
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003) Late Breaking Papers

Evolving Adaptive Neural Networks with and without Adaptive Synapses

Kenneth O. Stanley
Dept. of Computer Sciences

The University of Texas at Austin
Austin, TX 78705

kstanley@cs.utexas.edu

Risto Miikkulainen
Dept. of Computer Sciences

The University of Texas at Austin
Austin, TX 78705

risto@cs.utexas.edu

Abstract

A potentially powerful application of evolution-
ary computation (EC) is to evolve neural net-
works for automated control tasks. However,
in such tasks environments can be unpredictable
and fixed control policies may fail when condi-
tions suddenly change. Thus, there is a need
to evolve neural networks that can adapt, i.e.
change their control policy dynamically as con-
ditions change. In this paper, we examine two
methods for evolving neural networks with dy-
namic policies. The first method evolves re-
current neural networks with fixed connection
weights, relying on internal state changes to lead
to changes in behavior. The second method
evolves local rules that govern connection weight
changes. The surprising experimental result is
that the former method can be more effective
than evolving networks with dynamic weights,
calling into question the intuitive notion that net-
works with dynamic synapses are necessary for
evolving solutions to adaptive tasks.

1 Introduction

In evolutionary computation (EC), evolved solutions are
usually static: Their parameters do not change during per-
formance. However, in many important control problems,
the environment may change suddenly or gradually, and
to maintain sufficient performance, the controller needs to
adapt to it online. For example, a robot may lose a sensor
or an airplane may lose an engine and there may not be any
opportunity to re-evolve controllers for such unexpected
circumstances. Adaptation is necessary also to make the
controllers general. For example, a controller evolved for
driving a car should work for any car, even if the dimen-
sions and mechanics are slightly different from its training
models.

Natural organisms are constantly faced with unforeseen cir-
cumstances and generally adapt to them very well. They
can do it because their nervous systems are plastic, i.e.
not fixed at birth. Thus, one way to achieve adaptive so-
lutions is to evolve neural networks with plastic synapses,
i.e. adaptive networks. Evolution can discover parameteri-
zations that lead to robust adaptability.

Several researchers have evolved neural systems that learn.
Nolfi and Parisi used backpropagation inside evolved net-
works to make predictions about future states (Nolfi et al.
1990, 1994) and also for a network to train itself (Nolfi
and Parisi 1993, 1995). Chalmers (1990) evolved a global
learning rule that turned out to be similar to the delta rule.
McQuesten and Miikkulainen (1997) showed that parent
networks can teach their offspring using backpropagation.
These experiments showed that general learning mech-
anisms can improve performance of evolved neural net-
works.

However, the goal of evolving adaptive neural networks is
different from evolving networks that simply utilize learn-
ing. The goal is to find specific learning mechanisms that
are optimized to adapt to new or changed problems that
can arise in the domain. In a significant demonstration of
the power of this approach, Floreano and Urzelai (2000)
evolved neural networks with local synaptic plasticity pa-
rameters and compared them to fixed-weight networks in
a two-step task. The networks were evolved to turn on a
light, and then move to a gray square. The local learning
rules, they found, helped networks quickly alter their func-
tionality, facilitating a policy transition from one task to
another.

While Floreano and Urzelai’s experiment demonstrated
that evolving local learning rules can be useful, a further
question is whether such adaptation is actually necessary
in tasks that require adaptation. In such tasks the cor-
rect policy depends on an aspect of the environment that
varies randomly from one trial to the next and is not imme-
diately observable but must be discovered through explo-

ration. Since synaptic plasticity allows natural organisms
to adapt to novel situations, we would expect plastic neu-
rons to allow artificial neural networks to adapt similarly.
Yet although synaptic plasticity facilitates such adaptation,
recurrent networks with fixed weights can also respond dif-
ferently in changing environmental conditions. Thus, two
important questions are, (1) are plastic synapses necessary
to adapt to changing environments, and (2) does adding
local learning rules support the network’s ability to adapt
when necessary? To answer these questions, we evolved
fixed-weight networks and adaptive neural networks in a
food foraging domain designed to require a policy change
during the network’s lifetime. We used the NeuroEvolution
of Augmenting Topologies (NEAT) method, augmented
with a facility for evolving local Hebbian learning rules for
specific connections in the network. Thus, the connection
weights could change over the network’s lifetime according
to different evolved rules at each connection.

