30-31).

The second primary form of reuse occurs when the same gene product is used toinitiate sep-
arate developmental pathways. For example, Cohn et al. (1997) found that the same gene product,
fibroblast growth factor (FGF), induces the appearance ofboth forelimbs and hindlimbs depending
on the part of the body where the FGF is applied. Thus, the same gene can be used to initiate
different structures at different locations.

Indirect encoding refers to all possible mappings between genotype and phenotype in which
genes can be reused. For example, a gene may contain a parameter specifying how many times
its corresponding structure should appear in the phenotype. Natural organisms implement gene
reuse through a process of development, or embryogeny.1 The same genes can be used at different
points in development for different purposes, and the order in which activations of genes take place
determines when and where a particular gene is expressed (Raff 1996). Thus, mappings between
genotype and phenotype based on artificial embryogeny are a subset of all possible indirect encod-
ings. Recently, researchers have begun to replicate this process in artificial developmental systems.
The hope is that extremely compact codes can evolve to represent immensely complex phenotypes.

Several names have been used for artificial evolutionary systems that utilize a developmen-
tal phase, including Artificial Ontogeny (Bongard and Pfeifer 2001), Computational Embryogeny
(Bentley and Kumar 1999), Cellular Encoding (Gruau 1994), and morphogenesis (Jakobi 1995).
The term Artificial Embryogeny (AE) can be used to refer to the entire class of such systems.2

Neural networks are a natural application of AE because current neural network models are orders
of magnitude less complex than their biological counterparts. The potential benefit of combining
complexification through expanding the genome with AE is a system that can discover networks of
millions of neurons or more. Thus, a significant goal for future work is to combine NEAT with an
AE-based indirect encoding.

It is possible to combine NEAT with an indirect encoding because any kinds of genes can
be tracked through historical markings, including indirect encodings. For example, in grammatical
rewrite systems, a gene is a rule that specifies how a symbol in the developing phenotype should be
expanded (Belew and Kammeyer 1993; Boers and Kuiper 1992; Hornby and Pollack 2001a,b; Ki-
tano 1990; Lindenmayer 1968). Another approach is to encode development as a tree of instruction
genes that are executed in parallel by different parts of a developing phenotype (Gruau et al. 1996;

1Bentley and Kumar (1999) pointed out that the correct term isembryogenyas opposed toembryology. Embryogeny
is the embryological process of development itself, while embryology is thestudyof the process of development. This
discussion focuses on evolving developmental systems, i.e. implementing artificial embryogeny.

2Embryogenyconveys that systems in this class develop phenotypes using genetic information starting from a small
initial structure.
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Komosinski and Rotaru-Varga 2001; Luke and Spector 1996). Other indirect encodings attempt
to simulate genetic regulatory networks (GRNs) in biology (Bongard and Pfeifer 2001; Astor and
Adami 2000; Dellaert and Beer 1994; Eggenberger 1997; Jakobi 1995). In a GRN, genes produce
signals that either activate or inhibit other genes in the genome. Some genes produce signals that
cause e.g. cells to grow or axons to form. The interaction of all the genes forms a network that
produces a phenotype. All these encodings support variable length genomes and historical mark-
ings, making complexification possible. For a complete review of prior work in AE, see Stanley and
Miikkulainen (2003).

Direct encodings such as NEAT generally expand the genome by adding random genes
(Angeline et al. 1993; Pujol and Poli 1998; Stanley and Miikkulainen 2002b). In contrast, nature
uses duplication as the primary means of expanding the genome. The reason is that when genes are
duplicated, the phenotype is not dramatically altered (Force et al. 1999). Such stability is important
because generally major mutations in the genome could permanently and immediately disabled the
lineage. As Force et al. (1999) explained, subsequent mutations repartition the roles of both the
original genes and the duplicated genes without significantly altering the overall developmental
plan. Once duplicate genes have undergone sufficient mutation to be activated at different times
during development than their original counterparts, subsequent mutations can begin to alter how
these new instances develop. Thus, because of the duplicate genes, evolution has the flexibility to
alter the developmental process in more ways than were possible before the duplication.

Such a gradual process is difficult to achieve with direct encodings. When each gene maps
to a single unit of phenotypic structure, duplicating a gene is equivalent to duplicating part of the
phenotype, which can significantly alter its functionality and structure. While in some cases such
duplication is not destructive (e.g. with single neurons), duplicating an entire substructure of multi-
ple components likely is.

