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Abstract| A biologically motivated mechanism

for self-organizing a neural network with modi�-

able lateral connections is presented. The weight

modi�cation rules are purely activity-dependent,

unsupervised and local. The lateral interaction

weights are initially random but develop into a

\Mexican hat" shape around each neuron. At the

same time, the external inputweights self-organize

to form a topological map of the input space. The

algorithm demonstrates how self-organization can

bootstrap itself using input information. Predic-

tions of the algorithm agree very well with experi-

mental observations on the development of lateral

connections in cortical feature maps.

I. Introduction

Two-dimensional topological maps of sensory input are
present in various cortices of the brain. They are believed
to develop in a self-organizing process based on cooper-
ation and competition between neurons [4, 13, 14]. The
Self-Organizing Feature Map (SOFM) algorithm [5, 6] is
a computational model of this process. The SOFM algo-
rithm has been applied, for example, into modeling the
development of retinotopy, ocular dominance and orienta-
tion preference in the visual cortex and somatotopy in the
somatosensory cortex [9, 10, 11].

The SOFM algorithm is an abstraction, though biologi-
cally inspired. At each step of training, the algorithm�nds
the neuron whose input synaptic weights are closest to
the current input vector and changes the input weights of
all neurons in its neighborhood towards the input vector.
The size of the neighborhood starts out large, but gradu-
ally decreases towards the end of training. The algorithm
relies on an external supervisor to �nd the maximally ac-
tive unit, and invokes an ad-hoc schedule for decreasing
the neighborhood size.

To be biologically realistic, the SOFM algorithm should
be reduced to local computations and interactions among
neurons of the map. Proposed low-level models of SOFM

assume cooperative and competitive lateral interactions
through excitatory and inhibitory connections [5, 8]. The
lateral connections are non-modi�able and distinct from
the external input connections. The connection weight
pro�le in these models is shaped like a \Mexican hat",
with short-range excitation and long-range inhibition.
Similarly shaped lateral interaction is commonly found in
many biological neural networks [5].
How does such lateral interaction arise? Enormous

amounts of genetic information would be required to spec-
ify each synaptic weight of every neuron in a cortical map.
Therefore, it is unrealistic to expect lateral interaction in
such networks to be predetermined. All connections of a
neuron should be modi�able, and there is no reason why
the lateral interaction should have a uniform shape ev-
erywhere in the map. It makes sense to assume that the
connections initially have random initial weights within a
predetermined range. The question is, can these connec-
tions self-organize to form global order? Do the random-
weight lateral connections develop a biologically realistic
pro�le?
In this paper, we demonstrate through simulations that

lateral connections can self-organize simultaneously with
external input connections. In the process, the lateral in-
teraction pro�le becomes a smooth \Mexican hat"-shaped
function. The shape varies smoothly from neuron to neu-
ron in the map depending on location. All connections
can start out with random weights, and all connections
are modi�ed through a version of the Hebb learning rule.

II. The Self-organizing Process

The computations for a self-organizing feature map with
lateral connections are described below. The algorithm
computes the activity of each neuron in a network as a
weighted sum of the external input and re�nes the activ-
ity through lateral interactions between neurons. When
the activity stabilizes, all connection weights are modi�ed.
The process is repeated for each input. Section A explains
and motivates our neuron model. Sections B and C de-
scribe the network and the input, and section D delineates
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the equations and the computations.

A. The Neuron Model

Each neuron in the network is assumed to have three sets
of inputs:

� excitatory input connections that supply external
input to the neuron,

� short-range lateral excitatory connections from close
neighbors in the map,

� long-range lateral inhibitory connections from
within the map.

A connection has a characteristic strength (or weight),
which may be any value between zero and a prescribed
limit. In a real neuron, these limits would be a property
of the synapse.
External inputs to primary cortical areas of the brain

synapse di�erently from intracortical lateral connections
[15]. It is possible that the external and lateral con-
nections of the same neuron obey two di�erent rules of
weight modi�cation. In our model, the two rules di�er
only in the normalization. The external connections are
normalized to hold the sum of squares of the input weights
constant, and the lateral (excitatory/inhibitory) connec-
tions are normalized to keep the sum of lateral (excita-
tory/inhibitory) weights constant.
In the primary cortices, most extrinsic a�erents synapse

