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Abstract

Cells in the visual cortex are selective not only to ocular dominance and orientation of the input,
but also to its size and spatial frequency. The simulations reported in this paper show how size
selectivity could develop through Hebbian self-organization, and how receptive �elds of di�erent
sizes could organize into columns like those for orientation and ocular dominance. The lateral
connections in the network self-organize cooperatively and simultaneously with the receptive �eld
sizes, and produce patterns of lateral connectivity that closely follow the receptive �eld organization.
Together with our previous work on ocular dominance and orientation selectivity, these results
suggest that a single Hebbian self-organizing process can give rise to all the major receptive �eld
properties in the visual cortex, and also to structured patterns of lateral interactions, some of which
have been veri�ed experimentally and others predicted by the model. The model also suggests a
functional role for the self-organized structures: The a�erent receptive �elds develop a sparse coding
of the visual input, and the recurrent lateral interactions eliminate redundancies in cortical activity
patterns, allowing the cortex to e�ciently process massive amounts of visual information.

1 Introduction

In their �rst recordings from the primary visual cortex of the cat, Hubel and Wiesel reported that
cortical cells were more selective to the width of patterns than were retinal cells [11; 12]. They
noted that cortical cells would give no response to a bar covering the whole receptive �eld (RF),
whereas in the retina and the LGN, cells would typically respond to such patterns. Subsequently,
detailed studies by Campbell et al. [5], De Valois et al. [7], and others showed that cortical cells are
narrowly tuned to the spatial frequency of inputs, and had typical bandpass responses, responding
only to inputs in a speci�c frequency range. A continuum of spatial frequencies from low to high
were represented in the cortex [21], and cells in each range of spatial frequency were organized into
distinct spatial frequency columns [26; 27]. In essence, cortical cells exhibited an organization of
spatial frequency selectivity similar to ocular dominance (OD) and orientation (OR) columns.

Several computational models have been built to demonstrate how other RF properties such as
OR preference, OD, and retinotopy can emerge from simple self-organizing processes (e.g. [10; 19;
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20; 29]). However, to date, only one computational model has included the development of spatial
frequency selectivity. In this so-called Miller's model [18], OR preference and spatial frequency
selectivity develop together, and perhaps because of the interactions between these two domains,
does not produce a clear columnar organization of spatial frequency selectivity. Although the
above models replicate the self-organization of a�erent structures quite well, they are based on the
simpli�cation that the neuronal response properties are primarily determined by the organization of
a�erent synapses. Lateral interactions between neurons are approximated by simple mathematical
functions (e.g. Gaussians) and assumed to be uniform throughout the network; the structured
lateral connectivity of the cortex is not explicitly taken into account. Such models do not explicitly
replicate the activity dynamics of the visual cortex, and therefore can make only limited predictions
about interactions between receptive �elds and cortical function.

Recent experiments have shown that lateral connection patterns closely follow the neuronal
response properties [9; 17]. For example, in the normal visual cortex, long-range lateral connec-
tions link areas with similar OR preference [9]. Like neuronal response properties, the connectivity
pattern is highly plastic in early development and can be altered by experience [13]. Such pat-
terned lateral connections develop at approximately the same time as the cortical columns [4;
13]. Together, these observations suggest that the same experience-dependent process drives the
development of both neuronal response properties and lateral connectivity.

Previously, we have shown that a single Hebbian self-organizing process can account for the
development of patterned lateral connections, a�erent receptive �elds, topographic maps and OD
columns in the cortex (the Laterally Interconnected Synergetically Self-Organizing Map (LISSOM);
[24; 25]). The same algorithm was also shown to explain the organization of orientation maps and
the patterns of lateral connections within them [23]. However, we have not studied the selectivity
to di�erent-sized stimuli with LISSOM before, although it is a major component of cortical orga-
nization. This article investigates whether the same self-organizing process can give rise to RFs
selective to di�erent stimulus sizes. Because size selectivity is closely related to spatial frequency
selectivity, such self-organization should account for spatial frequency columns as well.

