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The neocortex is the largest part of the mammalian brain, and appears to be the least genetically determined.
Much of its structure and connectivity depends on electrical activity during development. Because various
neocortical areas are very similar in anatomical structure and exhibit similar developmental phenomena, it
has been suggested that a common organizing mechanism underlies their ontogeny [18]. By modeling the
development of a well-understood substructure such as the primary visual cortex, it might be possible to
elucidate this common mechanism.

The primary visual cortex, like many other regions of the neocortex, is a topographic map, and is
organized such that adjacent neurons respond to adjacent regions of the retina. This retinotopic map, as
well as �ner structures within it such as ocular dominance columns, forms by the self-organization of the
a�erent (input) connections to the cortex. The self-organizing process is driven by external input [4, 20, 19],
and appears to be based on correlated (i.e. cooccurring) neuronal activity and the resulting cooperation and
competition between neurons [19, 18].

In addition to the a�erent connections, the neocortex contains a dense network of long-range lateral
connections parallel to the cortical surface [3, 15]. These connections are reciprocal and are believed to
mediate the cooperation and competition. They grow exuberantly after birth and reach their full extent in
a short period. During subsequent development, they get automatically pruned into well-de�ned clusters
[2, 5]. Pruning happens at the same time as the a�erent connections organize into topographic maps.
The �nal clustered distribution corresponds closely to the distribution of a�erent connections in the map.
For example, in the mature visual cortex, lateral connections primarily run between areas with similar
a�erent connection structure, such as iso-orientation columns [3]. The structural correspondence and their
simultaneous development indicate that the ontogeny of lateral and a�erent connections are interdependent.

The development of lateral connections, like that of a�erent connections, depends on cortical activity
caused by external input. Three observations support this notion: (1) When the primary visual cortex
(of the cat) is deprived of visual input during early development, the lateral connectivity remains crude
and unre�ned [1]. (2) The pattern of lateral connection clusters can be altered by changing the input to
the developing cortex. The resulting patterns reect the correlations in the input [8]. (3) In the mouse
somatosensory barrel cortex, sensory deprivation (by sectioning the input nerve) causes drastic decreases in
the extent and density of lateral connections [9]. These three observations suggest that the lateral connection
structure is not de�ned genetically, but is acquired.

Lateral connections do not just modulate cortical activity { their development is essential for the self-
organization of a�erent connections as well. Every neuron receives a large number of lateral connections.
Although each individual connection is weak, their total e�ect on neural activity can be substantial [3],
and thereby a�ect the development of a�erent connections. Changes in a�erent connections then change
the activity patterns on the cortex, which in turn inuence the development of lateral connections. The
development of both sets of connections thus appears to proceed synergetically and simultaneously, eventually
evolving to a state of equilibrium in the adult animal.

The lateral connection structure plays a signi�cant role also in cortical function: (1) by integrating in-
formation over large parts of the cortex, lateral connections mediate context-dependent processing of input
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stimuli [3]; (2) lateral connections may also mediate the synchronization of activity over long distances of
the cortex, and thereby help form dynamic representations of coherent input areas [16]; (3) by learning
correlations in input during development, they can potentially form long-term representations of input reg-
ularities such as gestalt rules [19]; and (4) by combining such representations with input activity, they may
also perform feature grouping and segmentation during perception [19]. Therefore, to understand cortical
function one must discover not only the structure and function of the a�erent connections but also that of
the lateral connections. By modeling how lateral connections develop along with the other aspects of cortical
structure, a more fundamental understanding of neocortical processes can be achieved.

Several models have been proposed to explain various aspects of a�erent connection structure, such as
retinotopy, ocular dominance and orientation preference in the visual cortex [20, 12, 11]. The simultaneous
development of these three properties has recently been modeled by the Self-Organizing Map (SOM, [6])
algorithm [14, 13]. These models usually assume that the strength of lateral interaction falls o� with distance
as a Gaussian function, and is uniform throughout the network. The models do not address the development
of lateral connections and how they a�ect the self-organization of a�erent connections.