in the dendritic spines of neurons [15]. The dendritic
shafts sum the input from the spines approximately lin-
early. A rule of weight modi�cation proposed by [12] ap-
pears realistic when applied to theses synapses. Oja's rule
is an approximation of a Hebbian rule in which the synap-
tic weights are normalized to hold the sum of squares of
the weights constant. We use the more general Hebbian
rule (5) to modify the external input connections.
In a real neuron, excitatory and inhibitory synaptic

transmission are mediated by di�erent neurotransmitters
and receptors. The two sets of synapses also have dif-
ferent morphology [15]. A neuron processes each set at
di�erent sites with di�erent receptors and secondary mes-
sengers, and these resources are limited. It is reasonable
to assume that the total synaptic weight for each set is
�xed. When lateral connection weights are modi�ed in
our model, they are normalized so that the total excita-
tory weight and the total inhibitory weight are constant
(refer to equation 3).

B. The Network

The feature map is a two dimensional N � N grid of
neurons (Fig. 1). Each neuron connects to its neighbors
within distance d with excitatory lateral connections and

3-D external input

2-D activity bubble

3-D external weight vector

Inhibitory lateral connections

Excitatory lateral
connections

Fig. 1: The laterally connected self-organizing fea-

ture map architecture. Each neuron receives the same
3-dimensional input vector and computes an initial response
based on the similarity with its external weight vector. The
response then evolves through propagation along the lateral
connections (only a few connections of the most strongly ac-
tive unit are shown). After a stable activity bubble has formed,
weights of the active units are adapted.

to all neighbors within 3d + 1 with inhibitory connec-
tions. Lateral excitation weights are uniformly randomly
distributed in the interval (0,e) within the excitation ra-
dius and are zero outside. Similarly, negative inhibition
weights are distributed uniformly in the interval (i,0)
within the inhibition radius and are zero outside.

C. The Inputs

The input vectors must be normalized to prevent vectors
with large norms from dominating the self-organizing pro-
cess [8]. For this reason, the 2-D square area used as in-
put in the simulations was laid on the surface of a unit
sphere and represented in spherical coordinate system. In
e�ect, such inputs are still 2-dimensional because the ra-
dius is constant. Each spherical input vector (x1; x2; 1),
(�0:5 � x1; x2 � 0:5) was then transformed into a 3-
dimensional cartesian vector x = (�1; �2; �3):8<

:
�1 = 1 � cos(x1) cos(x2);
�2 = 1 � sin(x1) cos(x2);
�3 = 1 � sin(x2):

(1)

Corresponding to the three input components, each neu-
ron (i; j) has three external input weights �ij;h, h = 0; 1; 2.

D. The Computations

The external and lateral weights are organized through
a purely unsupervised learning process. Input items are
randomly drawn from the input distribution and presented
to the network one at a time. At each training step, the
neurons in the network start out with zero activity. The



(a) Initial response (b) Final bubble

Fig. 2: Focusing the response through lateral inhibi-

tion. The darkness of each square indicates the activity level
of the corresponding unit in a 20� 20 map.

initial response of each neuron �ij in the map is based on
a scalar product of the input and weight vectors:

�ij = �

 X
h

�ij;h�h

!
; (2)

where the function � is the familiar sigmoid activation
function. The response evolves over time through lateral
interaction. At each time step, the neuron combines ex-
ternal activation with lateral excitation and inhibition ac-
cording to

�ij(t) = � (
P

h �ij;h�h+P
k;lEkl;ij�kl(t� �t)+P
k;l Ikl;ij�kl(t � �t) ) ;

(3)

where Ekl;ij is the excitatory lateral connection weight on
the connection from unit (k; l) to unit (i; j), Ikl;ij is the
inhibitory connection weight, and �kl(t��t) is the activity
of unit (k; l) during the previous time step. The activity
pattern starts out as di�use spread over a substantial part
of the map and converges iteratively into a stable focused
patch of activity, or activity bubble (Fig. 2). After the
activity has settled, typically in a few iterations, the con-
nection weights of each neuron are modi�ed.
The lateral weights are modi�ed by a Hebb rule, keeping

the sum of weights constant:

ij;kl(t+ �t) =
ij;kl(t) + �L�ij�klP
kl [ij;kl(t) + �L�ij�kl]

; (4)

where �ij stands for the activity of the unit (i; j) in the
settled activity bubble, the s are the lateral interaction
weights (Eij;kl or Iij;kl) and �L is the learning rate for
lateral interaction (�E for excitatory weights and �I for
inhibitory). The larger the product of pre- and post-
synaptic activity �ij�kl, the larger the weight change.

