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Abstract A major challenge for evolutionary computation is
to evolve phenotypes such as neural networks, sensory
systems, or motor controllers at the same level of complexity
as found in biological organisms. In order to meet this
challenge, many researchers are proposing indirect
encodings, that is, evolutionary mechanisms where the same
genes are used multiple times in the process of building a
phenotype. Such gene reuse allows compact representations
of very complex phenotypes. Development is a natural
choice for implementing indirect encodings, if only because
nature itself uses this very process. Motivated by the
development of embryos in nature, we define artificial
embryogeny (AE) as the subdiscipline of evolutionary
computation (EC) in which phenotypes undergo a
developmental phase. An increasing number of AE systems
are currently being developed, and a need has arisen for a
principled approach to comparing and contrasting, and
ultimately building, such systems. Thus, in this paper, we
develop a principled taxonomy for AE. This taxonomy
provides a unified context for long-term research in AE, so
that implementation decisions can be compared and
contrasted along known dimensions in the design space of
embryogenic systems. It also allows predicting how the
settings of various AE parameters affect the capacity to
efficiently evolve complex phenotypes.

1 Introduction

As the problems tackled with evolutionary computation become increasingly complex,
it is becoming apparent that a direct mapping from genotype to phenotype, wherein
each unit of the phenotype is represented by a single gene in the genotype, will no
longer be effective [5, 9, 39]. Novel problem domains, such as the evolution of complex
neural networks and large commercial buildings [9, 61], require on the order of thou-
sands or even millions of structural units for a single phenotype. If every gene were
to map directly to a single unit of phenotypic structure, evolution would be searching
through an intractable million-dimensional genotypic space.

In order to be tractable, the number of genes required to specify a phenotype must be
orders of magnitude less than the number of structural units composing that phenotype.
Nature has shown such representational systems to be possible on an enormous scale.
Even with 100 trillion neural connections in the human brain, there are only about 30
thousand active genes in the human genome (2800 million amino acids) [19, 23, 42, 89].

Such representational efficiency is made possible through gene reuse. In an indi-
rect genetic encoding, a single gene may be used multiple times at different stages of
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development. There are two primary forms of reuse. First, phenotypic structures can
occur in repeating patterns, where the same structural theme, perhaps with some vari-
ation, appears over and over again. Each time a pattern repeats, the same gene group
can provide the specification. Examples of repeating patterns in biological organisms
include the numerous left-right symmetries of vertebrates [65: 302–303], and the numer-
ous receptive fields in the visual cortex [29, 40]. Repetition frequently involves variation
on a general theme. For example, each vertebra in the spine is formed similarly to the
others, albeit with different incoming and outgoing connections [89: 30–31].

The second primary form of reuse occurs when the same gene product is used to
initiate separate developmental pathways. For example, Cohn et al. [17] found that
the same gene product, fibroblast growth factor (FGF), induces the appearance of both
forelimbs and hindlimbs, depending on the part of the body where the FGF is applied.
Thus, the same gene can be used to initiate different structures at different locations.

Natural organisms implement gene reuse through a process of development, or
embryogeny.1 The same genes can be used at different points in development for
different purposes, and the order in which activations of genes take place determines
when and where a particular gene is expressed [65]. Recently, researchers have begun
to replicate this process in artificial developmental systems. The hope is that extremely
compact codes can evolve to represent immensely complex phenotypes.

Researchers have used several names for artificial evolutionary systems that utilize a
developmental phase, including “artificial ontogeny” [13], “computational embryogeny”
[9], “cellular encoding” [34], and “morphogenesis” [41]. We adopt the term artificial
embryogeny (AE) to refer to the entire class of such systems.2 Because AE offers a
methodological approach for reaching the level of complexity seen in natural organ-
isms, the evolution of the body and brains of artificial organisms has been a popular
goal for researchers in this field [13, 22, 38, 46]. Thus, the primary objective of AE is
to evolve levels of complexity that have heretofore been out of reach. It is not nec-
essary for systems to faithfully simulate low-level biological development processes,
except insofar as the simulation of these processes may help in achieving high com-
plexity. In order to achieve this goal, both biologically motivated and more abstract
implementations will need to be tested in many domains.

With growing interest in the field, and a large number of systems being introduced,
a need has arisen for a common framework to analyze and compare them. By iden-
tifying the dimensions along which design decisions can vary, future experiments can
reveal their costs and benefits. For this reason, in this paper, we build a taxonomy for
AE systems based on a principled analysis both of existing systems and of biological
research on embryogeny. Ultimately, this taxonomy makes it possible to predict the
outcome of specific design decisions along well-defined dimensions.

We begin by reviewing existing systems within a preliminary framework, distinguish-
ing between grammatical and cell chemistry approaches. Our review focuses on AE
systems that reuse genes because reuse is one of the primary motivations of AE. We then
survey research in biology that provides insight into the mechanisms behind embryo-
geny. Five major dimensions of development emerge from the biological overview:
(1) cell fate, (2) targeting, (3) heterochrony, (4) canalization, and (5) complexification.
Finally, we use these five major dimensions to replace the preliminary framework with
a mature multidimensional taxonomy of AE methodologies.

1 Bentley and Kumar [9] pointed out that the correct term is embryogeny as opposed to embryology. Embryogeny is the embryological
process of development itself, while embryology is the study of the process of development. Since we are attempting to evolve
developmental systems, we are implementing artificial embryogeny.

2 Embryogeny conveys that systems in this class develop phenotypes using genetic information starting from a small initial structure.
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2 Review of Artificial Embryogeny

This section reviews prior work in AE by examining two parallel lines of research. The
first type is the grammatical approach, originated by Lindenmayer [50]. The grammati-
cal approach evolves sets of rules in the form of grammatical rewrite systems. The gram-
mar can be context-free or context-sensitive and can utilize parameters. Variations on
this theme include using instruction trees or directed graphs in place of actual grammars.

The second type of AE, the cell chemistry approach, is inspired by the early work
of Turing [77], who introduced a mathematical model of diffusion and reaction within
a physical substrate. This approach attempts to mimic more closely how physical
structures emerge in biology. Cells are arranged in a physical space where simulated
proteins can be sent as signals from one cell to another, as in nature. Growth processes
such as axons and dendrites can form connections between cells through complex
targeting mechanisms. Protein structures are produced by genes in a cell’s genome if
the proper regulatory proteins already exist inside the cell’s cytoplasm. In effect, the
proteins inside the cell are like preconditions to rules in the grammatical approach. This
approach attempts to approximate the functionality of natural development through
physically motivated implementation. The hope is that by closely simulating the lower-
level processes of biological development, more natural, and hence more complex,
phenotypes can evolve.

We make the distinction between grammatical and cell chemistry approaches for
two reasons: (1) it is currently the most recognizable distinction among AE systems,
and (2) it reflects the general division in artificial intelligence between high-level, top-
down approaches and low-level, bottom-up approaches. However, it will turn out that
this initial distinction is ultimately superficial, and that a more sophisticated taxonomy
of AE systems can be derived based on relevant biological dimensions. We begin by
introducing existing systems in these two categories, and will introduce a biological
taxonomy in the next section.

2.1 Grammatical Approaches
Using grammar to model biological development traces back to Aristid Lindenmayer,
who introduced a type of grammatical rewriting system called L-systems [50]. Linden-
mayer observed that complex natural objects, in particular plants, could be described
by iteratively replacing simple parts with more complex parts. This idea is naturally
expressed grammatically, where symbols on the left side of production rules are re-
placed in parallel by strings on the right. The strings generated by L-systems can be
interpreted as morphological or graphical descriptions, yielding complex fractallike ob-
jects. In other words, L-systems are indirect encodings that output an explicit string
of developmental instructions. For example, Figure 1 shows how two simple rewrite
rules produce a tree structure. Symbols produced by the rules describe directions of
growth in the tree: “B” means “grow forward,” “−” means “turn direction of growth
left,” and “+” means “turn direction of growth right.” Thus, L-systems can encode
complex morphologies using relatively simple rules.

The grammar can be made more powerful by adding parameters to the rewrite
rules, so that the same rules can generate different structures depending on their pa-
rameterization [51]. In addition, if one parameter is used as a counter, it can be used to
terminate growth processes after a specific number of iterations. Systematically decre-
menting the counter each iteration allows rules to naturally express a stopping case
when a parameter reaches zero. Consider the following example:

A(n): (n > 1) → B(n)A(n − 1)

(n ≤ 1) → A(0)
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Figure 1. Grammatical approach example (L-systems) [50]. The two rewrite rules (inset) describe the growth of
a treelike morphology. The symbol A, shown as a thick line in the tree, is the only symbol that is rewritten in this
grammar. The symbol B, which does not expand, becomes a thin branch, and − and + determine relative angles of
branches expanded from A symbols. This example illustrates how a few simple generative rules can encode a large
structure with many components.

B(n): (n > 2) → C (0)

(n ≤ 2) → D(0)

C (n): → C (n)

D(n): → D(n),

where the symbol to be rewritten is on the left, the parameter is in parenthesis, the
condition for activating the rule is after the colon, and the replacement string is on the
right. Starting with A(4), this L-system would produce

A(4)

→ B(4)A(3)

→ C (0)B(3)A(2)

→ C (0)C (0)B(2)A(1)

→ C (0)C (0)D(0)A(0).

In addition to utilizing parameters, rules can also be made context sensitive, or
be applied stochastically [62]. In a context sensitive L-system, rule activation is not
only contingent upon the correct nonterminal symbol being present, but also upon
the symbols that surround that nonterminal. In stochastic L-systems, successors are
chosen probabilistically, leading to randomized final structures. As another refinement,
Vaario [78] introduced an elaborate object-oriented extension of L-systems in which
individual objects and subobjects in a developing organism contain their own rewrite
rules. Different refinements to L-systems affect the kinds of structures they can evolve
in varying ways. The effects of such refinements is an open area of research.

Many AE researchers have utilized L-systems and similar grammatical methods [8, 10,
37, 38, 45, 72]. In such systems, a set of production rules is evolved for each genome.
Starting from a canonical embryological start symbol, embryos are grown by repeatedly
applying rules to the symbols in the developing embryo.

Interestingly, L-systems were not initially designed to be evolved. They were meant
to model or describe the growth of fractal-like designs in nature. Thus, a potential
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problem for L-system-based AE is that the capacity to describe embryogeny does not
necessarily imply a capability to evolve embryogeny.

Still, many researchers have pursued the evolution of L systems and other grammati-
cally based encodings with some success. One interesting such research direction is the
evolution of artificial neural networks (i.e., neuroevolution). Neuroevolution has long
been a major theme in AE, partly because the potential complexity of neural networks is
known to be so high. The first rewrite neuroevolution system was developed by Kitano
[45], who showed that it was possible to evolve the connectivity matrices of artificial
neural networks through a set of evolved rewrite rules. Instead of utilizing a string on
the right hand side of a rule, Kitano used a small 2 by 2 matrix. If the elements of the
matrix are nonterminal symbols, then they are themselves rewritten with 2 by 2 matrices
from their respective rules, expanding the size of the matrix exponentially. Eventually,
when terminals are reached, a complete matrix of numerical values has been created.
The matrix then represents the connectivity of a neural network. Although nondevel-
opmental encoding schemes have since been shown to perform better [69], Kitano’s
early graph generation grammar showed that it was possible to use rewrite rules to
encode neural networks for encoder/decoder problems.

