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Abstract

In competitive coevolution, the goal is to estab-
lish an “arms race” that will lead to increasingly
sophisticated strategies. The existing methods
for monitoring progress in coevolution are de-
signed to demonstrate that the arms race indeed
occurred. However, two issues remain: (1) How
can progress be monitored efficiently so that every
generation champion does not need to be com-
pared to every other generation champion? (2)
How can a monitoring method determine whether
strictly more sophisticated strategies are discov-
ered as the evolution progresses? We introduce a
new method for tracking progress, the dominance
tournament, which provides an answer to both
questions. The dominance tournament shows how
different coevolution runs continue to innovate
for different periods of time, reveals the precise
generation in each run where stagnation occurs,
and identifies the best individuals found during
the runs. Such differences are difficult to detect
using standard techniques but are clearly distin-
guished in a dominance tournament, which makes
this method a highly useful tool in understanding
progress in coevolution.

1 INTRODUCTION

In competitive coevolution, two or more populations of in-
dividuals evolve simultaneously in an environment where
an increased fitness in one population leads to a decreased
fitness for another. Ideally, competing populations will con-
tinually outdo one another, leading to an ”arms race” of
increasing sophistication (Dawkins and Krebs 1979; Van
Valin 1973). An important question is: How can we es-
tablish that the strategies indeed become more sophisticated
over time?

Master tournament is currently the most common method
for monitoring coevolution. The champion of every gen-

eration is compared to the champions of all prior genera-
tions, or to the champions of all generations in the entire
run (Cliff and Miller 1995; Floreano and Nolfi 1997). The
results can be depicted graphically by plotting the number
of other champions defeated by each generation champion.
If evolution makes progress, the graph should show that the
higher the generation, the more opponents the champion can
beat.

Although this method for monitoring progress can reveal a
general trend in increasing capacity to defeat prior strate-
gies, it has several shortcomings. The most obvious prob-
lem is computational complexity. If every champion is to
be compared to every other champion, the time to complete
an analysis can take weeks, or even years. For example, if
a multi-trial comparison takes one minute, monitoring 500
generations of progress would take almost three months!
Therefore, it is often only possible to make single trial com-
parisons between champions, which are often inaccurate.

Second, a master tournament does not clearly indicate
whether an arms race took place. Although the master tour-
nament may show that the champion of a given generation
can defeat many other generation champions, such results
do not take into account which strategies can be defeated
and thereby does not identify circularities. For example, al-
though a strategy from late in a run may defeat more gen-
eration champions than an earlier strategy, the later strategy
may not be able to defeat the earlier strategy itself! Con-
versely, it is possible that although two strategies can de-
feat an equal proportion of generation champions, one may
still easily defeat the other. To demonstrate an arms race,
it is necessary to verify that as more sophisticated strategies
are developed, they can indeed defeat the most sophisticated
strategies that were found earlier. Because the master tour-
nament does not provide such a verification, its results can
be misleading.

To address these two issues, we developed the dominance
tournament method of tracking progress in competitive co-
evolution. The method does not require comparing ev-
ery champion with every other champion, thereby sav-



ing computation time and allowing more accurate compar-
isons. Moreover, the dominance tournament identifies a
ranking of increasingly sophisticated strategies, such that
every newly identified dominant strategy defeats all prior
dominant strategies. With such a guarantee, the dominance
tournament provides proof of progress.

In this paper, we monitor progress in a complex compet-
itive robot duel domain using both the dominance tourna-
ment and master tournament. Neural network controllers for
the robots were evolved using NeuroEvolution of Augment-
ing Topologies (NEAT; Stanley and Miikkulainen 2002b,c),
which allows complexification of neural networks over the
course of evolution. We examine two runs of evolution, each
with a different coevolution method, so that the monitor-
ing techniques have a chance to detect differences between
the two runs. The first evolution run used fully-functional
NEAT, while the second used a disabled version of NEAT
that evolves only fixed-topologies. In the first run, the dom-
inance tournament demonstrated progress in evolution that
the master tournament was unable to detect. In the second
run, the dominance tournament identified the specific gener-
ation where progress began to stagnate, whereas the master
tournament could not.

We begin by describing the NEAT neuroevolution method,
followed by a description of the robot duel domain and a
detailed discussion of monitoring progress.