The external input weights are modi�ed according to
the normalized Hebbian rule:

�ij;h(t+ �t) =
�ij;h(t) + ��ij�hnP

h [�ij;h(t) + ��ij�h]
2

o1=2 ; (5)

which is otherwise similar to (4), but maintains the sum
of squares of external weights constant.
Note that each computation is local to an individual

neuron and its connections. The algorithm carries out lo-
cal computations to achieve global self-organization of the
map network. It does not require an external supervisory
process.

III. Simulation Results

The algorithmwas applied into learning the 2-D structure
of a uniform distribution on a square area. The simula-
tions were performed on the Cray Y{MP 8/864 at the Uni-
versity of Texas Center for High-Performance Computing.
Fig. 3 illustrates the external input weights of the neurons
transformed back to the original spherical coordinates.
The weight vectors are initially uniformly distributed on
the input square. As the simulation progresses, the net-
work unfolds, and the weight vectors spread out to form
a regular topological map and to cover the input space.
The course of this process is very similar to the standard
SOFM algorithm. After a while, the network reaches a
stable equilibrium. Further training causes small uctua-
tions about the stable equilibrium if the learning rate � is
nonzero.
The lateral interconnection weights started random, but

evolved into a very smooth \Mexican hat" pro�le around
each neuron. Figures 4 and 5 show the lateral weights
before and after training for a neuron at the center of
the map. The lateral weights converged faster than the
input weights, leading the self-organization. Both the in-
put weights and lateral weights reached a stable dynamic
equilibrium after su�cient training.
Interestingly, the lateral interaction pro�le is not uni-

form throughout the map, but exhibits boundary e�ects
(Fig. 6). Because the units near the boundary do not
have full neighborhoods, normalization of lateral weights
results in pro�les that are taller and asymmetric. The
asymmetry is important because it a�ects the shape and
location of activity bubbles. In simulations with uniform,
predetermined interaction [8], activity bubbles formed
away from the boundary even for input best stimulating a
boundary neuron. In other words, the bubbles were rep-
resenting the location of the best stimulus on the map
incorrectly. In the new model, maximally active areas of
the bubble correspond to best input response areas of the
map even at the boundary. The shape of the activity bub-
ble resembles the initial input activity, and the pro�le of



(a) 0 inputs: Random (b) 500 inputs: Unfolding (b) 3000 inputs: Organized

Fig. 3: Self-organization of external input weights of a 20� 20 map. The square areas correspond to the input space.
Each neuron is represented by its input weight vector plotted in 2D as a point inside the input square. Each neuron is connected
to its four immediate neighbors, and the resulting grid depicts the topological organization of the neurons. An equilibrium is
reached in about 3000 inputs. Additional inputs cause little change.

activity is very smooth within the bubble. The lateral in-
teraction adapted to capture the smooth distribution of
activity patterns on the map.
In the abstract feature map algorithm, metastable

states such as twisted maps can form if the neighborhoods
are initially too small [1]. The size of the activity bubble
corresponds to the neighborhood size. The bubble size is
determined by the radius and amount of lateral interac-
tion. If these parameters are not large enough to make
initial activity bubble sizes comparable to the size of the
map, metastable states may form. The algorithm is ro-
bust within a fair range of parameters, and appropriate
values can be easily determined.

IV. Discussion

The new self-organization process described above has
several important implications. It is a simulation of a re-
alistic physical system that self-organizes based on purely
local rules. If we were to actually construct \neurons"
with properties described above and form a network as
explained, the map would self-organize completely in par-
allel, without global supervision. This is in contrast to the
abstract SOFM process, where the maximally responding
unit is chosen through global supervision, and adaptation
neighborhoods are reduced according to a preset schedule.
The shape of the lateral interaction is automatically

extracted from the statistical properties of the external
input. At each input presentation, the input vector is
analyzed by the current state of the input weights and
represented as an activity bubble on the map. The dis-
tribution of bubbles over time shapes the lateral weights,
which in turn results in tighter and smoother activity bub-

bles and facilitates the self-organization of the external
weights. The self-organization thus \bootstraps" by us-
ing external input information to establish the necessary
cooperative and competive interactions.