In this paper, a computational model for the synergetic development of the a�erent and lateral con-
nections in cortical feature maps is presented. The model is called LISSOM, for Laterally Interconnected
Synergetically Self-Organizing Map. LISSOM is based on a simulated network of neurons with a�erent con-
nections from the external world and reciprocal lateral connections. Connections adapt based on correlated
activity between neurons. The result is a self-organized structure with (1) a�erent connection weights that
form a map of the input space and (2) lateral connections that store long-term correlations in neuronal
activity.

Although LISSOM can be utilized as an abstract self-organizing algorithm, its most promising application
is in modeling the development of the neocortex. This paper addresses how ocular dominance and lateral
connections develop simultaneously in the visual cortex. The results of these experiments hold promise for
substantial insights into cortical development.

The LISSOM Model

Each neuron in a LISSOM network (�gure 1) has a set of a�erent input connections (from the external
input to the map) and a set of lateral input connections (from the other neurons in the map). Each neuron
develops an initial response as a weighted sum of the activation in its a�erent input connections. The lateral
interactions between neurons then focus the initial activation pattern into a localized response on the map.
After the pattern has stabilized, all connection weights are modi�ed. As the self-organization progresses, the
neurons grow more nonlinear and weak connections die o�. Below, these general structures and mechanisms
of LISSOM are described in detail, and illustrated in forming a map of a uniform distribution on a square
(�gures 2, 3 and 4).

The LISSOM network is a sheet of interconnected neurons (�gure 1). Through the excitatory a�erent
connections, every neuron receives the same vector of external input values. In addition, each neuron has
reciprocal excitatory and inhibitory lateral connections with other neurons. Lateral excitatory connections
are short-range, connecting only close neighbors in the map. Lateral inhibitory connections run for long
distances, and may even implement full connectivity between neurons in the map. Each connection has a
characteristic strength (or weight), which may be any value between zero and a prescribed limit that depends
on the synaptic resources of the neuron.

Input vectors to the network are normalized so that vectors with large norms do not dominate the self-
organizing process. In the normalization, the original n-dimensional input distribution is mapped on the
surface of an (n+ 1)-dimensional unit hypersphere [10]. The (n+ 1)th-dimension becomes the radius of the
hypersphere, and the original set of n dimensions become angles specifying the input point on the surface
of the hypersphere. For example, in forming a 2D map as in �gure 2, the square area was laid on the
surface of a 3D sphere of radius 1.0. In e�ect, inputs from this area are still 2-dimensional in spherical
coordinates because the radius is constant. Each spherical input vector (x1; x2; 1), was then transformed
into a 3-dimensional cartesian vector x = (�1; �2; �3):8<

:
�1 = 1 � cos(x1) cos(x2);
�2 = 1 � sin(x1) cos(x2);
�3 = 1 � sin(x2):

(1)
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Figure 1: The LISSOM architecture. Each neuron receives the same a�erent input vector and computes an
initial response based on a measure of similarity of the input to the corresponding weight vector. The responses then
repeatedly propagate through the lateral connections (only a few connections of the most strongly active unit are
shown) and evolve into an activity \bubble". After the activity stabilizes, weights of the active neurons are adapted.

The external and lateral weights are organized through a purely unsupervised learning process. Input
items are randomly drawn from the input distribution and presented to the network one at a time. At each
training step, the neurons in the network start out with zero activity. The initial response of each neuron
�ij in the map is based on the scalar product:

�ij = �

 X
h

�h�ij;h

!
; (2)

where �h are the inputs to the network and �ij;h are the corresponding a�erent weights. The a�erent weights
�ij;h can be positive or negative. The function � is a piecewise linear approximation to the sigmoid activation
function:

�(x) =

8<
:

0 x � �
(x� �)=(� � �) � < x < �
1 x � �

; (3)

where � and � are the lower and upper thresholds. The sigmoid introduces a nonlinearity into the response,
and makes the neuron selective to a small range of input vectors that are close to the a�erent weight vector.

