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Abstract

Visual areas in primates are known to have reciprocal connections. While the feedforward
bottom-up processing of visual information has been studied extensively for decades, lit-
tle is known about the role of the feedback connections. Existing feedback models usually
employ hand-coded connections, and do not address how these connections develop. The
model described in this paper shows how feedforward and feedback connections between
cortical areas V1 and V2 can be learned through self-organization simultaneously. Compu-
tational experiments show that both areas can form hierarchical representations of the input
with reciprocal connections that link relevant cells in the two areas.
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1 Introduction

Reciprocal connections are very common between two different areas in the visual
cortex of primates [6, 10]. Most of the previous studies of perception in primates,
however, only concentrate on feedforward connections that link neurons from a
lower level, such as V1, to a higher level, such as V2. While a lot of progress has
been made in understanding the function of the feedforward connections, the devel-
opment and the role of feedback connections in the visual system remain unclear.

Recently, several models of primate visual system with feedback connections have
been proposed [2—4, 9]. In these models, either the receptive fields or the weights of
feedback connections are hand-coded in some way. Although the behavior of these
models matches biological data, it is unclear whether the hand-coded connection
patterns are biologically plausible and how the visual system comes up with them
during development.

This paper shows how reciprocal connections between V1 and V2 can be developed
through self-organization. With corners composed of two line segments as input,
V1 and V2 form hierarchical representations of these patterns via self-organization.
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Fig. 1. Extended LISSOM model with V2
and feedback connections. The model is

hierarchy of sheets of neural units that reg
resent the retina, ON-center and OFF-cent
LGN, V1, and V2. Sample connections
are indicated for a unit in each sheet. Th
feedforward connections to an LGN neurol

form a receptive field on the retina, and V: Q ﬁ
and V2 neurons have receptive fields on tr
LGN and V1 sheets, respectively. In the ex
periments reported in this paper, however, tt RetW

LGN was bypassed for simplicity; V1 receives

input directly from the retina, making the model faster to simulate with equivalent results

[8]. V1 and V2 neurons also have short-range lateral excitatory (small dotted circle) and
long-range lateral inhibitory (large dotted circle) connections. In addition to these connec-
tions, V1 neurons receive feedback connections from V2 neurons that form a receptive field
on V2. V2 neurons have a larger receptive field than V1 neurons, as in the visual system of
primates.
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Feedback connections link units in V2 to V1 that are activated by the same in-
put, demonstrating for the first time that meaningful feedback connections can be
formed between two areas by self-organization.

2 Extended LISSOM Model

The experiments are based on an extension of the LISSOM (Laterally Intercon-
nected Synergetically Self-Organizing Map) model [1, 8, 13] to include feedback
connections from V2 to V1. The feedback connections are excitatory as suggested
by some studies [11, 12]. Figure 1 shows the architecture of this extended model.

The software implementation of the model is largely based on [1]. Since the focus
of this study is on the organization between V1 and V2, the processing at LGN is
bypassed to speed up the computation. With artificial inputs like elongated Gaus-
sians, LGN can safely be skipped to produce qualitatively equivalent result in the
LISSOM model [8]. Each neural unit in the map corresponds to a column of cells

through the six anatomical layers of the cortex.

For each input, the initial responsg(0) for the V1 unita is
na(o) = Ul(z XTAr,a)y

whereo is a piecewise linear sigmoid arctivation function for the V1 mgpis the
activation of the retinal unit, and 4, , is the afferent weight value that connects
the unitr to the unita. The initial responses of V1 are input to the V2 uniterhich

in turn produce initial responsg(0):

(0) = 02D _7a(0)Aa)-

After the initial activation of V2, V1 activity settles through short-range excitatory
and long-range inhibitory lateral interactions, as well as excitatory feedback from
V2.
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where the first term is the weiahtedasum of the activatig)ns from the retina, the sec-
ond term is the sum of lateral activations in V1 during the previous time step, and
the last term is the weighted sum of the activations in V2 during the previous time
step. The labep in the second term identifies the type (excitatory or inhibitory) of
lateral connection weights, andvy, is a constant scaling factor for eagl{nega-

tive for inhibitory connections). The indexspans the whole V1 mag , is the
feedback connection weight from V2 unito V1 unita. The activation of V2 is
given by a similar equation, but without the feedback term:

M(t) = 02D Na(t)Aap + D% Dt = DL ;4)-
a P b

These equations assume that feedforward and feedback connections are twice as
fast as lateral connections, which is an approximation of biological visual systems

[71.

After the activities have settled, the connection weights of all V1 and V2 units are
modified according to the Hebb rule, with normalization. The lateral connection
weights to a V1 unit are updated as

1. = Lp&,a + ApTaTla
P Z&(Lp&,a + @pn&na) ’

wherel; , is the new connection weight,, is the learning rate for each type of
lateral connections. The lateral connection weights in V2 are modified analogously.