Other researchers have experimented with alternative ways of encoding rewrite rules,
aiming at grammar encodings more suitable for evolution. Boers and Kuiper [10] used
context sensitive L systems to evolve neural network topologies. They encoded the
rules in a genome as a bit string, which can be recombined using simple genetic
operators. Resulting bit strings were then translated back into rewrite rules. Boers
and Kuiper were able to evolve solutions to several conventional problems, such as
XOR and handwriting recognition. However, these results did not provide conclusive
evidence of the ability of L-systems to solve these problems, since the weights were
found through backpropagation. It is not clear that the complex developmental process
was necessary.

Whereas previous work focused on narrow problems that did not necessarily demon-
strate the power of grammatical encodings, Sims [72] chose to evolve the body mor-
phologies and neural networks of artificial creatures in a simulated 3D physical world.
In this domain, the power of generative encodings is easy to observe, since resulting
creatures are animated in a simulated physical environment. Sims used directed graphs
as the genotypes for his experiment. In these graphs, a node represents a body part
and an edge specifies how body parts are connected (Figure 2). The nodes and edges
together work like L-system rewrite rules: an edge is like an atom of a rewrite rule, and
a node is like a terminal. By following recursive edges, Sims’ system reuses genetic
material. 3D animations of evolved creatures displayed strikingly natural-looking gaits.
However, gene reuse was not exclusively responsible for the natural appearance of the
animations; the quality of physical simulation itself contributed to the results as well.

Using a domain similar to Sims’, Hornby and Pollack [37–39] applied L-systems to
the simultaneous evolution of the body morphologies and neural networks of artificial
creatures in a simulated 3D physical environment. Before Hornby and Pollack’s ex-
periments, Lipson and Pollack [52] had already evolved creatures that could locomote
in such an environment, and successfully transfered their designs to robots in the real
world. However, Lipson and Pollack did not employ a developmental encoding, in-
stead utilizing a direct encoding. Hornby and Pollack’s work built on this earlier work
by using L-systems as a developmental encoding. Using this encoding, they evolved
creatures to locomote without dragging most of their parts on the ground. Parametric
L-systems with 20 rewrite rules were evolved. The resulting creatures were compared
with others evolved with a non-developmental encoding, which specified a sequence
of explicit build commands. The developmental encoding evolved dramatically more
complex and more fit creatures than the non-developmental encoding. Developmental
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Body Segment

Leg Segment Foot Segment

Figure 2. Development of body morphology [72]. The graph on the left specifies how the morphology on the right
develops. The body segments repeat because of the recurrent loop on the body-segment instruction node, which
allows the reuse of genetic code. The number of repetitions is determined by an evolved parameter in the loop,
which is not shown. The final structure is a centipede-like creature with six legs and feet on each leg. Sims’ work
has inspired many AE researchers to explore body-brain evolution in simulated 3D environments.

creatures displayed significantly more body segments and repeating structures. Some
creatures even displayed symmetrical arrangements of parts. The results demonstrate
that reuse is an important capability for embryogenic systems. However, there are
many morphologies that can potentially support locomotion. Therefore, finding such
a morphology may not be difficult. The question remains whether L-systems can be
evolved for a stricter task with a small set of possible solutions.

Even though many rewrite systems evolve neural networks, other structures have
been used as well. For example, a sorting network is an ordered set of place com-
parisons, where an item at one position in a list is compared to an item at a second
position. If they are out of order, their positions are switched. Belew and Kammeyer
[8] evolved rewrite rules similar to L-systems to specify how such sorting networks
would develop. A grammar encoding was used because the development of a sorting
network can exploit symmetries. For example, the left and right halves of an un-
ordered sequence can be both sorted independently using the same procedure, and
then finally combined for a final ordering. The developmental encoding only needs to
encode one of the symmetrical procedures and then expand it once for each half of
the sequence, thus exploiting the symmetry of the problem. Other unusual phenotypes
evolved with rewrite systems include floor plans for buildings and Mondrian paintings
[68]. Together, these examples demonstrate that rule evolution and AE in general are
applicable to practical problems beyond the evolution of neural networks and body
morphologies.

L-systems encode rewrite rules that determine the steps in a developing phenotype.
In contrast, some AE researchers have preferred grammatical encodings that bear more
resemblance to programming languages. These encodings reuse genes through sub-
routines and recursion, rather than by applying rules under specified conditions. For
example, Gruau [33, 34] and Gruau et al. [35] used grammar trees to encode steps in
the development of a neural network starting from a single ancestor cell. This system
is called cellular encoding (CE), because its rules apply to single cells in a growing
network. The grammar tree contains developmental instructions at each node. For
example, CE includes functions that split one cell into two cells, change the values of
links between cells, and remove existing links between cells (Figure 3).

98 Artificial Life Volume 9, Number 2



K. O. Stanley and R. Miikkulainen A Taxonomy for Artificial Embryogeny

Split
Sequential

Split
Parallel

Increment
Link Register

Increment
Link Value

END

END

Increment
Bias

END

INPUT

OUTPUT

INPUT

OUTPUT

INPUT

OUTPUT

INPUT

OUTPUT

INPUT

OUTPUT

11

22

33

44

55

Figure 3. Cellular encoding (CE) example [33, 34]. The grammar tree is shown at left, and the network growth is
shown from top to bottom in five steps at right. The network begins at step 1 as a single cell. At each step, each
network cell is reading from its own part of the tree. Dotted lines identify the location in the tree from which each
cell is reading at each step. When a cell splits, its children cells take separate paths in the tree. The “increment link
register” instruction is the way a cell knows to which link it should apply any subsequent link-based instructions. In
the example, such an instruction occurs immediately following the link register instruction, causing a link’s value to
increase, represented in the network by a thickening line width. The neural activation bias is represented by cell
darkness. This example is based on others given by Gruau [33]. Although Gruau uses abbreviated instructions, we
spell them out entirely to make the example easy to follow. Gruau [33] proved that cellular encoding grammar trees
can describe any network topology.
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Developing cells in CE read from different parts of the grammar tree at the same
time. A reading head for each cell indicates from which part of the grammar tree it is
reading. When a cell encounters an end instruction, its state is finalized and it stops
reading. CE uses a first in, first out (FIFO) queue of cells in order to keep track of
which cells are currently executing instructions, and in what order they should be ex-
ecuted. A cell at the front of the queue executes the instruction to which its reading
head points, moves its head to the subsequent instruction in the grammar tree, and
then goes to the end of the queue. Sometimes cells encounter instructions to divide
(there are a variety of cell division methods), in which case the original cell moves its
reading head down the left subtree, and the new cell moves its head down the right sub-
tree. Thus, cell divisions allow different cell lineages to follow different developmental
pathways.

Gruau showed that by adding a decrementing counter and a recursion instruction
to the family of available instructions, it is possible to move the reading head back to
the top of the tree and reexecute the same developmental code multiple times. In fact,
Gruau gave an example of how a neural network that solves the three bit parity problem
can be encoded by reusing the developmental code of an XOR network twice [34]. In
addition, CE can be extended to encode multiple trees, each with the ability to jump
into the others, so that individual trees can be reused multiple times like subroutines.

Unlike L-systems, CE encoding was designed to be evolved, because a methodology
for evolving grammar trees, genetic programming (GP [47]), already existed. Thus, by
representing CE grammar trees as LISP S-expressions, CE took advantage of the GP
evolutionary methodology. Gruau showed that CE could evolve repeating structures in
problems such as parity and symmetry, where the same procedure needs to be repeated
over and over again. In fact, CE evolved a solution to the parity problem that could be
altered to produce solutions to parity problems of varying sizes by manually changing
the value of only a single gene. The most inputs demonstrated was 51, confirming CE’s
powerful capacity to reuse structure.

CE has also been applied to body-brain evolution. Komosinski and Rotaru-Varga [46]
used a grammar tree encoding similar to CE to evolve the body morphology and neural
network for agents in a simulated 3D world. They showed that the developmental
grammar tree encoding evolved modular structures with repeating parts for simple
tasks, such as growing to a tall height and locomotion.

Although initial results with grammar trees on the parity problem and in the body-
brain evolution domain are promising, CE has not performed as well in other difficult
and well-established problem domains. Stanley and Mikkulainen [76] showed that a
non-developmental encoding called Neuroevolution of Augmenting Topologies (NEAT)
was able to evolve solutions to a difficult non-Markovian version of the problem of
simultaneously balancing two poles on a cart, using 25 times fewer evaluations than
CE. This comparison suggests that the capacity to reuse genes alone does not ensure
efficiency. The ultimate developmental encoding should be able to both harness the
power of reuse for the discovery of complexity and find solutions quickly.

Luke and Spector [53] identified several aspects of CE that could be changed to
improve performance:

• Crossing over subtrees of CE genomes changes the order in which their operations
are executed. Since the effects of CE’s operators depend on their execution order,
the same subtree in one genome may result in a very different phenotype when
inherited by an offspring.

• Because CE’s operators are node-centric, CE’s ability to make specific and precise
modifications to connections is limited.
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• CE creates networks by splitting many cells into two or more interconnected cells.
Therefore, the networks tend to be highly interconnected, which may slow down
the search in some tasks where high connectivity is not required.

Luke and Spector [53] suggested edge encoding as a solution to these problems. In
edge encoding, networks are grown by modifying the edges in a graph rather than
the nodes, and the grammar trees are traversed in depth-first rather than breadth-first
order. There is currently no experimental comparison between CE and edge encoding.
However, the problems with CE that edge encoding is designed to solve are important
in their own right, since they reveal the importance of evolutionary bias in grammatical
AE. Because grammatical approaches have formal structure, it is possible to construct
proofs about the kinds of topologies they can express. For example, Gruau proved that
CE can express any possible neural network topology. However, Luke and Spector’s
critique, along with the pole balancing results, suggest that expressivity is not the most
important property of an AE encoding. Rather, the kinds of architectures that encodings
are biased towards, and their capacity to apply crossover and mutation operators to
genomes without damaging their functionality, are of utmost importance. L-systems face
the same problems. Thus, there are several challenges for grammar-based encodings
in the future: What kinds of architectures do they tend to produce? Are these the kinds
of architectures we want? Do they make sense as a genetic code subject to genetic
operators?

There is a final question about grammatical encodings that does not concern their
efficiency or biases, yet has inspired an entirely different approach to AE: Are they a
natural way to implement the process of biological development? In the next section,
we review systems that attempt to more closely simulate the low-level aspects of natural
embryogeny. Although we do not take the perspective that biological simulation is nec-
essary for a good encoding, it may still provide useful insight into the implementation
of developmental systems. Because nature has evolved extremely compact encodings,
it is important to explore the space of systems that attempt to follow the same path.
The next section describes such biologically motivated systems.