Several new results are reported in this article. It is shown how a�erent RFs of di�erent sizes
develop from simple retinal images and organize across the network in a systematic fashion. In
addition, lateral connections self-organize cooperatively and simultaneously with the size selectivity
properties, producing patterns that follow the receptive �eld organization. In combination with
our previous work, these results suggest that a single uni�ed self-organizing process can give rise to
not only all the major receptive �eld properties in the visual cortex, but also the patterns of lateral
interactions. The model also suggests a functional role for the lateral interactions: they reduce
redundancies in cortical activity and form an e�cient sparse coding of the visual input.

2 The Receptive Field LISSOM (RF-LISSOM) model

The LISSOM network is a sheet of interconnected neurons (�gure 1). Through a�erent connections,
each neuron receives input from a \retina". In addition, each neuron has reciprocal excitatory and
inhibitory lateral connections with other neurons. Lateral excitatory connections are short-range,
connecting only close neighbors. Lateral inhibitory connections run for long distances, and may
even implement full connectivity between neurons in the network.

Neurons receive a�erent connections from broad overlapping patches on the retina called anatom-
ical RFs. The N �N network is projected on to the retina of R � R receptors, and each neuron
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Figure 1: The Receptive-Field LISSOM architecture. The a�erent and lateral connections of
a single neuron in the LISSOM network are shown. The a�erents form a local anatomical receptive
�eld on the retina.

is connected to receptors in a square area of side s around the projections. Thus, neurons receive
a�erents from corresponding regions of the retina. Depending on the location of the projection, the
number of a�erents to a neuron from the retina could vary from 1

2
s � 1

2
s (at the corners) to s � s

(at the center).

The input to the model consists of gaussian spots of \light" on the retina:

�a;b = exp(�
(a� xi)

2 + (b� yi)
2

u2
) (1)

where �a;b is the activation of receptor (a; b), u2 determines the width of the spot, and (xi,yi):
0 � xi; yi < R its center. Without normalization, larger-sized spots would produce stronger
activation. Therefore, the retinal activity vector is normalized to constant length. The width u is
chosen uniformly randomly in a given range, so that inputs of a variety of sizes are presented to
the network.

The external and lateral weights are organized through an unsupervised learning process. At
each training step, neurons start out with zero activity. The initial response �ij of neuron (i; j) is
based on the scalar product

�ij = �

0
@X

a;b

�ab�ij;ab

1
A ; (2)

where �ab is the activation of retinal receptor (a; b) within the anatomical RF of the neuron, �ij;ab is
the corresponding a�erent weight, and � is a piecewise linear approximation of the familiar sigmoid
activation function. The response evolves over time through lateral interaction. At each time step,
the neuron combines the above a�erent activation

P
�� with lateral excitation and inhibition:

�ij(t) = �

0
@X ��+ e

X
k;l

Eij;kl�kl(t� 1)� i
X
k;l

Iij;kl�kl(t� 1)

1
A ; (3)

where Eij;kl is the excitatory lateral connection weight on the connection from neuron (k; l) to
neuron (i; j), Iij;kl is the inhibitory connection weight, and �kl(t � 1) is the activity of neuron
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(a) Small RF: neuron (78; 109)
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(b) Large RF: neuron (69; 124)

Figure 2: Self-organized receptive �elds. The a�erent weights of neurons at two di�erent
locations in a 192 � 192 network are shown after self-organization. Initially the weights are com-
pletely random, but after self-organization, a smooth hill-shaped weight pro�le develops. Though
the anatomical RFs are the same, the a�erent weights are organized into a variety of sizes from
narrow, highly peaked receptive �elds to large and broad ones.

(k; l) during the previous time step. The constants e and i determine the relative strengths of
excitatory and inhibitory lateral interactions. The activity pattern starts out di�use and spread
over a substantial part of the map, and converges iteratively into stable focused patches of activity,
or activity bubbles. After the activity has settled, typically in a few iterations of equation 3, the
connection weights of each neuron are modi�ed. Both a�erent and lateral weights adapt according
to the same mechanism: the Hebb rule, normalized so that the sum of the weights is constant:

wij;mn(t+ �t) =
wij;mn(t) + ��ijXmnP

mn [wij;mn(t) + ��ijXmn]
; (4)

where �ij stands for the activity of neuron (i; j) in the �nal activity bubble, wij;mn is the a�erent
or lateral connection weight (�, E or I), � is the learning rate for each type of connection (�a for
a�erent weights, �E for excitatory, and �I for inhibitory) and Xmn is the presynaptic activity (�
for a�erent, � for lateral).