The response evolves over time through the lateral interaction. At each time step, the neuron combines
external activation with lateral excitation and inhibition:

�ij(t) = �

0
@X

h

�h�ij;h + e
X
k;l

Eij;kl�kl(t� 1)� i
X
k;l

Iij;kl�kl(t� 1)

1
A ; (4)

where Eij;kl is the excitatory lateral connection weight on the connection from unit (k; l) to unit (i; j), Iij;kl
is the inhibitory connection weight, and �kl(t� 1) is the activity of unit (k; l) during the previous time step.
The lateral connection weights are all positive. The constants e and i are scaling factors on the excitatory
and inhibitory weights and determine the strength of lateral interaction. The activity pattern starts out
di�use and spread over a substantial part of the map, and converges iteratively into a stable focused patch of
activity, or activity bubble [17, 10]. After the activity has settled, typically in a few iterations, the connection
weights of each neuron are modi�ed.

The lateral weights are modi�ed by the Hebb rule, but keeping the sum of the weights constant:

ij;kl(t + �t) =
ij;kl(t) + �L�ij�klP
kl [ij;kl(t) + �L�ij�kl]

; (5)

where �ij stands for the activity of the unit (i; j) in the settled activity bubble, the s are the lateral
interaction weights (Eij;kl or Iij;kl) and �L is the learning rate for the lateral interaction (�E for excitatory
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Figure 2: Self-organization of the a�erent input weights in a 2D map. The weight vector of each neuron in
the 20 � 20 map is transformed back to the original spherical coordinates and plotted as a point in the input space
(represented by the square). Each weight vector is connected to those of the four immediate neighbors by a line.
The resulting dark grid depicts the topological organization of the map. The dotted grid shows the best possible
approximation of the input space by a 20�20 network. The a�erent weight vectors are initially uniformly distributed
on the input square (a). Input vectors are randomly drawn from the input area and presented to the network, and
the weights are modi�ed according to equations 5 and 6. As the self-organization progresses, the network unfolds
and the weight vectors spread out to form a regular topological map of the input space. Before connection pruning,
the map is stable, but contracted into the center of the input distribution (b). After connections begin to die o�, the
map expands and eventually covers the entire input space (c).

weights and �I for inhibitory). The larger the product of the pre- and post-synaptic activity �ij�kl, the
larger the weight change.

The external input weights are modi�ed according to the normalized Hebbian rule:

�ij;h(t + �t) =
�ij;h(t) + ��ij�hnP

h [�ij;h(t) + ��ij�h]
2
o1=2 ; (6)

which is otherwise similar to (5), but maintains the sum of squares of external weights constant.
The above processes of lateral interaction and weight adaptation are su�cient to form ordered a�erent

and lateral input connections (�gure 2b). However, in order to develop a good coverage of the input space,
it is necessary that these processes gradually become more focused and local. As self-organization proceeds
in LISSOM, neuronal responses grow more nonlinear and weak lateral connections die o�, which results in
more focused activity bubbles and weight changes.

The lower threshold of the sigmoidal activation function speci�es the minimuminput required for a neuron
to produce output, and its slope determines how much the neuron ampli�es changes in the input. Therefore,
neurons can be made more selective and sensitive by increasing the lower threshold, �, and decreasing the
upper threshold, �, resulting in smaller and more re�ned activity bubbles. In LISSOM, � is increased and �
decreased proportional to the activity of the neuron at each input presentation, up to prescribed maximum
and minimum limits:

�ij(t + 1) = min(�ij(t) + ���ij; �max);
�ij(t+ 1) = max(�ij(t)� ���ij; �min):

(7)

As a result, the neurons grow nonlinear faster at those parts of the map that see more activity. Such
modi�cation automatically takes into account the level of organization around the neuron, and results in
regular �nal maps (�gure 2c).