2.2 Cell Chemistry Approaches
Turing [77] first modeled biological development at the chemical level with his reaction-
diffusion model. Although the model was not meant to encompass all of development,
it did account for patterns seen on the exterior of natural organisms, such as the coloring
patterns on bird feathers and animal coats. In the model, a set of equations describe
how the concentrations of different substances, or morphogens, change over time due
to their diffusion and reaction with each other. The patterns produced by the model
are strikingly similar to patterns found in nature, giving support to the model.

The model begins with several chemical morphogens distributed randomly through-
out a discrete two or three-dimensional medium. According to Turing [77], at each
point in the medium, a vector of morphogen concentrations, C , changes temporally
and spatially as described by Turing’s partial differential equation,

∂C

∂t
= F (C ) + D∇2C , (1)

where F (C ) is a nonlinear function describing how the morphogens represented by C
react with each other, and D is a diagonal matrix representing the relative magnitude of
the diffusion coefficients for the different morphogens. The coefficients determine how
fast different chemicals spread through the medium. Thus, the equation describes both
reactivity and diffusion at a point in space. The equation is simultaneously applied at
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every point in the medium, for every time step, yielding a dynamic system that stabilizes
on interesting patterns under the right conditions.

Like L-systems, Turing’s reaction-diffusion model was not originally designed to be
evolved. Although many grammatical approaches to AE follow the original L-system
model, cell chemistry approaches tend to use Turing’s model only as an inspiration.
It describes lower level phenomena than L-systems, and therefore does not lend itself
as easily to evolution of complex forms. However, cell chemistry approaches rely at
least on the abstract concepts of diffusion and reaction, augmented with additional
biologically inspired components.

For example, Nolfi and Parisi [60] modeled “diffusion” at the level of axon growth,
and “reaction” as the interaction between axons and cell bodies. Thus, their model is
significantly higher-level and more abstract than Turing’s. Each neuron is defined by a
single gene in a fixed-length genome. Each gene describes the branching and positional
properties of a corresponding neuron. The branching properties specify how branches
will grow, or diffuse, from the cell body of the neuron. When growing axons hit other
cells during development, connections are made. Then, in a later phase, non-functional
connections are pruned. This approach utilizes growth to create connections without
explicitly describing each connection in the genotype. However, since every neuron
must be directly specified, genes are not reused, limiting the complexity of what can
be represented. Their later work [15] extended the model to include cell divisions and
migrations based on rewrite rules, in addition to the axonal growth. Interestingly, this
new model used ideas from both the grammatical approach and the cell chemistry
approach in order to allow genes to be used more than once.

In contrast to Cangelosi et al.’s abstract model of neural growth, Fleischer and Barr
[26] produced a lower-level model of neural development more reminiscent of Turing’s
differential equation models of diffusion. Cells on a 2D plane move independently.
Each cell has its own internal state that controls its behavior. The outside environment
has chemical, mechanical, and electrical properties. Extracellular chemicals diffuse
through the environment according to differential equations, just as in Turing’s model.
In addition, the genome itself is a set of differential equations that take as arguments the
cell’s internal state and the state of the outside environment. This framework allows
cells to move and interact through chemical diffusion and axon growth in order to
form neural networks. Fleischer and Barr [26] drew the interesting conclusion that
combining multiple mechanisms to build a pattern can be more robust than using a
single mechanism. For example, a cell’s identity can be regulated both by its lineage
and by the chemical messages in its surrounding environment. Fleischer and Barr were
able to demonstrate several interesting low-level behaviors. For example, an axon
was able to grow along a chemical gradient and find a target neuron while avoiding
obstacles. However, their genomes were hand-coded and not evolved. Similarly,
Mjolsness et al. [57] used a model of low-level chemistry and gene activation to simulate
the early development of Drosophila flies, and Kaneko and Furusawa [43] modeled the
emergence of multicellularity and cell differentiation through the interactions between
cells in a medium. Although these systems reveal interesting low-level properties of
cellular interaction, neither model was combined with evolution.

Astor and Adami [6] introduced an artificial chemistry similar to Fleischer and Barr’s
model, where chemicals diffuse according to diffusion equations, and genes are acti-
vated if chemicals that they explicitly specify are located in the cell cytoplasm. Astor
and Adami showed that they could hand-code a genome for a neural network that
displayed classical conditioning behavior. In other words, through repeated activation,
the network learned to associate an output with a stimulus that initially did not activate
the output. Astor and Adami [6] did not report results for evolved networks, although
they proposed future evolutionary experiments.
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Gene Model::

Regulatory Region Coding Region for Gene Product

Code for ABB

Code for CAA

Code for D>>B

Code for BD,A,CBB

Figure 4. Genetic regulatory network example. Each gene is modeled as a regulatory region and a coding region that
codes a particular product (e.g., a protein in a natural cell). A simple network showing how different gene products
of some genes regulate other genes is shown inside a cell, depicted as a rounded rectangle. The network describes a
system that produces a number of products and then turns off when enough of product B is produced. The symbol
“�” means a large amount. The diagram shows that the entire network becomes activated when product B enters
the cell from an external source. B causes A to be produced, which in turn causes C to be produced by another
gene. A and C, without D in the cell, cause more B to be created, which in turn feeds back into the production
of A, further strengthening the cycle. Eventually, when a great deal of B is present, D is finally produced, stopping
the generation of B and ending the feedback cycle. The GRN shows that interesting dynamics can result from the
regulatory interactions of different genes. In an AE model, gene products might, for example, cause axons to grow
or reduce neural thresholds.

Dellaert [19] pointed out that the computational complexity of such low-level simu-
lation might make evolution difficult. Thus, Dellaert and Beer [20, 21] and Dellaert [19]
designed an ambitious and extensive model of development meant to be both biologi-
cally defensible and computationally tractable. The model centers on the idea of genetic
regulatory networks (GRNs), which are networks of interactions between genomes and
their environments that lead to a sequence of state changes inside each cell (Figure 4).
While the diffusion and reaction of various chemicals in the Fleischer-Barr model can
be understood as a GRN, Dellaert and Beer use a more abstract model of GRNs, which
captures the dynamics of such a system without descending to the physical level.

Dellaert et al. implemented their GRN using Boolean functions called operons inside
the genome. For example, consider the following two operons:

Operon 1: A ∧ ¬B = C ,

Operon 2: A ∧ C = B.
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The first equation means that if protein A is present in the cell cytoplasm, and protein
B is not present, then protein C is produced and added to the cytoplasm. The presence
of A and C satisfies the second operon, yielding B in the cytoplasm for the first time.
At that point, because operon 1 only produces its product in the absence of B, the
cell will stop producing protein C . This example illustrates how a complex network
of interactions can result from operons inside a cell. By representing the presence or
absence of a proteins using Boolean equations, the computational expense of simulating
diffusion through differential equations is eliminated.

Several low-level biological processes utilize the proteins produced by operons. For
example, a facility is included to allow one cell to introduce a new protein to another cell
through a receptor. In addition, cells grow axons if they have a special axon-growing
protein in their cytoplasm. The axons then connect to cells with the proper target
protein. The axons find their path by growing around cells with special path designating
proteins. Thus, a nervous system can develop in a biologically plausible manner.

Cells divide in the simulation when a special dividing protein is present. After
division, both descendant cells are in the same state, which leads to a problem. How
can the symmetry ever be broken so that cell differentiation takes place? The model
solves this problem by introducing a single symmetry-breaking protein after the first
cell division, and by allowing communication between cells.

The GRN model revealed an important challenge for AE. Dellaert and Beer [22]
hand-coded the genome for both the body morphology (i.e., sensors and actuators)
and the nervous system of an obstacle-avoiding vehicle. Subsequently, they were able
to evolve incrementally improved versions of the vehicle off the initial hand-coded
genome. However, they could not evolve such a vehicle from scratch. They attributed
this failure to the massive search space introduced by such an expressive encoding.
Intractable search spaces are a significant challenge to AE systems in general. Thus,
like grammatical approaches, cell chemistry approaches must also address their biases
and evolvability.

Dellaert and Beer [22] were able to overcome the large-search-space problem by
greatly simplifying their model, using random Boolean networks (RBNs) instead of the
more complex operon model. RBNs, initially introduced by Kauffman [44], are simple
Boolean expressions whose outputs are connected to the inputs of other Boolean
expressions, forming a network (Figure 5). The network has a state defined by the
current outputs of all the Boolean expressions, which defines the current state of the
cell. In addition, Dellaert and Beer simplified the axonal outgrowth model, such that
cells were simply connected if they expressed the right proteins, forgoing the entire
axon growth phase. Interestingly, with this simplified model, they were able to evolve
a solution to the obstacle avoidance task from scratch, in addition to evolving a line-
following vehicle. The lesson is that simple solution structures sometimes perform
better than biologically plausible ones; abstraction can be a powerful tool.

Researchers have introduced a number of cell-chemistry-based models similar to that
of Dellaert and Beer [13, 24, 41]. Jakobi [41] also used a GRN model based on proteins
interacting with a genome and transferring between different cells. However, instead
of Boolean expressions, Jakobi utilized templates, which are strings of characters that
could be matched with proteins. The templates were parts of genes. This encoding
allowed the entire genome to be evolved as a string, similarly to DNA. Jakobi evolved
simulated robots that could move down corridors and wander without hitting obstacles.
Eggenberger [24] used a similar string encoding with template matching for genetic
regulation. Eggenberger also introduced a protein that causes cells to die, since cell
death is common in biological development.

Unlike Jakobi and prior researchers, Eggenberger experimented with much simpler
tasks than evolving neural networks. Instead, he evolved bilaterally symmetric shapes,
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A: B or C

B: A and C C: A and B

Figure 5. Random Boolean network (RBN) example. The state of the network is given by the Boolean values of
A, B, and C. At each time step, the state values are updated based on their values in the previous time step. In the
approach of Dellaert and Beer [22], the current state of a cell is given by the current state of its RBN. Individual bits
in the state signal events like cell splitting or creating connections between cells. RBNs were introduced by Kauffman
[44] to simulate the protein expression patterns in cells in a developing embryo. RBNs are computationally less
expensive than full-blown GRN implementations (Figure 4), while exhibiting similar dynamics.

to show that symmetry could develop naturally through reuse. A variety of symmetric
three-dimensional morphologies evolved, showing how discovering symmetry can be
beneficial. Eggenberger’s simple symmetry task brings up an important question for AE
researchers: Should experiments focus on evolving elaborate nervous systems, as in
Dellaert and Beer [22] and Jakobi [41], or on very simple proofs of concept in order to
demonstrate performance potential, as in Eggenberger [24]? Given that eventually we
need to evolve very complex phenotypes that develop through gene reuse, experiments
at this stage should indicate that methods have the potential to reach this goal. Body-
brain evolution can sometimes lead to unclear conclusions. For example, even if it is
possible to evolve a vehicle that avoids obstacles, does that success tell us anything
about why development is necessary, or is it just an easy problem that a non-AE system
could have solved just as well? In contrast, bilateral symmetry is a strategy used by
many complex organisms to reuse the same structures efficiently. Thus, sometimes
simple experiments can demonstrate a potential for complex development.