The results indeed confirmed that networks with evolved
plasticity were able to adapt to change in the environment.
However, the experiments also yielded a surprising result:
recurrent networks with fixed connection weights could
also solve the task. Moreover, the fixed-weight networks
did so faster and more reliably than the adaptive networks.
Evolution found an alternative, clever way of implementing
adaptation in this problem: the recurrent network changes
its internal state to change the behavior policy of the net-
work. This result implies that adaptation does not always
require synaptic plasticity, although evolution can utilize
plasticity if it is available. Further, because local learn-
ing parameters expand the genetic search space, which can
make finding a solution more difficult, local learning may
not always be the right approach for adaptive tasks.

We begin the paper by describing the NEAT method for
evolving neural networks, and how NEAT was augmented
to evolve learning parameters in addition to connection
weights. We then describe the food foraging domain used
in the experiments, and present the results.

2 Adaptive NeuroEvolution of Augmenting
Topologies

The parameter space being searched in the space of adap-
tive networks is much larger than for static networks. In
addition to connection weights, several learning parame-
ters must be evolved for each learning rule at each con-
nection. Thus, it is important to minimize the number of
connections optimized by evolution. In addition, the topol-
ogy of the network has to be optimized. It is necessary to
have connections between the right nodes, so that the con-
nections can be strengthened or weakened to change the
relationship between the computational concepts they rep-

resent.

In order to discover minimal effective adaptive topolo-
gies, we used the NeuroEvolution of Augmenting Topolo-
gies (NEAT) method (Stanley and Miikkulainen 2002d).
NEAT combines the usual search for appropriate network
weights with complexification of the network structure.
This approach is highly effective: NEAT outperforms
other neuroevolution (NE) methods, e.g. on the bench-
mark double pole balancing task (Stanley and Miikkulai-
nen 2002c,d). In addition, because NEAT starts with sim-
ple networks and expands the search space only when ben-
eficial, it is able to find significantly more complex con-
trollers than fixed-topology evolution, as demonstrated in
a robotic strategy-learning domain (Stanley and Miikkulai-
nen 2002a,b). These properties make NEAT an attractive
method for evolving adaptive neural networks.

In this section, we briefly review the original NEAT
method, and further describe how it can be extended to ef-
ficiently evolve parameters for learning functions at each
synapse.1

2.1 Genetic Encoding with Historical Markings

Evolving network structure requires a flexible genetic en-
coding. Each genome in NEAT includes a list of connec-
tion genes, each of which refers to two node genes being
connected. Each connection gene specifies the in-node, the
out-node, the weight of the connection, whether or not the
connection gene is expressed (an enable bit), and an inno-
vation number, which allows finding corresponding genes
during crossover.

Mutation in NEAT can change both connection weights and
network structures. Connection weights mutate as in any
NE system, with each connection either perturbed or not.
Structural mutations, which allow complexity to increase,
either add a new connection or new node to the network
(figure 1). Through mutation, genomes of varying sizes are
created, sometimes with completely different connections
specified at the same positions.

In order to perform crossover, the system must be able to
tell which genes match up between any individuals in the
population. NEAT keeps track of which genes line up with
which by keeping track of the historical origin of every
gene. Whenever a new gene appears (through structural
mutation), a global innovation number is incremented and
assigned to that gene. The innovation numbers thus repre-
sent a chronology of every gene in the system (figure 1).
Whenever these genomes crossover, innovation numbers
on inherited genes are preserved. Thus, the historical origin
of every gene in the system is known throughout evolution.

1A more comprehensive description of the NEAT method is
given by Stanley and Miikkulainen (2002d).

