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SUMMARY

To understand sensory encoding and decoding, it is
essential to characterize the dynamics of population
responses in sensory cortical areas. Using voltage-
sensitive dye imaging in awake, fixating monkeys,
we obtained complete quantitative measurements
of the spatiotemporal dynamics of V1 responses
over the entire region activated by small, briefly
presented stimuli. The responses exhibit several
complex properties: they begin to rise approximately
simultaneously over the entire active region, but
reach their peakmore rapidly at the center. However,
at stimulus offset the responses fall simultaneously
and at the same rate at all locations. Although
response onset depends on stimulus contrast, both
the peak spatial profile and the offset dynamics are
independent of contrast. We show that these results
are consistent with a simple population gain-control
model that generalizes earlier single-neuron contrast
gain-control models. This model provides valuable
insight and is likely to be applicable to other brain
areas.

INTRODUCTION

Small visual stimuli elicit neural responses that are distributed
over a large area in the primate primary visual cortex (V1; e.g.,
Hubel and Wiesel, 1974; Grinvald et al., 1994), suggesting that
even small stimuli are encoded by a large population of neurons
in V1. Furthermore, electrophysiological studies in behaving
primates suggest that perception is mediated by a population
of neurons rather than by single neurons (Parker and Newsome,
1998; Purushothaman and Bradley, 2005). Thus, to understand
the encoding and decoding of visual stimuli in the cortex, it
is important to characterize the properties of V1 population
responses.
One approach is to estimate population responses from single

neuron responses. Single unit recordings in V1 have revealed
a number of fundamental properties that ought to contribute to
the population responses. First, single neurons have receptive
fields with a substantial spatial extent that increases rapidly
as a function of retinal eccentricity (Hubel and Wiesel, 1974;

Van Essen et al., 1984). Second, the response amplitude of
single neurons increases nonlinearly with contrast, typically
reaching response saturation at low to modest contrasts
(Albrecht and Hamilton, 1982). Third, the tuning of single neurons
is typically invariant with contrast, even in the saturated response
range (Albrecht and Hamilton, 1982; Albrecht and Geisler, 1991;
Heeger, 1991, 1992). Fourth, the latency of the response of
single neurons decreases as a function of stimulus contrast
(Dean and Tolhurst, 1986; Carandini and Heeger, 1994; Albrecht,
1995). Although these properties are common in V1 neurons,
there is a vast heterogeneity among the neurons, and thus it is
unclear how these properties are combined and manifested at
the population level. In addition, single-unit and multiple-unit
studies in V1 have focused mainly on responses at or near
the center of activity produced by the stimulus. Responses at
locations more peripheral to the center of activity are largely
unknown.
Here we provide a complete quantitative description of the

real-time spatiotemporal dynamics of V1 population responses
to a small, briefly presented (200 ms), localized stationary visual
stimulus. Most measurements of response properties in V1 have
been performed using drifting stimuli with relatively long dura-
tions (several seconds) to approximate a steady-state condition.
However, natural saccadic inspection of a visual scene typically
produces transient stimulation: 200–300 ms fixations separated
by rapid eye movements. In addition, although it is common
to analyze cortical responses by their peak responses and
latencies (phases) for drifting stimuli, the falling edges of the
responses can potentially provide useful information for briefly
presented stimuli (Bair et al., 2002). Thus, to fully understand
the properties of the population responses under natural condi-
tions, it is important to measure the complete time courses of
responses to briefly presented stimuli.
We used voltage-sensitive dye imaging (VSDI; Grinvald and

Hildesheim, 2004) in alert, fixating monkeys, to measure popula-
tion responses in the superficial layers of macaque V1 over an
area of approximately 1 cm2. The imaged area covered the entire
region activated by the small local stimulus. We found several
unexpected properties that are not obvious from single unit
responses. First, the spatial profile of the peak response is inde-
pendent of stimulus contrast. Second, responses start to rise at
all locations approximately at the same time, but rise at a faster
rate at the center of activity than at peripheral locations. Third,
both the latency and steepness of the rising edge of the response
depend on stimulus contrast. Finally, after stimulus offset, the
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responses at all locations fall simultaneously and at the same
rate, regardless of stimulus contrast. These complex properties
illustrate the importance of quantitative characterization of pop-
ulation responses in both space and time.

Next, we considered whether there is a general mechanism
that can account for these rich dynamics. To do this, we explored
several well-known families of computational models. We find
that the observed response properties are inconsistent with
simple models having a fixed linear operation followed by
a nonlinearity that operates within the individual neuron (e.g.,
a spike threshold or a refractory effect), and with models that
use slow lateral connections to explain the difference in the
response dynamics at different cortical locations. To account
for the observed properties in both time and space, we propose
a simple feedforward population gain-control (PGC) model that
generalizes earlier normalization models for single V1 neurons
(Albrecht and Geisler, 1991; Heeger, 1991, 1992; Carandini
and Heeger, 1994; Carandini et al., 1997). In this model, the
temporal dynamics and the gain of the local responses are
controlled by population activity in the network rather than by
the nonlinear properties of individual neurons or synapses. We
simulated the early visual pathway from the retina to V1 by a
two-stage PGC model. The model’s dynamics closely resemble
those in the data.

Responses in the retina and LGN also show evidence of
nonlinear contrast gain-control (Shapley and Victor, 1978; Sclar
et al., 1990; Kaplan and Benardete, 2001), and thus it is an open
question whether a significant part of the nonlinearity in V1
responses is inherited from its input. To address this important
question, we used the PGC model to predict how the relative
contributions of nonlinearities within layers 2-3 in V1 versus its
inputs affect the relationship between stimulus size and V1
response amplitude. The results from a VSDI experiment varying
stimulus size were consistent with a PGCmodel in whichmost of
the nonlinear processing occurs in the first stage, suggesting
that the nonlinearities observed in the VSDI responses may be
mostly implemented prior to the superficial layers in V1.

In summary, our results illustrate the value of quantitative
analysis and computational modeling in testing hypotheses
regarding the biophysical and anatomical factors underlying
neural population activity. We characterized the spatiotemporal
properties of the V1 population responses to small, briefly pre-
sented, stimuli that are relevant in natural vision, and found
that the response dynamics are complex and unexpected from
the results in single unit recordings. Importantly, we show that
a simple PGC model can qualitatively account for the complex
dynamics, suggesting that gain-control is likely to be a general
mechanism contributing to neural dynamics in the brain.

RESULTS

Population Responses to a Gabor Stimulus in V1
We used VSDI to measure V1 population responses to a briefly
presented stationary Gabor stimulus while a monkey was per-
forming a fixation task. The goal was to characterize the spatio-
temporal dynamics of the population responses over the entire
area activated by a small Gabor stimulus. The spatiotemporal
dynamics of the fine-scale columnar signals, which are modu-

lated by the orientation of the stimulus, were not measured in
the current study and will be addressed in future studies.

Peak Responses: Spatial Distribution and Contrast
The peak responseswere taken by averaging the responses over
a fixed 100 ms window (160 to 260 ms after stimulus onset;
shaded region in Figure 2A). The spatial distribution of the
peak responses at two contrasts are shown in Figures 1A and
1B. The distributions are well fitted by two-dimensional Gauss-
ians (Figure 1C). The Gaussians are elongated because of the
anisotropic mapping of visual space in V1 (Van Essen et al.,
1984; Blasdel and Campbell, 2001; Yang et al., 2007). Impor-
tantly, as shown in our previous studies (Chen et al., 2006,
2008), the widths of the Gaussian fits are not significantly
different across different contrasts for both the major axis
(s= 2:1 mm) and minor axis (s= 1:8 mm) (one-way analysis of
variance [ANOVA], p > 0.1; Figures 1D and 1E). The widths of
the spatial distributions are hence largely contrast invariant.
We have previously shown that this spread is not significantly

affected by the small variability in the monkey’s eye position
(Chen et al., 2006). The width of the stimulus (s = 0.167!) maps
to only "0.5 mm on the cortex through the cortical magnifica-
tion factor alone (3 mm/deg; obtained in the same animal from
retinotopy measurements in another experiment [C.R. Palmer,
Y. Chen., and E. Seidemann, 2008, Soc. Neurosci., abstract]).
The "2 mm wide spatial profile is mainly due to the size and
scatter of V1 receptive fields (Hubel and Wiesel, 1974; Dow
et al., 1981; Van Essen et al., 1984), which dictate the cortical
point image (McIlwain, 1986). In addition, some of this widening
could reflect significant lateral spread of activity through hori-
zontal connections in V1 (Gilbert and Wiesel, 1979; Rockland
and Lund, 1983; Martin and Whitteridge, 1984) and significant
contribution from feedback connections (Angelucci et al.,
2002). One goal of the modeling component of the current study
was to examine the possible contribution of these distinct mech-
anisms to response spread in V1.
Figure 1F shows the average peak response over a circular

region of 0.5 mm radius at the center of the response profile
(central region outlined in Figure 1C) as a function of stimulus
contrast. Similar to single units, the responses follow a sigmoidal
function on a log contrast axis; the solid curve is a Naka-Rushton
function fitted to the data (r2 = 0.98).

Overview of the Temporal Response Properties
at Different Locations
To analyze the response properties at different locations in V1,
the imaging pixels were divided into small bins according to their
distances from the center of activity. The image was first divided
into 0.5 mm wide concentric annular regions, centered at the
peak of the spatial response, with the central region being
a disc of 0.5 mm radius. The pixels in the central region had an
average distance of 0.25 mm from the center, and the average
distance increased by 0.5 mm in each annulus. Due to the aniso-
tropic response profile, we considered only the pixels within a
1mmwide strip along themajor axis of the fittedGaussian profile.
Within this strip the relationship between distance and amplitude
was nearly constant. The temporal responses of the pixels within
each annulus that were also inside of the strip were averaged to
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produce a single time course for the corresponding distance.
Figure 1C shows the bins up to an average distance of
2.75 mm; responses at greater distances were not analyzed
because theywereweak andnoisy, especially at lower contrasts.
Figure 2A shows the average time courses of the responses at

the center bin for different stimulus contrasts. To quantitatively
characterize these time courses, they were first divided into
two parts. The first part, defined as the rising edge, was the
response in the first 210 ms after stimulus onset. The rest of
the time course was defined as the falling edge. Each individual
edge from each trial was smoothed by a five-frame moving
average, normalized, and then fitted separately with a logistic
function 1=ð1+ expð$lðt $ t50ÞÞÞ (e.g., Figure 2B). The parameter
l describes the slope of the response, and t50 is the time that the
response reaches half of its peak. For example, a l of 0.05means
that the response takes about 44ms after t50 to reach 90%of the
peak. The same fitting procedure was applied independently at
the different locations shown in Figure 1C for each stimulus
contrast. We also define the rising edge latency as the time after
stimulus onset (t10) for the fitted response to reach 10% of its
peak amplitude. Similarly, the latency of a falling edge is the
time to decrease by 10% from the peak after stimulus offset.