Like Eggenberger, Bentley and Kumar [9] also chose to experiment at the level of
abstract proofs of concept. They utilized a simpler cell chemistry approach in which
colored cells on a grid expanded or died depending on whether their surrounding
cells matched preconditions in a genome of rules with preconditions. The precondi-
tions described the configuration of surrounding cells and location in the grid. The
encoding allows reuse in that preconditions may occur over and over again at different
grid locations in the same developmental sequence. Although this encoding resembles
grammatical approaches, its preconditions instead check the local environment in a
grid of cells. To verify that their encoding was efficient, Bentley and Kumar evolved
tessellating tiles, which are shapes that can be fitted together in groups of four without
overlapping. Bentley and Kumar showed that their indirect encoding evolved tessellat-
ing tiles more reliably than a number of encoding schemes that did not employ reuse,
supporting the hypothesis that gene reuse can support the development of form. Be-
cause both the task and the encoding were simple, the experimental results were easy
to interpret, just as with Eggenberger’s work on bilateral symmetry.
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Even as some cell chemistry AE researchers moved toward simpler proof-of-concept
experiments, recent research builds on the earlier ambitious experiments of Jakobi
and Dellaert and Beer. Many researchers using cell chemistry approaches attempt
to evolve sophisticated behaviors through the evolution of the brains and bodies of
creatures in a 3D simulated world, just as Hornby and Pollack [39] have done with
L-systems. Bongard, Paul, and Pfeifer [11, 12, 13] used a GRN-based encoding similar
to Eggenberger’s to evolve such creatures. The creatures were evaluated on their
ability to walk toward a block and push it some distance on the ground. Bongard et
al. were able to show that repeated phenotypic structures were evolved by reusing
genes. Later, Bongard [11] showed that the genes affecting morphology had evolved a
separate developmental pathway from those affecting neurogenesis, even though the
same gene products could affect both pathways. This result implied that changes in
morphology could occur through mutation without disrupting neurogenesis and vice
versa. Thus, a form of modularity was evolved in which the neural network and body
morphology develop in parallel yet independently of each other. Such modularity
allows evolution to search over varied body plans without affecting neurogenesis, and
to discover different neural networks for the same body plan. Thus, the GRN-based
encoding allowed a high level of flexibility in the kinds of mutations that were feasible.

2.3 A Unified Perspective
In this section, we have divided the space of AE systems into grammatical and cell
chemistry approaches. Although they have similar goals, their origins are different.
While grammatical approaches tend to be abstract and high-level, cell chemistry ap-
proaches generally utilize lower level representations and are more strictly motivated
by the biological mechanisms of development.

Several AE researchers have previously proposed classifications of genetic encodings
[5, 9, 39, 46]. These classifications served primarily to distinguish encodings that reuse
genes from those that do not. However, two of these classifications furthermore divided
the space of indirect encodings into two classes roughly analogous to the grammatical
and cell chemistry approaches. Bentley and Kumar [9] distinguished explicit encodings,
in which genes function like instructions in a programming language (i.e., grammati-
cal encodings), from implicit encodings, in which the connection between genes and
parts of the phenotype is emergent (i.e., cell chemistry encodings). Similarly, Hornby
and Pollack [39] contrasted indirect encodings that employ parameters and labels (i.e.,
grammatical encodings) with those that do not (i.e., cell chemistry approaches). Thus,
the distinction between cell chemistry and grammatical presented in this section reflects
a traditional view of the field.

The encoding used by a system can affect the way genomes are manipulated through
mutation and crossover, and is therefore an important design decision. However, the
distinction between the cell chemistry and grammatical approaches is largely superfi-
cial and does not reflect how phenotypes can develop. Although cell chemistry and
grammatical systems develop differently in a number of important ways, many of these
differences only exist for historical reasons, not because of any intrinsic requirement of
either approach.

First, grammatical approaches can have properties usually associated with cell chem-
istry approaches. For example, existing cell chemistry systems tend to develop in a
coordinate space, while grammatical systems develop in a vacuum. However, there
is no reason why rewrite rules or instructions could not in principle take Cartesian
coordinates as arguments or parameters. In addition, although signals may be more
natural in a cell chemistry system, components in an unfolding rewrite production can
in principle send signals in a Cartesian space. Although current cell chemistry systems
tend to use continuous gradients while grammatical systems are discrete, there is no
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reason that a grammar could not produce or manipulate continuous values or exist in a
continuous space. Grammatical systems tend to produce static components that do not
move or grow after they are produced, but again such components could be mobile in
principle.

Second, cell chemistry systems can display properties usually associated with gram-
matical systems. For example, grammatical systems can explicitly call subroutines,
while cell chemistry approaches generally cannot. However, cell chemistry approaches
implicitly use subroutines by initiating a chain of regulatory events more than once.
While grammatical systems can also explicitly iterate over parameters, cell chemistry
systems can approximate iteration by using decreasing concentrations of chemicals as
arguments to cell functions. Such functions can themselves be evolved, or be emergent
from the dynamics of a regulatory network.

Third, both approaches can be hybridized. Cells can contain internal grammars, and
grammars can spawn cells. In fact, the cell chemistry systems of Bentley and Kumar
[9], Mjolsness et al. [57], and Cangelosi et al. [15] exhibit hybrid properties. Bentley
and Kumar’s cells reproduce according to a list of rules, Mjolsness’ cells contain gram-
matical rules that determine cell behavior, and the system of Cangelosi et al. combines
grammatical rules with axon growth.

Thus, the different approaches currently overlap or can potentially overlap in many
important ways. The current divided perspective is not necessarily a good description of
the space of possible methodologies. The problem of designing a powerful AE system
should be approached from a more general perspective, in which specific mechanisms
that can be implemented in either approach are considered independently of their
encoding. In the following sections, we identify and discuss such specific mechanisms
based on natural development, expanding the perspective on AE in general. We will
then use this broader perspective to form a taxonomy of AE systems that allows AE
research to take place in a unified context.

3 Dimensions of Development

In this section, we analyze natural development by breaking it down into five major
dimensions. Not only are these dimensions conceptually useful for understanding
development, but they also provide insight into the design of AE systems. We will use
these dimensions later to form a taxonomy of AE systems. The taxonomy is based on
the ways these dimensions can vary in different AE implementations.

Two important themes underlie the discussion in this section:

• In order to compare different AE systems, it is important to understand the
contribution of specific aspects of development to the capacity to evolve complex
systems. Since both grammatical and cell chemistry approaches can vary along the
five dimensions, the dimensions should be taken into account in either type of
implementation.

• Some aspects of development can be implemented on computers as abstractions of
biological development that would be impossible in nature. Using such
abstractions can significantly improve efficiency.

Hence, identifying the dimensions of development can help in selecting the right
combination of developmental mechanisms to produce a computationally efficient
AE methodology, that is, one that can produce phenotypes of extremely high com-
plexity. We now turn to a detailed discussion of each of the following five dimensions
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of development:

1. Cell Fate: The fate of a cell is the eventual role it will come to play during
development. For example, a cell may become a neuron or a muscle cell. There
are several ways that cell fates are determined in nature. Since cells in AE systems
must eventually play a role in the mature phenotype, it is important to consider the
means through which those roles can be determined.

2. Targeting: The ways that cells can develop connections to target locations is an
important aspect of development. Connectivity contributes to the overall
functionality of complex systems, particularly neural networks. AE system design
can benefit from an analysis of the ways that connections develop in nature.

3. Heterochrony: The timing and ordering of events in the embryogeny of a lineage
of organisms can change over generations. Such changes can result in different
final results, sometimes leading to important innovations in natural organisms. AE
researchers may consider whether their encodings allow similar flexibility.

4. Canalization: Biological genomes are tolerant to mutations. Several mechanisms
allow developing components to adjust to changes caused by mutations in
connected components. These mechanisms can be employed in AE systems.

5. Complexification: Over the course of biological evolution, new genes are
occasionally added to genomes, increasing the complexity of the phenotype.
Complexification has led to major innovations in body-plan organization. By
implementing a mechanism for handling variable length genomes, AE can also
utilize complexification.

3.1 Cell Fate
The fate of a cell determines its ultimate location, connectivity with other cells, and role
in the mature phenotype.3 A cell’s fate is determined by the genes that are expressed
during its development. For example, liver cells show a different pattern of gene
expression than brain cells, even with the same genes in their genomes. AE systems
must address a crucial question: How is cell fate determined? In traditional grammatical
encodings, the ultimate role of a specific structure is obtained from a grammatical
derivation, whereas cells in cell chemistry approaches can derive their ultimate roles
through chemical messages from other cells, or from activated genes inside the cell. In
this section, we examine the variety of ways that cell fates are determined in nature,
all of which can potentially be implemented in AE.

In biology, cell fates are determined through a variety of means. We illustrate these
mechanisms through a set of examples, after introducing some terminology. Early in
development, groups of cells are undifferentiated and called precursor cells. Their fates
are assigned in several ways, frequently through receiving messages from an outside
cell called an organizer. For illustration, let us assume the precursor cells each take on
one of two fates: A or B (Figure 6). A variety of static and signal-based strategies are
possible [85]:

• Graded Induction: A signal is released from an organizer in a graded pattern.
The precursor cell receiving the most signals assumes fate A, while those receiving
fewer signals assume fate B.

3 We use the term cell to refer to a basic unit of the developing phenotype.
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Figure 6. Derivations of cell fates. Five ways that cells can derive their roles are depicted. The large cell is an organizer
cell, that is, a cell that tells other cells what fates to assume. The smaller cells, which are initially undifferentiated,
can become either cell type A (gray) or cell type B (white), through various mechanisms. A question for AE systems
is which mechanisms lead to most efficient evolution. This figure is based on Wilkins [85].

• Two Step Induction: The organizer first releases a uniform signal to all the
precursor cells to let them know that they form a precursor group. A secondary
signal is subsequently released to a subset of the group in order to further
distinguish fates.

• Sequential: The signal from the organizer reaches only a single precursor cell,
which assumes fate A. It then sends secondary signals to adjacent precursor cells,
giving them secondary identities.

• Self-organization: The precursor cells signal each other and the dynamic
properties of the network of signals assigns fates, without any organizer cell
necessary.

• Prepattern: Gene expression alone, deriving from each precursor cell’s lineage, is
responsible for fates. Signals are not utilized, that is, the state of the parent cell
fully specifies the states its progeny.

While in biology all of these strategies are utilized, any subset of them can be used
to specify cell fate in an AE system. Grammatical systems tend to rely extensively
on prepatterning, while cell chemistry approaches rely on a diverse set of signaling
strategies. However, either approach can use any of the above strategies. For example,
parameters or contexts in L-system rewrite rules could include signaling constraints,
while cell chemistry approaches could rely extensively on prepatterning.