1

1

1

1

2

2

2

2

3

3

3

3
6

5

5

5

5

4

4

4

4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>4

1−>5

1−>5

1−>5

1−>5

3−>5

3−>66−>4

DIS

DIS DIS

DIS

DIS

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node

Figure 1: The two types of structural mutation in NEAT. Both
types are illustrated with the genes above their phenotypes. The
top number in each gene is the innovation number of that gene.
The bottom two numbers denote the two nodes connected by that
gene. The weight of the connection, also encoded in the gene,
is not shown. The symbol DIS means that the gene is disabled.
Assuming the depicted mutations occurred one after the other, the
genes would be assigned increasing innovation numbers as the
figure illustrates.

Through innovation numbers, the system now knows ex-
actly which genes match up with which. Genes that do not
match are either disjoint or excess, depending on whether
they occur within or outside the range of the other parent’s
innovation numbers. When crossing over, the genes in both
genomes with the same innovation numbers are lined up.
Genes that do not match are inherited from the more fit par-
ent, or if they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover
without the need for expensive topological analysis.
Genomes of different organizations and sizes stay compati-
ble throughout evolution, and the problem of matching dif-
ferent topologies (Radcliffe 1993) is essentially avoided.

2.2 Protecting Innovation through Speciation

Adding new structure to a network usually initially reduces
fitness. However, NEAT speciates the population, so that
individuals compete primarily within their own niches in-
stead of with the population at large. This way, topological
innovations are protected and have time to optimize their
structure before they have to compete with other niches in
the population.

Historical markings make it possible for the system to di-
vide the population into species based on topological sim-
ilarity. The distance

�
between two network encodings is

a simple linear combination of the number of excess (�)
and disjoint (�) genes, as well as the average weight dif-
ferences of matching genes (�):

�����	� �
 � �� �
 � ���� ��� (1)

The coefficients ��� , �� , and �� adjust the importance of the
three factors, and the factor

, the number of genes in the

larger genome, normalizes for genome size. Genomes are
tested one at a time; if a genome’s distance to a randomly
chosen member of the species is less than

���
, a compatibil-

ity threshold, it is placed into this species. Each genome is
placed into the first species where this condition is satisfied,
so that no genome is in more than one species.

The reproduction mechanism for NEAT is explicit fitness
sharing (Goldberg and Richardson 1987), where organisms
in the same species must share the fitness of their niche,
preventing any one species from taking over the population.

2.3 Minimizing Dimensionality

Unlike other systems that evolve network topologies and
weights (Gruau et al. 1996; Yao 1999) NEAT begins with
a uniform population of simple networks with no hidden
nodes. New structure is introduced incrementally as struc-
tural mutations occur, and only those structures survive that
are found to be useful through fitness evaluations. This
way, NEAT searches through a minimal number of weight
dimensions.

2.4 Evolving Local Learning Rules

Each connection in an adapting network follows a rule that
governs how its weight changes. We implemented local
learning rules based on those used by Floreano and Urze-
lai (2000). Floreano and Urzelai chose their rules based
on synaptic mechanisms observed in mammals (Willshaw
and Dayan 1990). The space of possible rules included a
plain Hebbian rule, which strengthens the connection pro-
portionally to correlated activation, and rules for weaken-
ing the connection when activations do not correlate.

We streamlined Floreano and Urzelai’s rules to make them
more efficient and to fit NEAT’s genetic encoding more nat-
urally. Instead of dividing Hebbian learning into separate
rules, we evolved a single general learning rule for both ex-
citatory and inhibitory connections that combines the prop-
erties of Floreano and Urzelai’s rules. That way, only two
parameters are needed to express a rule, keeping the search
space to a minimum. Let � and � be the activities of the in-
coming and outgoing neurons, respectively, and � be the
highest weight magnitude in the network. If the connection
is excitatory, the change in weight magnitude ��� can be
expressed as

��� ��� ��� � �!�#"$�%� � � � �&� � �'�)(*� +," , (2)

where
� � is the Hebbian learning rate and

� � is the decay
rate, which controls how fast the connection weakens when

11 33
2 4

44
2 5

55
3 5

66
4 5

DIS

11 33

44

55

22

0, 0 (fixed)
0.2, 0
0, 0.5
0.3, 0.1

Rules
Connection Genes

Network (Phenotype)

0,0.5

0,0 (fixed)