2 NEUROEVOLUTION OF
AUGMENTING TOPOLOGIES (NEAT)

The NEAT method of evolving artificial neural networks
combines the usual search for appropriate network weights
with complexification of the network structure, allowing
competitive coevolution to evolve both increasingly optimal
and increasingly complex structures. Increasing the com-
plexity of networks over evolution allows NEAT to elab-
orate on evolved strategies by adding new functionality to
them. In this section a brief overview of NEAT is provided;
see Stanley and Miikkulainen (2002c) for a complete de-
scription. In this paper, we will use the comparison of NEAT
and fixed-topology neuroevolution as a test case. By using
NEAT, we are able to compare evolution where structures
complexify with evolution where they do not. Methods for
monitoring progress should reveal differences between the
two kinds of evolution.

NEAT begins evolution with neural networks with no hid-
den nodes. This way, NEAT searches the smallest, most
efficient topologies first. If those topologies are insufficient,
new nodes and connections are added through mutation,
providing additional space for more complex solutions.

Crossover is possible in NEAT because the historical origin
of every new gene is tracked by the system. Every new gene
resulting from a mutation is assigned an innovation number.

Offspring inherit the same innovation numbers on genes as
were present in their parents. When genomes cross over,
genes with matching innovation numbers are lined up, al-
lowing NEAT to match up different network structures with-
out expensive topological analysis.

Adding new structure to existing networks can initially re-
duce fitness, causing innovative structures to disappear from
the population prematurely. In order to protect new struc-
ture, NEAT speciates the population based on topological
similarity among networks: Networks with similar topolo-
gies are grouped into the same species. NEAT is able to
measure topological similarity using the historical markings
which indicate which genes represent the same structural
building blocks.

Explicit fitness sharing (Goldberg and Richardson 1987) is
used for reproduction in the speciated population. In explicit
fitness sharing, networks in the same species share the fit-
ness of the niche, thereby preventing crowding around sin-
gle solutions. Because of fitness sharing, no single species
can take over the population. Thus, a large variety of topolo-
gies can evolve simultaneously with little interference from
each other. The result is that innovative topologies are pro-
tected in their own niches where they have a chance to opti-
mize before competing with the population at large.

The NEAT system implements complexifying coevolution
because networks become more complex as they become
more sophisticated. Complexifying coevolution should re-
sult in more sustained progress and more sophisticated final
strategies than evolving fixed-topology networks. In this pa-
per, the dominance tournament method will be compared
against other analysis methods in verifying this hypothesis.

3 THE ROBOT DUEL DOMAIN

To demonstrate the utility of different monitoring tech-
niques, a domain is needed where it is possible to develop
increasingly sophisticated strategies and where the sophis-
tication can be readily measured. Pursuit and evasion tasks
have been utilized for this purpose in the past (Gomez and
Miikkulainen 1997; Jim and Giles 2000; Miller and Cliff
1994), and can serve as a benchmark domain for compet-
itive coevolution as well. While past experiments evolved
either a predator or a prey, an interesting coevolution task
can be established if the agents are instead equal and en-
gaged in a duel. To win, an agent must develop a strategy
that outwits that of its opponent, utilizing structure in the
environment.

In the robot duel domain, two simulated robots try to over-
power each other (figure 1). The two robots begin on op-
posite sides of a rectangular room facing away from each
other. As the robots move, they lose energy in proportion
to the amount of force they apply to their wheels. Although
the robots never run out of energy (they are given enough



Figure 1: The Robot Duel Domain. The robots begin on op-
posite sides of the board facing away from each other as shown
by the lines pointing away from their centers. The concentric
circles around each robot represent the separate rings of oppo-
nent sensors and food sensors available to each robot. Each
ring contains five sensors, which appear larger or smaller de-
pending on their activations. From this initial position, nei-
ther robot has a positional advantage. The robots lose energy
when they move around, yet they can gain energy by consum-
ing food (shown as black dots). The food is placed in a hor-
izontally symmetrical pattern around the middle of the board.
The objective is to attain a higher level of energy than the op-
ponent, and then collide with it. Because of the complex inter-
action between foraging, pursuit, and evasion behaviors, the do-
main allows for a broad range of strategies of varying sophistica-
tion. Animated demos of the robot duel domain are available at
www.cs.utexas.edu/users/nn/pages/research/neatdemo.html.

to survive the entire competition), the robot with higher en-
ergy can win by colliding with its competitor. In addition,
each robot has a sensor indicating the difference in energy
between itself and the other robot. To keep their energies
high, the robots can consume food items, arranged in a sym-
metrical pattern in the room.