In contrast, with AE-based indirect encoding, the duplicate genes can have overlapping, re-
dundant roles. Thus they are guaranteed to affect development as soon as they are incorporated.
Then, over the following generations, they can be partitioned gradually into different but related
roles. Therefore, through AE, duplication can complexify solutions without decreasing their perfor-
mance.

The duplication process must carefully integrate the new genes into the already-existing
developmental plan of the organism, and the subsequent mutations must not be too severe. If the
genes become disconnected from the existing developmental plan, subsequent mutations will likely
have little effect. Thus, in order to allow duplicate genes to gradually take on new roles, the con-
ditions under which they activate should lie on a continuum. A slight mutation in one duplicate
should cause it to be activated in some but not all cases where its counterpart was formerly always
activated.

In addition to reducing the search space, in complexifying evolution with AE important
substructures only need to be discovered once, even when they appear in the phenotype multiple
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times. Reuse of new structure isinherentin the underlying developmental program that has already
evolved. For example, appendages can evolve digits all at once since the existing genetic specifi-
cation ensures that each appendage follows the same developmental process. Thus, new genes that
specify new structure at the end of such a process will be encountered each time the process occurs.
On the other hand, complexification with direct encoding would require digits to be discovered sep-
arately on several occasions, since each set of digits must be specified by a separate set of genes.
Thus, combining complexification and AE is potentially powerful because it makes it possible to
elaborate all repeating structures simultaneously.

The main idea behind combining AE-based indirect encoding with NEAT is that new genes
that are added through duplication can be assigned historical markings just as new connections are
now. Thus, it is possible to implement the same kind of artificial synapsis (Section 2.4.4) based on
historical marking as in directly-encoded NEAT.

By combining synapsis and gradual divergence of duplicate genes, researchers can begin to
study different ways to implement gene duplication.3 For example, how should clusters of genes
be chosen for duplication? Everything from copying single genes to duplicating whole genomes
is possible. While biologists continue to debate this issue (Amores et al. 1998; Martin 1999), it
can also be addressed through experiments in evolutionary computation. Calabretta et al. (2000)
have already shown that distinct neural modules emerge when clusters of genes are duplicated in
the evolution of neural networks. Thus duplicating entire groups of genes can be beneficial.

A complexifying system that starts with small, simple genomes will first evolve basic struc-
tures, such as bilateral symmetry, and then elaborate on them in future generations by adding new
genes. The original simple developmental plan provides a framework that can be elaborated and
enhanced in the future. By accumulating such enhancements, complex structures can evolve that
would have been difficult to discover all at once. One of the most intriguing phenomena that might
emerge from a successful implementation is repetition with variation. That is, instead of duplicating
the same structure multiple times, a generaltheme, such as a limb, can be reused multiple times with
differing manifestations. Such patterns do not follow traditional modular design in engineering, in
which discrete identical parts are assembled into larger constructions. Instead, the beginnings and
ends of individual parts are amorphous, and their internal structure is only vaguely constrained. The
capacity to reuse parts with variation is potentially a very powerful way to create complexity, and a
most intriguing direction of future research with NEAT.

3Gene deletionis also possible, although it is potentially more deleterious than duplication. Duplication creates re-
dundancy, which does not cause any loss of functionality. In contrast, deletion may cause important steps in development
to be removed.
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10.6 Conclusion

NEAT has shown promise in a variety of domains because it can complexify at the same time as
protecting innovation. Although NEAT is used in this dissertation to evolve neural networks, it is a
general method that can eventually be used to evolve any structured phenotype. Already the neural
model has been enhanced by adding learning parameters (Chapter 6). In the future, the neural
model can be further expanded to include more types of synaptic adaptation, and to allow leaky
integrator neuron activation. Finally, by combining NEAT with an indirect encoding, an AE version
NEAT may be able to evolve networks or other structures with thousands or millions of parts. The
possible future research directions with NEAT are exciting because each may lead to significant
breakthroughs in many fields of science and engineering.
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Chapter 11

Conclusion

In this dissertation, the NeuroEvolution of Augmenting Topologies (NEAT) method for evolving
neural network topologies was presented and evaluated. This chapter summarizes the contributions
of the dissertation and places NEAT in the general context of innovation for machine learning.