Once the map has organized partially, most of the long-range lateral connections join areas that are
almost never active simultaneously. Their weights become small, and they can be pruned without disrupting
self-organization. Most long-range inhibitory connections are eliminated this way (�gure 3 and 4). Since
the total synaptic weight is kept constant, inhibition concentrates in the immediate neighborhood of the
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(b) Inhibition
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(c) Combined interaction

Figure 3: Initial lateral interaction in the 2D map. The lateral excitation and inhibition weights and the
combined interaction pro�le are plotted for the neuron at position (10; 10) in the 20�20 map. The excitation weights
(a) are initially randomly distributed within a radius d = 4, and zero outside. The inhibition weights (b) are randomly
distributed within d0 = 12, and for neuron (10; 10), cover the entire map. The combined interaction (c) is the sum of
the excitatory and inhibitory weights and illustrates the total e�ect of the lateral connections.
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(c) Combined interaction

Figure 4: Final lateral interaction in the 2D map. The long-range connections have died o� (indicated by
zero strength in the �gure), resulting in more concentrated and deeper inhibition around the neuron. The combined
interaction has a \Mexican hat" shape. Such interaction resulted in smaller activity bubbles, allowing the map to
expand as in �gure 2c.

neuron. The short-range excitatory connections join neurons that are often part of the same bubble. They
have relatively large weights and survive.

Before connection death, activity bubbles are large and weights change in large neighborhoods. Each
adaptation makes neighboring weight vectors more parallel, which means that the map contracts to the
center of the input space (�gure 2b). However, as connections die o�, the lateral interaction tends to form
smaller, higher-contrast activity bubbles. Weights change in smaller neighborhoods, which allows the map
to expand and become a better approximation of the input space (�gure 2c).

The a�erent connections in LISSOM organize very much like in Kohonen's Self-OrganizingMap algorithm.
However, in the SOM process, the maximally responding unit is chosen through global supervision, and
adaptation neighborhoods are reduced according to a predetermined schedule. In contrast, the LISSOM
process is based on purely local rules and the network self-organizes completely without global supervision.
Even the shape of the lateral interaction is automatically extracted from the statistical properties of the
external input. The self-organization thus \bootstraps" by using external input information to establish the
necessary cooperative and competive interactions.

Modeling Ocular Dominance

The LISSOM process models cortical development at a new level, namely that of explicit activity-based
cooperation and competition and developing lateral connections. At this level, it is possible to investigate
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Figure 5: Emergence of ocular dominance and corresponding lateral connection patterns. In this
experiment, the primary visual cortex was modeled by a 40�40 network of neurons. Each neuron is labeled with a
grey-scale value corresponding to its ocular dominance. Brightness varying from black to white represents continuously
changing eye preference from exclusive left through binocular to exclusive right. Small white dots indicate the
surviving lateral input connections to the neuron marked with a big white dot. (a) The initial state of the network.
Neurons have randomly distributed ocular dominance and random-weight lateral connections covering a wide area.
(b) After the critical period, weak lateral inhibitory connections die away and the surviving connections predominantly
link areas of the same ocular dominance. As simulation proceeds, both the ocular dominance patterns and the lateral
connection patterns re�ne and eventually stabilize. (c) The lateral connections of a binocular neuron come from both
eye regions. Note that in (b) and (c), neurons that are physical neighbors do not necessarily inuence each other
because of the nontopographically distributed lateral connections.

how lateral interaction a�ects input activity in the cortex as well. As a �rst step, a model for the development
of ocular dominance columns and lateral connections in the primary visual cortex was built.

The inputs to the LISSOM network consisted of three values (x,y,z), (x,y) representing the retinotopic
position of the current visual input and z 2 [�Z;+Z] representing the ocular dominance. The values �Z
and +Z indicate the extremes of left and right dominance, and z = 0 that the input comes equally from
both eyes. Each neuron had three a�erent weights corresponding to the three input values. Initially, the
a�erent weights were set up with a random ocular dominance z 2 [�Z;+Z] and with roughly retinotopic
x and y coordinates within [0; 1]. The network was trained using input vectors with uniformly distributed
random values for x, y and z within these same ranges.