In addition to the above strategies, AE can also take advantage of positional infor-
mation that is not explicitly available in nature. In embryos of many natural organisms,
a gradient of protein expression along different axes forms a rudimentary Cartesian
coordinate system. Because coordinate information is not explicitly available to devel-
oping cells, these gradients evolved to provide positional information. For example
in vertebrates, the fates of cells along the anterior-posterior axis are based on proteins
expressed by HOX genes [18, 48] (see Section 3.5). However, in AE, coordinate infor-
mation is known prima facie and therefore need not be evolved. Rules or genes can
be made to activate explicitly, based on the coordinates of their containing cells in a
Cartesian system. In fact, Bentley and Kumar [9] and Eggenberger [24] used this idea
by assuming a “gradient,” present in every developing embryo, that was really just a
two-dimensional Cartesian coordinate. This way, positional information can be used
directly to specify fate, or to regionalize the embryo into cell fate groups.
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Because the information available computationally can differ from that available in
nature, the design of AE systems should be based on a principled analysis of the pros
and cons of the various natural and artificial strategies. For example, prepatterning is
computationally inexpensive, yet used alone only allows a single rigid way of specifying
identities. In contrast, two step induction and self-organization are dynamic approaches
to fate determination, yet involve a great deal of computation. The extent to which the
various strategies contribute to the development of highly complex systems is unknown.

Another question is how the cells arise in the first place, before they differentiate.
In natural embryos, precursor cells must be created and distributed in an organized
manner. The early proliferation of embryonic cells is called cleavage [30, p. 25], dur-
ing which numerous cell divisions occur. When cell division begins to slow down,
these early cells, called blastomeres, rearrange their positions by moving around the
embryo in a process called gastrulation. AE researchers must decide whether cleav-
age or gastrulation is the more computationally efficient approach to start the process
of embryogenesis. Proliferation may not be necessary at all in a computer, because a
canvas of undifferentiated cells can be created instantaneously with little computational
cost. Thus, it may not be necessary for evolution to discover ways to initially spread
the canvas through cleavage and gastrulation.

Similarly, even though natural nervous systems rely extensively on cell migration to
place cells in their appropriate locations [28], AE researchers must determine to what
extent migration aids evolutionary search. One possibility is that migrating neurons
enable evolution to express similar phenotypes in different ways through dynamically
placing cells in their final positions. For example, because of migration, a phenotypic
class (such as neurons) can be created all at once in a single location. Evolution can
then produce spawning centers where a class of cells are created, and then place and
connect those cells in different locations.

Even if cells are allowed to migrate, they can do so in many ways. In low-level
implementations, cells would literally move through the developing structure as they do
in natural embryos. However, AE cells could instead prespecify the ultimate positions
of their progeny using either absolute or relative coordinates, in which case simulating
migration would be unnecessary.

Much research remains to be done on distinguishing the factors in cell fate deter-
mination that evolved in response to physical constraints in nature from those that
facilitate the evolutionary search process. In addition, the impact of different computa-
tional simplifications on evolvability is yet to be determined. In some cases, it may turn
out that low-level simulations of proliferation and migration are necessary in order to
interleave these processes with gradual cell specialization. In other cases, the overhead
of simulating low-level events may outstrip the benefits.

We have surveyed the different mechanisms of cell fate determination in nature,
and those that are additionally available computationally. Through implementing these
mechanisms, experiments can be performed to determine how they contribute to de-
veloping complexity.

3.2 Targeting
Not only must cells reach their proper locations, but they must also accurately connect
to other cells. Particularly in the nervous system, developing proper connectivity is
crucial [28]. In order to create a working network of cells, cell extensions such as
axons and dendrites must ultimately reach their intended targets.

Targeting of cell extensions is usually based on one of two primary strategies [54, 89]:

• Specific Identity: The identity of the target is specified directly in the genetic
code, and the target is located based on a chemical marker.

110 Artificial Life Volume 9, Number 2



K. O. Stanley and R. Miikkulainen A Taxonomy for Artificial Embryogeny

• Relative Position: The relative location of a target is specified in the genome, so
that the extension grows a specific distance and angle in order to reach the target.
Highly regular patterns of connectivity, such as neural self-organizing maps
(SOMs), are likely to form this way.

Many variations of the two targeting strategies exist in biology, and can be utilized
in AE. For example, a chemical gradient could be used to to identify a large target area
and help processes find their goals. Location and identity could be used together, so
that an extension could grow toward a particular region and then use a gradient to zero
in on its target. Other cells could also emit path-designating proteins, as in Dellaert
and Beer’s [22] model.

Although many neural systems can conceivably be organized without specifying
precise targets for individual extensions, at least some natural neural networks are
based on very specific prespecified targeting. For example, dendritic targeting in the
olfactory nervous system of Drosophila flies has been demonstrated to be prespecified
(i.e., hardwired [54]). Thus, it is reasonable for an AE system to be able to evolve both
prespecified hardwired connection topologies and topologies that organize based on
chemical gradients or relative locations.

The entire process of growing axons and dendrites need not be simulated in order
to form neural connections in simulation. Connections can be formed instantaneously
in AE systems with perfect accuracy. Whether low-level simulation of axon growth
provides an evolutionary advantage remains to be demonstrated. In addition, as with
cell migration, Cartesian coordinate information can be directly incorporated into AE
cells in order to allow them to find appropriate target locations.

AE researchers also must consider the role of user-specified inputs and outputs
in developing neural networks. How can a developing embryo connect its cells to
user-specified cells that do not result from development? Some researchers avoid this
problem by coevolving body morphology along with neural networks, so that inputs
and outputs arise naturally from the body itself [12, 13, 38, 46, 72]. However, such
coevolution may not always be possible in real-world domains such as the evolution
of controllers for robots that have already been manufactured. Natural evolution did
not need to address the problem of connecting user specified inputs and outputs to
a developing embryo. Thus, a special facility to ensure that the final topology is
connected may need to be implemented, and may affect the kinds of targeting allowed
by an AE system.

The way that targets can be expressed through genetic encoding can profoundly
bias evolutionary search toward certain kinds of topologies. Thus, significant research
is necessary to determine the most computationally efficient way to simulate targeting,
as well as the most expressive encoding.

3.3 Heterochrony
Changes in the timing of developmental events over generations is called heterochrony
[30, p. 554]. In natural embryogeny, the path to the final product is surprisingly flexible.
Entire phases of development can be eliminated without sacrificing the end result. For
example, many frog species have evolved away their tadpole stage, yet still grow into
mature, sexually functioning frogs [25]. Their limb buds develop early, and a little
frog, rather than a tadpole, ultimately emerges from the egg. Contrariwise, the Mexican
axolotl, a salamander, has lost its adult stage, and develops mature gonads as a tadpole-
like creature [79]. Their development of gonads has been greatly accelerated so that
they become sexually functional as tadpoles. This dramatic flexibility in development
suggests that significant modularity underlies the genetic encoding. Because the timing
of the development of different modules is so flexible, mutations can safely modify
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timing, allowing evolution to explore a variety of developmental plans. Heterochrony
allows developing components to come into contact with different components, so
that evolution can explore many points of synthesis between components. Thus, AE
researchers may wish to consider whether their encodings support heterochrony.

The ordering of developmental events is strikingly flexible. In Drosophila flies, all
body segments form in parallel. In other flies, however, body segments form sequen-
tially [49]. In both cases, the individual segments develop in the same way regardless
of the order of their appearance. Thus, many components can appear at different rel-
ative times. Only when different components must communicate, such as when one
component uses messages from another to guide its development, can timing changes
have a deleterious effect.

Both early and late development exhibit developmental variation in nature. While
changes in late development can be explained by local variations in mature compo-
nents, the question remains how early development can change without altering the
entire development of the organism. One explanation for the great deal of flexibility
in early development is that global interactions among differentiated components of an
embryo do not begin to occur until around the middle of embryogenesis. This pivotal
middle period is called the phylotypic stage [65, p. 208]. After the phylotypic stage,
most development is highly localized, giving precise definition to specific body parts.
The cessation of global interaction allows a great deal of plasticity. This way, a picture
of a developmental hourglass emerges, wherein trajectories of development can vary
most early and late in development, but less in the middle (Figure 7). In fact, Raff
et al. [64] demonstrated that early development is so flexible that they were able to
mate two separate species of sea urchins, only one of which had a larval stage, and
produce a viable hybrid offspring! The offspring reinstated the larval stage that was
absent from its maternal parent, but developed differently from either parent. Thus,
early developmental modules can be very flexible in their interactions.

There are several ways heterochrony can positively affect the final phenotype. For
example, body (or neural) parts could be moved or manipulated in relation to each
other by altering the timing and sequence of development. Parts can also be extended

Early Development

Late Development

Phylotypic Stage

Egg

Adult

Less variation at this stage

Figure 7. The developmental hourglass [65]. The hourglass represents the constraints on trajectories through de-
velopmental space. It illustrates that even in complex organisms, a great deal of change in developmental pathways is
possible not only in late development, when established body parts are being refined, but also early in development,
when the master body plan is still being established. The phylotypic stage, where interactions between different de-
veloping components increase, is least amenable to change. Because global interaction between key components are
critical to interconnecting the entire organism, timing changes during this stage could severely disrupt development.
The three dashed lines depict different potential trajectories through the space, all of which cross identical phylotypic
stages, even with different start and end points. This crossing illustrates that the phenotype at the phylotypic stage
can remain constant even as early and late development vary in their timing and structure.
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or compressed. Indeed, heterochrony has been credited with the evolution of single-
toed horses from five-toed horses [88] and the movement of the nose of the whale to
the top of its skull [73]. In the evolution of the single-toed horse, the growth rate of
the central toe of the five-toed horse sped up so much relative to the other toes that
the other toes ultimately became irrelevant and disappeared. In the case of the whale,
an extension in the duration of jaw growth caused the nose to be pushed upwards to
form a blowhole. Thus, heterochrony has led to important phenotypic discoveries.

In addition, heterochrony increases the number of successful genotypes by offering a
variety of paths to each successful phenotype. Mutations that can cause timing changes
without disrupting the final product are neutral mutations. There exist neutral networks
of genotypes, connected by neutral mutations, that can be explored without fitness cost,
increasing the space that can easily be explored by evolution. In other words, changes
in timing can affect the developing parts that come in contact with each other, and
the places of contact, without altering the final product. Thus, given both the positive
effect heterochrony can have on final phenotypes, and the increased potential for
neutral evolution, it is worthwhile to consider whether temporal changes are possible
in a given AE system.

What kinds of artificial encodings allow heterochrony? Transcriptional factors that
regulate genes control gene expression during development. The overall timing of
development results from the precise sequence of genes expressed and from the the
combinatorial properties of transcription factors that regulate genes [2, 66]. Whether AE
systems approximate the combinatorial properties of natural gene regulatory networks
may determine the extent to which they support heterochrony. Some cell chemistry
researchers have already begun to explore this area. For example, Bongard [11] showed
that neural and morphological development in evolved artificial organisms could each
vary independently.

In addition, computational abstractions can be utilized that are not available in nature.
Like Cartesian coordinates being used in lieu of chemical gradients, time itself can be
used to regulate genes. Since time is directly available, it can be exploited as a “growth
hormone” that explicitly activates and terminates events in embryogeny. Grammatical
encodings can be parameterized by time, while cell chemistry approaches may implicitly
or explicitly take time into account in regulating genes. Thus, either kind of encoding
can potentially use time to regulate steps in development.

Biologists continue to uncover the mechanisms that make heterochrony possible. It
remains to be seen how difficult it is to achieve similar flexibility with either grammatical
or cell chemistry approaches.