11.1 Contributions

NEAT is a significant advance in evolutionary computation (EC), neuroevolution (NE), and machine
learning (ML). NEAT is the first EC method to track genes through historical markings, making pos-
sible the first principled methodology for evolving a population of diverse topologies. Comparisons
in Chapter 4 showed that this approach is indeed powerful, outperforming traditional reinforcement
learning methods in a difficult benchmark task.

Yet the ultimate goal of ML is more than finding solutions quickly. Ideally, ML should
innovate, not only by optimizing parameters within a provided model, but by creating entire models
on its own. It is here that NEAT makes its most significant contribution, since NEAT is an algorithm
that embodies a philosophy of innovation. It is a common principle that the young should be given
a sufficient chance to reach their potential even if they sometimes fail along the way; in the same
vein, it is in the interest of society that novel ideas should be thoroughly tested and refined before
they are adopted or discarded. In NEAT, separating a novel network topology from the rest of
the population so that it can compete within its own niche protects innovation and holds true to
this philosophy. Moreover, when the entire population is graduallycomplexifyingby adding new
structure and creating new species, it becomes possible to discover novel solutions. Thus, NEAT
is a genuine algorithm for innovation. This design was confirmed in the robot duel experiments
of Chapter 5, where complexification and speciation were shown to establish an evolutionary arms
race of continual innovation.

The innovation approach lays the foundation for novel of experiments and applications that
were not previously possible. First, in Chapter 6, two ways of evolving adaptive neural networks
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with NEAT were introduced. Hebbian plastic networks that change their connection weights over
their lifetime based on experience were compared to static recurrent networks that adapt by changing
their internal activation levels. The results showed that the different types of adaptive networks are
appropriate for different situations. This experiment also demonstrated how NEAT can be used to
evolve and compare new kinds of neural networks, opening up new avenues of research.

Second, by enhancing NEAT to work in real-time, it became possible for humans to inter-
act directly with evolving populations in real time, creating a new genre of video games (NERO;
Chapter 9). Real-time NEAT makes further interactive educational, entertainment, and training ap-
plications possible, all with the potential to discover increasingly sophisticated solutions in real time
as the population complexifies.

Third, NEAT achieved promising results in two challenging real-world domains: the game
of Go and an automobile warning system. NEAT was able to scale up to defeat Gnugo on a 7×7
board by controlling a roving eye that cannot see the whole board at once. NEAT also evolved
successful drivers and predictors in the RARS driving simulator, forming a foundation for warning
systems that may someday save lives.

An important feature of NEAT is that all its operations are genetic; it makes no assumptions
about the phenotype. Therefore, NEAT potentially can be generalized to evolve various structured
phenotypes in the future, from electronic circuits to robot morphologies. In fact, even the encoding,
i.e. the mapping between genotype and phenotype, is independent of the algorithm, and therefore
can be improved and expanded without changing NEAT. Thus, NEAT is a general methodology for
evolving innovative solutions in many domains, with great potential for further development in the
future.

11.2 Conclusion

Tracking genes through historical markings, speciation to protect innovation, and complexification
from a small starting point combine to produce a novel methodology for evolving a population of
increasingly complex and diverse structures. Not only is this method fast, but it supports continual
innovation. Thus, this dissertation is a first step in automating the discovery of complex solutions
to difficult real-world problems.
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Appendix A

Parameter Values

This appendix describes parameter settings for all the experiments in the dissertation. It is divided
into four sections: The first section defines NEAT’s system parameters. The following section lists
parameters that are common to all experiments. Next, parameters that differ among the experiments
are listed and explained. The last section gives specific details about each experiment, including
parameters that are unique to different simulators. NEAT C++ source code is available on the web
at http://nn.cs.utexas.edu/keyword?neat . The experiments in this dissertation can
be reproduced with the source code and the parameter settings in this appendix

A.1 Definitions

There are 16 primary system parameters:

1. Weight Mutation Range: The maximum magnitude of a mutation that changes the weight
of a connection (Section 3.1).

2. c1: Coefficient representing how important excess genes are in measuring compatibility
(equation 3.1).

3. c2: Coefficient for disjoint genes (equation 3.1).