Both inhibitory and excitatory lateral connections follow the same Hebbian learning process
and strengthen by correlated activity. At long-distances, very few neurons have correlated activ-
ity and therefore most long-range connections eventually become weak. Such weak connections
are eliminated periodically, and through weight normalization, inhibition concentrates in a closer
neighborhood of each neuron. The radius of the lateral excitatory interactions starts out large,
but as self-organization progresses, it is decreased until it covers only the nearest neighbors (c.f.
Self-Organizing Map; [14; 15]). Such pruning of lateral connections produces activity bubbles that
are focused and local. As a result, weights change in smaller neighborhoods, and receptive �elds
become better tuned to local areas of the retina.

3 Self-Organization

Simulations were carried out on a network of 192� 192 neurons, with inputs coming from a 24� 24
retina. The anatomical RF size was chosen to be 11�11, and all the connections were initialized to
random weights. A total of 25; 000 training steps were used. At each step, a random-size Gaussian
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Figure 3: Size selective columns and lateral connection patterns. In �gure (a), each neuron
in the network is labeled with a grey-scale value (black ! white) that represents continuously-
changing size preference from small values to large values. Small white dots indicate the lateral
input connections to the neuron marked with the big white dot. The size preferences are organized
systematically across the network into connected, intertwined patches, and the strongest lateral
connections predominantly link areas of the same size selectivity. Figure (b) shows the weights of
the lateral connections plotted in (a). The connection strengths represent the activity correlations
of the neuron with the other neurons in the network. The columnar organization of the RFs
is reected in the weights. The connections also are strongest in the immediate vicinity of the
neuron (at center) and become weaker with distance. The large areas of zero weights stand for the
connections that have been pruned away during self-organization.

spot was presented on the retina as input. The lateral excitatory radius of each neuron started out
as 19, but as training progressed, it was gradually decreased to 1. The lateral inhibitory connections
had a radius of 47, and weak connections were pruned at intervals of 10; 000 iterations.

The self-organization of a�erents results in smooth, hill-shaped RFs. A variety of RFs of di�er-
ent sizes are produced, some narrow and tuned to small stimuli, others large and most responsive
to large stimuli (�gure 2). Simultaneously with the RFs, each neuron's lateral connections evolve,
and by the Hebbian mechanism, are distributed according to how well the neuron's activity cor-
relates with the activities of the other neurons (�gure 3). Because neurons tuned to similar sizes
are frequently active at the same time, the resulting connection strengths are strongest between
such neurons and weakest to neurons with very di�erent preferences. The global organization of
size preferences and lateral connections can be visualized by labeling each neuron with a color that
indicates the width of its RF, and plotting the patterns of lateral connections on top. As �gure 3
shows, the RF organization has the form of connected, intertwined patches, similar to OD columns
(see e.g. [24]), and the lateral connections of neurons connect to regions of the same size preference.

The columnar organization does not develop in small networks. Simulations show that, for a
given variance of the stimuli size, the ratio of neurons in the network to receptors in the retina (the
magni�cation factor) has to be greater than a threshold value for a stable columnar organization
to appear. Below the threshold, smooth RFs and an ordered topographic map develop, but all the
RFs tend to have the same size, corresponding to the average width of the input stimulus. Above
the threshold, symmetry breaking occurs, producing a variety of RF sizes. Such symmetry breaking
is similar to that of the Self-Organizing Map [14; 15], where an input feature is represented in the
network only if its variance is greater than a threshold proportional to the magni�cation factor
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[20].