The duration of the rising and falling edges is at least 50 ms
(five frames; see Figure 2A), hence there are enough samples
for fitting the logistic functions, which provide a good description
of the response dynamics.
Figure 2C shows the latencies of the rising and falling edges in

the center bin as a function of contrast. As observed in single
neuron studies (Dean and Tolhurst, 1986; Carandini and Heeger,
1994; Albrecht, 1995) and Figure 2B, the latency of the rising
edge decreases as stimulus contrast increases (one-way
ANOVA, p < 0.01). On the other hand, there is no significant
difference in the falling edge latencies for different contrasts
(one-way ANOVA, p > 0.15). Asymmetric properties between
rising and falling edges are also observed in their slopes
(Figure 2D). The slope of the rising edge increases as contrast
increases (one-way ANOVA, p < 0.01), while the slope of the
falling edge remains approximately constant (one-way ANOVA,
p > 0.15). In other words, the rising edge is accelerated in both
latency and slope as contrast increases, while the falling edge
is largely independent of contrast.
The space-time color plots in Figure 2E summarize in

a compact form all the temporal responses as a function of stim-
ulus contrast and position. The normalized fitted responses for

Figure 1. Spatial Distribution and Contrast Response Function of Peak Responses to a Gabor Stimulus
The responses were averaged across all experiments and over a fixed 100 ms time window (shaded region in Figure 2A).

(A and B) Spatial distribution of normalized peak responses to the stimulus at 6% (A) and 100% (B) contrasts. (Dashed white line shows the V1/V2 border.)

(C) 2DGaussian fit of the response in (B). The outlined regions are the intersection between a 1.0mm strip along themajor axis and six concentric circular annuli of

width 0.5 mm. The central annulus is a circle with 0.5 mm radius. The responses of the pixels in the groups that are equidistant from the center are averaged for

further analyses in Figures 2 to 4.

(D) Normalized peak responses along the major axis at different contrasts. Here, and in all figures, the error bars are standard errors across individual trials.

(E) The average widths of the Gaussian fits at different contrasts.

(F) Contrast response function at the center. Solid curve is the Naka-Rushton equation (cn=ðcn + cn50Þ) fit of the data (open circles, r2 = 0.98). The spatial profiles of

the peak responses are therefore largely contrast invariant, even though the responses saturate at high contrast.
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each contrast are shown as separate subplots; within each
subplot the time course of the response at each of the six
location bins from Figure 1C is indicated by a horizontal row, pro-
gressing from the center location at the top to the most periph-
eral location at the bottom. For example, the upper horizontal
row in the plot for 100% contrast corresponds to the dark blue
curve in Figure 2B. Several qualitative observations can be
made from these maps (they will be quantified later). For each
contrast, (1) the response latencies at different locations are
approximately equal, as can be seen by the vertically aligned
transitions from blue to cyan in each map, and (2) the response
rises at a slower rate as distance from the center increases, as
can be seen by the increase in the tilt of the transition between
the colors as the normalized amplitude increases. In addition,
for each location, as contrast increases (3) response latency
decreases, and (4) the response rises at a faster rate. Finally,
(5) after stimulus offset, the falling edges are similar for all loca-

Figure 2. Spatiotemporal Responses to Dif-
ferent Stimulus Contrasts
(A) Time courses of the normalized responses to

different contrasts in the center region of

Figure 1C. Stimulus was presented at time 0 and

disappeared after 200 ms (dotted line). Average

responses in the shaded area were used to

compute the spatial profiles and contrast

response function in Figure 1.

(B) Logistic fits of the time courses in (A). The time

courses were divided into two parts by the dashed

line. Each part was fitted separately by a logistic

function. Diamond and square symbols on each

part indicate the latencies (t10) and times to half

peak (t50), respectively.

(C and D) Latencies (C) and slopes (D) of the rising

and falling edges of the fitted responses as a func-

tion of contrast.

(E) Logistic fits of the normalized time courses at

different locations for each stimulus contrast.

Each horizontal row within the space-time plot

for a given contrast shows the fitted time course

at one location, from the center (top row) to the

outmost region (bottom row). There is a systematic

change in slope and latency of the rising edges,

whereas the falling edges are similar for different

contrasts and locations.

tions and contrasts. All these key prop-
erties were also observed in additional
experiments in a second animal. We
next examine these properties quantita-
tively.

Properties of the Rising Edges
The above observations can be quantita-
tively evaluated using the logistic fits
obtained from individual trials. Figure 3
plots, for each stimulus contrast, the
rising edge latency (t10) as a function of
distance from the center bin. For each
contrast, there was no significant differ-

ence in the latencies at different locations (one-way ANOVA,
p > 0.1 for all contrasts). However, as observed at the center
bin, latency of the rising edge decreased as stimulus contrast
increased at all locations (one-way ANOVA, p < 0.01 for all loca-
tions). These results confirm observations (1) and (3).
Figure 3B plots the same latency data in Figure 3A, but as

a function of the peak response. For the same response ampli-
tude, the latency can be different at different stimulus contrasts
(e.g., see latencies at a DF=F = 0.065%). This important result
demonstrates that the dynamics of the response at a given loca-
tion in V1 do not depend solely on the local response amplitude,
but rather depend on the response amplitudes over a larger
region.Wewill revisit this key property whenwe discuss possible
models of V1 activity.
The rate at which the response rises (l) depends on both

stimulus contrast and on location (Figure 3C). For a particular
contrast, the slopes decrease significantly as distance from the
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center increases (one-way ANOVA, p < 0.01 for all contrasts),
confirming observation (2). In addition, at a fixed location, the
slope of the rising edge increases with contrast (one-way
ANOVA, p < 0.01 for all locations), supporting observation (4).
Furthermore, the slope also increases with peak response with
a correlation coefficient of 0.94 (Figure 3D).
Due to the decreasing slope as a function of distance from the

center, the time to half of the peak response (t50) increased at
locations peripheral to the center of activity. If t50 was employed
as a measure of latency, a traveling wave of activity would
appear to be originating from the center (Figures 3E and 3F),
as observed previously in anesthetized animals (Grinvald et al.,
1994; Jancke et al., 2004; Benucci et al., 2007). The average
difference of the time to half peak between the locations
0.25 mm and 2.75 mm away from the center was 6.2 ms. This
difference corresponds to a propagation speed of 0.4 mm/ms
(for t50), which is at the higher end of the speed of propagation
through lateral connections (0.1–0.4 mm/ms; Hirsch and Gilbert,
1991; Murakoshi et al., 1993; Grinvald et al., 1994; Nelson and
Katz, 1995; Gonzalez-Burgos et al., 2000). As we shall see later,
such differences in time to half of the peak can be explained by
a feedforward PGC model.

Figure 3. Temporal Properties of the Rising
Edges
Time is relative to stimulus onset.

(A) Latencies of the responses at different cortical

distances from the center.

(B) Same data as (A), plotted as a function of peak

response.

(C and D) Slopes of the responses at different

locations (C) and peak responses (D).

(E and F) Time to half of the peak response as

a function of location (E) and peak response (F).

For a particular contrast, the responses at different

locations started to rise at about the same time,

but the slopes were shallower at locations that

were further away from the center, increasing the

times to half peak at these locations.

Properties of the Falling Edges
The dynamics of the falling edges of the
responses differed markedly from those
of the rising edges. As shown in Figure 4,
both the latency and slope were indepen-
dent of contrast and location (two-way
ANOVA, p > 0.15 across contrasts and
locations for both latency and slope).
The responses at all locations therefore
fell approximately simultaneously and at
the same rate, regardless of the stimulus
contrast and response amplitude, sup-
porting observation (5). The latency was
slightly longer (t10 = 65 ms) and the slope
shallower (l = 0.026) than those of the
rising edges. Such asymmetry in the
temporal properties of the falling and
rising edge can also be explained by the
PGC model.

Although the falling edge latency is longer than the rising edge
for all contrasts, the reverse relationship has been observed in
the firing rates of single units (Bair et al., 2002). The apparent
discrepancy is consistent with the fact that the VSDI measures
membrane potentials (Grinvald and Hildesheim, 2004). Because
of spike threshold, the onset of spiking activity will lag behind the
rise in the VSDI response. On the other hand, for the falling edge
the drop in spiking activity will coincide with the drop in the VSDI
response (as long as membrane potential is above threshold).
Thus, for spikes it is quite possible for the onset latency to be
greater than the offset latency. Consistent with this possibility,
we recently found that the threshold for observing significant
spiking activity in V1 to be about 30%–40% of the maximal
VSDI response (C.R. Palmer, Y. Chen., and E. Seidemann,
2008, Soc. Neurosci., abstract).

Plausible Families of Models
Is there a simple functional model that can account for these
complex spatiotemporal dynamics of V1 population responses?
An obvious starting point is to consider previous models that
have been proposed to account for the response properties of
single neurons. Here we consider three families of such models,
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scaling them up for population responses by regarding each
VSDI pixel as a ‘‘single unit’’ that has the average properties of
the neural population falling under that pixel.