0,0.5
0.3,0.1

1 4

Figure 2: Encoding Local Adaptation Rules. The connection
genes are depicted as in figure 1, with gene 4 disabled. Each
connection gene points to one of the four local learning rules. The
corresponding connection in the phenotype receives the learning
parameters pointed to by its respective gene. This way, fewer
parameters need to be optimized, and rules can be reused. The
connections between nodes 1 and 4 and between 3 and 5 both use
the same rule.

the presynaptic node does not effect the postsynaptic node.
Inhibitory connections adapt as

��� � � � � � � �!�#"$�%� � � � � � �!� " � � (�� +��!�%" . (3)

The first term in equation 3 is negative because correlated
activation implies that the connection does not have an in-
hibitory effect. The second term strengthens the connection
when the input is high and the output is low, increasing the
contribution of the inhibitory connection. Equations 2 and
3 were validated through extensive preliminary experimen-
tation.

To implement equations 2 and 3, every connection in an
adaptive NEAT neural network has a local learning rule pa-
rameterized by

� � and
� � , in addition to its evolved weight.

Yet if every connection gene expressed its own local learn-
ing parameters, the dimensionality of the parameter space
would multiply by a factor of 3, reducing the chance of
finding a solution. Moreover, it is likely that many connec-
tions will utilize the same rule. It should not be necessary
to rediscover such a rule for every connection that uses it.

Thus, we augmented the NEAT genetic encoding so that the
rules could be reused by more than one connection gene.
Instead of having all of the adaptation parameters for each
connection and node expressed in every gene, each genome
has a single rule set. This set consists of a finite number of
rules, in our implementation one “fixed weight” rule and
three evolved rules, each containing the adaptation param-
eters
� � and

� � . Each gene points to one rule in the rule

Figure 3: The Dangerous Food Foraging Domain. The robot
begins in the center of the field. The concentric circles around the
robot represent one ring of sensors for type

�
items and one ring

for type � . Eight items are dispersed randomly throughout the
field. In this case, the items are type � . However, they may or
may not be poisonous. The robot can only find out if the items are
poisonous by consuming them, after which is must stop foraging
if it senses pain. This domain requires adaptation because a fixed
network cannot change its policy in midcourse.

set. Thus, when a genome is translated into a network,
the connections and nodes receive the parameters of the
rule to which their genes point (Figure 2). These pointers
can change through mutation. This system accomplishes
3 objectives: (1) The number of learning parameters in a
genome does not increase as the genome grows; (2) the
same rules can be reused by many genes; and (3) the adap-
tation rules can be optimized separately from the connec-
tion genes. Thus, using the rule set in NEAT can be seen as
an efficient alternative to evolving separate rules for every
gene.

The question, then, is whether evolution can take advantage
of adaptive synapses when necessary. The next section de-
scribes a domain designed to answer this question.

3 The Dangerous Foraging Domain

In order to analyze the evolution of adaptation, a domain is
needed in which adaptation is necessary and where success
can be readily measured. Such a domain can be constructed
by making the optimal policy depend upon a hidden prop-
erty of the world that can only be discovered through ex-
ploration. That way, once the hidden property is uncov-
ered, the policy must adapt accordingly. A fixed policy,
e.g. a neural network with only fixed-weight feedforward
connections, cannot change its policy, and thus cannot suc-
ceed in such a domain. Networks must evolve to adapt to
properties native to the particular problem.

One such problem occurs in natural foraging. When an an-
imal enters a new geographical area, some food may first
appear edible yet turn out poisonous. The animal must be

Left Right Forward

Type
Sensors

Type
Sensors

AA BB Pleasure Pain

Bias

Evolved Topology

A B C D E 1 2 3 4 5

AA BB

CC

DDEE

11 22 33

4455

M1 M2

Neural Network ControllerRobot Sensors and Motors

Figure 4: The Robot and its Controller Network. Five type�
sensors and five type � sensors detect the presence of objects

around the robot. The pleasure or pain sensors activate for 20 time
steps (out of a total of 750 in each trial) if the robot consumes
food or poison. These signals give the robot a chance to change
its behavior accordingly. The three motor outputs are mapped
to forces that control the left and right wheels. Evolution must
discover a network that can change the control policy of the robot
when it encounters poison.

able to change its policy and stop gathering such food. We
implemented a food foraging domain based on this danger-
ous natural scenario. Some of the food is poisonous and
some is edible. However, it is not possible tell which is
which without trying the food first. A simulated robot be-
gins in the center of a field with one of two types of item,
type � , or type � , spread randomly throughout (figure 3).
The items are either all poison, or all food, and the robot
must consume at least one item to find out whether it should
continue foraging. After consuming an item, the neural net-
work receives a brief pain or pleasure signal. The correct
policy thereafter depends upon this signal.