It is not known whether the long-range lateral connections in the cortex are organized according
to size or spatial frequency selectivity. So far, the lateral connection patterns have only been
studied in relation to the organization of OD and OR preference [9; 16; 17]. However, considerable
psychophysical and neurobiological evidence indicates selective lateral interactions between neurons
tuned to di�erent spatial frequencies [3; 6]. As in the RF-LISSOM model, these interactions are also
known to be largely inhibitory [6; 28]. The model suggests that the long-range lateral connections
could be the anatomical substrate for inhibition between spatial frequency channels. The model
further predicts that the patterns of lateral connections in the cortex would be inuenced not only
by OD and OR preference, but also by selectivity to spatial frequency.

4 Functional role of the self-organized lateral connections and RFs

Combined with our previous work on OD and OR maps and lateral connections, the new results
suggest that a single Hebbian mechanism produces the receptive �elds and lateral interactions in
the primary visual cortex. If so, what could be the functional role of these self-organized structures
in visual processing?

Through Hebbian self-organization, the lateral connections learn correlations between the fea-
ture detectors in the network|the stronger the correlation between two cells, the larger the con-
nection strength between them. However, these long-range connections are inhibitory. Therefore,
the strongly correlated regions of the network inhibit each other|in other words, the lateral con-
nections decorrelate [1; 2].

Decorrelation is useful in producing e�cient representations. If the connection between two cells
is strong, then the response of one can be predicted to a large extent by knowing the response of the
other. Therefore, the activity of the second cell is redundant, and a more e�cient representation
(in an information-theoretic sense) can be formed by eliminating the redundancy. Decorrelation
�lters out the learned redundancies and produces an e�cient encoding of the visual input. Thus, the
visual knowledge that lateral connections learn is used to �lter out the already-known correlations
between cortical cells, leaving only novel information to be passed on to higher levels of processing.
Our neural network architecture demonstrates how decorrelation mechanisms could be implemented
in the primary visual cortex.

The information processing role of the a�erent RFs is best seen by analogy with Self-Organizing
Maps [14]. The a�erent connections self-organize in a similar fashion in both models [22]. When
presented with high-dimensional inputs, the self-organizing map selects the set of feature dimensions
along which inputs vary the most and represents them along the dimensions of the map [15]. For
example, if the inputs lie mostly along the diagonal plane of a hypercube, the self-organized map
(and hence the RFs) will spread out along this diagonal. If there is some input variance in the
dimension perpendicular to this diagonal, receptive �elds will be distributed along this direction
as well, and the map will \fold" in that direction. If there are many such feature dimensions, a
subset of them will be represented by the folds of the map in the order of their input variance
[20]. The images in the visual world could be varying the most along the dimensions of ocular
dominance, orientation preference and spatial frequency, and if so, the self-organized RFs will
represent these dimensions. During visual processing, the cortex projects incoming visual inputs
onto these dimensions. As shown by Field [8], such a projection produces a sparse coding of the

6



input. Projecting onto the dimensions of maximum variance1 also achieves minimal distortion and
minimal spurious conjunctions of features.

In sum, the RF-LISSOM model predicts that the cortex performs two di�erent computations
during sensory processing: First, the inputs are projected onto the principal feature dimensions
represented by the a�erent receptive �eld structure. Then, the redundancies are �ltered out by
recurrent lateral interactions. The result is an e�cient, redundancy-reduced sparse coding of the
visual input which is then passed on to higher processing levels. This prediction can be veri�ed
experimentally by using information theory to analyze the optical images of cortical activity pat-
terns produced in response to simple retinal images. If con�rmed, it would constitute a major step
in understanding the function of the observed primary visual cortex structures.

5 Conclusion

The RF-LISSOM model shows how a columnar organization of multisize receptive �elds can develop
and how lateral connection patterns follow this organization. Combined with our previous work,
these results show how a single local and unsupervised self-organizing process can be responsible for
the development of both the a�erent and lateral connection structures in the primary visual cortex.
The model suggests that a�erent receptive �elds develop a sparse coding of the visual input, and
that recurrent lateral interactions eliminate redundancies in cortical activity patterns. In essence,
the knowledge learned by the lateral connections is used as a negative �lter that allows the cortex
to e�ciently process the massive amounts of visual information presented by the environment.
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