Static Nonlinearity Models
A well-knownmodel of single neuron responses is the LNmodel,
which consists of two components: an initial linear weighting
function or linear filter (L) followed by a static nonlinearity (N)
such as spike threshold or response saturation due to refractory
effects. This model is popular because it is relatively simple and
easy to analyze. For example, when themodel is valid, the recep-
tive field estimated using spike-triggered averaging will equal the
initial linear weighting function. Unfortunately, this simple class
of models is inconsistent with several key properties of the
spatiotemporal dynamics of V1 population responses. First,
these models predict that the spatial profile of the responses
should widen and change shape as stimulus contrast is
increased. This is inconsistent with the observed spatial profiles
(Figure 1E). Second, these models predict a longer latency for
the falling edge of the response at high contrast, which is not
observed in the VSDI responses (see Figure 4). Finally, in an
LN model the dynamics of the response are tied to response
amplitude, yet V1 responses show clear decoupling of amplitude
and latency (Figure 3B). For simulations of the LN model’s
predictions, see Supplementary Materials 1 (available online).

Lateral Propagation Models
The time to half peak (t50) of the rising edges in the VSDI
responses increases with increasing distance from the center
of the active region. A common view about such delay is that it
results from propagation through slow lateral connections. If
lateral spread was indeed the only source of the response
beyond a critical distance from the center, then beyond this crit-
ical distance the response latency (t10) should increase linearly
as a function of distance, which should be evident because of

Figure 4. Falling Edge Latencies and Slopes
Time is relative to stimulus offset.

(A and B) Latencies of the responses as a function

of location (A) and peak response (B).

(C and D) Absolute value of the slope as a function

of location (C) and peak response (D). The laten-

cies and slopes were independent of contrast

and location.

their relatively slow propagation speed
(Hirsch and Gilbert, 1991; Murakoshi
et al., 1993; Grinvald et al., 1994; Nelson
and Katz, 1995; Gonzalez-Burgos et al.,
2000). However, there was no significant
difference in the rising edge latency of
the VSDI responses for a wide range of
distances (Figure 3A). In fact, for 50%
and 100% contrast stimuli, rising edge
latencies remained the same up to a
distance of 3.25 mm (within which a
reasonably good fit to the data could be
obtained; data not shown). These results

and additional simulations (see Supplementary Materials 2)
suggest that within the examined range the observed dynamics
are not consistent with a significant contribution of slow lateral
connections to the observed response spread. Below we show
that the simple feedforward PGC model can account for the
observed dynamics.

Normalization Models
Normalization gain-control models have been used to account
for many nonlinear properties of single unit responses in the
LGN and V1 (Albrecht and Geisler, 1991; Heeger, 1991, 1992;
Carandini and Heeger, 1994; Carandini et al., 1997; Mante
et al., 2008). In particular, this family of models can explain
response saturation (Albrecht and Hamilton, 1982), contrast-
invariant tuning (Sclar and Freeman, 1982; Skottun et al., 1987;
Albrecht and Geisler, 1991), and phase advance of response at
high stimulus contrasts (Carandini et al., 1997). As we have
seen, these properties are also observed in the VSDI responses.
Thus, normalization models appear to be more promising than
the other two families of models. However, an important ques-
tion is whether normalization models can account for the other
properties observed in the VSDI data, especially the changes
in the rising edge at different locations and the invariance of
the slope and latency of the falling edge. In the next two sections,
we show that a generalization of the normalization model can
qualitatively account for all the spatiotemporal properties of
the VSDI responses.

Population Gain-Control Model
The PGC model is a generalization of earlier single-neuron
normalization models (Albrecht and Geisler, 1991; Heeger,
1991, 1992; Carandini and Heeger, 1994; Carandini et al.,
1997; Mante et al., 2008). In contrast to these early models,
the PGC model aims at explaining the responses of the entire
active neural population in V1 in both time and space.
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In describing the PGC model, we focus on determining the
predicted responses to simple Gabor patches like those used
in the present experiments. To further simplify the discussion
we describe a one-dimensional version of the model, which
represents the collapsed data along the major axis (x axis) of
the VSDI response profile (see the black rectangular region in
Figure 1C). Each layer in the model therefore contains an array
of units indexed by x, where each unit represents the average
activity of the small neural population within a pixel in the VSDI
image. Extension to a full two-dimensional model is straightfor-
ward but will not be discussed here.
The visual pathway is represented by a network consisting of

an input layer and two stages in Figure 5A. Because VSDI
responses in V1 are largely determined by the contrast of the
Gabor stimulus, independent of its specific orientation and
phase, the stimulus is represented in the input layer by its
Gaussian contrast envelope, with magnitude directly propor-
tional to the stimulus contrast. A fixed time delay is also added.
The first stage in the model represents the nonlinear process-

ing that occurs in the retina, LGN, and layer 4 in V1. Although it
would bemore realistic tomodel each of these areas individually,
there are not enough experimental data at the population level to
provide sufficient constraints. The second stage represents
layers 2-3 in V1 where the VSDI signals are measured. The units
within each stage are identical and implement the filtering and
normalization circuit illustrated in Figure 5B.

Processing in the Model Units
At each stage of the model there is an initial step that represents
receptive field summation and normalization pooling. The spatial
receptive field of each unit x has a Gaussian weight profile GðxÞ
centered at its location, and the spatial normalization pool has

a Gaussian weight profile HðxÞ centered at the same location.
The result of the receptive field summation step, Aðx; tÞ, then
passes through a resistor-capacitor (RC) circuit, whose conduc-
tance is controlled by a normalization pool (Figure 5B; Carandini
et al., 1997; Mante et al., 2008). As Carandini et al. point out,
in such a model the conductance will affect both the gain and
the response latency. The voltage across the capacitor, Vðx; tÞ,
which represents the membrane potential, is the response of
the unit.
The key property of the model is that the conductance,

gðx; tÞ>0, of the resistor at each unit is not fixed but increases
from a baseline value as a function of the weighted average
over a local region of the input. For a static current, i.e.,
Aðx; tÞ=AðxÞ, the steady state of the voltage across the capacitor
is VðxÞ=AðxÞ=gðxÞ. In other words, the gain of the circuit is the
inverse of conductance, and therefore the conductance has
a divisive (normalizing) effect on the output of the receptive field
summation. The input region that contributes to gðx; tÞ is called
the normalization pool. The overall strength of normalization
activity is controlled by a scale factor on the output of the normal-
ization pool.

Response Transformation between Stages
The response at each model pixel represents membrane poten-
tial, which dominates the VSDI responses. Because neurons
communicate through spikes, the responses in the first stage
must be converted into spikes that the second stage receives.
In a recent study we found that the VSDI responses are
related to spiking activities by a power function (C.R. Palmer,
Y. Chen., and E. Seidemann, 2008, Soc. Neurosci., abstract).
A similar relationship has been found between average mem-
brane potential and spike rate in single unit recordings (Anderson

Figure 5. Canonical Feedforward Popula-
tion Gain-Control Model for the Early Visual
Pathway
(A) The model consists of an input layer and

two stages. Each layer is modeled by a spatially

organized array of units with the same set of

parameters. The input layer represents the visual

stimulus only and does not employ the model in

(B). The processing in the first stage represents

the nonlinearity in the retina, LGN, and layer 4 of

V1, whose spiking responses are fed into the

second stage as input. The second stage repre-

sents the superficial layers in V1 where the VSDI

signals are measured. The blue and red projec-

tions illustrate the receptive fields and normaliza-

tion pools, respectively, for two example units in

the first (light colors) and second (dark colors)

stages of the model.

(B) The processing in a model unit. Each unit

first computes two weighted sums (with spatial

pooling functions GðxÞ and HðxÞ) which feed

into a parallel resistor-capacitor (RC) circuit. The

voltage across the capacitor is the unit’s

response. The conductance gðx; tÞ of the resistor

is inversely related to the gain of the circuit, i.e.,

it has a divisive effect on the weighted sum

Aðx; tÞ. It also affects the dynamics of the response. The conductance depends on the weighted sum Bðx; tÞ obtained with normalization spatial pooling function

HðxÞ. (Figure modified from Carandini et al., 1997.)

(C) Example time courses of the model’s components at the center and periphery in response to a hypothetical stimulus.
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et al., 2000; Finn et al., 2007). A fixed power function is thus
applied to the responses in the first stage and the results are
fed into the second stage as inputs.

Although feeding the stimulus represented in the input layer
directly into the first stage provides a reasonably good fit to
the data, the predictions shown here are for a model with a fixed
power function applied to the activity in the input layer. This initial
nonlinearity is plausible given the accelerating point nonlinear-
ities seen in the earliest levels of the visual system; e.g., the
nonlinear relationship between the membrane potential of the
photoreceptors and their rate of glutamate release (Witkovsky
et al., 1997). The model’s general behavior is not affected by
this nonlinearity.

General Behavior of the Model
One way to understand the dynamics of the model is through the
time constant of the RC circuit of each unit (Figure 5C). Note that
the time constant and the gain of the circuit are inversely related
to conductance. When the normalization activity in a unit is high,
the conductance is large and the time constant and gain are
small. This property can account for much of the dynamics
observed in the VSDI responses. At a particular unit, when the
stimulus contrast is high, the receptive field summation and
hence the normalization activity is large in all the neighboring
units, resulting in faster dynamics (Figure 5C). This property is
consistent with the observed dynamics in the rising edges of
the VSDI responses. In addition, for a Gabor stimulus, the
normalization activity is largest at the center, where the contrast
is the highest (Figure 5C). The response at the center therefore
rises at a faster rate than those at the periphery, which again is
consistent with our observations. This is an interesting property
because the spatial difference in gains can account for the trav-
eling wave of the time to half peak observed in the rising edges,
which are generally attributed to slow lateral connections.

When there is no input, conductance is at the baseline value in
all the units; hence, the temporal dynamics are the same every-
where in the model (Figure 5C). Thus, after input offset, the
responses at all the units start to decay at the same time and
at the same rate, as observed in the falling edges of the VSDI
responses. Finally, the divisive effect of conductance in the
model also causes the steady-state response to saturate when
the input amplitude is large. The dynamic nonlinearity in the
model therefore can account for many of the observed proper-
ties of the responses. Interestingly, there is some evidence that
the model’s prediction of asymmetrical effect of contrast on
the rising and falling edges of the response holds approximately
for single neurons in the primary visual cortex of cat (see Supple-
mentary Materials 3).