3.4 Canalization
Encodings in evolutionary computation are notoriously brittle: A significant proportion
of mutations lead to infeasible offspring. In contrast, natural organisms are more robust.
Natural development seems to be buffered so that slight changes in critical components
do not cause related or connected components to fail. This robustness to mutations is
called canalization [80].4 Canalization may be an important property for an AE system,
facilitating safe exploration of genotypic space.

How does canalization work, and what might be the mechanisms that allow devel-
opment to succeed even under the stress of unpredictable changes among dependent
parts? In this section, we will discuss three important such mechanisms: Stochastic

4 The term canalization was chosen by Waddington [80] to form an analogy between the way water running down a hill eventually
carves out regular streams in the surface, and the way development slowly settles on a set of conventions that become ingrained
in the genome. Although changes to the geological environment or vegetation may cause water to take different paths, the set of
available paths is very difficult to alter once canalization has occurred.
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events during development, flexible resource allocation among developing parts, and
the overproduction of cells.

3.4.1 Stochasticity
A cell’s fate, that is, what role it will ultimately serve, is not completely determined
when the cell first appears [1]. In many cases, cell fates cannot be predicted even with
complete genetic knowledge. For example, several cells in early nematode embryoge-
nesis are candidates for vulva formation. The cell that is ultimately chosen to be the
central cell around which the vulva forms is the cell that produces the most of a special
ligand. Receiving cells register the ligand production of their neighbors and create more
ligand receptors the more ligand they receive. This creation decreases their own ligand
production. Thus, a single cell ultimately emerges as the primary cell around which
the vulva will form [71, 85]. It does not matter if mutations shift the ligand production
one way or another, since there is a mechanism around which the entire process will
organize in any case. Such robustness may turn out to be useful or even necessary for
AE systems as well.

In support of this view, Kaneko and Furusawa [43] showed that nonlinear oscilla-
tions in a (non-evolutionary) cell chemistry simulation allow multicellular organisms to
develop robustly even with partial ablation: Multicellular clusters could recover their
initial differentiation pattern even after a section of the cluster was cut out. Experi-
mentation with stochastic grammatical rules and artificial regulatory networks may give
insight into how AE can adjust to mutations in similar ways.

3.4.2 Resource Allocation
Recent research into developmental allocation of resources has confirmed a surpris-
ing result: Body parts, at the level of appendages, can reallocate the distribution of
resources. Nijhout and Emlen [59] manipulated the body parts of developing butter-
flies and beetles using two techniques: amputation, where a limb was removed, and
hormone treatment and selection, where limbs were only reduced. In all cases they
found that when one appendage consumed less resources, another appendage became
larger by consuming the remaining resources. This result implies that compensatory
mechanisms are genetically encoded and can react and reallocate resources properly if
a mutation leads to a change in body proportions. Thus, a change in the size of one
appendage does not require evolving compensatory changes in other appendages at
the same time.

It is possible that a resource allocation scheme could be used in AE for similar
flexibility. One major difference between AE and natural embryogeny is that the analogs
of nutrient resources in AE are essentially unlimited. However, a resource allocation
scheme could still help maintain reasonable topological constraints on phenotypes after
significant mutational changes.

3.4.3 Overproduction
Neural connectivity can be disrupted by mutations affecting only some neurons in
a network. If a group of neurons A connects to another group B, then a mutation
only affecting A may be enough to break the entire circuit involving A and B. Such
changes are called non-concordant. In contrast, mutations that affect both A and B in
complementary ways are called concordant changes. While non-concordant changes
are potentially devastating, the problem can be avoided if B has a buffering mechanism
that enables it to react to a wide variety of possible configurations of A.

One such buffering mechanism is overproducing neurons in B. If the number of
connections extending from A to B is reduced or increased through mutation, the
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extraneous cells produced by B can easily be disposed of through apoptosis, or planned
cell death. In either case, the functional connection between A and B will develop.

In fact, overproduction as a buffering mechanism has been documented in the con-
nections between a cat’s eyes and brain [86, 87]. European wildcats evolved to live
in cold environments and hunted during the day, whereas North African cats, from
which domestic cats descend, hunted at night. Because requirements are different for
daylight hunting, wildcats have significantly more light sensors, or cones, in the center
of their visual field, resulting in an optic nerve with more neurons sending signals back
to the lateral geniculate nucleus (LGN), which is the part of the brain receiving the
connections. Interestingly, fetal wildcats have the same number of axons as domestic
cats in their optic nerve in early development. However, in domestic cats, many of
the cells that are initially produced end up dying, while significantly fewer cells die in
the wildcat [87]. Furthermore, studies of hybrid cats revealed that the number of axons
in their optic nerve varies significantly. Despite this variation, the number of cells in
the LGN always matches the number of neurons in the optic nerve, indicating that cell
death is being used as a buffering mechanism by the genetic system that produces the
optic nerve. Thus, whether the size of the optic nerve increases or decreases from one
generation to the next, the LGN can always provide the right number of connections
for the system to function.

How could overproduction work in AE? In Section 3.2, we discussed targeting by
either specific identity or relative position. If specific identity alone were used in an
AE system, overproduction could not be utilized. However, if targets that might not
exist could be specified, connections to such targets would be removed, utilizing over-
production. In contrast, overproduction with relative positional targeting is relatively
easy to implement. If an axon targets an empty location, it can be discarded. Some
AE systems already remove unused axons that result from overproduction in order to
allow relative targeting to be imprecise [15, 60].

All three imprecision-based strategies—stochasticity, competition, and over-
production—are related and overlapping in their application in nature. Perhaps they
would allow a safer search through genotypic space in AE as well.

3.5 Complexification
The preceding discussion of natural mechanisms in embryogeny has focused on the
process of development itself. It is important also to consider how genetic recombina-
tion and mutation are leveraged in the evolution of developing systems. In particular,
mutation in nature goes beyond optimization. New genes are occasionally added to
the genome, allowing evolution to perform a complexifying function over and above
optimization. Complexification allows evolution to begin with simple systems and elab-
orate on them incrementally, as opposed to evolving elaborate systems from the start.
Furthermore, elaboration is protected in nature in that interspecific mating is prohibited.
Such speciation creates important dynamics differing from standard genetic algorithms.
In this section, we discuss how these important characteristics of natural evolution bear
on embryogeny.

Gene duplication is a special kind of mutation in which one or more parental genes
are copied into an offspring’s genome more than once. The offspring then has re-
dundant genes expressing the same proteins (Figure 8). Gene duplication has been
responsible for key innovations in overall body morphology over the course of natural
evolution [3, 16, 27, 55].

A major gene duplication event occurred around the time that vertebrates separated
from invertebrates. The evidence for this duplication centers around HOX genes, which
determine the fate of cells along the anterior-posterior axis of embryos. HOX genes are
crucial in shaping the overall pattern of developmental in embryos. In fact, differences
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Figure 8. Gene duplication. Two genomes of equal length are crossed over. The letters represent the trait expressed
by each gene. The offspring has two additional redundant genes, resulting from the duplication of genes C and D
from the first parent.

in HOX gene regulation explain a great deal of arthropod and tetrapod diversity [16].
Amores et al. [3] argue that since invertebrates have a single HOX cluster while verte-
brates have four, cluster duplication must have significantly contributed to elaborations
in vertebrate body plans. The additional HOX genes took on new regulatory roles in
vertebrate anterior-posterior axis development, considerably increasing the body-plan
complexity. Although Martin [55] argues that the additional clusters can be explained by
many single gene duplications accumulating over generations, as opposed to massive
whole-genome duplications, researchers agree that gene duplication has contributed to
important body-plan elaborations.

A detailed account of how duplicate genes can take on novel roles was given by
Force et al. [27]: Base pair mutations in the generations following duplication partition
the initially redundant regulatory roles of genes into separate classes. Thus, the embryo
develops in the same way, but the genes that determine the overall body plan are
confined to more specific roles, since there are more of them. The partitioning phase
completes when redundant clusters of genes are separated enough that they no longer
produce identical proteins at the same time. After partitioning, mutations within the
duplicated cluster of genes alter different steps in development than mutations within
the original cluster. In other words, the opportunities for mutation increase through
duplication because duplication creates more points at which mutations can occur. In
this way, developmental processes elaborate.

Because major biological shifts in body-plan complexity have resulted from dupli-
cation, AE systems should be able to utilize this kind of mutation as well. However,
duplication is difficult to implement for two reasons:

1. If genes are allowed to duplicate over the course of evolution, the population will
contain genomes of variable length. Variable length genomes can cause problems
for crossover in genetic algorithms.

2. Two identical sets of genes must be capable of diverging into separate roles in a
given AE system. It is difficult to ensure that new genes remain useful after their
first appearance.

We now discuss how these obstacles have been overcome by nature, and how AE
can employ similar solutions.

3.5.1 Variable Length Genomes in AE
A gene in AE might be a rewrite rule or a gene product with a regulatory region.
Whatever the encoding, when duplication is allowed, the number of genes is variable,
which can cause loss of information during crossover. Figure 9 shows that as new
genes are added in different lineages through different duplications, the same gene may
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(a) Original Genome

(b) Separate Duplications

(c) Duplicate Gene Roles Differentiate

(d) Crossover of Variable Length Genomes

(e) Loss of D, E, and F

(f) Loss of G, H, and I

Figure 9. The variable length genome problem. Variable length genomes are necessary for complexification. The
diagram shows how critical genes can be lost in the crossover of such genomes. A sequence of events is depicted
from top to bottom [(a) through (f)]. (a) The original genome contains four genes, A, B, C, and D. (b) In separate
instances of reproduction, the original genome undergoes two different duplications. In one case a cluster of two
of its genes, A and B, are duplicated. In the other case, three genes, A, B, and C, are duplicated. The resultant
genomes now have differing lengths. (c) Over generations, the roles of the duplicated genes differentiate from their
redundant original roles. This functional divergence is represented using different letters: E and F, and G, H, and
I. The newly differentiated genes now may serve important new roles in their respective lineages. (d) The two
genomes of differing length are crossed over. (e) In one possible offspring, maintaining the length of the smaller
genome, genes D, E, and F are lost. Particularly troublesome is the loss of D, which was in the original genome.
(f) Another potential crossover, preserving the length of the larger genome, loses G, H, and I, along with duplicating
D. Loss of information in crossover may disrupt previously stable phenotypic development. Moreover, there is no
way to ensure that all the necessary genes are included without a mechanism for checking which genes from one
genome correspond to those from another. See Figure 10 for a solution to this problem.

exist at different positions in different genomes. Conversely, different genes may exist
at the same position. Thus, crossover may lose essential genes through misalignment.
Interestingly, this problem does not occur in nature, and therefore it should be possible
to avoid it also in AE.

First, organisms with significantly different genomes never mate because they are in
different species.

Second, nature has a mechanism for aligning genes with their proper counterparts
during crossover, so that data is not lost or obscured. This alignment process has been
most clearly observed in E. coli [63, 70]. A special protein called RecA takes a single
strand of DNA and aligns it with another strand by attaching the strands at genes that
express the same traits, which are called homologous genes. The process by which RecA
protein aligns homologous genes is called synapsis. In experiments in vitro, researchers
have found that RecA protein does not complete the process of synapsis on fragments
of DNA that are not homologous [63].