The robot duel task supports a broad range of sophisticated
strategies that are easy to observe and interpret without ex-
pert knowledge. The competitors must become proficient
at foraging, prey capture, and escaping predators. In addi-
tion, they must be able to quickly switch from one behavior
to another. The task is well-suited to competitive coevolu-
tion because naive strategies such as forage-then-attack can
be complexified into more sophisticated strategies such as
luring the opponent to waste its energy before attacking.

The simulated robots are similar to Kheperas (Mondada
et al. 1993). Each has two wheels controlled by separate
motors. Five rangefinder sensors can sense food and an-
other five can sense the other robot. Finally, each robot has
an energy-difference sensor, and a single wall sensor.

The robots are controlled with neural networks evolved with
both NEAT and fixed-topology neuroevolution. The net-
works receive all of the robot sensors as inputs, as well as
a constant bias that can be used to change the activation
thresholds of neurons. They produce three motor outputs:
Two to encode rotation either right or left, and a third to
indicate forward motion power.

This complex robot-control domain allows competitive co-
evolution to evolve increasingly sophisticated and complex
strategies, and can be used to benchmark coevolution meth-
ods. Thus, it serves as a useful testbed for different methods
of monitoring progress.

4 EXPERIMENTS

We ran one run of evolution with full NEAT, and one run
with NEAT’s complexification capability turned off. In the
latter run, fixed-topology networks were evolved with 10
hidden nodes. The master tournament and dominance tour-
nament were used to identify any differences between the
complexifying coevolution and fixed-topology coevolution
runs. The experimental methodology is described below.

4.1 COMPETITIVE COEVOLUTION SETUP

In each evolution run, 2 populations, each containing 256
genomes, were evolved simultaneously. In each generation,
each population was evaluated against a sample of networks
from the other population. The population currently being
evaluated is called the host population, and the population
from which opponents are chosen is called the parasite pop-
ulation (Rosin and Belew 1997). The parasites are chosen
for their quality and diversity, making such host/parasite
evolution more efficient and more reliable than random or
round robin tournament.

A single fitness evaluation included two trials, one for the
east and one for the west starting position. That way, net-
works needed to implement general strategies for winning,
independent of their starting positions. Host networks re-
ceived a single fitness point for each win, and no points for
losing. If a competition lasted 750 time steps with no win-
ner, the host received no points.

In selecting the parasites for fitness evaluation, good use can
be made of the speciation and fitness sharing that already
occur in NEAT (the fixed-topology run was also able to spe-
ciate based on weight differences). Each host was evaluated
against the champions of four species with the highest fit-
ness. They are good opponents because they are the best of
the best species, and they are guaranteed to be diverse be-
cause their compatibility must be outside the threshold for
being grouped into the same species (section 2). Another
eight opponents were chosen randomly from a Hall of Fame
(Rosin and Belew 1997) that contained population champi-
ons from all generations. Together, speciation, fitness shar-
ing, and Hall of Fame comprise a state of the art competitive
coevolution methodology. The next section describes how
progress in competitive coevolution can be monitored.

4.2 MONITORING PROGRESS

We will track progress in coevolution with the master tour-
nament and dominance tournament techniques. First, the



master tournament method is reviewed , followed by a dis-
cussion of how the superiority of one strategy over another
can be established. Using this definition of superiority, a
dominance tournament is used to reveal a ranking of in-
creasingly sophisticated strategies.

4.2.1 Master Tournament

In master tournament, the champion of each generation is
compared to all other generation champions (Floreano and
Nolfi 1997). The master tournament is an extension of CIAO
(current individual vs. ancestral opponents; Cliff and Miller
1996), in which every champion plays against all preceding
champions. By counting the number of wins by each gener-
ation champion against every other generation champion, it
is possible to see whether progress is being made over time.

In order to track progress in either the master tournament or
dominance tournament, we need to be able to tell whether
one strategy is better than another. Because a single trial
evaluation may not be accurate, it is necessary for each
champion to play multiple trials to reduce error. In the mas-
ter tournament, the error for a particular generation cham-
pion is reduced by playing against every other generation
champion. However, the master tournament does not re-
veal whether a specific ranking of increasingly sophisticated
strategies exists. Thus, the question remains, what if we
wanted specific information about which strategy is supe-
rior to which in a single pairing?