Effects of Normalization Pool Size
How does the width of the normalization pool weighting function
affect the rising edge and the spatial profile of the response?
Consider a fixed localized input and different Gaussian normali-
zation weighting functions that have the same total weight. If the
pool is wide, then the normalization activity will be similar for
units near and far from the center of activity. Thus, the difference
in the slopes of the rising edges across space will be small. On
the other hand, if the normalization pool size is small, there will

be a large difference in the time constants of different units.
These considerations suggest that the observed difference
between the time courses at the different locations could be
explained by a feedforward PGC model with an appropriate
pool size.
Normalization pool size also influences the spatial profile of the

response. Consider a static Gaussian input and its correspond-
ing steady state response, VðxÞ=AðxÞ=gðxÞ. If the width of the
pool is much wider than the input, then the normalization activity
and hence the conductance gðxÞ will be the same at all units. In
this case, the spatial response profile will simply be a scaled
version of the receptive field summation, which is a Gaussian.
On the other hand, if the normalization pool is much smaller
than the input, then response saturation will occur at a different
stimulus contrast for each unit, as in the LN model, thus flat-
tening the response profile at high contrasts (Supplementary
Materials 1). As a result, to achieve the contrast-invariant spatial
profile observed in the VSDI responses, the normalization pool
size must be at least comparable to the size of the stimulus.
In sum, the normalization pool size affects both spatial and

temporal properties of the responses. Based on these proper-
ties, it is possible to estimate the overall pool size from the
data analytically (see Supplementary Materials 4).

Simulation of VSDI Responses
VSDI responses were simulated with a network that consisted of
an input layer and two subsequent stages (see Figure 5A).
Although each stage has its own set of parameters, some of
the key parameters were constrained by previous anatomical
and physiological measurements reported in the literature (see
Experimental Procedures). Figure 6A plots the spatial profiles
of the peak responses in the model for different input contrasts.
Consistent with the VSDI responses, the widths of the profiles
are all the same. Note that profiles will only be contrast invariant
in the model for stimuli with sizes that are smaller or comparable
to the receptive field of the V1 units; profiles for large stimuli will
change shapes and widths as a function of contrast, due to satu-
ration. The contrast response function of the model is plotted in
Figure 6B, which provides a good fit to the data (r2 = 0.98).
Figure 6C shows the space-time plot of the predicted VSDI

responses. The model captures qualitatively the observed
spatiotemporal properties of the responses. For each contrast,
(1) the rising edge latencies (t10) at different locations are similar,
with a maximum difference of 2 ms, and (2) the slope of the rising
edge becomes shallower as distance from the center increases.
For each location, as contrast increases, (3) response latency
decreases, and (4) the rising edge becomes steeper. Finally,
for all contrasts and locations, (5) latencies and slopes of the
falling edges are similar (<3 ms difference).

Relative Normalization Strengths in theDifferent Stages
In the mammalian visual system, contrast gain-control (normali-
zation) has been observed in the retina, LGN, and visual cortex,
with a spatial scale that progressively increases (see Introduc-
tion). Similarly, in the PGC model, normalization operates at
two stages, with the sizes of the receptive fields and normaliza-
tion pools in the second stage being twice those in the first
(Sceniak et al., 2006). An important question is whether our
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results provide evidence concerning the relative strength of the
normalization in the different stages of visual processing. As it
turns out, the stimuli used in our main experiment are not suffi-
cient to discriminate between hypotheses concerning relative
normalization strength.
However, by exploring the PGCmodel, we found that the rela-

tive strength of normalization at the two stages has a large
impact on the expected size tuning of V1 responses. Therefore,
by varying the size of the stimulus, it is possible to estimate the
relative contributions of normalization in the first stage (retina
to layer 4 of V1) and the second stage (superficial layers of V1).
Figure 7A shows predicted response amplitude at the center of
the activated region in the superficial layers of V1 as a function

Figure 6. Responses in the Second Stage of
the Model
(A) Normalized spatial profile of the peak

responses.

(B) Normalized contrast response function at the

center. Circles are the responses from the data

(r2 = 0.98).

(C) The space-time plot of the normalized

responses is qualitatively similar to that of the

data (Figure 2E), suggesting that population

gain-control may be a general mechanism of

visual processing.

Figure 7. Size Tuning of the Model and the
VSDI Responses
(A) Predictions of the normalized size tuning

curves of five example combinations of normaliza-

tion strengths in the two stages of the model. Each

combination is labeled by the fraction of normali-

zation in the first stage, b1=ðb1 +b2Þ. The contrast

of the stimulus was 100% and the response was

measured at the center. The red dots plot the

normalized responses obtained in the VSDI exper-

iment for two stimulus sizes. The reduction of VSDI

response to the large stimulus is small, which is

consistent with a strong normalization in the first

stage of the model.

(B) Size tuning curves at the center of the two model stages for two different stimulus contrasts (5% and 100%), with the same parameters used in Figure 6

that correspond to b1=ðb1 +b2Þ= 0:99 in (A). The solid blue curve is the same as the green curve in (A).

of stimulus size for a 100% contrast Ga-
bor stimulus. Each curve in the figure is
for a different strength of normalization
in the first stage of the model relative to
the total strength in both stages. When
normalization only occurs in the first
stage of the model (1.00), the response
increases with stimulus size because the
second stage is linear (i.e., no normaliza-
tion). As the normalization in the second
stage becomes stronger (the other
curves), the relative response to the larger
stimuli (e.g., s = 1!) decreases, because
normalization has a divisive effect on the
input from the first stage.

In an additional experiment we measured the VSDI responses
to 100% contrast Gabor stimuli with s = 0.167! and 1!. The red
dots in Figure 7A plot the relative responses to the two stimuli.
The peak response to the large stimulus is about 7% less than
to the small stimulus, which is consistentwith a strong normaliza-
tion in thefirst stageof themodel. Similar resultswereobserved in
additional experiments in another animal. This surprising result
suggests that nonlinearities observed in the data may be mostly
implemented before the superficial layers of V1 where the VSDI
signals are measured. This pair of normalization strengths was
used to obtain the simulation results shown in Figure 6.
Figure 7B plots the predicted size tuning curves at the centers

of the two model stages for stimuli at 5% and 100% contrasts,
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using the same parameters for Figure 6. Because normalization
in the second stage is relatively weak and because the receptive
fields in the second stage are larger, the tuning curves for both
contrasts peak at larger sizes than those in the first stage. In
each stage, the peak of the tuning curve for low contrast occurs
at a larger size than that for high contrast, consistent with the
observations in single units in the LGN (Bonin et al., 2005) and
V1 (Sceniak et al., 1999) and with previous models of nor-
malization at the level of single neurons (Sceniak et al., 2001;
Cavanaugh et al., 2002; Bonin et al., 2005).

DISCUSSION

VSDI in fixating monkeys was used to characterize the spatio-
temporal dynamics of V1 population responses evoked by
a small, briefly presented, visual stimulus. The VSDI signals are
particularly informative because they capture responses over
the entire active region in V1. The population responses
exhibited systematic and unexpected nonlinear properties. At
different locations, they started to rise approximately all at
once, with the response at the center of the active region rising
at a faster rate than those that were further away. Stimulus
contrast also affected the response latencies and slopes. In
contrast to the relatively complex dynamics at stimulus onset,
the responses following stimulus offset fell together at approxi-
mately the same time and rate, regardless of stimulus contrast
and spatial location. We also found that the spatial profile of
the peak response was constant and independent of contrast.

The rich spatiotemporal dynamics observed in the responses
place strong constraints on models of V1. Models that rely solely
on a single-unit nonlinearity or slow lateral propagation in V1 are
inconsistent with the observed properties of the VSDI responses.
Instead, we find that a simple canonical normalization-based
PGC model can qualitatively account for such dynamics.

We also used the PGC model to examine the degree to which
nonlinearities in V1 responses are inherited from its inputs.
Contrast gain-control has been used to explain many nonlinear
properties of single unit responses in the retina and LGN that
are also observed in V1, such as phase advance of response
at high contrast (Shapley and Victor, 1978; Victor, 1987),
contrast saturation (Bonin et al., 2005), and size tuning (Bonin
et al., 2005). It is therefore possible that gain-control before V1
contributes significantly to the response nonlinearities in V1.
On the other hand, there is some evidence that the P-cells, which
provide about 80% of the input to V1, are fairly linear (Derrington
and Lennie, 1984; but see Levitt et al., 2001). The PGC model
predicts how the responses to a large stimulus depend on
the nonlinearity in V1 and its input. Results from an additional
VSDI experiment that varied stimulus size suggest that most
of the gain-control for localized stimuli is implemented before
the superficial layers of V1 (i.e., in the retina, LGN, and/or layer 4
in V1).

It is perhaps not surprising that contrast gain-control is imple-
mented at various stages along the visual pathway, given its
crucial role in preserving tuning characteristics of V1 neurons
(except contrast tuning), while allowing high sensitivity to
contrast. Potential advantages of implementing a large compo-
nent of the contrast gain-control before V1 is that it could then

help preserve tuning in the retina and LGN (as well as in cortex),
and it could be implemented with a spatial pooling that might
involve relatively fewer connections than required in V1.
Population gain-control is a simple and effective mechanism

that can maintain the sensitivity and tuning of neurons; hence it
is quite possible that it operates in most, if not all, sensory
cortical areas. If so, then the population dynamics reported
here in V1 may be observed in many other cortical areas, and
the corresponding pathways might be simulated by a cascade
of PGC stages.