Because the correct policy, whether to forage or not, cannot
be fixed at the start, the network must be able to adapt.
The challenge of constructing such a network is significant
because it must evolve policies for foraging items of both
type � and type � , but also be capable of abandoning either
policy if poison is encountered.

The simulated robots are similar to Kheperas (Mondada
et al. 1993). Each has two wheels controlled by separate
motors. Five rangefinder sensors can sense type � items
and five can sense type � (figure 4). Finally, each robot
has a pleasure sensor, which activates when it consumes
food, and a pain sensor, which activates when it consumes
poison. The pleasure/pain sensors are used for adaptation.

4 Experiments

The experiments are designed to test the hypothesis that
adaptive synapses are necessary for adaptation. Thus,
we test (1) whether fixed-weight networks with recurrent
connections can solve the task and (2) whether allowing
synapses to adapt enhances evolution’s capacity to discover
adaptive solutions.

Accordingly, we ran five 350-generation runs with fixed
connection weights and five 500-generation runs with plas-
tic synapses (the former runs took fewer generations to con-
verge). All runs were free to utilize recurrent connections
but only the adaptive runs could utilize adaptive synapses.
Each run took approximately 2 days to complete on a 1.8
Ghz Pentium 4 processor. The NEAT algorithm itself took
less than 1% of this computation: the rest of the time was
spent evaluating networks in the foraging task.

4.1 Experimental Setup

In each run, the population consisted of 500 NEAT net-
works. Each network was evaluated in eight separate trials:
two trials with edible type � items, two trials with edible
type � items, two trials with poisonous type � items, and
two trials with poisonous type � items. Networks were
reset to their initial state before each trial, that is, internal
activations were flushed to zero and synapses were reset to
the initial weights defined in the genome.

Fitness was evaluated by rewarding networks for consum-
ing food and penalizing them for consuming poison. Since
there were 8 items in each trial, and 4 trials consisted of
poison, the maximum number of poison consumed is 32.
Thus, in order to ensure positive fitness values, the fitness
function � was defined,

� ����� �
	���� , (4)

where 	 is the number of edible items consumed and � is
the number of poisonous items. The maximum possible
fitness is 64. However, in general the highest fitness that
can be consistently attained is 60 because the only way to
know when poison is present is by testing at least one item
in the field. Thus, since there are four poison trials, the best
networks need to consume four poisons to properly test for
poison in each trial.

Because the fitness evaluation has a degree of randomness,
i.e. the placement of food is random in each trial, the fitness
function is noisy. Thus, simply reaching a fitness of 60 is
not sufficient to indicate a solution. Rather, a solution has
been reached when the population champion consistently
reaches a fitness of 60 for several generations in a row.

4.2 Parameter Settings

The coefficients for measuring compatibility were � � �
(�� + , � � � (�� + , and � � �� � + . The initial compatibility
distance was

� � ��� � + . However, because population dy-
namics can be unpredictable over hundreds of generations,
we assigned a target of 20 species. If the number of species
grew above 20,

� �
was increased by + � � to reduce the num-

ber of species. Conversely, if the number of species fell

40

45

50

55

60

65

0 50 100 150 200 250 300 350

H
ig

he
st

 F
itn

es
s

Generation

Evolution of Recurrent Networks
Standard Deviation

42

44

46

48

50

52

54

56

58

60

62

0 50 100 150 200 250 300 350

H
ig

he
st

 F
itn

es
s

Generation

Best Recurrent Run

Figure 5: Average Highest Fitness and Best Run of Networks with Fixed-Weight Neural Networks. The graphs depict the highest
average fitness and the highest fitness of the best run over generations of fixed-weight recurrent evolution. All five runs discovered
solutions within 350 generations, demonstrating that dynamic synapses are not necessary for adaptation in this task.