It is possible to reduce the error in specific comparisons
using multiple trials between the same two strategies with
slightly different initial conditions. However, this approach
can take too much time for the master tournament. Given� generations and

�
trials for each of the � ��� �� pairings, a

complete master tournament would take a total of
��� � � � ��
	

trials. If both
�

and � are high, the duration of the tourna-
ment can take weeks or months. Thus, for the master tour-
nament, it is necessary to keep

�
down to one or two. For

the robot competition, we use
����

, such that one trial is
played from each of the two starting positions.

4.2.2 Dominance Tournament

Unlike the master tournament, the dominance tournament,
as explained below, does not examine all � �

� �� possible
pairings of champions, and therefore can afford

���������
.

Thus, for the dominance tournament, networks were com-
pared on 144 different food configurations from each side
of the board, or 288 total. The food configurations included
the same 9 symmetrical food positions used during training,
plus an additional 2 food items, which were placed in one
of 12 different positions on the east and west halves of the
board. Some starting food positions give an initial advan-
tage to one robot or another, depending on how close they
are to the robots’ starting positions. We say that network �

is superior to network � if � wins more comparisons than �
out of the 288 total. The high number of trials affords an
accurate measure of superiority.

The dominance tournament is based on the philosophy that
in order to track strategic innovation, we need to identify
dominant strategies, i.e. those that defeat all previous dom-
inant strategies. This way, we can make sure that evolution
proceeds by developing a progression of strictly more pow-
erful strategies, instead of e.g. switching between alterna-
tive ones.

Let a generation champion be the winner of a 288 game
comparison between the two population champions of a sin-
gle generation. Let ��� be the � th dominant strategy to appear
in the evolution. Then dominance is defined recursively:1

� The first dominant strategy ��� is the generation cham-
pion of the first generation;

� dominant strategy � � , where � ���
, is a generation

champion such that for all  "!#� , ��� is superior to �%$
(i.e. wins the 288 game comparison).

This strict definition of dominance prohibits circularities.
For example, �%& must be superior to strategies ��� through
�%' , ��' superior to both �(� and � � , and � � superior to �(� . We
call � � the � th dominant strategy of the run. The entire pro-
cess of deriving a dominance ranking from a population is
a dominance tournament, where competitors play all previ-
ous dominant strategies until they either lose a 288 game
comparison, or win every comparison to previous domi-
nant strategies, thereby becoming a new dominant strategy.
Dominance tournaments require significantly fewer com-
parisons than the master tournament or CIAO techniques,
because there are usually far fewer dominant strategies than
total strategies in the population.

Dominant strategies must only defeat prior dominant strate-
gies. It is possible that some prior strategy can defeat a
dominant strategy. However, such strategies would not in-
validate the dominance tournament: They simply indicate
that some idiosyncratic strategies exist that are able to de-
feat specific dominant strategies. They do not themselves
belong in the ranking, because they cannot defeat the entire
ranking. Such a result is hardly surprising; many cases ex-
ist in natural evolution where an unsophisticated organism
(such as a parasite) is optimized to defeat a specific higher
organism (Hotez and Pritchard 1995; Walden 1991). Such
cases can be viewed as a natural consequence of evolution
even when rankings of increasing sophistication emerge.

Note that although the dominance tournament in this paper
is applied to a competition in which opponents play equiv-
alent, interchangeable roles, it is also applicable when pop-
ulations are coevolved for different roles, such as predators

1Our definition of dominance is similar though not identical to
the definition of a transitive chain (Rosin 1997, p.19).
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Figure 2: Master Tournament and Dom-
inance Tournament Results. The graphs
on the left side depict results from complex-
ifying coevolution. On the right are results
from fixed-topology coevolution. The upper
graphs are plots of master fitness, which is
the total number of wins for each generation
champion against all other generation cham-
pions. The lower graphs are shaded for every
point where a generation champion on the )
axis defeated another generation champion in
a two-trial comparison. From these graphs,
it is difficult to tell whether either coevolu-
tion methodology produced better results. In
contrast, dominance tournament results, rep-
resented as tick marks on the graphs for every
generation in which a new dominant strategy
appeared, reveal that new dominant strategies
continued to evolve for significantly longer in
complexifying coevolution. It is difficult to
identify the best individual from the master
tournament, whereas it is well defined in the
dominance tournament.

and preys. Instead of requiring each new dominant strategy
to defeat all previous dominant strategies, a strategy would
only have to defeat all previous dominant strategies from
the opposing population. For example, the first dominant
strategy would be a prey from the first generation, and the
second dominant strategy would be the first predator to de-
feat that prey. The third one would be the first prey that
the second dominant (predator) strategy could not defeat.
The fourth one would be the first predator that can defeat
both the first dominant (prey) strategy and the third domi-
nant (prey) strategy, and so on. This way, although e.g. a
predator cannot be directly compared to another predator,
a ranking of dominant strategies can still be constructed by
alternating predators and preys in the ranking. Thus, dom-
inance tournament analysis is applicable to a wide range of
competitive scenarios.