Relationship between the Responses of a Single Neuron
and a Neural Population
When the responses of a large population of neurons are pooled,
the result can behave quite differently from the individual
neurons that contribute to it. This idea is illustrated nicely in the
size tuning behavior in our model. When all of the normalization
occurs in the first stage of the model, then the units in this stage
have strong size tuning. However, when these units are pooled
linearly to produce the response of a unit in the second stage,
this unit has much weaker size tuning (Figure 7A). The reason
is that as the size of the stimulus increases, some of the units
in the first stage that provide input to this unit decrease their
responses due to surround suppression, while others increase
their responses, because the stimulus now enters the center of
their receptive field. The net effect of increasing the stimulus
size is therefore much weaker in the second-stage unit than in
the individual units in the first stage that provide input to it
(Figure 7B). This is one factor that may explain why the VSDI
responses (which measure the summed activity of a large popu-
lation of V1 neurons) are only slightly lower for a large stimulus
than for a small stimulus, even though strong size tuning has
been observed for single neurons in V1 (Sceniak et al., 1999,
2001; Cavanaugh et al., 2002; Levitt and Lund, 2002).
A second factor is the heterogeneity in the tuning properties of

the neurons within the population. For example, the size tuning
for different neurons varies greatly. There is also a large range
of suppression: some neurons are suppressed to spontaneous
firing rate as stimulus size increased, while some neurons are
not suppressed at all. Overall, more than half of the neurons
are suppressed by less than 40% of their peak responses (Cav-
anaugh et al., 2002). When the responses from these units are
pooled together, the combined tuning curve will in general be
shallower than the individual curves in the population.
The above discussion illustrates how unexpected properties

can emerge at the level of neural population responses (for a
more general discussion see Seidemann et al., 2009). In general,
in many cases it will be difficult or even impossible to predict the
population responses based on a small sample of single-unit
measurements. Our results on size tuning demonstrate this diffi-
culty and emphasize the importance of direct measurements of
population responses.

Possible Implementation of Divisive Population
Gain-Control
A central idea of our model is that the gain is controlled through
division. A key question is therefore: How is the division achieved
in a neuron? It is possible that division is implemented by
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a combination of different biophysical mechanisms (Kayser
et al., 2001; Carandini, 2004) at different scales. At the level of
individual neurons, local nonlinearities such as synaptic depres-
sion (Abbott et al., 1997; Tsodyks and Markram, 1997) have
a divisive effect on the presynaptic activity, but these mecha-
nisms are unlikely to account for the long-range effects that we
observe. Connections with inhibitory interneurons could deliver
the normalization signals at the population level.
Noise reduction in the membrane potential could also

contribute to gain-control by reducing the likelihood of crossing
spike threshold (Finn et al., 2007); however, noise reduction may
itself be the result of some form of gain-control (inmany systems,
lowering gain lowers noise). Further investigations will be
required to understand the relationship between contrast gain-
control and membrane-potential noise.
Another key question is: Where do the signals that control the

gain come from? In the feedforward implementation, which is
illustrated in Figure 5A, the gain of the individual neuron is
computed at the same level as its input, and is provided to the
neuron at the same time as (or before) the excitation. Alterna-
tively, in a feedback implementation that has been previously
proposed (Heeger, 1992; Carandini et al., 1997), the gain is
computed from the output of the neuron and its neighbors. In
this case the gain computation can occur either at the same
level, or potentially even in a subsequent stage that then sends
fast feedback. Although a feedforward circuit appears to be
the simplest and most parsimonious implementation of the
gain-control, a mechanism that involves very rapid feedback,
potentially through a specialized subset of the neurons with
fast dynamics, cannot be ruled out. Additional experiments are
needed to address this important question.
The PGCmodel assumes that conductance changes instanta-

neously with the input. Although this is not plausible, there is
evidence suggesting such a change occurs within milliseconds
(Albrecht et al., 2002). In addition, simulations of a modified
model where the conductance changed with a time constant
of 10 ms showed that there was no qualitative difference in the
responses. The basic instantaneous model thus provides
a reasonable approximation to a more realistic model.

Traveling Wave of Neural Responses
Consistent with previous VSDI studies (Grinvald et al., 1994;
Jancke et al., 2004; Benucci et al., 2007), our results show that
if the latency of the response is estimated from the time to half
peak (t50) or from the response phase (using spectral analysis),
then a traveling wave would appear to originate from the center
and propagate toward the periphery at a moderate speed of
"0.4 mm/ms (see Figures 2E and 3E). Although the accepted
hypothesis for such spatiotemporal dynamics is that they reflect
propagation of responses through slow lateral connections in
V1, our results suggest that lateral connections are not neces-
sarily the major cause for such dynamics. In fact, the lateral
connections hypothesis predicts a spatial increase of response
onset latency (t10) that is not observed in our data. Our results
are therefore inconsistent with a major contribution of slow
lateral propagation to the observed dynamics in V1 in responses
to small stimuli (see Supplementary Materials 2 for a quantitative
analysis of lateral spread). Instead, our measurements suggest

that these dynamics are the result of changes in the slope of
the rising response, which could be explained as a gain-control
effect.
Importantly, we show that a feedforward PGCmodel, in which

the responses reach all locations in V1 at the same time, can
account for the spatial changes in t50 or phase of VSDI responses
shown here. In Supplementary Materials 5 we also show that the
model can account for the previously reported results of Benucci
et al. (2007). Note that although the PGC model can explain
these results, it is currently specific to the stimuli used in our
experiments; altering the stimulus properties can potentially
change the dynamics of the responses. Thus, it remains to be
seen if our simple feedforward model can predict the response
dynamics for a wider range of stimulus conditions.

CONCLUSION

To understand the processing of arbitrary visual stimuli in the
cortex, it is important to characterize the properties of V1 popu-
lation responses and evaluatemodels that can account for them.
As an initial step, we used VSDI in fixating monkeys to fully
characterize the spatiotemporal dynamics of the population
responses in the superficial layers of V1 evoked by a small,
briefly presented, visual stimulus. The population responses
exhibited several systematic and unexpected nonlinear proper-
ties that are not obvious from single unit results. We also showed
that models with static nonlinearities and models with slow
lateral propagation of responses in V1 are inconsistent with the
observed properties of the VSDI responses. Instead, a simple
canonical population gain-control model was found to qualita-
tively account for such dynamics. The consistency of our data
with population gain-control and the advantages of such amech-
anism for simultaneously providing tuning invariance and high
sensitivity to weak signals suggests that population gain-control
is likely to operate in most, if not all, sensory cortical areas.

EXPERIMENTAL PROCEDURES

The results reported here are based on methods that have been described in

detail previously (Seidemann et al., 2002; Chen et al., 2006, 2008). Here we

focus on details that are of specific relevance to the current study. All proce-

dures have been approved by the University of Texas Institutional Animal

Care and Use Committee and conform to NIH standards.

Behavioral Task and Visual Stimulus
A monkey was trained to maintain fixation while a small oriented stationary

Gabor stimulus was presented on a uniform gray background. Each trial began

when the monkey fixated on a small spot of light (0.1! 3 0.1!) on a video

display. Following an initial fixation, the Gabor stimulus was presented for

200ms at 2.2! eccentricity, with s of 0.167! and spatial frequency of 2.5 cycles

per degree. Throughout the trial, the monkey was required to maintain gaze

within a small window (<2! full width) around the fixation point in order to obtain

a reward. Early fixation breaks invalidated the trials, which were not included in

the analysis. Each block of trials contained 8 to 12 different contrasts from 0%

(blank) to 100% presented pseudorandomly, and ten valid trials were run for

each condition.

In a separate set of experiments, the s of the Gabor stimulus was either

0.167! or 1! in each trial. The contrast of the stimulus was always 100%,

and it was presented for 100 ms. The other parameters of the stimulus were

the same as the experiment described above.
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Analysis of Imaging Data
Imaging data were collected at 100 Hz at a resolution of 5123 512 pixels. The

size of each pixel was 37 3 37 mm2. Our basic analysis is divided into four

steps: (i) normalize the responses at each pixel by the average fluorescence

at that pixel across all trials and frames, (ii) remove from each pixel a linear

trend estimated on the basis of the response in the 100 ms interval before

stimulus onset for each trial, (iii) remove trials with aberrant VSDI responses

(generally less than 1% of the trials) (see Chen et al., 2008), and (iv) subtract

the response to the blank condition from the stimulus-present conditions.

After the basic analysis described above, the spatial properties of the

responses in individual trials were determined. First, the center of the spatial

response of each experiment was estimated by fitting a 2D Gaussian to the

average response taken over a time window of 160–260 ms after stimulus

onset (shaded region in Figure 2A), for all stimulus contrasts (25% to 100%).

This center was then held fixed while the average response over the same

time window was fitted with a 2D Gaussian to determine the lengths of the

major and minor axes and the orientation of the major axis for each trial of

the experiment.

To include more trials at each contrast level in the analysis, we combined

responses of five experiments from one monkey. Due to the slight difference

in the setup of each experiment, the spatial responses could be translated

and rotated with respect to each other. The center and average orientation

of the 2D Gaussian fit of each experiment were used to transform the data

so that the spatial responses aligned and overlapped in all the experiments.

Data from individual experiments are similar to the combined data but noisier.

Model Definition
Processing in Each Model Unit

In the linear step of themodel, each unit in a stage computes theweighted sum

of the input Iðx; tÞ by cross-correlation with a Gaussian spatial receptive field:

Aðx; tÞ= Iðx; tÞ5GðxÞ;

where GðxÞ= ð1=sG
ffiffiffiffiffiffi
2p

p
Þexpð$0:5ðx=sGÞ2Þ, and 5 denotes cross-correlation

evaluated at x. Note that if the input is a Gaussian in space, then the weighted

sum across the population will also be a Gaussian. The summation then

passes through an RC circuit to produce the response. The response of the

unit at x can be described by the following RC circuit equation (see Figure 5B):

C
dVðx; tÞ

dt
=Aðx; tÞ $ gðx; tÞVðx; tÞ;

where C is the fixed capacitance, Aðx; tÞ is the receptive field summation

activity, and gðx; tÞ is the conductance of the resistor for the stage. The

conductance at each unit increases with the normalization pool activityBðx; tÞ
and is defined as

gðx; tÞ=g0ð1+Bðx; tÞÞ;

where g0 is the fixed baseline conductance. For each unit the normalization

activity is given by: Bðx; tÞ=b$Iðx; tÞ5HðxÞ, where b is a scaling factor that

represents the strength of normalization and HðxÞ is the Gaussian weighting

function defining the normalization pool (see Figure 5B). All the parameters

are the same for the units in the same stage, but they can differ between

stages.

The detailed dynamics of the model are analyzed in Supplementary Mate-

rials 6.