The feedforward and feedback connection weights of a V1 unit are normalized
together as one group. While it is possible to treat them separately, the appropri-
ate proportions of feedforward and feedback contributions to V1 activation would
have to be set by hand. By normalizing these two connection types together, these
proportions self-organize:

Y Ara + OXTa
ne Za<Ar,a + aXTna) + Zb(Fb,a + OWIbTIa)
Fb,a + ATpTa
Fyq =

Za(Ar,a + aXrna) + Zb(Fb,a + anbna).
For a V2 unitb, the afferent connection weights from V1 are updated as

Agp + angmy
>a(Aap + angmp) .
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3 Experiments

Some V2 cells in the visual cortex of primates are known to be selective to corner-
like patterns [5]. It is therefore reasonable to use such simple patterns as a first step
to study the behavior of the extended LISSOM model. In the experiment, right-
angled corners composed of two edges were used as the input. Four corner orien-
tations were includeds, A, >, andV. At each learning step, one orientation was
selected in a fixed order and the corner was placed at a random position in the retina.
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Fig. 2. A sample input and responses in V1 and V2. (a) An input corner composed of two
elongated Gaussians shown as activation values from black (high) to white (low) on the
retina. (b) Response of the organized V1 map, intensity-coded to represent the orientation
preferences of the V1 units that are activated, with light gray represefithgnd dark

gray —45°. The V1 map forms a representation of the input corner as two separate lines.
(c) Receptive field of a V2 unit that is activated by the input pattern with weight values
shown in gray scale from black to white. The receptive field matches the activity in V1 and
thus is selective to corner input of this orientation at this position. The black circle shows
the boundary of the receptive field. (d) Output of the V2 map in gray scale from black to
white. The activation represents a corner at this location; there are no separate responses to
the edges. A hierarchical representation of the corner is therefore formed in V1 and V2.

After the responses in V1 and V2 had settled, both of the maps updated the connec-
tion weights of all units. Figure 2 shows an example input and the corresponding
responses in V1 and V2 after self-organization.

The retina had6 x 36 units, while both V1 and V2 maps had4 x 144 units. The
receptive field radii of V1 and V2 units were 5 and 24, respectively, modeling the
human visual system. All weights were initialized randomly, except that the total
feedback weights to V1 were half of the total feedforward weights from the retina
initially.

4 Experimental Results

After 20,000 input presentations, V1 map self-organized and stabilized to form
units that were highly selective to edges (Figure 3a). The resulting V1 map (Figure
4a) is very similar to those obtained in similar studies where edges were used as
inputs [8].

Most of the V2 units formed receptive fields that were selective to the patterns of
V1 activations that corresponded to a corner. As in the V1 map, units that preferred
similar patterns clustered together (Figure 4b).

Feedback connections self-organized to link those V2 and V1 units that were both
active for a particular input corner and hence reciprocal connections had developed.
Since an edge in one position can be a part of several different corners, V1 unit
received feedback from many V2 units at different positions (Figure 3b).

5 Discussion

In this model, hierarchical representation of corners in V1 and V2 emerges because
these areas have different receptive field sizes. A receptive field in V1 is only large

enough to cover part of an edge of a corner. A receptive field can also cover the tip
of the corner that contains parts of both edges, but this happens much more rarely.
Over a large number of input presentations, V1 receptive fields encounter more
edges than the tips and develop edge selectivity through Hebbian learning (Figure



Fig. 3. The receptive fields and feedback connectiot
of two active V1 units in Figure 2 represented in gray LY Q
scale coding. (a) V1 units form edge-selective receptiy

fields even though the inputs are corners. (b) Fee
back connections received from V2 units for each ¢
the V1 units in (a). Since an edge in the input can b

a part of several different corners, V1 units receiv( # @
feedback from patches of V2 that represent different ca
ners that share the same edge. For example, the four main () (b)

clusters in the top figure consist of four groups of V2 units, each representing a corner that
shares the edge. Both V1 units receive feedback from the V2 unit in Figure 2d (the bottom
right patch in the top figure and the top right patch in the bottom figure). These results

show that feedback connections organize to link units in V1 and V2 that are part of the

representation for the same input pattern.
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Fig. 4. Orientation preferences in the V1 map, corner preferences in the V2 map, and a
sample of V2 receptive fields. (a) The intensity in the V1 map represents the preference of
the unit at that point: light gray i$5° and dark gray is-45°. The histogram at the bottom
shows the distribution of orientation preference in the map. Similar orientation maps are
formed by using elongated Gaussian inputs with no feedback. (b) The orientation of the
corner that a V2 unit prefers is intensity-coded: white represenlight gray A, dark gray

<, and blackv. The histogram shows that the four orientations are represented evenly in
the map. The large patches of same preference on the borders are due to edge effects. (c)
The receptive fields of 25 V2 units around the center region of the map, using the same
intensity code in (a). Units that prefer similar patterns form clusters. The gradual change in
receptive fields across the clusters is very similar to that in the V1 map, showing that the
hierarchical organization follows the same principles at both levels.

4a). On the other hand, the receptive fields in V2 are large enough to cover the ac-
tivity patterns in V1 for both edges and hence V2 units become corner selective. Al-
though the inputs are artificial and simple in the current experiment, similar results
should be obtained when more complex inputs like natural images are used [8].

Consistent with biology, feedback is relatively weak compared to the input signal
[11]. As a result, it does not significantly influence how V1 develops in this model;

whether it does in biology is currently an open question. However, feedback is
likely to play a large role in visual function, including perceptual grouping such as
contour completion, and many visual illusions. The current model is well-suited for
studying such effects in the future.

6 Conclusions

The computational results in this paper showed for the first time that afferent, lat-
eral, and feedback connections may all self-organize simultaneously using the same



normalized Hebbian learning principle to form hierarchical representation of the
inputs. An immediate future step is to use natural images as input and match the
result with biological data on V2 and its feedback connections. The model can also
be used to confirm existing hypotheses and form new ones about the role of feed-
back connections in vision, in particular in perceptual grouping. Another possible
direction is to model multi-modal interactions of different functional areas. Under-
standing self-organization of a feedforward and feedback hierarchy is therefore an
important step towards a more general understanding of the dynamics of the visual
system.
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