The next section addresses a key question about monitoring
techniques: Does the dominance tournament demonstrate a
ranking when other methods do not?

5 RESULTS

Through extensive head-to-head comparisons, we found
that complexifying coevolution consistently produces bet-
ter strategies than fixed-topology coevolution (Stanley and
Miikkulainen 2002a). The question for this paper is: How
well do the master tournament and dominance tournament
methods illustrate this result? In this section, we answer this
question by analyzing two typical runs of robot duel evolu-
tion.

Figure 2 shows the results of the analyses. Because the op-
ponents play interchangeable roles in the robot duel, the
master tournament depicts progress of generation champi-
ons over both populations. Although the master fitness of
the complexifying runs increases for slightly longer to a
slightly higher level, it is difficult to judge whether one evo-
lution run was more effective than the other at producing
increasingly sophisticated strategies.

In contrast, dominance tournament analysis shows that com-
plexifying coevolution innovated longer and maintained
higher performance. Complexifying coevolution produced
17 levels of dominance, in generations 1, 3, 5, 11, 23, 24,
27, 29, 37, 100, 132, 133, 153, 215, 216, 332, and 380 (iden-
tified as tick marks in figure 2). In contrast, fixed-topology
coevolution produced fewer total levels of dominance and
stagnated significantly earlier in evolution. Only 14 levels
of dominance arose in this run in generations 1, 3, 11, 21,
26, 29, 30, 41, 43, 76, 79, 89, 119, and 169.

Several important conclusions can be drawn from the domi-
nance tournament that the master tournament does not re-
veal. First, complexifying coevolution continued finding
better strategies for over 200 more generations than fixed-
topology evolution. Second, both runs show that in general
the higher the level of dominance, the more generations it
takes to reach the next level. Thus, the 15th, 16th, and 17th
levels of dominance represent more significant steps in so-
phistication than the 12th, 13th, and 14th, implying that the
17th level of dominance reached by complexifying coevo-



lution is significantly higher than the 14th level reached by
fixed-topology coevolution. Indeed, when we ran a 288-
trial comparison between these strategies, the 17th domi-
nant strategy won 221 of the 288 trials. Such a comparison,
determining the absolute best strategy over two runs, could
not be made using data from the master tournament, because
it does not identify any specific transition points, and those
competitions it does record are prone to error because they
only comprise two trials.

A third interesting aspect of evolution revealed by the dom-
inance tournament is the number of times a champion was
able to defeat some but not all of the dominance ranking.
Such failures to enter the ranking represent strategic circu-
larities. It is just such circularities that we hope to avoid in
establishing the arms race in competitive coevolution, so be-
ing able to identify and count them is a crucial gauge of the
efficacy of a method. In the complexifying coevolution run,
such circularities occurred 48 times, while they occurred 93
times, almost twice as often, in fixed-topology coevolution.
Of those 93, 63 took place after the last dominant strat-
egy evolved, indicating that fixed-topology coevolution was
much more likely to suffer from circularities, to the point
where they stifled its ability to continue to innovate.

Fourth, the master tournament analysis used 124,750 com-
parisons, while the dominance tournament averaged only
738 comparisons to analyze a single run of 500 genera-
tions. By allocating 288 trials per comparison, the dom-
inance tournament utilized a total of 212,400 trials, while
the master tournament utilized 249,500 trials at 2 trials per
comparison. This comparison makes sense because there is
usually a fixed amount of computation time available for the
analysis. The time saved in comparisons can be used to run
more trials per comparison, thereby achieving significantly
better accuracy.

6 DISCUSSION AND FUTURE WORK

Given that the dominance tournament reveals important
contrasts between the two runs, why did the master tourna-
ment fail to do so? One of the reasons is that although evo-
lution may produce a generally increasing trend in strategic
sophistication throughout a run, the trend over a small win-
dow of generations suffers from enormous variance. Such
a variance makes the graphs in figure 2 particularly diffi-
cult to follow. Specific individuals may temporarily exploit
some weakness in more general and sophisticated strategies,
thereby obfuscating the underlying ranking for a while. In
contrast, the dominance tournament identifies generations
where lasting strategic transitions took place, as well as
those where circularities occurred, giving a more reliable
picture of the progress of evolution.