Response Transformation
Because the response in each model stage represents average membrane

potential, responses in the first stage are converted into spikes by a power

function before being sent to the second stage. In other words, the input

I2ðx; tÞ that the second stage receives from the first stage is:

I2ðx; tÞ=V1ðx; tÞn;

where V1ðx; tÞ is the response in the first stage. The same function is also

applied to the activity in the input layer before feeding into the first stage.

(Note that applying a power exponent to a Gaussian profile changes the width,

but leaves the shape Gaussian.)

Simulation of the Model
The values of the parameters for the two stages in the model were estimated

by fitting the responses in the model V1 to the VSDI responses. To reduce the

number of free parameters, we assumed g0 =1 for both stages because it is

effectively a scaling factor of the response and the capacitance. The constant

delay in the input layer was chosen to be 20 ms, which was a few milliseconds

shorter than the shortest latency seen in the data. The exponent n of the power

function that converts membrane potential into spikes was chosen to be 2,

which is similar to what we found experimentally (C.R. Palmer, Y. Chen., and

E. Seidemann, 2008, Soc. Neurosci., abstract) and provides a good fit to the

data. The same exponent is used in the power function in the input layer.

Based on the literature suggesting that the widths of the center and surround

in the afferents of V1 are about half of those in V1 (Sceniak et al., 2006), we also

assumed sG;2 = 2sG;1 and sH;2 = 2sH;1. By assuming the width of the VSDI

spatial profile to be the result of cascaded receptive field summations and

the power functions, we estimated the value of sG;1. Using the difference in

the rising edge slopes at different locations, we estimated the normalization

pool size in the second stage, sH;2, by the procedure discussed in Supplemen-

tary Materials 4.

The remaining free parameters that needed to be estimated wereC1,C2, b1,

and b2. We first fitted the center’s normalized contrast response function to

the data by minimizing the sum of the squared error. This step enabled b1

and b2 to be determined separately fromC1 andC2, because the capacitances

do not affect the steady-state response in the model. After that, the normaliza-

tion strengths, b1 and b2, were held fixed, while the capacitances were

estimated by fitting the slopes of the rising and falling edges at different loca-

tions and stimulus contrasts simultaneously. The obtained parameters were

sG;1 = 0:983 mm, sH;1 = 1:386 mm, C1 = 3:19, C2 = 2:30, b1 = 1521, and b2 = 2.

The model was simulated for a 20 mm long strip (extending the black rectan-

gular region in Figure 1C) using the Matlab function ode45().

SUPPLEMENTAL DATA

Supplemental Data includemodeling details, 5 figures, and references and can

be found with this article online at http://www.cell.com/neuron/supplemental/

S0896-6273(09)00848-4.
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1 Static Nonlinearity Models 

This section shows the predictions of a static nonlinearity model regarding the spatial profile and falling 

edge latency of the responses as a function of contrast. The nonlinearity was a Naka-Rushton equation, 

with parameters determined from the VSDI responses (Figure 1f). To obtain the spatial profile at a 

particular contrast, a fixed Gaussian input with !  = 2.1 mm was first scaled linearly with contrast and 

then passed through the Naka-Rushton equation. Supplementary Figure 1a plots the spatial profiles for the 

contrasts used in the VSDI experiments. As contrast increased, the region with saturated responses 

became larger, resulting in a wider spatial profile. To see this, note that at low contrast a model unit with 

its receptive field centered on the stimulus would produce a much bigger response than a peripheral unit 

with a receptive that only slightly overlaps the stimulus. But, at high contrasts the responses would 

become much closer to equal, because the response to the central unit would have already saturated at a 

low contrast, allowing the response of the peripheral unit to “catch up”. This property is inconsistent with 

the VSDI responses, because the spatial profile does not depend on stimulus contrast (Figure 1e). 

The simulation of the falling edges in the model was similar. A fixed sigmoidal time course using 

parameters obtained from the VSDI responses (Figure 4) was first scaled with contrast and then the Naka-

Rushton equation was applied at each time point. Supplementary Figure 1b plots the falling edges for 

different contrasts. The responses at higher contrast remained saturated for a longer time, thus increasing 

the latency. To see this, consider the predicted response when the stimulus contrast is sufficiently high to 

push the output of the initial linear filter above the level that produces response saturation. In this case the 

response will remain saturated until the output of the linear filter drops below the point where saturation 

is produced. Thus, the higher the contrast the longer the time after stimulus offset until the response 

begins to fall below the saturated level. Such contrast dependence for the latency of falling edge of the 

response is not observed in the VSDI responses (see Figure 4), suggesting that the nonlinearity models 

cannot account for the VSDI responses. 
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Supplementary Figure 1: Predictions of the static nonlinearity model. (a) Spatial profile of the responses for 

different contrasts. The profile widens substantially as contrast increases, which is not observed in the VSDI 

responses (see Figure 1d). (b) Falling edge of the response for different contrast. At high contrast, the 

response remains saturated for a long period of time, delaying the latency (diamond symbols). In contrast, the 

falling edge latencies are similar for different contrasts in the VSDI responses (see Figure 2b). The static 

nonlinearity model is therefore inconsistent with the observed responses dynamics. 
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2 Modeling lateral propagation 

To investigate how the latencies ( 10t ) are affected by lateral propagation, we ran simulations of a model 

in which the difference in the rising edges was solely due to lateral spread. We assumed that the stimulus-

driven signal in each model unit had the same sigmoidal time course )(tA , with amplitude )(xc  

proportional to the local contrast in the unit’s receptive field. These stimulus-driven signals were 

propagated through lateral connections at a constant speed, which was implemented as a spatiotemporal 

kernel ),( txGl : 

,
otherwise0

||if)(),(
"#

"
$
% &

'' v
cxtxGtxGl  

where v  is the conduction speed, c  is the center of the kernel, and )(xG  is the weighting function of 

lateral connections. The responses of the unit were the sum of stimulus-driven signals and the incoming 

lateral signals multiplied by a scaling factor w : 

( ), ( ) ( ) ( ( ) ( )) ( , )lV x t c x A t w c x A t G x t' * + ,  

In such a model, the overall strength, extent, and conduction speed of the lateral connections all 

contribute to the time course of the observed response. In our simulations, we assumed that the spatial 

strength of the lateral connection )(xG  and the receptive field envelope followed a Gaussian profile. 

Given the width of the response profile (!  = 2.1 mm), the widths of the lateral connections lat!  and the 

receptive field rf!  were constrained by 2222
latrfstim !!!! **' , where stim!  = 0.5 mm is the width of 

the direct projection of the stimulus used in the experiment (stimulus width of 1/6 deg times cortical 

magnification factor of 3 mm/deg). For each scaling factor w  and each plausible pair of values for rf!  

and lat! , we fitted the conduction speed v  of the lateral connections so that the times to half of the peak 

response ( 50t ) at distances 0.25 mm and 2.75 mm differed by 6.2 ms (the experimentally observed time 

difference). The latencies ( 10t ) at these two locations were then determined from the fitted responses.  

Supplementary Figure 2a plots the latency difference as a function of the ratio between rf!  and lat!  for 

different weights w  over the range where a fit was possible. The predicted latency difference is 

substantial and Supplementary Figure 2b plots how the latency and time to half peak increase as a 
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function of distance from the center for the two extreme points with 1'w  in Supplementary Figure 2a 

(circle and triangle symbols) and the rightmost point for 01.0'w  (square symbol). As the ratio between 

rf!  and lat!  increased, the fitted conduction speed decreased to compensate for the wider feedforward 

receptive field. At the end of each curve in Supplementary Figure 2a, the speed was less than 0.01 mm/ms, 

which is an order of magnitude slower than the speed observed in lateral connections (0.1-0.4 mm/ms; 

Hirsch & Gilbert, 1991; Murakoshi, Guo, & Ichinose, 1993; Grinvald, Lieke, Frostig, & Hildesheim,1994; 

Nelson & Katz, 1995; Gonzalez-Burgos, Barrionuevo, & Lewis, 2000) and may not be biologically 

plausible. For the values of the weight w  that were tested, the predicted differences were larger than the 

95% confidence interval of the latency difference in the VSDI responses. This result suggests that linear 

summation of delayed signals from lateral connections alone is inconsistent with the dynamics of the 

rising edges of the VSDI responses. Changing the shape of the stimulus-driven response did not affect the 

result, as long as it remained sigmoid.  

!

Supplementary Figure 2: Effects of lateral propagation on the rising edge latency. (a) The difference in latencies 

between the locations that were 0.25 mm and 2.75 mm away from the center as a function of the ratio between the widths 

of the receptive field and lateral connections, for different values of the lateral weight scaling factor w . Each curve is 

plotted for the range where a fit to the time to half peak was possible. Shaded region shows the 95% confidence interval 

(truncated at 0) between the latencies at the two locations in the VSDI responses. (b) The increase in latency (top) and 

time to half peak (bottom) as a function of distance from the center for three  example points indicated by different 

symbols in (a). 
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3 Asymmetrical affect of contrast on onset and offset latencies in single neurons 

We have shown here that a strong prediction of the PGC model is that onset latency decreases as the 

contrast of a transiently presented stimulus is increased, but that the offset latencies are largely 

independent of the contrast of the stimulus (see Figure 6C).  This prediction also holds for similar contrast 

normalization models developed to explain single neuron responses, but to our knowledge has not been 

tested in the literature.  Although a thorough test of this prediction is warranted, there is some evidence 

that the prediction holds approximately for single neurons in the primary visual cortex of cat.  

Supplementary Figure 3 shows the average response of the 4 complex cells measured in Geisler, Albrecht 

& Crane (2007) to sine-wave grating patches of various contrasts, presented for 200 msec.  As contrast is 

increased the latency of the response onset decreases; however, at stimulus offset the responses decline 

approximately simultaneously at all contrasts.  The same trend was seen for simple cells.  This behavior is 

qualitatively consistent with the PGC model. 

 

Supplementary Figure 3.  Average post-stimulus-time histograms of 4 complex cells in the primary visual 

cortex of the cat, for sine-wave grating stimuli of various contrasts, presented for 200 ms.  The grating stimuli 

were confined to the classical receptive field and drifted at 5 Hz (one cycle in 200 ms).  (Adapted from Geisler 

et al., 2007.) 
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4 Estimating normalization pool size 

The width of the normalization pool affects how the time constant of the rising edge changes across space. 