Standard feature maps represent the topology of the
input space by the network's grid-like layout. Units close
by in the map represent input vectors nearby in the input
space, and vice versa. In our model, the neighborhood
relations are mediated by the lateral connections, and the
model is not limited to strictly 2-dimensional topology.
Units that are far apart on the map grid may still belong
to the same neighborhood if they are strongly connected
laterally. Such topologies are automatically learned as
part of the self-organizing process. If several areas of the
map are simultaneously active, long range connections be-
tween such areas will remain strong. These connections
cause the units to behave as if they were neighbors on the
map. This property is potentially very signi�cant in rep-
resenting complex high-dimensional input spaces. While
lower-level sensory representation in the brain seems to
be organized in 2-dimensional maps (such as retinotopic
maps), it is possible that higher representations make use
of long-range lateral connections to represent more com-
plex similarity relationships [13]. The laterally connected
feature map is a potential computational model for for-
mation of such representations.

Standard SOFM has been used to model the develop-
ment of input connections to neurons in the primary sen-
sory cortices [9, 10, 11]. With the new algorithm, it should
be possible to model the development of both lateral and
external input connections in sensory cortices.
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Fig. 4: Initial lateral interaction. The lateral excitation and inhibition weights and the combined interaction pro�le are
plotted for the neuron at position (10; 10) in the 20 � 20 map.
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Fig. 5: Final lateral interaction. A smooth pattern of excitation and inhibition weights has evolved, resulting in a smooth
interaction pro�le.

It has recently been found that horizontal connections
in the primary visual cortex mainly connect areas with
similar functional properties, such as the same orienta-
tion sensitivity or ocular dominance [2, 3]. Assuming that
average visual input excites similar feature detectors si-
multaneously, our model could give a computational ac-
count to this phenomenom. Speci�cally, (1) lateral con-
nections between similar feature detectors strengthen due
to correlated activity and (2) connections between dissim-
ilar feature detectors weaken due to limited synaptic re-
sources (through normalization). If weak connections are
assumed to die o�, the surviving connections would be
those that link areas with similar functional properties.

The survival of horizontal connections in the primary
visual cortex depend on correlated neuronal activity. If
visual input to the cortex from both eyes of the cat is
decorrelated by arti�cially introducing strabismus (squint-

eye) during development, lateral connections preferen-
tially connect ocular dominance columns of the same eye
[7]. In normal cats however, the connections prefer ori-
entation columns of the same orientation speci�city (as
explained above). These results could be explained by
the laterally connected model. In strabismic visual input
there are more correlations among inputs from the same
eye than between eyes. Ocular dominance columns repre-
senting the same eye would have highly correlated activity,
and connections between them should strengthen. Other
lateral connections should weaken due to normalization
and eventually die o�. Normally, images in the two eyes
are very similar on the average, and have signi�cant corre-
lations. Similar orientation detectors in the cortex would
have highly correlated activity irrespective of their ocu-
lar dominance. The stronger connections should then run
between orientation columns of similar speci�city.
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Fig. 6: Lateral interaction pro�les at various locations of the 20� 20 map after training: The pro�les of neurons at
(10; 10), (0; 10), and (0; 0) are plotted. The pro�les are tallest at the corner, shorter at an edge and shortest at the center. This
is due to redistribution of synaptic weight by normalization.

V. Conclusion and Future Work

Self-organizing models of cortical map development as-
sume lateral interactions to be predetermined. We are
not aware of other published work modelling the devel-
opment of lateral connections in feature maps, biological
or abstract. The algorithm presented here demonstrates
simultaneous development of lateral interaction and self-
organization of input weights. It is biologicallymotivated,
and its predictions tie in very well with experimental ob-
servations in visuo-cortical maps.
Currently, the algorithm does not incorporate a mecha-

nism to reduce the extent of lateral connections. The lat-
eral connections of each neuron cover a substantial part of
the map. This keeps the neuronal activity correlated over
large distances and only the most signi�cant variances in
input (the ones that overcome the threshold of correlation;
[9]) become represented. To capture features with lower
variance, the extent of lateral connections must decrease
gradually. We are currently working on an unsupervised
mechanism for pruning lateral connections automatically.
Research is also underway into constructing general mod-
els of cortical map development based on our algorithm.
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