It turns out that speciation and synapsis can both be utilized in genetic algorithms,
including AE, by using features of evolution that are available only through compu-
tational means. Stanley and Miikkulainen [74–76] showed that the ancestral history of
genes in an evolving population can be used to tell which genes should line up with
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(a) Original genome with historical markings

(b) Separate duplications

(c) Duplicate gene roles differentiate

(d) Historical markings used to align genes
during crossover

(e) No loss of information in crossover

1  2  3  4

1  2  3  4  5  6 1  2  3  4  7  8  9

1  2  3  4  5  6 1  2  3  4  7  8  9

1  2  3  4  5  6

1  2  3  4        7  8  9
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Figure 10. Solving the variable-length genome problem with historical markings. Historical markings are numbers
assigned to each gene that represent the order in which new genes appeared over evolution. (a) The original genome
contains four genes—A, B, C, and D, assigned historical markings 1 through 4. (b) When new genes appear through
duplication, they are assigned numbers in the order in which they appear. Assuming the duplication on the left
happened before the one on the right, the new genes—A′ and B′, and A′, B′, and C′—are assigned the numbers
5 through 9. (c) As the products of the duplicate genes differentiate, their historical markings continue to serve
as a record of their origins. (d) During crossover, those genes that have matching historical markings are aligned,
while those that are disjoint are purposely not aligned. (e) The result is that any kind of crossover can preserve the
information and relationships between all the genes in variable length genomes by utilizing the historical markings.
Historical markings are an abstraction of synapsis, the process used in nature to match up alleles of the same trait
during crossover [63, 70].

which during crossover. If a counter assigns increasing integers to new genes every
time they appear through a mutation, and if those integers are preserved every time
genes are subsequently inherited, then the origin of every gene is known throughout
evolution. The numbers assigned to each gene are called historical markings. Since
two genes with the same origin must express the same trait, it is possible to know
exactly which genes line up by using the historical markings (Figure 10).

Although the system developed by Stanley and Miikkulainen, NEAT, was applied
to a direct encoding of neural networks that did not include a developmental stage,
in principle historical markings can be applied to any genetic encoding, including
those used in AE, since gene history is a genetic property in both developmental and
nondevelopmental encodings. Thus, using the NEAT methodology, the variable length
genome problem can be overcome in AE.

Stanley and Miikkulainen [75, 76] also showed that historical markings can be used
to speciate the population, separating incompatible organisms into different niches.
The extent to which two genomes have different genetic histories is a measure of their
incompatibility. Therefore, historical markings allow a simple way to test whether two
genomes belong in the same species. The number of historical markings only present
in one of the two genomes is a measure of their incompatibility. This measure can be
used to cluster genomes into compatibility groups, or species.

118 Artificial Life Volume 9, Number 2



K. O. Stanley and R. Miikkulainen A Taxonomy for Artificial Embryogeny

A significant benefit of speciation is that it protects innovation [76]. Because adding
new genes creates new species, organisms with duplicate genes compete primarily with
other organisms in the same species. Thus, they have a chance to optimize their new
genetic material without being prematurely eliminated through competition with the
population at large. Explicit fitness sharing [31] can be used to ensure that highly fit
species cannot crowd smaller species out of the population before they have a chance to
reach their potential. That way, gene duplications do not need to immediately improve
fitness in order to survive. On the other hand, since organisms without duplications
are also protected in their own species, smaller genomes are preserved as long as they
are competitive, avoiding bloating the genome.

Historical markings provide another example of a computational abstraction that is
potentially more efficient than the natural process: In this case, historical markings are
an abstraction of synapsis, which is the process through which homologous genes in
natural genomes are aligned [63, 70]. Historical markings enhance evolutionary search,
making it possible for evolution to utilize gene duplication effectively.

3.5.2 Divergence of Gene Clusters
Even if variable length genomes are possible in AE, the question remains how clusters
of genes can be duplicated in such a way that the new cluster eventually takes on a
new role. This goal is important because major mutations in new duplicate clusters
could permanently disable them. They might never activate, or their products might
become so different from those of the original cluster that they disrupt development. As
Force et al. [27] explained, after a cluster of genes is duplicated in nature, subsequent
mutations repartition the roles of both the original genes and the duplicated genes with-
out significantly altering the overall developmental plan. Once duplicate genes have
undergone sufficient mutation to be activated at different points during development
from their original counterparts, subsequent mutations can begin to alter development
at these new points. Thus, because of the duplicate genes, evolution has the flexibility
to alter the developmental process at additional points.

If duplicate genes are to take on new roles in development, they must be carefully
integrated into the already existing developmental plan of the organism. If mutations
that change the conditions under which duplicate genes are activated are too severe,
the genes will become disconnected from the existing developmental plan, and subse-
quent mutations will likely have little effect. Thus, in order to allow duplicate genes
to gradually take on new roles, the conditions under which they activate should lie on
a continuum. In other words, a slight mutation in one duplicate should cause it to be
activated in some but not all cases where its counterpart was formerly always activated.
Care must be taken to make such changes possible in a particular AE encoding. Pre-
conditions for activating grammatical rules or regulatory requirements for genes in cell
chemistry systems should not allow slight mutations to significantly alter the conditions
under which a particular gene is activated.

AE systems that implement both synapsis and gradual divergence of duplicate genes
will allow researchers to experiment with gene duplication.5 Because duplication is an
effective means of complexification, genomes should start out small and be allowed to
become larger through duplication. Each duplication extends the genome into a higher
dimensional space where more genes are being optimized, increasing the potential
complexity of the phenotype. This approach allows evolution to optimize the smallest
possible number of dimensions, since organisms with new genes only do better if those

5 Gene deletion is also possible. However, deletion is potentially more deleterious than duplication. Duplication creates redundancy,
which does not cause any loss of functionality. In contrast, deletion may cause important steps in development to be removed,
short-circuiting embryogeny.
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genes are useful. Speciation allows different species to complexify at different rates, so
that the population can explore different spaces simultaneously [74, 76].

AE systems that complexify genomes in different species from a minimal starting
point will allow researchers to address an important question: How should clusters of
genes be chosen for duplication? Everything from copying single genes to duplicating
whole genomes is possible. While biologists continue to debate this issue [3, 55], AE
can also begin to address it through experimentation. Calabretta et al. [14] have already
shown that duplicating clusters of genes can lead to the emergence of distinct neural
modules in neuroevolution.

A complexifying AE system that starts with small, simple genomes will first evolve
basic structures, such as bilateral symmetry, and then elaborate on them in future
generations by adding new genes. This approach is more likely to discover highly
complex phenotypes than an approach that begins searching in the intractably large
search space of complete solutions.

We have now surveyed all five major dimensions of development in biological sys-
tems: cell fate, targeting, heterochrony, canalization, and complexification. Since each
dimension can be implemented in different ways in AE, the dimensions together consti-
tute a representation of the space of possible AE systems. Thus, the distinction between
cell chemistry and grammatical approaches reveals less about the underlying properties
of AE systems than does how they operate on each dimension.

Another important theme from this section was computational abstraction of mech-
anisms in natural development that may be more efficient than nature’s own methods.
The following resources that are not directly available to nature but useful in compu-
tational systems were identified:

• Cartesian coordinates to represent position (Sections 3.1 and 3.2)

• Instantaneous spreading of a canvas of cells (Section 3.1)

• Real time as a regulator of gene expression (Section 3.3)

• Historical markings as a mechanism for artificial synapsis (Section 3.5)

These artificial information sources can boost computational performance in various
dimensions, and should also be considered in experimentation.

The next section uses the five dimensions of development to compose a taxonomy
of existing and future AE systems, and suggests how the taxonomy can help focus
future research efforts.

4 A New Taxonomy for Artificial Embryogeny

The goal of a taxonomy is to make classification and comparison of different systems
possible. To achieve this goal, a good taxonomy must reflect the underlying properties
of the space being classified. Thus, the new AE taxonomy will replace the older
distinction between grammatical and cell chemistry approaches by employing each
dimension of development as an axis in a multidimensional classification space of AE
implementations. These axes are described first below, followed by an overview of
how the resulting taxonomy represents the existing AE systems.

4.1 Dimensions of Variation
In order for dimensions of development to serve as axes, they must be characterized
as continuums. That way, it will be possible to describe a particular AE system, as
well as natural evolution, as points in a five-dimensional space of possible evolvable
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developmental systems. To better understand this space, we begin with a summary of
the major dimensions and their properties:

1. Cell Fate: An AE system can range from having a single method for determining
the fate of a cell (for example, prepatterning) to having a large variety of
determination methods (described in Section 3.1).

2. Targeting: At one extreme, only specific targeting is used; at the other, only
relative targeting. In between, systems use some combination of the two strategies
(Section 3.2).

3. Heterochrony: Some systems may have no mechanisms for changing the timing
of events, while others may implement mechanisms of timing such as counters,
parameters in L-systems, or dynamic regulatory networks. More flexible systems
approach the developmental hourglass, with many possible paths from early to late
development (Section 3.3).

4. Canalization: AE systems can range from requiring precise genotypic instructions
to those that tolerate a high degree of imprecision or mutation, utilizing such
strategies as stochasticity, resource allocation, and overproduction (Section 3.4).

5. Complexification: Classical genetic algorithm encodings employ fixed-size
genomes. At the other extreme, genomes in nature have variable length, and
sometimes new genes are added through duplications. Synapsis and speciation
facilitate variable-length genomes (Section 3.5).

The five dimensions describe the implementation of an AE system, as opposed to
its emergent properties. In other words, experimenters can vary the settings on any
of these dimensions by implementing or not implementing mechanisms described in
Section 3. For any particular configuration, the emergent properties of the resulting
evolutionary process can be measured. For example, the extent to which a particular
system produces complex structures is one possible measure of its performance. Other
emergent properties that may be measured are modularity, gene reuse, symmetry, and
efficiency. Because these are emergent properties rather than implementation choices,
we do not include these properties as axes in the implementation space.

Figure 11 classifies AE systems from Section 2 along these dimensions. Only systems
for which evolutionary results have been reported are classified. Natural evolution is
also graphed (depicted as a tree) for comparison. The classification is not meant as a
rating; there is no implied superiority of one end of a dimension over another. Rather,
the classification is meant to show which areas of the space are currently being explored,
and which areas remain uncharted.

4.2 Classification Overview
In this section we outline how the proposed taxonomy represents the current AE sys-
tems. Each dimension is explained by moving from left to right on its axis in Figure 11.

In the cell fate dimension, the majority of systems rely exclusively on prepatterning,
that is, the fate of each new unit of structure is determined by its parent. Bentley and
Kumar’s [9] and Boers and Kuiper’s [10] systems also use context sensitivity, giving them
two means of fate determination. Moving to the right, several cell chemistry approaches
use signaling as well. No system implements as many determination methods as exist
in nature.