An interesting comparison can be made between the dom-
inance tournament method and Pareto coevolution (Ficici

and Pollack 2001; Noble and Watson 2001). Pareto coevo-
lution is a method for guiding selection based on dominance
within one generation. A ranking of Pareto layers is con-
structed by iteratively finding all non-dominated individu-
als in the population. These individuals are removed from
the population before the next Pareto layer is found. Thus,
the Pareto layers partition a single generation into progres-
sively lower rankings, providing a gradient for evolution to
climb: The highest-ranking layers reproduce in proportion
to their ranking to form the next generation. In contrast,
in the dominance tournament, dominance is a ranking be-
tween individual champions from different generations and
describes progress throughout evolution. Thus, the two no-
tions of dominance are significantly different, in addition to
being used for different purposes.

It may be possible to extend Pareto-layer ranking across
generations using the data returned by a master tournament.
The highest ranking Pareto layer would correspond to the
final generations of evolution, giving evidence of progress.
However, Ficici and Pollack (2001) report that in some cases
the highest ranking layer may contain as much as 75% of
the population. Thus, such analysis would be quite coarse-
grained compared to the dominance tournament. In addi-
tion, like the master tournament, Pareto-layer ranking re-
quires every strategy to play every other strategy, making
it computationally expensive. Third, a Pareto-layer ranking
of champions would not identify specific transition points
that could be used for further analysis, unless the partition-
ing happens to perfectly correspond to contiguous genera-
tions. Still, Pareto coevolution and the dominance tourna-
ment both demonstrate that dominance rankings are well-
suited to analysis of coevolutionary problems.

An important question for any analysis method is how it can
be applied across many runs in order to make results more
reliable. Information about progress returned by the dom-
inance tournament can be combined in four ways (Stanley
and Miikkulainen 2002a):

� The highest level of dominance achieved can be aver-
aged across all trials of a particular method. The aver-
age level reached by one method can be compared to
that of another, suggesting that one method continues
to innovate longer than the other.

� The highest dominant strategy of each run can be di-
rectly compared to the entire dominance ranking in ev-
ery run of a competing method by playing the strate-
gies against each other. The result indicates the equiv-
alent dominance level i.e. the highest level that one
method can defeat from the dominance rankings of an-
other method on average. If one method can defeat
only the first few tiers of another method’s dominance
ranking, then the second method is better.

� Complementing the equivalent dominance level, equiv-



alent generation represents the average number of gen-
erations it takes for a superior method to find a strategy
that defeats the highest level of dominance achieved by
an inferior method.

� Any population statistic can be correlated with increas-
ing levels of dominance. For example, it is possible to
graph the average number of nodes and connections
in the highest dominant strategies from each genera-
tion of NEAT evolution, revealing that as dominance
increases, so does network complexity. Thus, the dom-
inance tournament affords a variety of ways to analyze
performance across multiple trials.

Another important question is how the method should be
initialized, i.e. how the first dominant strategy should be
chosen. In this paper, the champion of the first generation
is used for this purpose. This choice is natural because its
strategy is poor enough that almost any generally superior
strategy can defeat it. Any such poor strategy could be used
without changing the results. However, it may be better to
make the initialization more general. For example, several
champions from the first few generations could be used as
the first tier of strategies that must be defeated in order to en-
ter the ranking. This way, the first step is harder to achieve,
possibly making the lower levels of the ranking more mean-
ingful. Such choices will be evaluated in future work.

7 CONCLUSION

The dominance tournament and master tournament provide
complementary information. The master tournament gives a
general feeling for the progress of a run, and the dominance
tournament gives the specific details necessary for drawing
strong conclusions. Most importantly, whereas it is difficult
to identify the best individual from a master tournament, the
result is well defined in a dominance tournament. Had we
used the master tournament alone, it is likely we would have
concluded that neither methodology led to a better evolu-
tion run, even though the best individuals from complex-
ifying coevolution were much better than the best of the
fixed-topology run. From the dominance tournament, we
were able to conclude further that the arms race continued
for significantly longer and to a significantly higher level
of sophistication in complexifying coevolution compared to
fixed-topology coevolution. Third, the dominance tourna-
ment does not require comparing every champion to every
other champion, and it allows quickly testing specific claims
about levels of sophistication by making specific compar-
isons between different runs. This way, the dominance tour-
nament allows us to gain significant new insight into how
progress is made in coevolution.
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