below 20,
� �

was decreased by + � � to increase the num-
ber of species. In order to prevent stagnation, the lowest
performing species over 130 generations old was not al-
lowed to reproduce. The champion of each species with
more than five networks was copied into the next gener-
ation unchanged. The interspecies mating rate was 0.01.
The probability of adding a new node was 0.005 and the
probability of a new link mutation was 0.05. These param-
eter values were found experimentally but they do follow
intuitively meaningful rules: links need to be added sig-
nificantly more often than nodes, and an average weight
difference of 0.5 is about as significant as one disjoint or
excess gene. Performance is robust to moderate variations
in these values: The dynamic compatibility distance mea-
sure caused speciation to remain stable.

In the adaptive runs, genomes contained four rules with val-
ues for

� � and
� � . The first rule was fixed at zero to allow

genes to encode fixed connection weights that do not adapt.
The probability of mutating the parameters of a rule was
0.3, in which case each parameter mutated with a probabil-
ity of 0.2 by adding uniform random noise between 0 and
0.5. A connection gene had a 0.05 chance of being pointed
to a different rule.

The learning rules affect how compatible network genomes
are. Thus they were factored into network compatibility
calculations. The average difference in learning rule pa-
rameter values was added to � in calculating the compati-
bility of two genes. That way, speciation took into account
learning rule differences in addition to topology and weight
differences.

5 Results

5.1 Evolving Fixed-Weight Neural Networks

Figure 5 shows that fixed-weight networks were able to
solve the task. In fact, all five runs could consistently score
60 or above before 350 generations.2 The best run found a
consistent solution by the 250th generation.

5.2 Evolving Adaptive Neural Networks

NEAT was able to evolve networks with local learning
rules that solved the task. However, solutions with adap-
tive synapses were more difficult to find. Figure 6 shows
how fitness increased over generations in both the average
and best runs of adaptive evolution. Three of the five runs
converged to consistently scoring 60 or above, whereas the
other two runs never found a consistent solution. Thus, the
variance in fitness was higher for adaptive networks than
for fixed-weight networks. The best run was able to find
a consistent solution by the 350th generation, 100 genera-
tions later than fixed-weight evolution! Nevertheless, since
several runs did find solutions, these results show that local
Hebbian learning can be utilized to encode dynamic poli-
cies.

The unexpected conclusion is that for this task, evolution
of fixed-weight recurrent networks is not only sufficient to
solve the task, but more efficient than evolving adaptive
networks. How does this result come about?

2The reason networks sometimes scored above 60 is that some
species evolved a small probability of doing nothing during a trial.
Although this behavior sometimes led to a significant drop in fit-
ness when a food trial was missed, in some cases the networks got
lucky and skipped a poison trial.

40

45

50

55

60

65

0 50 100 150 200 250 300 350 400 450 500

H
ig

he
st

 F
itn

es
s

Generation

Evolution of Adaptive Networks
Standard Deviation

40

45

50

55

60

65

0 50 100 150 200 250 300 350 400 450 500

H
ig

he
st

 F
itn

es
s

Generation

Best Adaptive Run

Figure 6: Average Highest Fitness and Best Run of Adapting NEAT. The graphs show how the highest fitness increased in adaptive
evolution both on average and in the best run. Three of five runs found a consistent solution. Thus, the task can be solved with adaptive
synapses, although not as reliably as with fixed-weight synapses.

5.3 Typical Solution Networks

Let us analyze solution networks from each type of evolu-
tion in order to understand how each kind of network rep-
resents a policy that can change over time, and why fixed-
weight networks evolved faster and more reliably.

Figure 7 depicts typical solutions from each type of evo-
lution. It turns out that the fixed-weight solution uses a
simpler mechanism than the adaptive solution. Most of
the structure in the fixed-weight network, including recur-
rent connections on hidden nodes, is used to stabilize food
gathering trajectories, rather than to modulate behavior de-
pending on pain or pleasure. In fact, the network can still
reliably perform the task even if all its hidden nodes are ab-
lated, although it takes longer because its actions are less
accurate.