4. c3: Coefficient for average weight difference (equation 3.1).

5. Ct: Compatibility threshold (equation 3.1); when dynamic thresholding is used, this variable
determines the starting threshold.

6. Survival Threshold: Percentage of each species allowed to reproduce (Section 3.3).

7. Mutate Only Probability : Probability that a reproduction will only result from mutation and
not crossover .
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8. Add Node Probability: Probability a new node gene will be added to the genome (Section
3.1).

9. Add Link Probability : Probability a new connection will be added (Section 3.1).

10. Interspecies Mating Rate: Percentage of crossovers allowed to occur between parents of
different species (Section 3.3).

11. Mate By Choosing Probability: Probability that genes will be chosen one at a time from
either parent during crossover (Section 3.2).

12. Mate By Averaging Probability : Probability that matching genes will be averaged during
crossover (Section 3.2).

13. Mate Only Probability : Probability an offspring will be created only through crossover
without mutation.

14. Recurrent Connection Probability: Probability a new connection will be recurrent.

15. Population Size: Number of networks in the population.

16. Maximum Stagnation: Maximum number of generations a species is allowed to stay the
same fitness before it is removed. In competitive coevolution, the worst species is removed if
it has been around this many generations (Section 3.3).

17. Target Number of Species: Desired number of species in the population; used only in dy-
namic compatibility thresholding (Section 3.3).

The appropriate values for these parameters were found experimentally, as will be described
in the following sections. Many of them follow a logical pattern: For example, links need to be
added significantly more often than nodes, an average weight difference of 0.5 is about as significant
as one disjoint or excess gene, and the appropriate compatibility settings depend on factors explained
in detail in Section A.3. Through extensive experimentation, performance was found to be robust to
moderate variations in the parameter values.

A.2 Common Parameters

Table A.1 lists parameters that were the same across all experiments. In addition, a modified sig-
moidal transfer function,ϕ(x) = 1

1+e−4.9x , was used at all nodes. The steepened sigmoid allows
more fine tuning at extreme activations. It is optimized to be close to linear during its steepest ascent
between activations−0.5 and0.5.
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Parameter Value
c1 1.0
c2 1.0
Mutate Only Prob. 0.25
Mate By Choosing Prob. 0.6
Mate By Averaging Prob. 0.4
Mate Only Prob. 0.2
Recurrent Connection Prob. 0.2

Table A.1:Common parameter settings. These parameter values were used in every experiment.

Parameter DPM DPNM DP-SMALL Duel Adapt Go Auto NERO
Population Size 150 150 16 256 500 400 100 50
c3 0.4 3.0 3.0 2.0 2.0 2.0 3.0 0.4
Ct 3.0 4.0 12.0 3.0 6.0 8.0 3.0 4.0
Weight Mutation Power 2.5 1.8 3.5 2.5 2.5 1.5 0.1 0.5
Survival Threshold 0.2 0.4 0.3 0.2 0.2 0.2 0.2 1.0
Add Node Probability 0.03 0.001 0.001 0.0025 0.005 0.005 0.02 0.03
Add Link Probability 0.05 0.03 0.03 0.1 0.05 0.1 0.1 0.05
Interspecies Mating Rate 0.001 0.001 0.001 0.05 0.01 0.05 0.05 0.05
Maximum Stagnation 15 15 1,000 20 130 200 NA NA
Target Number of Species NA NA 2 20 20 20 8 4

Table A.2:Variable parameter settings. Across each row the values for a specific NEAT parameters are
listed for each experiment in the dissertation. The following abbreviations identify the experiments: DPM
= Double Pole Balancing Markov (also used for XOR); DPNM= Double Pole Balancing Non Markov; DP-
SMALL = Small Population Double Pole Balancing; Duel = Robot Duel; Adapt = Adaptive NEAT; Go =
Roving Eye for Go; Auto = Automobile Warning System; NERO = NeuroEvolving Robotic Operatives with
rtNEAT. Entries with “NA” indicate that parameter was not used in the experiment.