In the targeting dimension, grammatical approaches tend to use specific targeting.
When a cell splits into two connected cells, or when a rule specifies a connection, the
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Figure 11. The space of existing AE systems. AE systems, in addition to natural evolution (depicted as a tree), are
graphed on each of the five dimensions of development laid out horizontally in each subfigure. Systems depicted
in gray are grammar-based, while those in white utilize cell chemistry techniques. Only those systems for which
evolutionary results were reported are included. Even though it is not a developmental system, NEAT [74–76] is
included on the complexification dimension because it is the only system that currently implements a version of
synapsis and speciation. The letters are abbreviations for the authors who developed the specific AE systems, as
described in Section 2: B—Bongard and Paul [12], Bongard and Pfeifer [13], and Bongard [11]; BeK—Bentley and
Kumar (implicit encoding) [9]; BKa—Belew and Kammeyer [8]; BKu—Boers and Kuiper [10]; CPN—Cangelosi et
al. [15]; D—Dellaert and Beer [20, 21] and Dellaert [19]; E—Eggenberger [24]; G—Gruau [33, 34] and Gruau
et al. [35]; HP—Hornby and Pollack [37, 38]; J—Jakobi [41]; K—Kitano [45]; KR—Komosinski and Rotaru-Varga
(indirect developmental encoding) [46]; LS—Luke and Spector [53]; NP—Nolfi and Parisi [60]; S—Sims [72]. Those
systems that did not include any kind of targeting are not graphed on that dimension. The figure shows the kinds of
AE systems that have been implemented, and those areas that remain unexplored. This taxonomy makes possible
principled exploration and comparison of future systems.
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connections are fully specified by the identities of the rules from which they derive.
Some grammatical approaches [34, 38, 46, 53] also implement a kind of relative targeting
in which instructions in the grammar can specify connections by their offset in the
rewrite string. However, this kind of relative targeting differs from that described in
Section 3.2, in which targets are specified by their offset and angle in the actual Cartesian
space of the developing system. Cell chemistry approaches use this more natural form
of relative targeting. The systems of Cangelosi et al. [15] and Nolfi and Parisi [60] rely
exclusively on this kind of relative targeting.

A few systems [8, 10, 45, 60] cannot use heterochrony because steps in their devel-
opment are not parameterized or modulated in any way. Thus, changing the timing of
developmental events in these systems would require altering the entire genome. In
contrast, the majority of AE systems implement some kind of parameterization or signal
modulation system, allowing developmental phases to taper off or initiate at different
times. Bongard’s [11] system is placed farthest to the right because it is the only system
with a reported analysis of heterochrony. No system has implemented radical shifts in
timing or the elimination of entire phases of development without disrupting the final
product, as seen in natural evolution.

Because they rely on prepatterning, none of the existing grammatical approaches
utilize stochasticity, resource allocation, or overproduction, and therefore they cannot
leverage these mechanisms for canalization. On the other hand, cell chemistry systems
can utilize imprecise targeting, since physical location is a standard property of their
implementation. The one exception is Bentley and Kumar’s [9] cell chemistry system,
which does not implement targeting and uses rules similar to grammatical rules. Eggen-
berger’s [24] system is placed slightly to the right of other cell chemistry systems because
it includes a special facility for apoptosis, or planned cell death. Stochasticity is not
used in any existing systems as a means to encourage robustness. Despite the division
in this dimension, both cell chemistry and grammatical approaches are theoretically
capable of implementing any particular kind of targeting or imprecision-based strategy,
and they differ in this dimension primarily for historical reasons.

On the complexification dimension, four systems use fixed-length genomes, and
therefore cannot complexify at all. Several systems use variable length genomes, but
some use standard crossover operators that are likely to lose information, making it
difficult to realize the full benefit of complexification. A few systems [9, 34, 46, 53]
use special crossover operators for variable-length genomes. Most of these specialized
systems use genetic programs for evolution. However, no system starts out with a
population of small genotypes and systematically complexifies them over generations.
NEAT [76] is included at the far right of the axis as the only example of a system
that implements systematic complexification and approximates synapsis and speciation,
although it is not an AE system. However, NEAT’s historical markings can potentially
be used by any AE system.

The taxonomy shows that the distinction between cell chemistry and grammatical
approaches is indeed superficial, since both approaches can vary along each dimension.
In fact, all the dimensions have empty space that can be utilized further. The next
section discusses the implications and future applications of the taxonomy.

5 Discussion and Future Work

As can be seen in Figure 11, a large amount of space on many dimensions of the new
AE taxonomy has not been explored. Unexplored space includes systems that employ
many ways to determine cell fates, mix relative and specific targeting, and have high
potential for heterochrony, high potential for canalization, and realistic complexifica-
tion. Interestingly, natural evolution occupies exactly this part of the AE space. This
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observation suggests that an extremely important point in this vast space remains to be
explored, along with many other untested points.

Ultimately, the goal of AE is to be able to evolve phenotypes as complex as biologi-
cal systems. This goal is still far in the future; at the current stage, we are still searching
for constituents that make AE effective. The dimensions of the new taxonomy for AE
indicate what some of these constituents might be. There may not be one best solution:
Different parameterizations may be good for evolving different kinds of complex sys-
tems. For example, an AE system suited for evolving million-neuron neural networks
may not be the same as one suited for evolving vehicle architectures.

Thus, the challenge for future research is to comprehensively explore this massive
space. We must find out what the trade-offs are between flexibility and simplicity, and
we must question whether the mechanisms that biologists have identified as instrumen-
tal to natural development are equally viable in AE. As a first step in this exploration,
we suggest several benchmarks that may serve as a starting point for understanding
the AE space. Each benchmark can be applied at many points in the taxonomic space,
providing many possible avenues for future work.

• Evolution of Pure Symmetry: Symmetry is a significant means of reuse. When
the same structures exist on both sides of an organism, discovering them only once
in the genome as opposed to twice reduces search effort. Therefore, it is important
to understand how the various dimensions of development can enhance the
evolution of symmetric patterns without any goal other than symmetry itself. If
evolving k-fold symmetric patterns is made the only goal, we may isolate those
dimensions that facilitate gene reuse. Another interesting question is whether
k-fold symmetric patterns can easily be evolved into k + 1-fold symmetric patterns,
providing insight into the power of reuse in a particular implementation.
Eggenberger’s [24] experiments in evolving bilateral symmetry represent a first step
in this direction.

• Evolving a Specific Shape: How hard is it for various AE systems to evolve
specific shapes, such as spheres, rings, cylinders, jointed cylinders, sockets, stars,
and trees, that are known to be useful in nature or engineering? Understanding
why systems at different points in AE space succeed or fail to evolve such shapes
will aid in making future implementation decisions.

• Evolving Specific Connectivity Patterns: The targeting dimension (Section 3.2)
is crucial in neuroevolution, and experiments should be devised to understand it
thoroughly. How hard is it to get topologies such as feedforward, recurrent, or
self-organizing maps to arise in AE? When is specific-identity targeting more useful
than relative-location targeting? How important is neuron positioning during
development when final connectivity is the only fitness criterion?

• Evolving a Simple Controller: While much AE research has focused on
ambitious artificial creatures complete with body and brain, at some point it will be
necessary to compare AE systems with other reinforcement learning systems
(including non-developmental neuroevolution systems) on standard benchmark
problems in order to assess whether particular AE approaches can evolve solutions
to problems that non-developmental systems cannot. For example, pole balancing
has been used as a reinforcement learning benchmark for over 30 years [4, 7, 32,
35, 56, 58, 67, 76, 81–84], making it convenient for comparison with other methods.
If a particular AE methodology cannot compete in a relatively simple domain, it
may not be appropriate for evolving more complex artificial organisms either. It is
useful to know about such performance differences early in order to analyze what
causes them, and perhaps to improve them in the future.
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Such benchmarks are necessary because most research to date has focused only
on establishing that indirect encodings can evolve more complex phenotypes than
direct encodings. Thus, almost all existing comparisons are between indirect and direct
encodings. By establishing a set of standard benchmark tasks, and a taxonomy over
which to vary system configurations, direct comparisons can begin to be made between
different indirect AE encodings.

Such benchmark comparisons will eventually make it possible to predict the per-
formance of AE systems based on their location in the taxonomy. For example, one
benchmark might be to evolve a five-pointed star. This benchmark can be attempted
with a system in which all the dimensions of development are fixed except the cell
fate dimension. That dimension can vary from using only prepatterning to using every
conceivable form of fate determination, from stochastic self-organization to signaling,
migration, and proliferation. The results can be measured using several criteria: How
fast does the objective shape evolve? How often and how many genes are reused by
the solution genome? Is symmetry used, or is each point in the star specified by a sep-
arate section of genetic code—that is, is there emergent modularity? For every possible
setting on the varying dimension (e.g., cell fate determination), data will be available
for comparison.

It might, for example, turn out that the more available means of fate determination
there are, the more reuse occurs. Once confirmed on other benchmarks and with
different settings on other dimensions, this result ultimately would allow us to predict
under what conditions reuse is most likely to occur. This information would affect de-
sign decisions in future systems, and eventually, the taxonomy would make principled
design of AE systems possible.

One possible objection to using simple benchmarks is that the benefit of AE may only
be realized in very complex domains or in the evolution of very complex phenotypes.
However, even if that is the case, the suggested benchmarks are chosen specifically
to test properties that are known to be exploited in complex biological systems. For
example, symmetry is used in many sophisticated biological organisms. Thus, if an
AE system cannot evolve a simple symmetrical shape, it is unlikely that it can exploit
symmetry in the evolution of more complex phenotypes.

Of course, ultimately we are interested in evolving extremely complex phenotypes.
Hart et al. [36] argued that development allows utilizing a simpler genotypic search space
than would be possible through directly searching over phenotypes. It is for this reason
that AE encodings promise to achieve otherwise unreachable levels of complexity.
Through gene reuse, genetic components can be used as modules, freeing evolution
from having to discover the same concept more than once.

One of the most intriguing phenomena that might emerge from a successful AE
representation is repetition with variation. That is, instead of duplicating the same
structure multiple times, a general theme, such as a limb, can be reused multiple times
with differing manifestations. This special kind of modularity is only beginning to
be understood. It does not reflect traditional engineering design, in which discrete
identical parts are assembled into larger constructions. Instead, the beginnings and
ends of individual parts are amorphous, and their internal structure is only vaguely
constrained. The capacity to reuse parts with variation is potentially a very powerful
way to create complexity, and a most intriguing direction of future AE research.

6 Conclusion

The goal of AE is to eventually evolve systems that rival the complexity seen in natural
organisms. While current AE systems represent a step in this direction, no artificial sys-
tem has yet come close to the power of natural evolution. Thus, a principled approach
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to building AE systems is needed. As a first step, a framework is needed in which
different implementations can be compared and contrasted along different dimensions.
In this article, we have provided such a comparative framework. We proposed a new
taxonomy for AE systems based on the dimensions of development seen in nature. This
taxonomy suggests that the existing distinction between grammatical and cell chemistry
approaches is superficial. Rather, the dimensions of development define the capabilities
of an AE system. Using the new taxonomy, it will be possible to make principled design
decisions in any kind of encoding, and to compare and contrast systems in the same
context. Ultimately, we hope researchers can use this taxonomy to predict how varying
the settings of different dimensions affects the capabilities of different implementations,
and therefore can build better AE systems.
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