The key components of the fixed-weight solution are the
self-recurrent connections on the output nodes. The strong
excitatory self-recurrent connection on the left turn output
(identified in figure 4) keeps the node active even when
it has low input. The only thing that can stop the self-
activation cycle is a strong inhibitory signal directly from
the pain sensor, in which case the left turn output node is
temporarily disabled. At the same time, the right turn out-
put turns off unless food is directly in front of the robot.
Thus, when the left turn output is temporarily muted, the
right turn output will cause the robot to spin until it is facing
away from food. At this point both turn outputs will be off,
and the robot will dash forward through the open space to
a wall, thus avoiding any further food gathering. Thus, re-
current connections are used to represent a dynamic policy.
This clever solution demonstrates the power of evolution in
finding effective novel solutions.

In contrast, the adaptive solution uses its hidden nodes as

part of its policy-changing method. If hidden nodes are ab-
lated, the network can no longer perform the task. 22%
of the connections, i.e. 16 connections, diverge in opposite
directions depending on whether or not the robot discovers
it is in a food or poison trial. Of those, 8 connections di-
verge in both type � and type � trials. In other words, an
abstraction of the food vs. poison distinction evolved that
is independent from what the objects look like. Thus, the
solution is holistic in that the entire network contributes to
the task in every trial. Instead of driving into a wall after
consuming poison like the recurrent solution, the adaptive
network spins in place.

Other recurrent and adaptive solutions followed similar pat-
terns; recurrent solutions tended to rely exclusively on a
“trick” using recurrent connections on output nodes, while
adaptive solutions tended to make complex internal net-
work changes. These results explain why recurrent solu-
tions were found more easily. These networks only need to
find a particular combination of recurrent connections on
outputs, and then use hidden nodes to refine trajectory con-
trol. Adaptive networks, on the other hand, tend to discover
complex holistic solutions that genuinely change network
functionality.

6 Discussion and Future Work

Although evolution of adaptive networks was successful in
this task, the surprising result is that fixed-weight recurrent
networks were able to solve it with fewer evaluations. Re-
currency alone was successful in this experiment because
an unanticipated yet relatively simple solution existed in
the space of fixed-weight recurrent networks. This result
suggests that if such a solution exists, finding it can be eas-
ier than finding an adaptive solution. The general conclu-
sion is then that justification is required before broadening
the search to include learning parameters.

Figure 7: Solution Network Examples. Typical solutions are
depicted for adaptive evolution and fixed-weight recurrent evolu-
tion. Nodes are shown as squares beside their node numbers, and
line thickness represents the strength of connections. Dark lines
represent excitatory connections, and light lines are inhibitory
connections. Loops at nodes represent self-recurrency. (a) The
fixed-weight network solves the task using recurrent connections
on its outputs. (b) The adaptive solution is holistic, utilizing plas-
tic synapses throughout the network.

Nevertheless, local learning rules may provide an advan-
tage in some domains. The holistic nature of evolved adap-
tive networks suggests that such networks may be supe-
rior to fixed-weight recurrent networks on tasks that require
holistic solutions. A major problem for future research is
to characterize what kinds of tasks do.

Why did the adaptive networks, which were also able to use
recurrent connections, not evolve the same style of solu-
tions as the fixed-weight networks? As connection weights
became dynamic early in evolution, trivial solutions based
on recurrent output nodes were no longer feasible because
the network weight configuration was not reliable. Thus,
evolution was forced to utilize the dynamic synapses in or-
der to master the task, leading to more holistic solutions.

An important question for future research is whether fixed-
weight recurrent networks can scale up to more difficult
tasks, or whether there exist some tasks for which dynamic
synapses and holistic solutions are necessary. Character-
izing those situations where dynamic synapses provide an
advantage will contribute to our general understanding of
adaptation and help to explain its use in nature.