Given the measured rising edge time constants c-  at the center c  and p-  at the periphery that is p mm 

from the center, we can estimate the size of the pool in the second stage ( 2,H! ). This procedure gives the 

lower bound for 2,H! , because it does not take the difference in the slopes of the input to the second 

stage into account; if there is already some difference in the input, 2,H!  would need to be larger to offset 

the difference. 

 First, the time constant at center is given by 

,1)(

))(1(0

&'

*
'

c

c

cB

cBg
C

-
-

-
 

where 0/ gC'- , which is the time constant of the falling edge. Since both -  and c-  are known, the 

above equation can be evaluated to give a numerical value. Similarly, 1)( &'
c

pB
-
-  and can be 

computed.  

Note that B  is a Gaussian with width 2
2,

2
1 H!! * , where 1!  is the width of the spiking activity in the 

first stage, which is related to the width of the input, x! , and the width of the receptive field in the first 

stage, 1,G! , by 2/)2/( 2
1,

22
1 Gx !!! *' . )(cB  and )( pB  are the values at their corresponding points. 

Dividing )(cB  by )( pB , the width of the normalization pool in the second stage can be estimated: 
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Note that the above computation is independent of the normalization strength b .  
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5 Simulation results for the experiments reported in Benucci, Frazor, & Carandini (2007) 
 
We have used the PGC model to simulate the experiments described in Benucci, Frazor, & Carandini 

(2007), which reports traveling waves of neural responses (as measured by their phases) in the V1 of 

anesthetized cats. 

 

The stimuli used in theses experiments were square gratings that reversed contrast sinusoidally. In the 

simulation, theses gratings were represented as rectangular envelopes with appropriate widths on the input 

layer of the model so that the widths of the Gaussian point spread function (1.1 mm) and spatial response 

(2.2 mm) match those reported in that paper. To represent the contrast reversing of the visual stimulus the 

amplitude of the rectangular envelope modulated sinusoidally at 5 Hz and was full-wave rectified. The 

model parameters used were 5.01, 'G! mm (resulting in a point spread of 1.1)25.0(5.0 22 '4* mm in 

the second stage of the model), 9.01, 'H! mm, 46.21 'C , 53.12 'C , 1211 'b , and 202 'b . Note that 

these values are specific for this simulation to provide a good fit to the data; they are different from those 

used in the main text of the paper. 

 

 

!
 

Supplementary Figure 4: Simulation results of the model. (A) Spatial profile of the 10 Hz component of the 

responses. (B) The delay of the responses (computed from their phases) at different distances from the center. 

The delay at a distance of 5 mm is about 15 ms. (C) Spatiotemporal response of the model, band-pass filtered 

at 7-13 Hz as in Benucci et al., (2007). 
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Supplementary Figure 5: Results of Benucci et al., (2007). The subfigures are arranged in the same way as in 

Supplementary Figure 4. The predictions of the model are very similar to the data, suggesting that 

normalization can account for the observed traveling waves. 

 

Supplementary Figure 4 shows the simulation results, which are similar to those in Benucci et al. (2007) 

(Supplementary Figure 5). The similarity of the predictions of the model with the data suggests that, with 

appropriate parameters, a feedforward PGC model can account for the increase in the phase of the 

responses across space reported in Benucci et al. (2007). However, as with the small Gabor stimuli used 

in our study, this increase in phase in the simulated data is due to the difference in gain across space 

rather than lateral propagation of responses. Note that the responses shown in Supplementary Figure 4C 

are band-passed filtered at 7-13 Hz to mirror the analysis performed in that paper. Such filtering distorts 

the shape of the response time courses, increasing the apparent symmetry between the rising and the 

falling edges in that figure. In addition, note that because here the stimulus contrast rises and falls-off 

smoothly (instead of rising and falling-off abruptly as in our study), the time courses of the simulated 

rising and falling edges depend on position. Specifically, at the center, the time constant (gain) is the 

smallest, and hence the latencies of the rising and falling edges are shortest and their slopes are steepest.  

 

Reference 
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6 Temporal dynamics and steady state of the model 

The dynamics of a model area can be illustrated by analyzing its response to a step input with a Gaussian 

spatial profile. For the rising edge, the input is zero initially. Then the input ),( txI  becomes positive and 

remains constant. As a result, both the receptive field summation ),( txA  and conductance )),(1(0 txBg *  

are constant in time (after stimulus onset) and the dynamics for the unit at x can be simplified to 

),())(1()(),(
0 txVxBgxA

dt
txdVC *&' , 

which has the solution  

..
/

0
11
2

3
.
/

0
1
2

3
*&&

*
' txB

C
g

xBg
xAtxV ))(1(exp1

))(1(
)(),( 0

0
. 

This equation simply means that the rising edge of the response is the process of charging a capacitor with 

time constant ( ))(1(0 xBgC * . For a Gaussian input, )(xB  is also a Gaussian. Its value thus falls off 

gradually away from the center. Since the time constant is inversely related to )(xB , the time constant at 

the center will be shorter than those at the periphery. The responses ),( txV  thus rise faster at the center. 

As time progresses, responses will reach steady state ( ))(1()( 0 xBgxA * . To analyze how this function 

changes with contrast for a Gaussian input, note that for a given unit x , )(xA  can be written as )()( xIxr , 

and similarly, )()()( xIxsxB ' . This gives the steady state response 

))()(1(
)()(),(

0 xIxsg
xIxrtxV

*
' , 

which is a saturating function of )(xI  that approaches ( ))(/)( 0 xsgxr  as )(xA  increases. The response 

therefore saturates when the stimulus contrast is high.  

For the falling edge responses of the model, consider a step input that switches from a positive constant to 

zero. Both A  and B  will therefore become zero, resulting in the following dynamics: 

),(),(
0 txVg

dt
txdVC &' . 
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The equation has a simple solution 

)(
)(),(

o
o tt

C
g

o exVtxV
&&

' , 

where )(xVo  and ot  are the responses and the time at the offset of input, respectively. This solution has 

two important implications. First, the responses at all locations will start to decay all at once after the 

stimulus disappears, regardless of stimulus contrast and 0V . Second, the responses will decay with the 

same time constant 0/ gC . In addition, note that the time constant of the rising edge ( )))(1(0 xBgC *  is 

smaller than 0/ gC . This result explains why the slopes of the falling edges were predicted to be smaller 

than those in the rising edges, as observed in the data. 
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In this issue of Neuron, Busse et al. describe the population response to superimposed visual stimuli while
Sit et al. examine the spatiotemporal evolution of cortical activation in response to small visual stimuli.
Surprisingly, these two studies of V1 report that a single gain control model accounts for their results.

Orientation selectivity is the hallmark
of the primary visual cortex (V1). When
this property was discovered more than
40 years ago by Hubel and Wiesel, it
was thought that the selectivity of cortical
cells results only from the organization of
feedforward inputs from the visual thal-
amus. Today we know that the response
of cortical cells might be strongly affected
by inputs from the entire visual field.

Hubel and Wiesel showed that in V1
cells, the response evoked by lines or
bars at specific angles (orientation) is
much greater than the response to cir-
cular spots of light (Hubel and Wiesel,
1962). However, the first-order cortical
neurons that display this property (sim-
ple cells) receive their afferent inputs
from neurons of the lateral geniculate
nucleus (LGN) of the thalamus, which
are not orientation selective. How then
can this behavior be explained? Hubel
and Wiesel suggested a simple model in
which simple cells receive feedforward
inputs from several LGN neurons with
aligned receptive fields. When stimulated
by an elongated stimulus, aligned with the
collective receptive field structure of
these thalamic cells, they are activated
simultaneously, causing a large response
in simple cells.

Although many predictions of this feed-
forward model were confirmed experi-
mentally, other predictions failed. One
major discrepancy is the observation that
the width of orientation tuning curves in
V1 is independent of the stimulus contrast
(Sclar andFreeman,1982), aphenomenon
called contrast invariance. Since the firing
of geniculate cells increases monotoni-
cally with contrast, the feedforwardmodel
predicts that as contrast is increased,
stimuli further away from the preferred
orientation will evoke sufficient depolar-
ization to cause firing. Thus, the tuning

curve of V1 neurons is expected to widen
when contrast increases (Ferster and
Miller, 2000).
Another experimental observation not

explained by the simple feedforward
model is the strong suppression of
responses to a stimulus at the preferred
orientation by an orthogonal stimulus,
even if the orthogonal stimulus by itself
evokes no response (Priebe and Ferster,
2006). The feedforward model predicts
that the response to a combination of
stimuli is merely the sum of the responses
to each individual stimulus.
Subsequently, new models were pro-

posed to account for the experimental
findings described above. Roughly, they
can be described as belonging to two
categories: feedforward models extend-
ing the original model of Hubel and Wie-
sel, and models incorporating feedback
inputs. Normalization models, also known
as contrast gain control models (Albrecht
and Geisler, 1991; Heeger, 1992), belong
to the first category. In these models,
two pathways determine the response of
a cortical neuron. One is a specific filter
defined by the neuron’s selectivity to the
stimulus, as in the feedforward model of
Hubel and Wiesel. The second pathway
integrates less selective inputs from a
wider visual field, and serves as a normal-
ization background. That is, the response
of the cell is a result of dividing the
input from the first pathway by the input
via the second (gain control) pathway
(Figure 1). At the level of single cells,
contrast gain control models were found
to be successful in explaining several
key features of visual processing, in
particular contrast invariance and cross-
orientation suppression.
Visual information, however, is repre-

sented by the joint activity of many neu-
rons. Population models of V1 have relied

mostly on data gathered from single
neurons, yet neural populations may dis-
play qualitatively different behaviors than
the units that comprise them. For exam-
ple, a population of contrast invariant
neurons may not be contrast invariant in
itself (see below). Therefore, it is not clear
whether the aforementioned models,
developed to describe the responses
of single neurons, can be successfully
applied to neuronal populations.
A study by Busse et al. (2009) in this