A.3 Variable Parameters

Several parameter values differed among the experiments (table A.2). Importantly, experiments
required different population sizes; for example, in pole balancing, population sizes were chosen
based on previous work. In NERO, the population was small so that the CPU could accommo-
date all the agents evolving simultaneously. In other experiments, the population was chosen to be
as large as possible to still allow at least 500 generations of evolution in under two weeks. The
population size affects several other parameters, and those parameters were also varied. For exam-
ple, larger populations can accommodate higher rates of structural mutation and more species since
there is more room to try new topologies. When the population is bigger, there is also more room
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to separate species based on weight differences in addition to topological differences. Other factors
affecting parameter values were how many generations the experiment takes to find a satisfactory
behavior, how difficult the task is, and whether evolution happens in real-time. For example, struc-
ture was added more slowly in more difficult domains to give the system time to optimize existing
connections. Table A.2 lists those parameters that differed among experiments.

A.4 Experiment-Specific Parameter Settings

Some experiments used additional parameters that are specific to a simulator or engine. This section
explains what those parameters are and gives their values or points to where they can be found.

A.4.1 Pole Balancing

The equations of motion forN unjointed poles balanced on a single cart (Section 4.2) are

ẍ =
F − µcsgn(ẋ) +

∑N
i=1 F̃i

M +
∑N

i=1 m̃i

θ̈i = − 3
4li

(ẍ cos θi + g sin θi +
µpiθ̇i

mili
)

WhereF̃i is the effective force from the ith pole on the cart

F̃i = miliθ̇2
i sin θi +

3
4
mi cos θi(

µpiθ̇i

mili
+ g sin θi)

andm̃i is the effective mass of the ith pole

m̃i = mi(1 −
3
4

cos2 θi)

Parameters for the double pole problem are listed in table A.3.

A.4.2 Robot Duel

Unlike in the other experiments, two separate populations were coevolved in the robot duel experi-
ments (Section 5.1).

Robot motion was simulated as follows. The turn angleθ is determined asθ = 0.24|l − r|,
where l is the output of the left turn neuron, andr is the output of the right turn neuron. The
robot moves forward a distance of1.33f on the 600 by 600 board, wheref is the forward motion
output. These coefficients were calibrated experimentally to achieve accurate and smooth motion
with neural outputs between zero and one.
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Sym. Description Value

x Position of cart on track [-2.4,2.4] m
θ Angle of pole from vertical [-36,36] deg.
F Force applied to cart [-10,10] N
li Half length of ith pole l1 = 0.5m

l2 = 0.05m
M Mass of cart 1.0 kg
mi Mass of ith pole m1 = 0.1 kg &m2 = 0.01 kg
µc Coefficient of friction 0.0005

of cart on track
µp Coefficient of friction 0.000002

if i th pole’s hinge

Table A.3:Simulation parameters for the double pole domain.

A.4.3 Adaptive NEAT

With the plastic networks, genomes contained four rules with values forη1 andη2 (Section 6.2).
The first rule was fixed at zero to allow genes to encode fixed connection weights that do not adapt.
The probability of mutating the parameters of a rule was 0.3, in which case each parameter mutated
with a probability of 0.2 by adding a uniform random value between 0 and 0.5. A connection gene
had a 0.05 chance of being pointed to a different rule.

The learning rules affect how compatible network genomes are. Thus they were factored
into network compatibility calculations. The average difference in learning rule parameter values
was added toW in calculating the compatibility of two genes. That way, speciation took into
account learning rule differences in addition to topology and weight differences.

A.4.4 Roving Eye for Go

In the Go experiments (Section 7.4), except when the 5×5 champion was used to start 7×7 evolu-
tion, the starting genome had several sensors initially disconnected. That way, NEAT could start
in a lower-dimensional space and decide on its own which sensors to use. Specifically, the out-of-
range sensors all started out disconnected, and the front-left, front-right, back-left, back-center, and
back-right sensors were disconnected from the network. However, these sensors were still present
in the genome and were frequently eventually connected to the network by NEAT over the course
of evolution.

A.4.5 Automobile Warning System

The complete physics model used in RARS (Section 8.2) is described and source code is available
athttp://rars.sourceforge.net/ .
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A.4.6 NeuroEvolving Robotic Operatives

In NERO (Section 9.3), the percentage of the population allowed to be ineligible at one time was
50%. The number of ticks between replacements is 20 and the minimum evaluation time is 500.
The number of ticks between replacements can also be derived from equation 9.3. NERO physics
is controlled by the Torque Engine, which is licensed from GarageGames
(http://www.garagegames.com/ ).
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