7 Conclusion
Both fixed-weight networks and networks with dynamic
synapses were evolved in a dangerous food foraging task.
The only way to succeed in the task is to be able to switch
off the foraging behavior in the middle of a trial. Although
adaptive networks seem well-suited for a such a task, in fact
the fixed-weight networks evolved solutions more quickly
and more reliably. The fixed-weight solutions exploited a
clever strategy of switching their internal state, represented
by recurrent connections, while adaptive evolution found
more complex holistic solutions. The conclusion is that re-
currency alone may be a sufficient method of adaptation in
many tasks, and because of its smaller search space, may
be easier to evolve than solutions with adaptive synapses.

References
Chalmers, D. J. (1990). The evolution of learning: An experiment

in genetic connectionism. In Touretzky, D. S., Elman, J. L., Se-
jnowski, T. J., and Hinton, G. E., editors, Connectionist Models:
Proceedings of the 1990 Summer School, 81–90. San Francisco,
CA: Morgan Kaufmann.

Floreano, D., and Urzelai, J. (2000). Evolutionary robots with on-
line self-organization and behavioral fitness. Neural Networks,
13:431–4434.

Goldberg, D. E., and Richardson, J. (1987). Genetic algorithms
with sharing for multimodal function optimization. In Grefen-
stette, J. J., editor, Proceedings of the Second International
Conference on Genetic Algorithms, 148–154. San Francisco,
CA: Morgan Kaufmann.

Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparison be-
tween cellular encoding and direct encoding for genetic neural
networks. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and
Riolo, R. L., editors, Genetic Programming 1996: Proc. of the
First Annual Conf., 81–89. Cambridge, MA: MIT Press.

McQuesten, P., and Miikkulainen, R. (1997). Culling and teach-
ing in neuro-evolution. In Bäck, T., editor, Proceedings of
the Seventh International Conference on Genetic Algorithms
(ICGA-97, East Lansing, MI), 760–767. San Francisco, CA:
Morgan Kaufmann.

Mondada, F., Franzi, E., and Ienne, P. (1993). Mobile robot minia-
turization: A tool for investigation in control algorithms. In
Proceedings of the Third International Symposium on Experi-
mental Robotics, 501–513.

Nolfi, S., Elman, J. L., and Parisi, D. (1990). Learning and evo-
lution in neural networks. Technical Report 9019, Center for
Research in Language, University of California, San Diego.

Nolfi, S., Elman, J. L., and Parisi, D. (1994). Learning and evolu-
tion in neural networks. Adaptive Behavior, 2:5–28.

Nolfi, S., and Parisi, D. (1993). Auto-teaching: Networks that de-
velop their own teaching input. In Deneubourg, J. L., Bersini,
H., Goss, S., Nicolis, G., and Dagonnier, R., editors, Proceed-
ings of the Second European Conf. on Artificial Life, 845–862.

Nolfi, S., and Parisi, D. (1995). Learning to adapt to changing
environments in evolving neural networks. Tech. Report 95-15,
Inst. of Psychology, National Research Council, Rome, Italy.

Radcliffe, N. J. (1993). Genetic set recombination and its applica-
tion to neural network topology optimization. Neural comput-
ing and applications, 1(1):67–90.

Stanley, K. O., and Miikkulainen, R. (2002a). Competitive coevo-
lution through evolutionary complexification. Technical Report
AI2002-298, Department of Computer Sciences, The Univer-
sity of Texas at Austin.

Stanley, K. O., and Miikkulainen, R. (2002b). Continual co-
evolution through complexification. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-
2002). San Francisco, CA: Morgan Kaufmann.

Stanley, K. O., and Miikkulainen, R. (2002c). Efficient reinforce-
ment learning through evolving neural network topologies. In
Proc. of the Genetic and Evolutionary Computation Conference
(GECCO-2002). San Francisco, CA: Morgan Kaufmann.

Stanley, K. O., and Miikkulainen, R. (2002d). Evolving neural
networks through augmenting topologies. Evolutionary Com-
putation, 10(2):99–127.

Willshaw, D., and Dayan, P. (1990). Optimal plasticity from ma-
trix memories: What goes up must come down. Neural Com-
putation, 2:85–93.

Yao, X. (1999). Evolving artificial neural networks. Proceedings
of the IEEE, 87(9):1423–1447.