issue of Neuron efficiently addresses this
question, using multielectrode arrays to
record from many neurons in cat V1.
Busse and colleagues characterized the
tuning curves of multiple simultaneously
recorded neurons, and examined how
their responses to a superposition of
two oriented stimuli sum together. The
population response was defined as the
average firing rate of neurons grouped ac-
cording to their preferred orientation.
Interestingly, the authors found that a
simple normalization model can account
for their results.
Initially Busse and her colleagues

verified that the population response is
contrast invariant and therefore a simple
normalization model, composed of a
product of a tuning curve and a contrast
gain function, may be applied to the pop-
ulation response. How can a population
response not exhibit contrast invariance
when single neurons are known to be
contrast invariant? Consider, for example,
a population in which sharply tuned
neurons have high contrast thresholds
whereas widely tuned cells have low
thresholds. In such a population, as
contrast is increased, more sharply tuned
neurons are recruited, resulting in a
sharpening of the population tuning
curve. However, the authors find that
contrast sensitivity and tuning width are
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independent of each other in the
population, giving rise to con-
trast invariant orientation tuning
at the population level.
To investigate V1 population

responses to more complex
stimuli, cats were presented with
a sum of two oriented gratings (a
plaid), where the contrast of
each grating was varied sepa-
rately. The authors found that
the population responses to a
combination of stimuli can range
from equal weight summation of
the responses to the individual
stimuli, to a winner-take-all re-
gime in which only one stimulus
is represented while the other
is virtually ignored. The factor
that determines how the responses are
summed is the contrast of the respective
stimuli. For similar contrastvalues, anequal
weight summation takes place, whereas
for large differences in contrast only the
response to the high contrast grating is
retained. What model can account for
this wide range of weight combinations?
Busse, Wade, and Carandini demon-

strate that a normalization model for sin-
gle neurons can be adapted to describe
the population response. In this model
responses are nonlinearly scaled by their
contrast, summed, and then normalized
(divided) by the overall contrast of both
stimuli. Dividing by the overall constant
results in suppression among concurrent
stimuli. Thenonlinear scalingwith contrast
results in equal weight summation in the
case of similar contrast but amplifies
the difference when dissimilar contrasts
are used, leading to winner-take-all com-
petition. Thus, the model captures cross-
stimulation suppression, and the smooth
transition between equal weight summa-
tion and winner-take-all, without requiring
a change in assigned weights for different
stimuli.
Is the normalization preformed by V1

cells, or is it already present in the
subthreshold input to these neurons?
Busse and colleagues found that the
normalization model provides a good fit
to the average local field potential (LFP)
responses of the entire population to plaid
stimuli, suggesting that population sub-
threshold activity in V1 neurons can
be described by the same normalization
model.

A second study in this issue of Neuron,
by Sit et al. (2009), supports Busse and
colleagues’ finding that population nor-
malization operates already at the sub-
threshold potential range of upper cortical
layers. The authors of this study investi-
gated the responses of V1 neurons to
small oriented stimuli in awake monkeys
using voltage sensitive dye imaging
(VSDI), which reflects changes in mem-
brane potential (Grinvald and Hildesheim,
2004), and examined their spatiotemporal
evolution. In spite of the vast difference in
methods used in the two studies, Sit and
colleagues report that a closely related
model accounts for their experimental
results.
Previous studies in primate V1 showed

cortical activation far beyond the retino-
topic mapping of the stimulus (Grinvald
et al., 1994). This wide spatial activation
is commonly attributed to a spread of
activity via lateral connections among
cortical neurons. The present study sug-
gests that this may not be the case. Sit
and colleagues show that the latency of
subthreshold responses of V1 cells, as
measured by the VSDI signal, is constant
regardless of the distance from the retino-
topic center of activation. This result does
not agree with the model of lateral propa-
gation, because this model predicts that
the latency should increase with distance
due to synaptic delays.
A natural candidate to account for the

constant latency is the classic feedfor-
ward model. If the activation observed
using VSDI is due to feedforward connec-
tions, then clearly we would expect no

difference in latency. However,
further results dismiss the feed-
forward model. Specifically, the
authors find that the area and
spatial profile of cortical activa-
tion are invariant to contrast.
The classic feedforward model
predicts that an activation spatial
profile will growwider as contrast
is increased, and thus cannot
explain the data.
Finally, Sit et al. explore a pop-

ulation gain control model. In
their two-stagemodel, each neu-
ron receives feedforward excita-
tion from neurons in its receptive
field pool. In addition, its con-
ductance is modulated by neu-
rons in a normalization pool that

in particular contains the receptive field
of the neuron. Increased activity in the
normalization pool results in higher
conductance in its target neurons and
therefore has two major effects on their
response: the amplitude is decreased
and the time constant is reduced, leading
to faster dynamics. The feedforward
connectivity explains the constant latency
of responses across the entire active
region, while the normalization, or gain
control, accounts for the invariant profile
of spatial spread when contrast varies.
The increase in conductance accounts
for another experimental observation—
the slope of activation increases with
proximity to the activation center. In the
model, higher conductance for units posi-
tioned near the response center, due to
higher activity in their normalization pool,
reduces their time constant and increases
the slope.

Importantly, because the spiking la-
tency depends on the slope of activation,
the finding that subthreshold response
latency, captured by the VSDI, is indepen-
dent of the distance from the center of
activation region might not be observed
via spike measurements. Hence, the use
of VSDI reveals an important property of
cortical response that proved essential
for the conclusions of Sit et al.

Although both studies provide compel-
ling support for contrast gain control in
visual processing, it is not immediately
clear how the models presented in the
two studies are related. Hence, it is worth
noting that the conductance model on
which the two-layer circuit of Sit et al. is

Figure 1. The Normalization Model for Visual Processing
The response of a cortical neuron to visual stimulation is determined by
two pathways: (1) excitatory input from its classic receptive field (red),
and (2) a gain control component, modulated by awider range of visual
inputs (black). The overall response is determined by the quotient of
the two components (each component is also subject to some nonlin-
earities, not shown here for simplicity).
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based was proposed as a possible bio-
physically plausible implementation of a
normalization operation (Carandini and
Heeger, 1994), such as the one in Busse
et al.

What biophysical mechanisms may
be responsible for divisive gain control?
Different studies have addressed this
question. One candidate mechanism is
short-term synaptic depression (Freeman
et al., 2002). Widely tuned, visually
evoked cortical shunting inhibition may
also contribute to contrast normalization.
However, intracellular recording studies
in vivo of inhibitory tuning curve profiles
and changes in evoked conductance in
response to plaid stimuli (Priebe and Fer-
ster, 2008) found no support for this view.

Divisive gain control might support
higher-level aspects of visual processing
beyond the responses of V1 neurons to
relatively simple stimuli. Some studies
debate the role of normalization in redun-
dancy reduction and efficient coding
(Schwartz and Simoncelli, 2001; Shi
et al., 2006), while others suggest that

changes in visual processing (sensitivity,
gain, etc.) induced by shifts in attention
may be explained by a modulation of the
input signal by an attentional filter fol-
lowed by normalization (Reynolds and
Heeger, 2009).
Clearly, the functional implications of

contrast gain control for downstream
visual areas and the contribution of dif-
ferent biophysical mechanisms to its
implementation are still open questions.
Hopefully, further research and analysis
of how large populations process com-
plex stimuli may shed light on these
issues.

REFERENCES

Albrecht, D.G., and Geisler, W.S. (1991). Vis.
Neurosci. 7, 531–546.

Busse, L., Wade, A.R., and Carandini, M. (2009).
Neuron 64, this issue, 931–942.

Carandini, M., and Heeger, D.J. (1994). Science
264, 1333–1336.

Ferster, D., and Miller, K.D. (2000). Annu. Rev.
Neurosci. 23, 441–471.

Freeman, T.C.B., Durand, S., Kiper, D.C., and
Carandini, M. (2002). Neuron 35, 759–771.

Grinvald, A., and Hildesheim, R. (2004). Nat. Rev.
Neurosci. 5, 874–885.

Grinvald, A., Lieke, E.E., Frostig, R.D., and Hilde-
sheim, R. (1994). J. Neurosci. 14, 2545–2568.

Heeger, D.J. (1992). Vis. Neurosci. 9, 181–197.

Hubel, D.H., and Wiesel, T.N. (1962). J. Physiol.
160, 106–154.

Priebe, N.J., and Ferster, D. (2006). Nat. Neurosci.
9, 552–561.

Priebe, N.J., and Ferster, D. (2008). Neuron 57,
482–497.

Reynolds, J.H., and Heeger, D.J. (2009). Neuron
61, 168–185.

Schwartz, O., and Simoncelli, E.P. (2001). Nat.
Neurosci. 4, 819–825.

Sclar, G., and Freeman, R.D. (1982). Exp. Brain
Res. 46, 457–461.

Shi, J., Wielaard, J., and Sajda, P. (2006). Conf.
Proc. IEEE Eng. Med. Biol. Soc. 1, 4991–4994.

Sit, Y.F., Chen, Y., Geisler, W.S., Miikkulainen, R.,
and Seidmann, E. (2009). Neuron 64, this issue,
943–956.
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Superconnected Cells Conduct
Developmental Symphonies
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In an exciting study in the December 4th issue of Science, Bonifazi and colleagues demonstrated the exis-
tence and importance of exceedingly rare but unusually richly connected cells in the developing hippo-
campus. Manipulating the activity of single GABAergic hub cells modulated network activity patterns,
demonstrating their importance for coordinating synchronous activity.

Much to the chagrin of our latte-drinking,
sushi-eating, Volvo-driving liberal friends
all over, networks in the real world are
decidedly not egalitarian but rather aristo-
cratic in nature. Indeed, the dispropor-
tionate influence of rare superconnected
hubs is well-known in technological, bio-
logical, and social networks, including

aviation grids (such as LAX and JFK),
biochemical reaction pathways (such as
pyruvate and ATP), and the proverbial
old boys’ networks. For neuroscience
in particular, hub-like connectors are
considered to be of great potential signif-
icance because networks with such
aristocratic flavor have been predicted

by theoretical studies to represent a
clever compromise between fast com-
putation, economy of wiring, and robust-
ness against random deletions (Buzsáki
et al., 2004; Bullmore and Sporns, 2009).
However, while we have thoroughly
defined neuronal networks lacking super-
connected neurons (such as that of
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