Figure 5 demonstrates the evolution of ocular dominance in the self-organizing process. At the start
of the simulation, each input initially results in a rough pattern of activity, which focuses into a single
localized activity bubble. As the self-organization progresses, the initial activity patterns begin to split into
multiple bubbles. This happens because the map self-organizes like a crumpled sheet in the (original) 3D
input space, and cannot completely cover it. Therefore, several areas of the network respond equally well
to the inputs falling between folds. Through lateral excitation and inhibition, each of these areas forms a
localized bubble. These areas are likely to have similar ocular dominance values. As a result, activity is
highly correlated between similar ocular dominance patches and less correlated between those with di�erent
ocular dominance. Lateral connections learn to represent such correlations. As a�erent connections change
and ocular dominance patterns re�ne, weak lateral connections die away and the surviving connections
become clustered around the ocular dominance areas for the same eye. The process continues until a
stable equilibrium is reached. The �nal network has (1) retinotopic a�erent weights, (2) well-de�ned ocular
dominance columns, and (3) lateral connections that link areas with the same ocular dominance.

Very similar development was observed by Lowel and Singer [8] in cats. They found that if a newborn
kitten is raised with divergent squint-eyes (strabismus), which decorrelates the visual input to the cortex
from the two eyes, lateral connections develop preferentially between ocular dominance columns of the same
eye. However, binocular neurons at the border of two ocular dominance columns had connections to neurons
in both the right and left eye areas. As can be seen from �gure 5b and 5c, the LISSOM simulation results



match both observations.
Even based on this simple model of ocular dominance formation, interesting functional predictions can

be made. For example, divergent squinters cannot achieve binocular vision even if the visual stimulus is com-
pletely binocular [7, 21]. Such impairment is puzzling because most squinting people still have some neurons
responsive to input from both eyes, and these neurons should be able to perform binocular integration. The
LISSOM model suggests an explanation: If only a few binocular neurons exist, the lateral interactions may
override the binocular response. Activity bubbles that initially form in binocular areas tend to break up and
move into nearby monocular areas. The resulting activity patterns are disjoint and spatially separated, and
therefore cannot be recognized as a single and coherent binocular percept.

Standard feature maps represent the topology of the input space by the network's grid-like layout, so that
units close by in the map represent nearby input vectors. In the LISSOM model, the neighborhood relations
are mediated by the lateral connections, and the model is not limited to strictly 2-dimensional topology.
Units that are far apart on the map grid may still belong to the same neighborhood if they are strongly
connected laterally as in �gure 5. Such topologies are automatically learned as part of the self-organizing
process. If several areas of the map are simultaneously active, long-range connections between them remain
strong enough to survive connection pruning. These connections cause the units to behave as if they were
neighbors on the map.

This property of LISSOM is potentially very signi�cant in representing complex high-dimensional input
spaces. While low-level sensory representation in the brain seems to be physically organized in 2-dimensional
maps (such as retinotopic maps), it is possible that the functional representations make use of long-range lat-
eral connections to represent more complex similarity relationships [19, 16]. LISSOM provides computational
evidence that such maps can form by input-driven self-organization.

Conclusion

The LISSOM model demonstrates how lateral interaction and topological organization of cortical maps can
be learned simultaneously from correlations in the input information. The model is biologically motivated,
and its predictions agree well with experimental observations on cortical development. LISSOM is potentially
capable of explaining various aspects of lateral and a�erent connection development in the cortex, as well as
the nature of lateral interactions in the cortex. The model delineates a functional role for connection death
and demonstrates how it can result in nontopographically organized lateral connectivity. These results
suggest that a single, general self-organizing process might underlie the development of most aspects of the
structure and function of the neocortex. In future research, the model of the visual cortex shall be extended
to the development of orientation columns, and used to investigate how lateral connections assist feature
grouping and segmentation during perception.
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